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The Self-Organizing Maps (SOM) is a very popular algorithm, introduced by Teuvo Kohonen in the early 80s. It acts as a non supervised clustering algorithm as well as a powerful visualization tool. It is widely used in many application domains, such as economy, industry, management, sociology, geography, text mining, etc. Many variants have been defined to adapt SOM to the processing of complex data, such as time series, categorical data, nominal data, dissimilarity or kernel data. However, so far, SOM has suffered from a lack of rigorous results on its convergence and stability. This article presents the state-of-art on the theoretical aspects of SOM, as well as several extensions to non numerical data and provides some typical examples of applications in different real-world fields.

RESUMEN

El algoritmo de auto-organización (Self-Organizing Map, SOM), o Mapa de Kohonen, es un algoritmo muy popular, definido por Teuvo Kohonen al principio de los anõs 80. El actúa como un algoritmo de clasificación (clustering) no supervisado y al mismo tiempo como una herramienta potente de visualización. El es ampliamente usado para aplicaciones en muchos campos, tales como economía, industría, gestión, sociología, geografía, análisis de textos, etc. Muchas variantes han sido definidas para adaptar SOM al estudio de datos complejos, tales como series temporales, datos de categoría, datos nominales, datos de disimilaridades. Sin embargo, la convergencia y la estabilidad del algoritmo SOM no tienen pruebas rigurosas y completas hasta ahora. Este papel presenta el estado-del

Introduction

This review is widely inspired by an invited paper [START_REF] Cottrell | Theoretical and applied aspects of the self-organizing maps[END_REF] presented during the WSOM 2016 Conference, at Houston (USA) in January 2016, which addressed the Theoretical and Applied Aspects of the Self-Organizing Maps.

The self-organizing map (SOM) algorithm, defined by T. Kohonen in his first articles [START_REF] Kohonen | Self-organized formation of topologically correct feature maps[END_REF], [START_REF] Kohonen | Analysis of a simple self-organizing process[END_REF] is a very famous nonsupervised learning algorithm, used by many researchers in different application domains (see e.g. [START_REF] Kaski | Bibliography of self-organizing map (SOM) papers: 1981-1997[END_REF][START_REF] Oja | Bibliography of self-organizing map (SOM) papers: 1998-2001[END_REF] for surveys). It is used as a powerful clustering algorithm, which, in addition, considers a neighborhood structure among the clusters. In this way, close data belong to the same cluster (as in any other clustering algorithm) or to neighboring clusters. This property provides a good visualization of multidimensional data, since the clusters can be displayed according to their neighborhood structure. Furthermore, the SOM algorithm is easy to implement and as its complexity is linear with respect to the number of data, it is well-adapted to Big Data problems.

Its basic version is an on-line stochastic process, inspired by biological paradigms as it was explained in the first Kohonen's articles. It models the plasticity of the synaptic connections in the brain, where the neural connections either strengthen or disappear during "learning" phases, under the control of the practical experience and received inputs, without supervision.

For industrial applications, it can be more convenient to use a deterministic version of SOM, in order to get the same results at each run of the algorithm when the initial conditions and the data remain unchanged. To address this issue, T. Kohonen has introduced the batch SOM in [START_REF] Kohonen | Self-Organizing Maps[END_REF][START_REF] Kohonen | Comparison of SOM point densities based on different criteria[END_REF].

1 Figure 1: Neighborhood functions Over time, the researchers have defined many variants of SOM, some of them will be presented below. First the modified versions of SOM meant to achieve the goal of overcoming some theoretical difficulties of the original algorithm. But nowadays, SOM variants are being designed to deal with non numerical data (categorical data, abstract data, similarity or dissimilarity indices, for example).

The paper is structured as follows: Section 2 focuses on the definition of the original SOM algorithm designed for numerical data and on the main mathematical tools that are useful for its theoretical study. Section 3 is devoted to the simplest case, the one-dimensional setting, for which the theoretical results are the most complete. The multidimensional case is addressed in Section 4 together with some real-world examples. Sections 5 and 6 are dedicated to the definition of Batch SOM and of other interesting variants. In Section 7, we show how it is possible to extend the original SOM to non numerical data, and we distinguish between the extensions to categorical data and to dissimilarity or kernel data. The conclusion in section 8 provides some directions to go further.

SOM for numerical data

Originally in [START_REF] Kohonen | Self-organized formation of topologically correct feature maps[END_REF] and [START_REF] Kohonen | Analysis of a simple self-organizing process[END_REF], the SOM algorithm was defined for data described by numerical vectors which belong to a subset X of an Euclidean space (typically R p ). For some results, we need to assume that the subset is bounded and convex. Two different settings have to be considered from the theoretical point of view:

• the continuous setting: the input space X in R p is modeled by a probability distribution with a density function f ,

• the discrete setting: the input space X comprises N data points x 1 , . . . , x N in R p . Here the discrete setting means a finite subset of the input space.

The data can be stored or made available on-line.

2..1. Neighborhood structure

Let us take K units on a regular lattice (string-like for one dimension, or grid-like for two dimensions). If K = {1, . . . , K } and t is the time, a neighborhood function h(t ) is defined on K × K . If it is not time-dependent, it will be denoted by h. It has to satisfy the following properties:

• h is symmetric and h kk = 1,

• h kl depends only on the distance dist(k, l ) between units k and l on the lattice and decreases with increasing distance.

Several choices are possible, the most classical is the step function equal to 1 if the distance between k and l is less than a specific radius (this radius can decrease with time), and 0 otherwise.

Another very classical choice is a Gaussian-shaped function

h kl (t ) = exp - dist 2 (k, l ) 2σ 2 (t ) ,
where σ 2 (t ) can decrease over time to reduce the intensity and the scope of the neighborhood relations. For example, Figure 1 shows some classical neighborhood functions.
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Figure 2:

c t (x) = k ⇐⇒ m k (t )
is the winning prototype of x

2..2. On-line SOM

A prototype m k ∈ R p is attached to each unit k, the initial values of the prototypes are chosen at random and denoted by m(0) = (m 1 (0), . . . , m K (0)). The SOM algorithm (in its on-line stochastic version) is defined as follows:

• At time t , a data point x is randomly drawn (according to the density function f (continuous setting) or in the finite set X (discrete setting),

• The Best Matching Unit is defined by

c t (x) = arg min k∈{1,...,K } x -m k (t ) 2 , (1) 
• All the prototypes are updated via

m k (t + 1) = m k (t ) + ε(t )h kc t (x) (t )(x -m k (t )), (2) 
where ε(t ) is a learning rate (positive, <1, constant or decreasing).

After learning, cluster C k is defined as the set of inputs closer to m k than to any other one. The result is a data space partition (Figure 2), called Voronoï tesselation, with a neighborhood structure between the clusters. The Kohonen map is the representation of the prototypes or of the cluster contents displayed according to the neighborhood structure.

The properties of the Kohonen maps are of two kinds:

• the quantization property, i.e. the prototypes represent the data space as accurately as possible, as do other quantization algorithms;

• the self-organization property, that means that the prototypes preserve the topology of the data: close inputs belong to the same cluster (as do any clustering algorithms) or to neighboring clusters.

To get a better quantization, the learning rate ε decreases with time as well as the scope of the neighborhood function h.

2..3. Theoretical concerns

The algorithm is, therefore, very easy to define and to use, and a lot of practical studies confirm that it works. But, in fact, the theoretical study of its convergence when t tends to +∞ remains without complete proof and provides open problems ( [START_REF] Cottrell | Theoretical aspects of the SOM algorithm[END_REF] and [START_REF] Fort | SOM's mathematics Neural Networks[END_REF]). Note that this problem departs from the usual convergence problem addressed in Machine Learning Theory, where the question is to know if the solution obtained from a finite sample converges to the true solution that might be obtained from the true data distribution. When t tends to +∞, the R p -valued stochastic processes (m k (t )) k=1,...,K can present oscillations, explosion to infinity, convergence in distribution to an equilibrium process, convergence in distribution or almost sure to a finite set of points in R p , etc.

Some of the open questions are:

• Is the algorithm convergent in distribution or almost surely, when t tends to +∞?

• What happens when ε is constant? when it decreases?

• If a limit state exists, is it stable?

• How to characterize the organization?

2..4. Mathematical tools

The convergence problem of SOM can be addressed with tools usually used to study the stochastic processes. One can emphasize on three main theories.

• The Markov Chain theory for constant ε and h, to study the convergence and the limit states.

-If the algorithm converges in distribution, this limit is an invariant measure for the Markov Chain;

-If there is strong organization, it has to be associated to an absorbing class.

• The Ordinary Differential Equation method (ODE)

If for each k ∈ K , Equation ( 2) is written in a vector form:

m(t + 1) = m(t ) -ε(t )Φ(x, m(t )), ( 3 
)
where Φ is a stochastic term, then the ODE (Ordinary Differential Equation) which describes the mean behavior of the process is

d m d t = -φ(m), (4) 
where φ(m) is the expectation of Φ(., m).

Then the k t h -component of φ is φ k (m) = K j =1 h k j C j (x -m k ) f (x)d x (5)
for the continuous setting or

φ k (m) = 1 N K j =1 h k j x i ∈C j (x i -m k ) = 1 N N i =1 h kc(x i ) (x i -m k ) (6) 
for the discrete setting.

Therefore the possible limit states are solutions of the equation

φ(m) = 0.
If the zeros of function φ are minimum values of a function (called Energy Function), one can apply the gradient descent methods to compute the solutions.

• The Robbins-Monro algorithm theory is used when the learning rate decreases under the conditions

t ε(t ) = +∞ and t ε(t ) 2 < +∞. (7) 
Despite the power of these mathematical tools, the original SOM algorithm is difficult to study for several reasons:

• for p > 1, it is not possible to define any absorbing class which could be an organized state;

• although m(t ) can be written down as a classical stochastic process, Erwinn et al., 1992, [START_REF] Erwin | Self-organizing maps: ordering, convergence properties and energy functions[END_REF][START_REF] Erwin | Self-organizing maps: stationnary states, metastability and convergence rate[END_REF], have shown that it does not correspond to any energy function, or in another words that the SOM algorithm is not a gradient descent algorithm in the continuous setting;

• finally, no demonstration takes into account the variation of the neighborhood function. All the existing results are valid for a fixed scope and intensity of the function h.

The one-dimensional case

This case is very simplified and far from the applications: the dimension p = 1, the data space X = [0, 1], the neighborhood structure is a string lattice, the data is distributed according to a uniform density and the parameter ε is constant. But it is the first case totally rigorously studied by Cottrell and Fort in 1987 [START_REF] Cottrell | Étude d'un processus d'auto-organisation[END_REF]. They prove the following results:

Theorem 1. Simplest case If ε is a constant <1/2 and if the neighborhood of k is {k -1, k, k + 1},
• The number of badly ordered triplets is a decreasing functional;

• The set of ordered sequences (increasing or decreasing sequences, i.e. organized ones) is an absorbing class;

• The process m(t ) converges in distribution to a monotonous stationary distribution which depends on ε.

Figure 3. illustrates the first part of the theorem. The neighbors of j are j -1 and j + 1. The values of the prototypes are on the y-axis, in [0, 1]. On the left, the first two triplets are not ordered. SOM will order them with a strictly positive probability. At right, the last two triplets are well ordered and SOM will never disorder them.

0 1 j -1 j j + 1 j -1 j j + 1 j -1 j j + 1 j -1 j j + 1 Figure 3: Four examples of triplets of prototypes, (m j -1 , m j , m j +1 )
Another result is available in the same frame, but when ε is decreasing, see [START_REF] Cottrell | Étude d'un processus d'auto-organisation[END_REF].

Theorem 2. Decreasing ε If ε(t ) -→ 0 and satisfies the Robbins-Monro conditions t ε(t ) = +∞ and t ε(t ) 2 < +∞, (8) 
after ordering, the process m(t ) a.s. converges towards a constant monotonous solution of an explicit linear system.

Some results about organization and convergence have been obtained a little later by Bouton, Fort and Pagès, [START_REF] Bouton | Convergence in distribution of the one-dimensional Kohonen algorithms when the stimuli are not uniform[END_REF][START_REF] Fort | On the a.s. convergence of the Kohonen algorithm with a general neighborhood function[END_REF], in a more general case.

Theorem 3. Organization

One assumes that the setting is continuous and that the neighborhood function is strictly decreasing from a certain distance between the units.

• The set of ordered sequences (increasing or decreasing sequences, i.e. organized ones) is an absorbing class;

• If ε is constant, the hitting time of the absorbing class is almost surely finite.

Theorem 4. Convergence

One assumes that the setting is continuous, the density is log-concave, the neighborhood function is time-independent and strictly decreasing from a certain distance between units.

• If the initial state is ordered, there exists a unique stable equilibrium point (denoted by x * );

• If ε is constant and the initial disposition is ordered, there exists an invariant distribution which depends on ε and which concentrates on the Dirac measure on x * when ε -→ 0;

• If ε(t ) satisfies the Robbins-Monro conditions [START_REF] Cottrell | Theoretical aspects of the SOM algorithm[END_REF] and if the initial state is ordered, then m(t ) is almost surely convergent towards this unique equilibrium point x * .

It is clear that even in the one-dimensional case, the results are not totally satisfactory. Although the hypotheses on the density are not very restrictive, some important distributions, such as the χ 2 or the power distribution, do not fulfill them. Furthermore, nothing is proved, neither if ε(t ) is a decreasing function to ensure ordering and convergence simultaneously, nor for a neighborhood function with a decreasing scope, whereas in practical implementations it is always the case.

The Multidimensional Case

In the multidimensional case, most of the previous results do not hold. For example, no absorbing class has been found when the dimension is greater than 1. Figure 4. is an illustration of such case, in dimension 2 with 8 neighbors: even if the x-and ycoordinates are ordered, it is possible (with positive probability) to disorder the prototypes.

However, some results are available, as shown below. 

4..1. Continuous setting

Let p be the data dimension. Assume that h and ε are constant. [START_REF] Sadeghi | Convergence in distribution of the multi-dimensional Kohonen algorithm[END_REF] [START_REF] Sadeghi | Convergence in distribution of the multi-dimensional Kohonen algorithm[END_REF] proves the following result:

Theorem 5. If the probability density function f is positive on an interval, the algorithm weakly converges to a unique probability distribution which depends on ε.

Assuming p = 2 and denoting by F ++ the set of the prototypes with simultaneously increasing coordinates, these two apparently contradictory results hold.

Theorem 6. For a constant ε and very general hypotheses on the density f ,

• the hitting time of F ++ is finite with a positive probability (Flanagan, 1996, [24]);

• but in the 8-neighbor setting, the exit time is also finite with positive probability (Fort & Pages, 1995, [26]).

However, in practical applications, the algorithm converges towards a stable equilibrium!

4..2. Discrete setting

For the continuous setting, we know that SOM is not a gradient descent algorithm (Erwinn, 1992, [START_REF] Erwin | Self-organizing maps: ordering, convergence properties and energy functions[END_REF][START_REF] Erwin | Self-organizing maps: stationnary states, metastability and convergence rate[END_REF]). But the discrete setting is quite different, since the stochastic process m(t ) derives from an energy function (if h is not time-dependent). This is a very important result, since in applications such as data mining or clustering, the data is always discrete.

For the discrete setting, Ritter et al., 1992, [START_REF] Ritter | Neural Computation and Self-Organizing Maps: an Introduction Addison-Wesley[END_REF], prove the next theorem:

Theorem 7. In the discrete setting, SOM is a gradient descent process associated to

E (m) = 1 2N N i =1 K k=1 h kc(x i ) m k -x i 2 , ( 9 
)
called Extended Distortion or Energy Function.

Note that this energy function can also be written in a more explicit manner as

E (m) = 1 2N K k=1 K j =1 h k j x i ∈C j m k -x i 2 . ( 10 
)
This result does not ensure the convergence, since the gradient of the energy function is not continuous on the boundaries of the clusters. But this energy has an intuitive meaning, because it combines two criteria : a clustering criterion and a correct organization criterion.

Note that in the 0-neighbor setting, SOM reduces to the Vector Quantization process (VQ), the energy reduces to the classical distortion (or within-classes sum of squares)

E (m) = 1 2N N i =1 m c(x i ) -x i 2 .
The gradient is continuous and in this case, the algorithm converges to one of the local minima. 

4..3. Examples of practical applications

Figures 5 and6 present some examples of Kohonen maps. The prototypes are displayed on the lattice and clustered into superclasses easier to describe, by using a Hierarchical Classification. The organization is confirmed since the super-classes group only neighboring prototypes. In Ex. 1 (Figure 5) [START_REF] Cottrell | Analyzing and representing multidimensional quantitative and qualitative data: Demographic study of the rhone valley. the domestic consumption of the canadian families[END_REF], there are 1783 districts in the French Rhône Valley, the dimension is 7, the variables are 7 census collected in 1936,1954,1962,1968,1975,1982,1990. The Kohonen map is a 8 × 8 grid. The data are grouped into 5 superclasses using a Hierarchical Clustering of the 8 × 8 prototypes. For Ex. 2 [START_REF] Letrémy | Using working patterns as a basis for differentiating part-time employment[END_REF], in a week, at each quarter-hour, a binary code is filled by each worker: 1 if he works, 0 otherwise. Each observation is a 4 × 24 × 7 = 672-dimensional vector and there are 566 workers. The Kohonen map is a 10-units string, and the figure shows the 10 prototypes, grouped into 5 super-classes. In Ex. 3 [START_REF] Cottrell | Data analysis using self-organizing maps In European Symposium on Time Series Prediction[END_REF], one sees the 10 colored super-classes, and below all the manuscript digits coded as 256-dimensional vectors are drawn in the Kohonen classes.

In Ex. 4 (Figure 6) [START_REF] Blayo | How to compare kohonen neural networks to other techniques[END_REF] [12], 96 countries are described by 7 ratios (annual population growth, mortality rate, illiteracy rate, population proportion in high school, GDP per head, unemployment rate, inflation rate) in 1996. The prototypes are displayed on a 6 × 6 Kohonen map and grouped into 7 super-classes. Ex. 5 [START_REF] Cottrell | Analyzing and representing multidimensional quantitative and qualitative data: Demographic study of the rhone valley. the domestic consumption of the canadian families[END_REF] concerns the distribution of Canadian consumers based on 20 consumption categories. And Ex. 6 [START_REF] Cottrell | Daily electrical power curves: Classification and forecasting using a kohonen map[END_REF] displays the contents of each Kohonen class, on a 10 × 10 cylindrical map, after learning, where each observation is the daily electrical consumption in France measured each half an hour over 24 hours over 5 years. 

Deterministic Batch SOM

In some practical applications, it is preferable to use a deterministic version of SOM, in order to get reproducible results when the initial prototype values are fixed, [START_REF] Kohonen | Self-Organizing Maps[END_REF][START_REF] Kohonen | Comparison of SOM point densities based on different criteria[END_REF].

The idea is to compute the solutions directly, without any on-line learning and to use all the data at each iteration. It is known that the possible limit states of the SOM algorithm are solutions of the ODE equation φ(m) = 0, so it is natural to solve it.

For the continuous setting, one gets

m * k = K j =1 h k j C j x f (x)d x K j =1 h k j C j f (x)d x .
and in the discrete setting, the analogous is

m * k = K j =1 h k j x i ∈C j x i K j =1 h k j |C j | = N i =1 h kc(x i ) x i N i =1 h kc(x i )
.

Therefore, the limit prototypes m * k are the weighted means of all the inputs which belong to the cluster C k or to its neighboring clusters. The weights are given by the neighborhood function h.

From this remark, Kohonen [START_REF] Kohonen | Self-Organizing Maps[END_REF][START_REF] Kohonen | Comparison of SOM point densities based on different criteria[END_REF], derives the definition of the Batch SOM, which directly computes the limit prototypes m * k , by

m k (t + 1) = K j =1 h k j (t ) C j (m k (t )) x f (x)d x K j =1 h k j (t ) C j (m k (t )) f (x)d x ( 11 
)
for the continuous setting, and

m k (t + 1) = N i =1 h kc t (x i ) (t )x i N i =1 h kc t (x i ) (t ) (12) 
for the discrete case.

The initial values of the prototypes are chosen at random as usual. Figure 7 shows the limit prototypes as mean values of the union of its cluster and of the neighboring clusters.

For Batch SOM, the theory is a little more achieved, since it is proven by Fort et al., [START_REF] Fort | Stochastic on-line algorithm versus batch algorithm for quantization and self organizing maps In Neural Networks for Signal Processing XI[END_REF][START_REF] Fort | Advantages and drawbacks of the batch Kohonen algorithm[END_REF], that it is a quasi-Newtonian algorithm associated to the Extended Distortion and that it converges to one of its local minima. Note that in the 0-neighbor setting, Batch SOM reduces to Forgy process (k-means, or what is also called Moving Centers), which converges towards a local minimum of the Distortion. Table 1 summarizes the relations between four clustering algorithms: the on-line SOM, the Batch SOM, the Vector Quantization (VQ) and the Forgy algorithm (or Moving Centers). Some remarks highlight these relations:

• VQ and Forgy algorithms are 0-neighbor versions of on-line and Batch SOMs respectively;

• SOM and Batch SOM preserve the data topology: close data belong to the same cluster or to neighboring clusters;

• The Kohonen maps have good visualization properties whereas the 0-neighbor algorithms (Forgy and VQ) do not; • Batch SOM is deterministic and often preferred for industrial applications.

Variants of SOM

Several variants have been defined to improve the SOM properties or to recast the SOM algorithm into a probabilistic framework.

6..1. Hard assignment in the Heskes'rule

One of the most important variants has been introduced by Heskes, 1999 [START_REF] Heskes | Energy functions for self-organizing maps[END_REF], who has proposed a modification of the bestmatching unit assignment, in order to get continuous gradient of the energy function.

Equation ( 1) is re-written

c t (x) = arg min k∈{1,...,K } K j =1 h k j (t ) x -m k (t ) 2 . ( 13 
)
With the Heskes rule, the energy function is continuous for both discrete and continuous settings, and its gradient is also continuous in the continuous setting. So this modified SOM is a gradient descent process of the Energy Function

E (m) = 1 2 K j =1 K k=1 h k j (t ) x∈C j (m) x -m k (t ) 2 f (x)d x. ( 14 
)
in the continuous setting.

6..2. Soft Topographic Mapping -STM

The original SOM algorithm is based on a hard winner assignment. Generalizations based on soft assignments were derived in [START_REF] Graepel | Self-organizing maps: generalizations and new optimization techniques[END_REF] and [START_REF] Heskes | Energy functions for self-organizing maps[END_REF]. First we remark that the energy function in the discrete SOM can be written as:

E (m, c) = 1 2 K k=1 N i =1 c i k K j =1 h k j (t ) m j (t ) -x i 2 ,
where c i k is equal to 1 iif x i belongs to cluster k.

Then the crisp assignment is smoothed by considering c i k ≥ 0 such that K k=1 c i k = 1, so that c i k = P(x i ∈ C k ). Finally, a deterministic annealing scheme is used to avoid local minima: the energy function is transformed into a "free energy" cost function,

F (m, c, β) = E (m, c) - 1 β S(c) ,
where β is the annealing parameter.

It can be proven that for fixed β and h, the minimization of the free energy leads to iterating over two steps

P(x i ∈ C k ) = exp(-βe i k ) K j =1 exp(-βe i j ) , ( 15 
)
where 2 and

e i k = 1 2 K j =1 h j k (t ) x i -m j (t )
m k (t + 1) = N i =1 x i K j =1 h j k (t )P(x i ∈ C j ) N i =1 K j =1 h j k (t )P(x i ∈ C j ) . ( 16 
)
If β ≈ 0, there is only one global minimum computed by a gradient descent or EM schemes. When β → +∞, the free energy tends to be E (m, c), the classical batch SOM is retrieved and most of the local minima are avoided. The deterministic annealing minimizes the free energy, starting from a small β, to finally get (with increasing β) an approximation of the global minimum of E (m, c).

6..3. Probabilistic models

Other variants of SOM use a probabilistic framework. The central idea of those approaches is to constrain a mixture of Gaussian distributions in a way that mimics the SOM grid.

Consider a mixture of K Gaussian distributions, centered on the prototypes, with equal covariance matrix,

• In the Regularized EM [START_REF] Heskes | Self-organizing maps, vector quantization, and mixture modeling[END_REF], the constraint is enforced by a regularization term on the data space distribution;

• In the Variational EM, [START_REF] Verbeek | Self-organizing mixture models[END_REF], the constraint is induced at the latent variable level (via approximating the posterior distribution of the hidden variables knowing the data points p(Z |X , Θ), where Θ is the parameter vector, by a smooth distribution);

• In the Generative Topographic Mapping, the constraint is induced on the data space distribution, because the centers of the Gaussian distributions are obtained by mapping a fixed grid to the data space via a nonlinear smooth mapping.

One can find more details about these SOM variants in the WSOM 2016 Proceedings [START_REF] Cottrell | Theoretical and applied aspects of the self-organizing maps[END_REF]. All the probabilistic variants enable missing data analysis and easy extensions to non numerical data.

SOM for non numerical data

The original definition of SOM was conceived to deal with vector numerical variables. Quickly, Teuvo Kohonen and other researchers [START_REF] Kohonen | Median strings Pattern Recognition Letters[END_REF], [START_REF] Kohonen | Self-organizing maps of symbol strings Technical report a42[END_REF], [START_REF] Kaski | Websom -self-organizing maps of document collections[END_REF], [START_REF] Kohohen | Self-organizing maps of symbol strings Neurocomputing[END_REF], [START_REF] Kohonen | Self-Organizing Maps, 3rd Edition[END_REF], [START_REF] Kohonen | How to make large self-organizing maps for nonvectorial data[END_REF], [START_REF] Kohonen | Essentials of self-organizing map Neural Networks[END_REF], [START_REF] Kohonen | MATLAB Implementations and Applications of the Self-Organizing Map Unigrafia Oy[END_REF], [START_REF] Cottrell | Neural networks for complex data Künstliche Intelligenz[END_REF] have proposed adaptations of SOM to categorical variables as those collected in surveys and for text mining.

SOM algorithm may be adapted to :

• Categorical data, like survey data, where the variables are answers to questions with multiple choices, or counting tables, where items are classified according to multiple criteria;

• Data described by a dissimilarity matrix or a kernel, where the observations are known by their pairwise relations. This framework is well adapted to data like graphs, categorical time series, etc.

7..1. Contingency data

The adaptation of the SOM algorithm to contingency data (named KORRESP) was first defined by Cottrell et al. in 1993 [16]. The data consists in a contingency table which crosses two categorical variables and which is denoted by T = (t i , j ) with I rows and J columns. The idea is to mimic the Factorial Correspondence Analysis, which consists in two simultaneous weighted Principal Component Analysis of the table and of its transposed, using the χ 2 distance instead of the Euclidean distance. Therefore, to be able to take into account the χ 2 distance and the weighting, to comply with the way it is defined in the Multiple Correspondence Analysis. After transforming the data, two coupled SOMs using the rows and the columns of the transformed table can thus be trained. In the final map, related categories belong to the same cluster or to neighboring clusters. The reader interested in a detailed explanation of the algorithm can refer to [START_REF] Bourgeois | How to improve robustness in Kohonen maps and display additional information in factorial analysis: application to text mining[END_REF]. More details and real-world examples can also be found in [START_REF] Cottrell | Som-based algorithms for qualitative variables[END_REF][START_REF] Cottrell | How to use the Kohonen algorithm to simultaneously analyse individuals in a survey[END_REF]. Note that the transformed tables are numerical data tables, so there is no particular theoretical results to comment on. All the results that we presented for numerical data still hold.

So the algorithm KORRESP can be defined in three steps:

• First, scale the rows and the columns as in Factorial Correspondence Analysis and replace the table T by the scaled contingency table denoted by T sc , where

t sc i , j = t i , j t i . t . j
with t i . = j t i j and t . j = i t i j ;

• Then build an extended data table X by associating to each row, the most probable column and to each column, the most probable row;

• Finally, simultaneously classify the rows and the columns onto a Kohonen map, by using the extended data table X as input for the SOM algorithm.

The approach is summarized in the scheme Figure 8. Note that the assignment step uses the scaled rows or columns, the prototype update concerns the extended rows or columns and that the same are alternatively drawn at random. After convergence, rows and columns items are simultaneously classified as in FCA, but on one map only.

In real world applications, the data can be collected in surveys or text mining and can be more complex than a simple contingency table crossing two questions. They can be collected as a Burt Table , i.e. a full contingency table for more than two questions or a complete disjunctive table that contains the answers of all the surveyed individuals. KORRESP deals with all these kinds of tables. It is sufficient to consider these tables as"contingency tables" crossing their rows and their columns.

Let us take a simple example to illustrate the KORRESP algorithm. Table 2 displays the distribution of the 12,585 monuments listed in France in 1990, according to their category (11 levels) and their owners (6 levels) [START_REF] Cottrell | Analyzing a contingency table with Kohonen maps: a factorial correspondence analysis[END_REF]. We use a KORRESP algorithm to simultaneously cluster the categories of monuments and their owners on a 5 × 5 Kohonen map.

Table 3 presents the resulting Kohonen map after learning, which shows the main associations between monument categories, between owners types, between monument categories and owner types. One can see, for example, that the cathedrals (CAT) and the state (ST_) are in the same cluster, as foreseen since the cathedrals in France belong to the State. Similarly, the castles (CAS), the private secular monuments (PRI) are with the Owner Private (PR_). The churches and the chapels belong to the towns in France and, as expected, are close to the owner Town (TO_).

The Kohonen map gives interesting information on these associations, in line with the results obtained by using a Factorial Correspondence Analysis, on one map only, while many projections are required to correctly interpret the results of a Factorial Analysis.

7..2. Median SOM

When the data are known only through relational measures of ressemblance or dissemblance, such as kernels or dissimilarity matrices, it is also possible to extend the original SOM algorithm. Both on-line and batch versions were proposed during the last two decades. These versions can be used for data-like graphs (social networks) or sequences (DNA sequences) for example. A detailed review of these algorithms is available in [START_REF] Rossi | How many dissimilarity/kernel self organizing map variants do we need?[END_REF].

The data is supposed to be described by a symmetric (dis)similarity matrix D = (δ(x i , x j )) i , j =1,...,N , in a discrete setting. Note that observations (x i ) do not necessarily belong to a vector space.

One of the first attempts was proposed by Kohonen and Somervuo, 1998, [38], and is the Median SOM. The prototypes have to be equal to an observation. The optimal prototypes are computed by searching through (x i ) i =1,...,N , instead of X , as in [START_REF] Kohohen | Self-organizing maps of symbol strings Neurocomputing[END_REF], [START_REF] Kohonen | How to make large self-organizing maps for nonvectorial data[END_REF], [START_REF] El Golli | Self organizing map and symbolic data Journal of Symbolic Data Analysis[END_REF], [START_REF] El Golli | A self organizing map for dissimilarity data In Banks[END_REF].

The Median SOM algorithm is defined by a discrete optimization scheme, in a batch mode:

1. Assignment of all data to their best matching units:

c t (x i ) = arg min k δ(x i , m k (t ));
2. Update of all the prototypes within the dataset by m k (t ) = arg min x i N j =1 h c t (x j )k (t )δ(x i , x j ). As the algorithm explores a finite set, it is convergent to a local minimum of the energy function. But there are some drawbacks: all prototypes must belong to the data set, and the induced computational cost is very high. 

7..3. Relational SOM

Another class of algorithms well adapted to data known by a dissimilarity matrix relies upon a result obtained by Goldfarb, 1984 [30], which shows that if the data is described by a (dis)similarity matrix D = (δ(x i , x j )) i , j =1,...,n , they can be embedded in a pseudo-Euclidean space:

Theorem 8. There exist two Euclidean spaces E 1 and E 2 and ψ 1 :

{x i } → E 1 , ψ 2 : {x i } → E 2 such that δ(x i , x j ) = ψ 1 (x i ) -ψ 1 (x j ) 2 E 1 -ψ 2 (x i ) -ψ 2 (x j ) 2 E 2 .
The principle of the adapted algorithm is to use the data representation in E = E 1 ⊗ E 2 , where ψ(x) = (ψ 1 (x), ψ 2 (x)).

• The prototypes are expressed as convex combinations of the (ψ(x i )):

m k (t ) = N i =1 γ t ki ψ(x i )
where γ t ki ≥ 0 and i γ t ki = 1; • The distance ψ(x i )m k (t ) 2 E can be expressed with D and the γ by

Dγ t k i - 1 2 (γ t k ) T Dγ t k .
where

γ t k T = γ t k,1 , ..., γ t k,N .
Then the first step of the algorithm, finding the best matching unit of an observation, as introduced in Equation ( 1), can be directly generalized to dissimilarities, both for on-line and batch settings. As for the prototype update, it should be noted that it only concerns the coordinates (γ k ).

For the on-line framework [START_REF] Olteanu | On-line relational and multiple relational[END_REF], it is written as in the original SOM, (see Equation ( 2 3: The monuments, their categories and their owners on the Kohonen map

γ t +1 k = γ t k + ε(t )h kc t (x i ) (t ) 1 i -γ t k ( 17 
)
where x i is the current observation and 1 i l = 1 iif l = i and 0 otherwise. In the batch framework [START_REF] Hammer | Topographic processing of relational data In Neuroinformatics Group[END_REF], [START_REF] Hammer | Topographic mapping of large dissimilarity data sets[END_REF], the prototypes update is identical to the original Batch algorithm (see Equation ( 12)). One puts

m k (t + 1) = N i =1 h kc t (x i ) (t ) N j =1 h kc t (x j ) (t ) ψ(x i ) ⇔ γ t +1 ki = h kc t (x i ) (t ) N j =1 h kc t (x j ) (t ) . ( 18 
)
If the dissimilarities are in fact given by Euclidean distances between data points in R p , the relational SOM is strictly equivalent to the original SOM.

7..4. Kernel SOM

A kernel K = (K (x i , x j )) i , j =1,...,N is a particular case of symmetric similarity measure, positive semi-defined and satisfying

∀ M > 0, ∀ (x i ) i =1,...,M ∈ X , ∀ (α i ) i =1,...,M , i , j α i α j K (x i , x j ) ≥ 0.
Observe that a kernel matrix K is a Euclidean dot product, but that a dissimilarity matrix D may not necessarily be transformed into a kernel matrix. For kernel data, Aronszajn, 1950, [START_REF] Aronszajn | Theory of reproducing kernels[END_REF] proves the following result: Theorem 9. There exists a Hilbert space H , also called feature space, and a mapping ψ : X → H , called feature map, such that K (x i , x j ) = 〈ψ(x i ), ψ(x j )〉 H (dot product in H ).

The SOM algorithm can be extended to kernel SOM (see [START_REF] Villa | A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph[END_REF], [START_REF] Mac Donald | The kernel self organising map[END_REF]), following the steps mentioned below:

• The prototypes are expressed as convex combinations of the (ψ(x i )) :

m k (t ) = N i =1 γ t ki ψ(x i )
where γ t ki ≥ 0 and i γ t ki = 1; • The distance is given by

ψ(x i ) -m k (t ) 2 = γ t k T Kγ t k -2K i γ t k + K i i ,
where K i is the i th row of K and γ t k T = γ t k,1 , ..., γ t k,N . The prototype updates are the same as before, acting only on the γ. Note that if the dissimilarity is the squared distance induced in the feature space H , kernel SOM and relational SOM are strictly equivalent.

The algorithms are fully equivalent to the original SOM algorithms for numerical data in the feature (implicit) Euclidean space induced by the dissimilarity or the kernel, as long as the prototypes are initialized in the convex hull of the input data. So the relational/kernel versions suffer from the same theoretical limitations as the original SOM algorithms. This example is extracted from the paper by Olteanu and Villa, 2015, [START_REF] Olteanu | Using SOMbrero for clustering and visualizing graphs[END_REF]. Let us define the graph of co-occurrences (in the same chapter) of the 77 characters in the Victor Hugo's novel "Les misérables". It is displayed in Figure 9.

The dissimilarity between two characters is defined as the length of the shortest path between two vertices. The resulting Kohonen map using the relational on-line version is displayed in Figure 10 at left. A hierarchical clustering of the prototypes is used to build "super-classes", which are displayed in Figure 10 at right, where the size of the clusters is proportional to the number of characters.

In Figure 11 at left, one can color the characters in the initial graph with the color of the super-classes. Figure 11 at right presents a simplified graph, built from the super-classes. Each super-class is represented by a circle with a radius proportional to the number of vertices it contains. The width of the edges is proportional to the number of connections between two superclasses.

7..6. Example: Professional trajectories

The data comes from a project "Generation 98 à 7 ans", 2005, of CEREQ, Centre Maurice Halbwachs (CMH), France. To collect the data, 16,040 young people leaving initial training in 1998 are observed over 94 months. Each month, the nature of their activity is recorded (permanent labor contracts, fixed-term contracts, apprenticeship program, public temporary-labor contract, on-call contract, unemployment, inactive, military service, education,...).

The dissimilarity between recorded sequences is defined as the Optimal Matching, which is a variant of the Edit Distance where some costs are assigned to the changes. After the relational SOM is trained on the entire data set, one gets the final map illustrated in Figure 12 [START_REF] Olteanu | On-line relational and multiple relational[END_REF].

Conclusion and Perspectives

We have presented the original on-line and Batch SOM, as well as some of their variants. Although many practical evidences do not have rigorous mathematical proofs so far, these algorithms are widely used to solve a large range of problems. The extensions to categorical data, dissimilarity data, kernel data have transformed them into even more powerful tools. Since the Heskes's variants of SOM have a more solid theoretical background, SOM can appear as an easy-to-develop approximation of these well-founded algorithms. This observation should ease the concern that one might experience about it. Their non supervised learning characteristic makes them very interesting to use for exploratory data analysis, as there is no need to be aware of the labels. The fact that the algorithm complexity is linear with respect to the database size makes them very well adapted to Big Data problems. Another useful property of SOM algorithm is its ability to deal in a straightforward way with databases containing some missing data, even if they are numerous, see [START_REF] Cottrell | Missing values: processing with the Kohonen algorithm In[END_REF].

To conclude, let us emphasize an aspect which has yet to be deeply exploited. Mostly in practical applications, the stochasticity of the results is viewed as a drawback, since different runs of the on-line SOM provide different resulting maps. For that reason, some people preferentially use the Batch version of SOM.

In fact, this stochasticity can be very useful in improving the performances and more precisely qualifying the results. Three lines of inquiry seem promising:

• It allows to improve the stability as shown in the following papers [START_REF] Petrakieva | Bagging and bumping self organising maps[END_REF][START_REF] Saavedra | Fusion of self organizing maps[END_REF][START_REF] Vrusias | Distributing SOM ensemble training using grid middleware In Proceedings[END_REF][START_REF] Baruque | Fusion methods for unsupervised learning ensembles[END_REF][START_REF] Mariette | Bagged kernel SOM In[END_REF][START_REF] Lange | Aggregating self-organizing maps with topology preservation[END_REF];

• This stochasticity can be used to qualify the reliability of the results with a stability index [START_REF] De Bodt | Statistical tools to assess the reliability of self-organizing maps[END_REF];

• Or to distinguish stable pairs and fickle pairs of data points to improve the interpretation and the visualization as in [START_REF] Bourgeois | How to improve robustness in Kohonen maps and display additional information in factorial analysis: application to text mining[END_REF] and [START_REF] Bourgeois | Search for meaning through the study of co-occurrences in texts[END_REF] for medieval text mining.

Note that Batch SOM for numerical data or relational data is implemented in the R-package yasomi (http://yasomi.rforge.r-project.org), and that KORRESP and on-line SOM for numerical data or relational data are implemented in the Rpackage SOMbrero ( https://CRAN.R-project.org/package=SOMbrero).
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 4 Figure4: Disordering an ordered configuration. A is a neighbor of C, but B is not a neighbor of C. If C is very often the best matching unit, B is never updated, whereas A becomes closer and closer to C. Finally, the y-coordinate of A becomes smaller than that of B and the disposition is disordered.
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 5 Figure 5: Ex. 1: clustering of districts (top left), Ex.2: workers schedules (bottom left), Ex. 3: manuscript characters (the super-classes at top right and the contents on bottom right.
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 6 Figure 6: Ex. 4: countries (the prototypes on top left and the contents on top right), Ex. 5: domestic consumption (the prototypes on bottom left), Ex. 6: power consumption (the contents on bottom right).
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 8 Figure 8: The extended data table X
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 9 Figure 9: Graph of co-occurrences for the characters in Les Misérables
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 10 Figure 10: The Kohonen map and the super-classes of characters
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 12 Figure 12: Top left: exclusion of the labor market. Top right: quick integration

Table 1 :

 1 Comparison summary• SOM depends very little on the initialization, whereas Batch SOM is very sensitive to it;

		Stochastic	Deterministic
	0 neighbor	VQ, SCL	Forgy, Moving Centers
	With neighbors	SOM	Batch SOM

Table 2 :

 2 Historical monuments classified by category and kind of owners, 1990, France, Source MCC/DPVDEP

	Monument	Town Private State Department Public Establishment) Other
		(TO_)	(PR_)	(ST_)	(DE_)	(PU_)	(OT_)
	Prehistoric antiquities (PRE)	244	790	115	9	12	144
	Historical antiquities (HIS)	246	166	46	23	11	31
	Castles and manors (CAS)	289	964	82	58	40	2
	Military architecture (MIL)	351	76	59	7	2	0
	Cathedrals (CAT)	0	0	87	0	0	0
	Churches (CHU)	4298	74	16	5	4	2
	Chapels and oratories (CHA)	481	119	13	7	8	4
	Monasteries (MON)	243	233	44	37	18	0
	Public secular monuments (PUB)	339	47	92	19	41	2
	Private secular monuments (PRI)	224	909	46	7	18	4
	Others (OTM)	967	242	109	40	10	9