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Abstract

In this article, we consider a generalization of Young tableaux in which we
allow some consecutive pairs of cells with decreasing labels. We show that
this leads to a rich variety of combinatorial formulas, which suggest that
these new objects could be related to deeper structures, similarly to the
ubiquitous Young tableaux.
Our methods rely on variants of hook-length type formulas, and also on
a new efficient generic method (which we call the density method) which
allows not only to generate constrained combinatorial objects, but also to
enumerate them. We also investigate some repercussions of this method
on the D-finiteness of the generating functions of combinatorial objects
encoded by linear extension diagrams, and give a limit law result for the
average number of local decreases.
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1 Introduction

As predicted by Anatoly Vershik in [Ver01], the 21st century should see a lot of challenges and advances on the links
of probability theory with (algebraic) combinatorics. A key role is played here by Young tableaux, because of their
ubiquity in representation theory [Mac15] and in algebraic combinatorics, as well as their relevance in many other
different fields (see e.g. [Sta11]).

Young tableaux are tableaux with n cells labelled from 1 to n, with the additional constraint that these labels
increase among each row and each column (starting from the lower left cell). Here we consider the following variant:
What happens if we allow exceptionally some consecutive cells with decreasing labels? Does this variant lead to nice
formulas if these local decreases are regularly placed? Is it related to other mathematical objects or theorems? How
to generate them? This article gives some answers to these questions.

As illustrated in Figure 1, we put a bold red edge between the cells which are allowed to be decreasing. Therefore
these two adjacent cells can have decreasing labels (like 19 and 12 in the top row of Figure 1, or 11 and 10 in the
untrustable Fifth column), or as usual increasing labels (like 13 and 15 in the bottom row of Figure 1). We call these
bold red edges “walls”.

7 18 19 12 21 20 17

2 6 8 9 10 14 16

1 3 4 5 11 13 15

Figure 1: We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed
to have decreasing labels. Such places where a decrease is allowed (but not compulsory) are drawn by a bold red
edge, which we call a “wall”.

For Young tableaux of shape1 n× 2 several cases lead directly to nice enumerative formulas for the total number
of specific tableaux with 2n cells:

1. Walls everywhere: (2n)!

2. Horizontal walls everywhere: (2n)!
2n

3. Horizontal walls everywhere in left (or right) column: (2n− 1)!! = (2n)!
2nn!

4. Vertical walls everywhere:
(2n
n

)
= (2n)!

(n!)2

5. No walls: 1
n+1

(2n
n

)
= (2n)!

(n+1)(n!)2

In this article we are interested in the enumeration and the generation of Young tableaux (of different rectangular
shapes) with such local decreases, and we investigate to which other mathematical notions they are related. Section 2
focuses on the case of horizontal walls: We give a link with the Chung–Feller Theorem, binomial numbers and a
Gaussian limit law. Section 3 focuses on the case of vertical walls: We give a link with hook-length type formulas.
Section 4 presents a generic method, which allows us to enumerate many variants of Young tableaux (or more generally,
linear extensions of posets), and which also offers an efficient uniform random generation algorithm, and links with
D-finiteness.

1We will refer to “n × m Young tableaux”, or “Young tableaux of shape n × m”, for rectangular Young tableaux with n rows and m
columns. They are trivially in bijection with m × n Young tableaux.
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2 Vertical walls, Chung–Feller and binomial numbers

14 12

10 13

9 11

8 7

4 6

3 5

2 1

Figure 2: Example of
one of our n× 2 Young
tableaux with walls.

In this section we consider a family of Young tableaux having some local decreases at
places indicated by vertical walls, see Figure 2.

Theorem 2.1. The number of n× 2 Young tableaux with k vertical walls is equal to

vn,k = 1
n+ 1− k

(
n

k

)(
2n
n

)
.

Proof. We apply a bijection between two-column Young tableaux of size 2n with k walls
and Dyck paths without the positivity constraint of length 2n and k coloured down steps.
These paths start at the origin, end on the x-axis and are composed out of up steps (1, 1),
and coloured down steps (1,−1) which are either red or blue.

Given an arbitrary two-column Young tableau, the m-th step of the associated path
is an up step if the entry m appears in the left column, while the m-th step is a down
step, if the m-th entry appears in the right column. Furthermore, we associate colours to
the down steps: If the m-th down step is in a row with a wall we colour it red, and blue
otherwise.

Thus, vn,k counts the number of paths with exactly k red down steps. Note that the
down steps of a path below the x-axis are always red because a wall has to be involved, yet
above the x-axis down steps can have any colour. We decompose paths with k coloured
down steps with respect to the number of steps which are below the x-axis. By the
Chung–Feller Theorem [CF49] (see also [Che08] for a bijective proof) the number of Dyck
paths of length 2n with i down steps below the x-axis is independent of i and equal to the
Catalan number Catn = 1

n+1
(2n
n

)
. When i steps are below the x-axis we have to colour

k − i of the remaining n− i steps above the x-axis red. This gives

vn,k =
k∑
i=0

(
n− i
k − i

)
Catn =

(
n+ 1
k

)
Catn,

and the claim follows.

As a simple consequence, we get the following result.

Corollary 2.2. The average number of linear extensions of a random n × 2 Young tableau with k walls, where the
location of these walls is chosen uniformly at random, is

1
n+ 1− k

(
2n
n

)
.

Proof. In a two-column Young tableau of size 2n we have
(
n
k

)
possibilities to add k walls.

We now conclude this section with a limit law result.

Theorem 2.3. Let Xn be the random variable for the number of walls in a random n × 2 Young tableau chosen
uniformly at random. The rescaled random variable Xn−n/2√

n/4
converges to the standard normal distribution N (0, 1).

Proof. We see that the total number of two-column Young tableaux of size n with walls is equal to
n∑
k=0

vn,k = Catn
(
2n+1 − 1

)
.

Then, the previous results show that

P (Xn = k) =
(
n+ 1
k

)
1

2n+1 − 1 ,

which is a slight variation of a binomial distribution with parameters n + 1 and probability 1/2. By the well-known
convergence of the rescaled binomial distribution to a normal distribution the claim holds (see e.g. [FS09]).
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3 Horizontal walls and the hook-length formula
The hook-length formula is a well-known formula to enumerate standard Young tableaux of a given shape (see
e.g. [Mac15, Sta11]). What happens if we add walls in these tableaux? Let us first consider the case of a Young
tableau of size n such that its walls cut the corresponding tableau into m disconnected parts without walls of size
k1, . . . , km (e.g., some walls form a full horizontal or vertical line). Then, the number of fillings of such a tableau is
trivially:

n!
k1! . . . km!

m∏
i=1

HookLengthFormula(subtableau of size ki).

So in the rest of article, we focus on walls which are not trivially splitting the problem into subproblems: They are the
only cases for which the enumeration (or the random generation) is indeed challenging.

We continue our study with families of Young tableaux of shape m × n having some local decreases at places
indicated by horizontal walls in the left column. We will need the following lemma counting special fillings of Young
tableaux.

Lemma 3.1. The number of n × 2 “Young tableaux” with 2λ cells filled with the numbers 1, 2, . . . , 2n for n ≥ λ

such that (the number 2n is used and) all consecutive numbers between the minimum of the second column and 2n
are used is equal to (

2n
λ

)
−
(

2n
λ− 1

)
. (1)

Proof. The constraint on the maximum implies that all not used numbers are smaller than the number in the bottom
right cell. Therefore it is legitimate to add these numbers to the tableaux. In particular, we create a standard Young
tableau of shape (λ, 2n− λ) (i.e., the first column has λ cells and the second one 2n− λ) which is in bijection with
the previous tableau.

Next we build a bijection between standard Young tableaux of shape (λ, 2n − λ) and Dyck paths with up steps
(1, 1) and down steps (1,−1) starting at (0, 2(n−λ)), always staying above the x-axis and ending on the x-axis after
2n steps. In particular, if the number i appears in the left column, the i-th step is an up step, and if it appears in the
right column, the i-th step is a down step.

Finally, note that these paths can be counted using the reflection principle [And87]. In particular, there are
(2n
λ

)
possible paths from (0, 2(n − λ)) to (2n, 0). Yet,

( 2n
λ−1
)
“bad” paths cross the x-axis at some point. This can be

seen, by cutting such a path at the first time it reaches altitude −1. The remaining path is reflecting along the
horizontal line y = −1 giving a path ending at (2n,−2). It is easy to see that this is a bijection between bad paths
from (0, 2(n− λ)) to (2n, 0) and all paths from (0, 2(n− λ)) to (2n,−2). The latter is obviously counted by

( 2n
λ−1
)
,

as λ− 1 of the 2n steps have to be up steps.

Theorem 3.2. The number of n×2 Young tableaux of size 2n with k walls in the first column at heights 0 < hi < n,
i = 1, . . . , k with hi < hi+1 is equal to

1
2n+ 1

k+1∏
i=1

(
2hi + 1
hi − hi−1

)
,

with h0 := 0 and hk+1 := n.

Remark 3.3. Denoting consecutive relative distances of the walls by λi := hi−hi−1 for i = 1, . . . , k+ 1 the previous
result can also be stated as

1
2n+ 1

k+1∏
i=1

(
2(λ1 + . . .+ λi) + 1

λi

)
.

Proof. We will show this result by induction on the number of walls k. For k = 0 the result is clear as we are counting
two-column standard Young tableaux which are counted by Catalan numbers (for a proof see also Lemma 3.1 with
λ = n).
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Next, assume the formula has been shown for k − 1 walls and arbitrary n. Choose a proper filling with k walls
and cut the tableau at the last wall at height hk into two parts. The top part is a Young tableau with 2(n − hk)
elements and no walls, yet labels between 1 and 2n. Furthermore, it has the constraint that all numbers larger than
the element in the bottom right cell have to be present. This is due to the fact that all elements in lower cells must
be smaller. In other words, these are the objects of Lemma 3.1 and counted by (1).

The bottom part is a Young tableau with k− 1 walls and 2hk elements (after proper relabelling). By our induction
hypothesis this number is equal to

1
2hk + 1

k∏
i=1

(
2hi + 1
hi − hi−1

)
.

As a final step, we rewrite Formula (1) into

2(n− λ) + 1
2n+ 1

(
2n+ 1
λ

)
,

and set λ := n− hk. Multiplying the last two expressions then shows the claim.

Remark 3.4. Note that so far we have not found a direct combinatorial interpretation of this formula. However, note
that in general

(2n+1
λ

)
does not have to be divisible by 2n+ 1.

Let us now also give the general formula for n×m Young tableaux with walls of lengths m− 1 from columns 1 to
m−1, i.e., a hole in columnm and nowhere else in a row with walls. Before we state the result, let us define for integers
n, k the falling factorial (n)k := n(n− 1) · · · (n− k+ 1) and for integers n,m1, . . . ,mk such that n ≥ m1 + · · ·+mk

the (shortened) multinomial coefficient2
(

n
m1,m2,...,mk

)
:= n!

m1!m2!···mk!(n−m1−...−mk)! .

Theorem 3.5. The number of n ×m Young tableaux of size mn with k walls from column 1 to m − 1 at heights
0 < hi < n, i = 1, . . . , k with hi < hi+1 is equal to

(m− 1)!
(mn+m− 1)m−1

k+1∏
i=1

m−2∏
j=1

(
λi + j

j

)−1
(k+1∏

i=1

(
m(λ1 + . . . λi) +m− 1

λi, . . . , λi

))
,

where λi := hi − hi−1 and the λi’s in the multinomial coefficients appear m− 1 times.

Proof (Sketch). First derive an extension of Lemma 3.1 proved by the hook-length formula and then compute the
product. Note that this gives a telescoping factor, giving the first factor.

Just as one more example, here is a more explicit example of what it gives.

Corollary 3.6. The number of n × 4 Young tableaux with k walls from column 1 to 3 at heights 0 < hi < n,
i = 1, . . . , k with hi < hi+1 is equal to

6
(4n+ 3)(4n+ 2)(4n+ 1)

(
k+1∏
i=1

2
(λi + 1)2(λi + 2)

)(
k+1∏
i=1

(
4(λ1 + . . . λi) + 3

λi, λi, λi

))
,

with λi := hi − hi−1.

Let us consider some other special cases. For example, consider tableaux with walls between every row and a hole
in the last column. For this case we set λi = 1 for all i. This gives the general formula (mn)!

n!(m!)n , for n×m tableaux,
see OEIS A001147 for m = 2 and OEIS A025035 to OEIS A025042 for the special cases m = 3, . . . , 10.

Now that we gave several examples of closed-form formulas enumerating some families of Young tableaux with
local decreases, we go to harder families which do not necessarily lead to a closed-form result. However, we shall see
that we have a generic method to get useful alternative formulas (based on recurrences), also leading to an efficient
uniform random generation algorithm.

2In the literature, one more often finds the notation
(

n
m1,m2,...,mk,n−m1−...−mk

)
:= n!

m1!m2!···mk!(n−m1−...−mk)! . But we opted in
this article for a more suitable notation to the eyes of our readers!
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4 The density method, D-finiteness, random generation
In this section, we present a generic approach which allows us to enumerate and generate any shape involving some
walls located at periodic positions. To keep it readable, we illustrate it with a specific example (without loss of
generality).

So, we now illustrate the method on the case of a 2n× 3 tableau where we put walls on the right and on the left
column at height 2k (for 1 ≤ k ≤ n− 1), see the leftmost tableau in Figure 3. In order to have an easier description
of the algorithm (and more compact formulas), we generate/enumerate first similar tableaux with an additional cell at
the bottom of the middle column, see the middle tableau in Figure 3: It is a polyomino Polyon with 6n+1 cells. There
are trivially (6n+ 1)! fillings of this polyomino with the numbers 1 to 6n+ 1. Some of these fillings are additionally
satisfying the classical constraints of Young tableaux (i.e., the labels are increasing in each row and each column),
with some local decreases allowed between cells separated by a wall (as shown with bold red edges in Figure 3). Let
fn be the number of such constrained fillings.

To compute fn we use a generic method which we call the density method, which we introduced and used
in [Mar18,Mar16,BMW18]. It relies on a geometric point of view of the problem: Consider the hypercube [0, 1]6n+1

and associate to each coordinate a cell of Polyon. To almost every element α of [0, 1]6n+1 (more precisely, every
element with all coordinates distinct) we can associate a filling of Polyon: Put 1 into the cell of Polyon corresponding
to the smallest coordinate of α, 2 into the cell of Polyon corresponding to the second smallest coordinate of α and so
on. The reverse operation associates to every filling of Polyon a region of [0, 1]6n+1 (which is actually a polytope).
We call P the set of all polytopes corresponding to correct fillings of Polyon (i.e., respecting the order constraints).
This P is also known as the “order polytope” in poset theory.

Let us explain how the density method works. It requires two more ingredients. The first one is illustrated in
Figure 3: It is a generic building block with 7 cells with names X,Y,Z,R,S,V,W. We put into each of these cells a
number from [0, 1], which we call x, y, z, r, s, v, w, respectively. The second ingredient is the sequence of polynomials
pn(x), defined by the following recurrence (which in fact encodes the full structure of the problem, building block
after building block):

pn+1(z) =
∫ z

0

∫ z

x

∫ y

0

∫ z

r

∫ 1

z

∫ w

y

pn(v) dv dw ds dr dy dx, with p0 = 1. (2)

The fact that this sequence of nested integrals encodes the full structure of the problem (i.e. all the inequalities)
is better stressed with the following writing:

pn+1(z) =
∫

0<x<z

∫
x<y<z

∫
0<r<y

∫
r<s<z

∫
z<w<1

∫
y<v<w

pn(v) dv dw ds dr dy dx, with p0 = 1. (3)

6 15 16

1 13 14

8 10 18

3 9 12

4 7 17

2 5 11

7 16 17

2 14 15

9 11 19

4 10 13

5 8 18

3 6 12

1

S Z W

R Y V

X

Figure 3: Left: A 2n× 3 Young tableau with walls. Centre: Our algorithm first generates a related labelled shape,
Polyon, with one more cell in its bottom (removing this cell and relabelling the remaining cells gives the left tableau).
Right: The “building block” of 7 cells. Each polyomino Polyon is made of the overlapping of n such building blocks.
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Let us now give a more algorithmic presentation of our method:

Density method algorithm

1 Initialization: We order the building blocks from k = n − 1 (the top one) to k = 0 (the bottom
one). We start with the value k := n− 1, i.e. the building block from the top. Put into its cell Z
a random number z with density pn(z)/

∫ 1
0 pn(t) dt. We repeat the following process until k = 0:

2 Filling: Now that Z is known, put into the cells X,Y,R, S, V,W random numbers x, y, r, s, v, w
with conditional density

gk,z(x, y, r, s, v, w) := 1
pk+1(z)pk(x)1Pz,

where 1Pz is the indicator function of the k-th building block (with value z in cell Z):

1Pz := 1{0≤x≤y≤z,0≤r≤y,r≤s≤z,z≤w≤1,y≤v≤w}.

3 Iteration: Consider X as a the Z of the next building block. Set k := k − 1 and go to step 2.

Next we prove that this algorithm generates Young tableaux with walls uniformly and determine its cost.

Theorem 4.1. The density method algorithm is a uniform random generation algorithm with quadratic time complexity
and linear space complexity.

Proof. Let us indeed prove that the algorithm gives a random element of our set of polytopes P with the uniform
measure. Our algorithm yields a (6n+ 1)-tuple x := (xj , yi, ri, si, vi, wi, 0 ≤ j ≤ n, 0 ≤ i ≤ n− 1) whose density is
the product of the conditional densities:

pn(xn)∫ 1
0 pn(t)dt

n∏
i=1

gn−i,xn−i+1(xn−i, yn−i, rn−i, sn−i, vn−i, wn−i) (4)

The crucial point is that this product is telescopic and equal to

pn(xn)∫ 1
0 pn(t)dt

n−1∏
k=0

pk(xk)1Pxk

pk+1(xk+1) = p0(x0)1P∫ 1
0 pn(t) dt

= 1P∫ 1
0 pn(t) dt

(as p0 = 1), (5)

where 1Pxk
is as in the algorithm above the indicator function of the k-th block (where the local variables

x, y, r, s, v, w, z of the algorithm are now xk, yk, rk, sk, vk, wk, zk) and where the product 1P of these indicator
functions is the indicator function of the full polytope (with n blocks): 1P =

∏n−1
k=0 1Pxk

.
Therefore, this density is constant on our set P of polytopes and zero elsewhere, which is exactly what we wanted.

The fact that it is a density implies that its integral is 1, whence∫
[0,1]6n+1

1P dx =
∫ 1

0
pn(t) dt. (6)

Now if we choose a random uniform element in [0, 1]6n+1, the probability that it belongs to our set P of polytopes is∫
[0,1]6n+1

1P dx. (7)

But due to the reasoning above, this is also the probability that a random uniform filling of our building block is
correct (i.e., respects the order constraints). Thus this probability is given by

∫ 1
0 pn(t)dt/(6n+ 1)!.

This implies that fn = (6n+ 1)!
∫ 1

0 pn(t)dt.
Finally, as each step relies on the computation and the evaluation of the associated polynomial pn(z) (of degree

proportional to n), this gives a quadratic time complexity, and takes linear space.
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Remark 1: If one wants to generate many diagrams and not just one, then it is valuable to make a precomputation
phase computing and storing all the polynomials pn. The rest of the algorithm is the same. For each new object
generated, this is saving O(n2) time, to the price of O(n2) memory. The algorithm is globally still of quadratic time
complexity (because of the evaluation at each step of pk(x), while pk+1(z) was already evaluated).

Remark 2: If one directly wants to generate 2n×3 Young tableaux with decreases instead of our strange polyomino
shapes Polyon, then one still uses the same relation between pn+1 and pn but p0 is not defined and p1 has a more
complicated form. Another way is to generate Polyon, and to reject all the ones not having a 1 in the bottom cell,
then to remove this bottom cell and to relabel the remaining cells from 1 to 6n (see Figure 3). This still gives
a fast algorithm of O(n2) time complexity (the only difference being the cost of the initial algorithm which is the
multiplicative constant included in the big-O).

Using dynamic programming or clever backtracking algorithms allows hardly to compute the sequence fn (the
number of fillings of the diagram) for n ≥ 3. In the same amount of time, the density method allows us to compute
thousands of coefficients via the relation fn = (6n + 1)!

∫ 1
0 pn(z), where the polynomial pn(z) is computed via the

recurrence

pn+1(z) =
∫ z

0

1
24(z − 1)(x− z)(3x3 − 7x2z − xz2 − z3 − 2x2 + 4xz + 4z2)pn(x) dx. (8)

This gives the sequence {fn}n≥0:
{1, 12, 8550, 39235950, 629738299350, 26095645151941500, 2323497950101372223250,
392833430654718548673344250, 115375222087417545717234273063750, 55038140590519890608190921051205837500,
40460077456664688766902540022810130044068750, 4393840235884118464495128448703896167747914784375, . . . }.
As far as we know, there is no further simple expression for this sequence. This concludes our analysis of the model
given by Figure 3.

We can additionally mention that the generating function associated to the sequence of polynomials pn(x) has a
striking property:

Theorem 4.2. The generating function G(t, z) :=
∑
n≥0 pn(z)tn is D-finite3 in z.

Proof. The general scheme (whenever one has one hole between the walls) is

pn+1(z) =
∫ z

0
Q(x, z)pn(x) dx, (9)

where Q is a polynomial in x and z, given by Q(x, z) :=
∫
Pz

1. The fact that there is just one hole between the
walls guarantees that all the other variables encoding the faces of the polytope Pz will disappear in this integration.
Let d be the degree of Q in z, applying ∂d+1

∂zd+1 to both sides of Formula 9 leads to a relation between the (d + 1)-st
derivative of pn+1 and the first (d + 1) derivatives of pn. Multiplying this new relation by tn+1 and summing over
n ≥ 0 leads to the D-finite equation for G(t, z).

Note that G(t, z) is D-finite in z, but is (in general) not D-finite in t. When it is D-finite in t, our algorithm
has a better complexity (namely, a O(n3/2) time complexity), because it is then possible to evaluate pn(z) in time
O(
√
n lnn) instead of O(n). See [BCG+17, Chapter 15] for more details on these complexity issues.

5 Conclusion
We presented a new way to enumerate and generate Young tableaux with local decreases (and, more generally, linear
extensions of posets). Our approach is different from the classical way to generate Young tableaux (e.g. via the
Greene–Nijenhuis–Wilf algorithm, see [GNW84]), which relies on the existence of an enumeration by a simple product
formula (given by the hook-length formula). As there is no such simple product formula for the more general cases we
considered here, such an approach cannot work anymore. Obviously, in order to generate these objects, there is the
alternative to use some naive “brute-force-like” methods (like e.g. dynamic programming with backtracking). However
this leads to an exponential time algorithm. The density method which we presented here is the only method we are
aware of which leads to a quadratic cost uniform random generation algorithm.

3A function F (z) is D-finite if it satisfies a linear differential equation, with polynomial coefficients in z. See e.g. [FS09] for their role
in enumeration and asymptotics of combinatorial structures.
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It would be a full project to examine many more families of Young tableaux with local decreases, to check which
ones lead to nice generating functions, to give bijections, and so on. This article presented three different approaches
to handle them: bijections, hook-length-like formulas, and the density method. Let us emphasize again that the last
one is of great generality. We will give more examples in the long version of this article.
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