1 Notation used to describe the epitaxy of Pd(-Au) NPs on r-TiO 2

The epitaxial relationship between a Pd(-Au) NP and the r-TiO 2 is written as follows: Pd(-Au)(hkl)<uvw> r-TiO 2 (h'k'l') [u'v'w'] where (hkl) and (h'k'l') are respectively the Miller indices of the planes of the NP and of the support in contact. [uvw] and [u'v'w'] are two crystallographic directions of the particle and r-TiO 2 respectively that are parallel to each other and are parallel to the NP-support interface. 

Dewetting of bimetallic Pd(-Au) NPs on rutile titania

Derivation of an extended Wulff-Kaishev rule

A first extension of the Wulff-Kaishev model that takes into account the effect of epitaxial stress on thermodynamic equilibrium shape (ES) of a crystal deposited on a supoport with lattice mismatch was given by P. Müller and R. Kern 1 . In particular, they showed that the expression of the elastic energy stored in a partially relaxed particle of volume V is expressed as λ Eε 2 V where Eε 2 V is the elastic energy stored in the particle before relaxation. λ is a stress relaxation factor which depends, in complex ways, on the shape of the particle, its orientation with respect to the support and the rigidity of the particle and the support 2 . It varies between 0 and 1. It is 0 for a completely relaxed particle and is 1 in the absence of elastic relaxation. E is a combination of elastic coefficients of the particle and its support and ε is the lattice parameter mismatch between the two systems. According to the theory of nucleation, ∆G, the work necessary to form a polyhedral particle of volume V from its gaseous phase on a planar support with lattice mismatch is the difference between the free energy of the system in its final and initial states plus energy terms related to epitaxial strain and particle surfaces, particle edges and particle-support interface among others 3,4 :

∆G = -n∆µ + j≠i γ j m A j + (γ i -γs)A i + λ Eε 2 V + k ρ k l k + i τ i l i (S1)
where ∆µ is the supersaturation per atom. It is the difference in chemical potential between a free atom in gaseous phase (µ 0 ) and an atom in the particle (µp), i.e., ∆µ = µ 0µp. n is the number of atoms in the particle. γ j m is the surface energy of free facet j of surface area A j , γs is the surface energy of the support and γ i is excess energy associated with the formation of the metal-support interface of surface area A i and of perimeter L i . τ i is the excess energy due the particle edge i of length l i at the particle-support-vacuum triple phase line (or, as in the main text, simply called the triple line) with ∑ i l i = L i . In comparison, ρ k is the excess energy due to free edge k of length l k .

If ν is the atomic volume, V = n.v. By setting k = λ .ν, equation (S1) can be rewritten as follows:

∆G = -V ν ∆µ + ∑ j≠i γ j m A j + (γ i -γs)A i + λ Eε 2 V + ∑ k ρ k l k + ∑ i τ i l i = λ Eε 2 -∆µ ν .V + ∑ j≠i γ j m A j + (γ i -γs)A i + ∑ k ρ k l k + ∑ i τ i l i = kEε 2 -∆µ ν .V + ∑ j≠i γ j m A j + (γ i -γs)A i + ∑ k ρ k l k + ∑ i τ i l i
In the main text, we have shown that Pd(-Au) NPs studied here were inhomogeneously strained with no clear dependence between lattice strain and size for any given composition. In the following, the relaxation factor λ will thus be considered as size-independent. We will also neglect the contribution of the particle free edge energies. Indeed, as also discussed in the main text, the free edges in Pd(-Au) NPs marginally influence their ES. Finally, the excess energy along the triple line will be considered isotropic with an average value of τ. Neglecting the anisotropy of the triple line energy leads to ∑ i τ i dl i = ∑ i τdl i = τL i . Under these assumptions and neglecting the size dependence of surface and interface energies, the elementary work associated with the nucleation of the particle, d∆G(n) is given by:

d∆G = kEε 2 -∆µ ν .dV + j≠i γ j m dA j + (γ i -γs)dA i + k ρ k dl k + τL i (S2)
For a supported particle with polyhedral morphology, its volume V can be divided into congruent pyramids of height hp and polygonal base area Ap such that :

V = 1 3 p hpAp = 1 3 ⎛ ⎝ j≠i h j A j + (h -∆h)A i ⎞ ⎠ (S3)
where (h -∆h) is the distance from the centre of the particle to the facet of the particle in contact with the support (∆h being the particle truncation due to the support). h j is the distance of free facet j (of surface area A j ) from the particle centre. The derivative of V is :

dV = 1 2 ⎛ ⎝ j≠i h j dA j + (h -∆h)dA i ⎞ ⎠ (S4)
Replacing dV in equation ( S2) by its expression in equation (S4), we obtain :

d∆G = kEε 2 -∆µ ν . ⎛ ⎝ 1 2 ( j≠i h j dA j + (h -∆h)dA i ) ⎞ ⎠ + j≠i γ j m dA j + (γ i -γs)dA i + k ρ k dl k + τL i (S5)
When the particle reaches its thermodynamic equilibrium shape, all partial derivatives of ∆G cancel out simultaneously. Thus, at equilibrium, any free facet j verifies the following equation:

∂ ∆G ∂ A j ∆µ,Ai = 0 (S6)
while at the interface with the support, we have :

∂ ∆G ∂ A i ∆µ,A j = 0 (S7)
From equations (S6) and (S7), we get:

γ i -γs + τ dLi dAi h -∆h = ∆µ -kEε 2 3ν (S8)
and

γm h = ∆µ -kEε 2 3ν (S9)
respectively. By combining equations (S8) and (S9), we obtain the extented Wulff-Kaishev rule incorporating the effect of the triple line energy on the thermodynamic ES of the particle:

∆h -h h = γs -γ i γm - τ γm dL i dA i (S10)
dLi dAi is a geometric factor which varies form one particle to another depending on the geometry of the particle-support interface. The latter is defined by the morphology of the particle and its orientation relatively to the support. In this work, this factor is expressed simply in terms of measurable distances on high resolution transmission electron microscopy (HRTEM) images of single NPs acquired parallel to the particle-support interface as shown in the following and in the main text. In the following sections, we will establish dLi dAi for a supported face-centered cubic (FCC) particles with octahedral truncated ES in two distinct orientations with respect to the support.

4 Expression of the geometric factor dL i dA i Fig. 3Sa shows an atomic model of a free truncated octahedral particle with closed-packed FCC structure in [101] zone axis. The particle is limited by ( 100) and ( 111) facets. The (100) facets have a square shape of side length a. Let W denotes the width of the particle in this projection, i.e. its lateral extension along the [10-1] direction (Fig. 3Sb).

Truncated octahedral FCC particle supported on its (010) facet

From the outline of the particle projection along the [101] direction, we show that :

• GJ being the diagonal of a (100) facet, GJ = HI = a √ 2.

• Isolating parallelogram ABCLA, AL = BC = a. By symmetry, MD = a. Thus, JI = Wa and LM = W -2a.

• ABC = ADE = DAB = DAF = θ with θ being the angle between the ( 100) and ( 111) planes. We can thus write cosθ = (111).( 100) 111 100

= 1 √ 3
and deduce that tanθ = √ 2.

When the particle is deposited on a support, the particle will present an extra truncation at the particle-support interface. Fig. 4Sa shows the outline of the projection of a supported truncated octahedral particle with one of its (100) facet in contact with the support. The particle is truncated at its base by a length ∆h. Let's first consider the length of segment PQ. From Fig. 4Sa, the length of segment PQ is expressed as :

• PQ = OP -OQ = OP -KJ = h 100 -a √ 2
. Two types of truncation are possible depending on the difference between the length of segment PQ and particle truncation ∆h. If ∆h > PQ, the interface will have an octagonal shape (Fig. 4Sb). Otherwise, the interface will be a square (Fig. 5Sb). We will now determine the expression of dLi dAi in each case. By geometrical construction on Fig. 4Sa:

∆h > PQ

SV = RX RO .AD = z+∆h z+h100 .AD = (1 + ∆h-h100 z+h100 ).AD Since, • OR = AO.tanθ = W 2 √ 2
and OR = z + h 100 , we deduce :

z + h 100 = W √ 2 (S11)
Consequently, SV can be simplified as follows :

SV = (1 + ∆h-h100 W √ 2 ).W = W + (∆h -h 100 ) √ 2 Moreover, ST = UV = QX QO .AL = ∆h-PQ QX+XO .AL = ∆h-h100+ a √ 2 a √ 2 .a = a + (∆h -h 100 ) √ 2 
From these two distances, we can express the length of segments S ′ T ′ and T ′ U ′ which define the octagonal interface (Fig. 4Sb) as follows:

S ′ T ′ = S"T " = U ′ V ′ = U"V " = ST √ 2 = a √ 2 + 2(∆h -h 100 )
and

T ′ U ′ = SV -ST -UV = W + (∆h -h 100 ) √ 2) -2(a + (∆h -h 100 ) √ 2) = W -2a -(∆h -h 100 ) √ 2 
Using Fig. 4Sb and by setting T ′ U ′ = a i , the expressions for the perimeter L i and the surface area A i of the octagonal particle-support interface are as follows:

L i = 4(S ′ T ′ + T ′ U ′ ) = 4(a √ 2 + 2(∆h -h 100 ) + a i ) = 4(a √ 2 + 2 W -2a-ai √ 2 + a i = 4(1 - √ 2)a i + 4 √ 2(W -a) A i = SV 2 -S ′ T ′2 = (W + (∆h -h 100 ) √ 2) 2 -(a √ 2 + 2(∆h -h 100 )) 2 = (W + W -2a-ai √ 2 √ 2) 2 -(a √ 2 + 2 W -2a-ai √ 2 ) 2 = (2W -2a -a i ) 2 -((W -a) √ 2 -a i √ 2) 2 = 2(W -a) 2 -a 2 i
Deriving the expressions of L i and A i with respect to a i (and considering the variations of L i and A i with a to be marginal), we get â Ȃć dL i = 4(1 -√ 2)da i â Ȃć dA i = -2a i da i from which we deduced the expression of the geometric factor dLi dAi for ∆h > PQ :

dL i dA i = 2( √ 2 -1) a i = 2( √ 2 -1) W -2a -(∆h -h 100 ) √ 2 (S12)
The geometric factor can be easily calculated with W , a, h 100 and ∆h known. All these dimensions are directly measurable on a HRTEM image of the particle in [101] zone axis. When the shape of the particle-support interface is a square of side length b i (Fig. 5Sb), T ′ U ′ = b i = RX RO .AD = z+∆h z+h100 .W = z+h100+∆h-h100 z+h100 .W = (1 + ∆h-h100 z+h100 ).W 

∆h ≤ PQ

Fig

  Fig. 1S Dewetting of Pd 43 Au 57 NPs in epitaxial relationship Pd 43 Au 57 (111)<101> r-TiO 2 (110)[1-1-1] as a function of particle size.

Fig

  Fig. 2S Dewetting of Pd 62 Au 38 NPs in epitaxial relationship Pd 62 Au 38 (100)<101> r-TiO 2 (110)[1-10] as a function of particle size.

Fig

  Fig. 3S (a) Atomic model of a free FCC particle with truncated octahedral morphology along the [101] zone axis. Visible facets and their indices are indicated; (b) Outline of the projection of the particle in [101] zone axis. Square (100) facets of sides length a can be distinguished. O is the centre of the projection and W is the width of the particle in zone axis.

Fig

  Fig. 4S(a) Outline of the projection of a supported truncated octahedral FCC particle in [101] zone axis deposited on a (100) facet (black lines). Construction lines are shown in light blue. Point R is at the intersection of the half-lines AF and DE. P and Q are the intersections between the segment RO and segment JI and FE, respectively. We set z = PR and h 100 = OP. (b) Outline of the particle-support interface for ∆h > PQ. The interface is here of octagonal shape defined by segments S ′ T ′ and T ′ U ′ .

Fig

  Fig. 5S (a) Outline of the projection of a supported truncated octahedral FCC particle in [101] zone axis deposited on a (100) facet when ∆h ≤ PQ (b) Outline of the square particle-support interface defined by segment T ′ U ′ . Particle-support when ∆h < PQ for a truncated octahedral particle with one of its (100) facets in contact with the support. The interface has here a square shape.

Fig

  Fig. 8S (a) (top) Projection of the hexagonal facet (11-1) up and (bottom) projection of the cross section of the NP along the [101]; (b) Schematic of the equilateral triangle drawn from this facet by geometrical construction.
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Moreover, as according to equation (S11), z + h 100 = W √ 2

, b i simplifies to:

Since the interface is a square, L i = 4b i and A i = b 2 i . By calculating the derivatives dL i and dA i with respect to b i , we obtain :

In this configuration, the determination of dLi dAi only requires the knowledge of the W , ∆h and h 100 . In our study of Pd 62 Au 38 NPs in epitaxial relationship Pd 62 Au 38 (100)<101> r-TiO 2 (110)[1-10], all NPs displayed ES satisfying ∆h > PQ. Hence, the expression of dLi dAi given by equation (S12) was used in the main text to describe the morphology of these NPs. Fig. 6Sa shows an atomic model of a free FCC particle with truncated octahedral morphology viewed along along [-121] zone axis. If the particle is supported on one of its its (111) facet, the expression of dLi dAi is, according to 5 , given by :

Truncated octahedral FCC particle supported on its (111) facet

where W is the width of the particle along the [10-1] direction with W = h 111 √ 6, ∆h the truncation of the particle at its base and ϕ the angle between the (-11-3) and (11-1) planes of the FCC lattice leading to tanϕ = 2 2 3 = 1.633 (Fig. 6Sb). In this work, all monometallic Pd and bimetallic Pd 43 Au 57 nanodecahedra in epitaxial relationship Pd(-Au)(111)<101> r-TiO 2 (110)[1-1-1] were imaged in [101] zone axis. The latter is rotated from [-121] direction by 90 around the [11-1] direction. Although the expression of dLi dAi is independent of zone axis along which a NP is viewed, neither W nor ∆h can be straightforwardly determined in [101] zone axis.

To express dLi dAi in terms of measurable distances in [101] zone axis, let's consider Fig. 7S. Fig. 7Sa shows an atomic model of a particle in [101] zone axis. The outline of the projection is shown in Fig. 7Sb.

Since, the expression of dLi dAi in [101] zone axis is the same as in equation (S14), we can write :

which simplifies to : 

The geometric factor dLi dAi is here expressed as a function of ∆h and h 111 . Both distances can be determined from a projected image of a supported FCC truncated octahedron in [101] zone axis as explained in the rest of this section. Fig. 8Sa (top) shows the hexagonal shape of the (111) facet in contact with the support. The point O ′ corresponds to the perpendicular projection of the particle center O of the NP on this facet. Due to the symmetry of the particle, O ′ is at the center of the hexagon. However, O ′ does not lie in the middle of segment L ′ N ′ (L ′ and N ′ are in the middle of the segments B ′ B" and D ′ D" respectively) as the hexagon B ′ B"C"D"D ′ C ′ B ′ is not regular. It results that the position of particle centre O is also not known. Thus, the value of the truncation ∆h and h 111 are not directly measurable on the two-dimensional projection ABDFRQPA of the particle along [101] zone axis.

To determine ∆h and h 111 , we proceed as follows. The extensions of segments BD and PA meet at point K (Fig. 8Sa). Similarly, the extensions of segments B ′ C ′ , B"C" and D ′ D" delimiting the (111) facet form a triangle K ′ P ′ Q ′ (Fig. 8Sb). Note that K ′ P ′ Q ′ is an equilateral triangle of center O ′ . Hence, for an equilateral triangle, we have

3 KD. KD can be determined from the projection of the particle in [101] zone axis. Let us now express K ′ O ′ in terms of h 111 . Let's consider OKO ′′ which is a right-angled triangle with KOO ′′ the angle between the (111) and (100) planes. As K ′ O ′ = KO" and OO ′′ = h 111 , we get KO ′′ = OO ′′ .tan θ = h 111 . √ 2. Hence,

Once h 111 is known, ∆h that can be deduced from the measurement of the particle height which is equal to 2h 111 -∆h (Fig. 8Sa). 

Notes and references