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1 Notation used to describe the epitaxy of Pd(-Au) NPs on r-TiO2

The epitaxial relationship between a Pd(-Au) NP and the r-TiO2 is written as follows: Pd(-Au)(hkl)<uvw> ∥ r-TiO2(h’k’l’)[u’v’w’] where
(hkl) and (h’k’l’) are respectively the Miller indices of the planes of the NP and of the support in contact. [uvw] and [u’v’w’] are two
crystallographic directions of the particle and r-TiO2 respectively that are parallel to each other and are parallel to the NP-support
interface.

2 Dewetting of bimetallic Pd(-Au) NPs on rutile titania

Fig. 1S Dewetting of Pd43Au57 NPs in epitaxial relationship Pd43Au57(111)<101> ∥ r-TiO2(110)[1-1-1] as a function of particle size.

Fig. 2S Dewetting of Pd62Au38 NPs in epitaxial relationship Pd62Au38(100)<101> ∥ r-TiO2(110)[1-10] as a function of particle size.

3 Derivation of an extended Wulff-Kaishev rule
A first extension of the Wulff-Kaishev model that takes into account the effect of epitaxial stress on thermodynamic equilibrium shape
(ES) of a crystal deposited on a supoport with lattice mismatch was given by P. Müller and R. Kern1. In particular, they showed that
the expression of the elastic energy stored in a partially relaxed particle of volume V is expressed as λEε

2V where Eε
2V is the elastic

energy stored in the particle before relaxation. λ is a stress relaxation factor which depends, in complex ways, on the shape of the
particle, its orientation with respect to the support and the rigidity of the particle and the support2. It varies between 0 and 1. It is 0
for a completely relaxed particle and is 1 in the absence of elastic relaxation. E is a combination of elastic coefficients of the particle
and its support and ε is the lattice parameter mismatch between the two systems. According to the theory of nucleation, ∆G, the work
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necessary to form a polyhedral particle of volume V from its gaseous phase on a planar support with lattice mismatch is the difference
between the free energy of the system in its final and initial states plus energy terms related to epitaxial strain and particle surfaces,
particle edges and particle-support interface among others3,4 :

∆G = −n∆µ +∑
j≠i

γ
j

mA j +(γi− γs)Ai+λEε
2V +∑

k
ρklk +∑

i
τili (S1)

where ∆µ is the supersaturation per atom. It is the difference in chemical potential between a free atom in gaseous phase (µ0) and an
atom in the particle (µp), i.e., ∆µ = µ0 - µp. n is the number of atoms in the particle. γ

j
m is the surface energy of free facet j of surface

area A j, γs is the surface energy of the support and γi is excess energy associated with the formation of the metal-support interface of
surface area Ai and of perimeter Li. τi is the excess energy due the particle edge i of length li at the particle-support-vacuum triple phase
line (or, as in the main text, simply called the triple line) with ∑

i
li = Li. In comparison, ρk is the excess energy due to free edge k of

length lk.
If ν is the atomic volume, V = n.v. By setting k = λ .ν , equation (S1) can be rewritten as follows:

∆G = −V
ν

∆µ + ∑
j≠i

γ
j

mA j +(γi− γs)Ai+λEε
2V +∑

k
ρklk +∑

i
τili

= (λEε
2− ∆µ

ν
) .V + ∑

j≠i
γ

j
mA j +(γi− γs)Ai+∑

k
ρklk +∑

i
τili

= ( kEε
2−∆µ

ν
) .V + ∑

j≠i
γ

j
mA j +(γi− γs)Ai+∑

k
ρklk +∑

i
τili

In the main text, we have shown that Pd(-Au) NPs studied here were inhomogeneously strained with no clear dependence between
lattice strain and size for any given composition. In the following, the relaxation factor λ will thus be considered as size-independent.
We will also neglect the contribution of the particle free edge energies. Indeed, as also discussed in the main text, the free edges in
Pd(-Au) NPs marginally influence their ES. Finally, the excess energy along the triple line will be considered isotropic with an average
value of τ. Neglecting the anisotropy of the triple line energy leads to ∑

i
τidli = ∑

i
τdli = τLi. Under these assumptions and neglecting

the size dependence of surface and interface energies, the elementary work associated with the nucleation of the particle, d∆G(n) is
given by:

d∆G = ( kEε
2−∆µ

ν
) .dV +∑

j≠i
γ

j
mdA j +(γi− γs)dAi+∑

k
ρkdlk +τLi (S2)

For a supported particle with polyhedral morphology, its volume V can be divided into congruent pyramids of height hp and polyg-
onal base area Ap such that :

V = 1
3
∑
p

hpAp =
1
3
⎛
⎝∑j≠i

h jA j +(h−∆h)Ai
⎞
⎠

(S3)

where (h - ∆h) is the distance from the centre of the particle to the facet of the particle in contact with the support (∆h being the particle
truncation due to the support). h j is the distance of free facet j (of surface area A j) from the particle centre. The derivative of V is :

dV = 1
2
⎛
⎝∑j≠i

h jdA j +(h−∆h)dAi
⎞
⎠

(S4)

Replacing dV in equation (S2) by its expression in equation (S4), we obtain :

d∆G = ( kEε
2−∆µ

ν
) .
⎛
⎝

1
2
(∑

j≠i
h jdA j +(h−∆h)dAi)

⎞
⎠
+∑

j≠i
γ

j
mdA j +(γi− γs)dAi+∑

k
ρkdlk +τLi (S5)

When the particle reaches its thermodynamic equilibrium shape, all partial derivatives of ∆G cancel out simultaneously. Thus, at
equilibrium, any free facet j verifies the following equation:

(∂∆G
∂A j
)

∆µ,Ai

= 0 (S6)

while at the interface with the support, we have :

(∂∆G
∂Ai
)

∆µ,A j

= 0 (S7)

From equations (S6) and (S7), we get:
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γi− γs+τ
dLi
dAi

h−∆h
= ∆µ −kEε

2

3ν
(S8)

and

γm

h
= ∆µ −kEε

2

3ν
(S9)

respectively.
By combining equations (S8) and (S9), we obtain the extented Wulff-Kaishev rule incorporating the effect of the triple line energy

on the thermodynamic ES of the particle:

∆h−h
h

= γs− γi

γm
− τ

γm

dLi

dAi
(S10)

dLi
dAi

is a geometric factor which varies form one particle to another depending on the geometry of the particle-support interface. The
latter is defined by the morphology of the particle and its orientation relatively to the support. In this work, this factor is expressed
simply in terms of measurable distances on high resolution transmission electron microscopy (HRTEM) images of single NPs acquired
parallel to the particle-support interface as shown in the following and in the main text. In the following sections, we will establish
dLi
dAi

for a supported face-centered cubic (FCC) particles with octahedral truncated ES in two distinct orientations with respect to the
support.

4 Expression of the geometric factor dLi
dAi

4.1 Truncated octahedral FCC particle supported on its (010) facet

Fig. 3S (a) Atomic model of a free FCC particle with truncated octahedral morphology along the [101] zone axis. Visible facets and their indices are
indicated; (b) Outline of the projection of the particle in [101] zone axis. Square (100) facets of sides length a can be distinguished. O is the centre of
the projection and W is the width of the particle in zone axis.

Fig. 3Sa shows an atomic model of a free truncated octahedral particle with closed-packed FCC structure in [101] zone axis. The
particle is limited by (100) and (111) facets. The (100) facets have a square shape of side length a. Let W denotes the width of the
particle in this projection, i.e. its lateral extension along the [10-1] direction (Fig. 3Sb).

From the outline of the particle projection along the [101] direction, we show that :

• GJ being the diagonal of a (100) facet, GJ = HI = a
√

2.

• Isolating parallelogram ABCLA, AL = BC = a. By symmetry, MD = a. Thus, JI = W - a and LM = W - 2a.
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• ÂBC = ÂDE = D̂AB = D̂AF = θ with θ being the angle between the (100) and (111) planes. We can thus write cosθ = (111).(100)
∣111∣∣100∣

= 1√
3

and deduce that tanθ =
√

2.

When the particle is deposited on a support, the particle will present an extra truncation at the particle-support interface. Fig. 4Sa
shows the outline of the projection of a supported truncated octahedral particle with one of its (100) facet in contact with the support.
The particle is truncated at its base by a length ∆h. Let’s first consider the length of segment PQ. From Fig. 4Sa, the length of segment
PQ is expressed as :

• PQ = OP - OQ = OP - KJ = h100 - a√
2
.

Two types of truncation are possible depending on the difference between the length of segment PQ and particle truncation ∆h. If
∆h > PQ, the interface will have an octagonal shape (Fig. 4Sb). Otherwise, the interface will be a square (Fig. 5Sb). We will now
determine the expression of dLi

dAi
in each case.

4.1.1 ∆h > PQ

Fig. 4S(a) Outline of the projection of a supported truncated octahedral FCC particle in [101] zone axis deposited on a (100) facet (black lines).
Construction lines are shown in light blue. Point R is at the intersection of the half-lines AF and DE. P and Q are the intersections between the segment
RO and segment JI and FE, respectively. We set z = PR and h100 = OP. (b) Outline of the particle-support interface for ∆h > PQ. The interface is here
of octagonal shape defined by segments S′T ′ and T ′U ′.

By geometrical construction on Fig. 4Sa:

1–10 | 5



SV = RX
RO .AD

= z+∆h
z+h100

.AD
= (1+ ∆h−h100

z+h100
).AD

Since,

• OR = AO.tanθ = W
2

√
2

and OR = z + h100, we deduce :

z+h100 =
W√

2
(S11)

Consequently, SV can be simplified as follows :
SV = (1+ ∆h−h100

W√
2

).W

= W +(∆h−h100)
√

2
Moreover,

ST = UV
= QX

QO .AL

= ∆h−PQ
QX+XO .AL

=
∆h−h100+ a√

2
a√

2
.a

= a+(∆h−h100)
√

2

From these two distances, we can express the length of segments S′T ′ and T ′U ′ which define the octagonal interface (Fig. 4Sb) as
follows:

S′T ′ = S”T ” =U ′V ′ =U”V ”
= ST

√
2

= a
√

2+2(∆h−h100)

and

T ′U ′ = SV −ST −UV
= W +(∆h−h100)

√
2)−2(a+(∆h−h100)

√
2)

= W −2a−(∆h−h100)
√

2

Using Fig. 4Sb and by setting T ′U ′ = ai, the expressions for the perimeter Li and the surface area Ai of the octagonal particle-support
interface are as follows:

Li = 4(S′T ′+T ′U ′)
= 4(a

√
2+2(∆h−h100)+ai)

= 4(a
√

2+2W−2a−ai√
2
+ai

= 4(1−
√

2)ai+4
√

2(W −a)

Ai = SV 2−S′T ′2

= (W +(∆h−h100)
√

2)2−(a
√

2+2(∆h−h100))2

= (W + W−2a−ai√
2

√
2)2−(a

√
2+2W−2a−ai√

2
)2

= (2W −2a−ai)2−((W −a)
√

2−ai
√

2)2

= 2(W −a)2−a2
i

Deriving the expressions of Li and Ai with respect to ai (and considering the variations of Li and Ai with a to be marginal), we get

âĂć dLi = 4(1 -
√

2)dai

âĂć dAi = -2aidai

from which we deduced the expression of the geometric factor dLi
dAi

for ∆h > PQ :
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dLi

dAi
= 2(
√

2−1)
ai

= 2(
√

2−1)
W −2a−(∆h−h100)

√
2

(S12)

The geometric factor can be easily calculated with W , a, h100 and ∆h known. All these dimensions are directly measurable on a
HRTEM image of the particle in [101] zone axis.

4.1.2 ∆h ≤ PQ

Fig. 5S (a) Outline of the projection of a supported truncated octahedral FCC particle in [101] zone axis deposited on a (100) facet when ∆h ≤ PQ (b)
Outline of the square particle-support interface defined by segment T ′U ′. Particle-support when ∆h < PQ for a truncated octahedral particle with one
of its (100) facets in contact with the support. The interface has here a square shape.

When the shape of the particle-support interface is a square of side length bi (Fig. 5Sb),

T ′U ′ = bi

= RX
RO .AD

= z+∆h
z+h100

.W
= z+h100+∆h−h100

z+h100
.W

= (1+ ∆h−h100
z+h100

).W
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Moreover, as according to equation (S11), z+h100 = W√
2
, bi simplifies to:

bi = W + (∆h - h100)
√

2

Since the interface is a square, Li = 4bi and Ai = b2
i . By calculating the derivatives dLi and dAi with respect to bi, we obtain :

dLi

dAi
= 2

bi
= 2

W +(∆h−h100)
√

2
(S13)

In this configuration, the determination of dLi
dAi

only requires the knowledge of the W , ∆h and h100.
In our study of Pd62Au38 NPs in epitaxial relationship Pd62Au38(100)<101> ∥ r-TiO2(110)[1-10], all NPs displayed ES satisfying ∆h

> PQ. Hence, the expression of dLi
dAi

given by equation (S12) was used in the main text to describe the morphology of these NPs.

4.2 Truncated octahedral FCC particle supported on its (111) facet

Fig. 6S (a) Atomic model of a free FCC particle with truncated octahedral shape viewed along the [-121] zone axis. Visible facets and their indices are
indicated. (b) Outline of the projection of the particle in the same zone axis. W is the width of the particle in this projection. ϕ is the angle between the
(-113) and (11-1) planes.

Fig. 6Sa shows an atomic model of a free FCC particle with truncated octahedral morphology viewed along along [-121] zone axis.
If the particle is supported on one of its its (111) facet, the expression of dLi

dAi
is, according to5, given by :

dLi

dAi
= 2

√
3

W + 2∆h
tanϕ

(S14)

where W is the width of the particle along the [10-1] direction with W = h111
√

6, ∆h the truncation of the particle at its base and

ϕ the angle between the (-11-3) and (11-1) planes of the FCC lattice leading to tanϕ = 2
√

2
3 = 1.633 (Fig. 6Sb). In this work,

all monometallic Pd and bimetallic Pd43Au57 nanodecahedra in epitaxial relationship Pd(-Au)(111)<101> ∥ r-TiO2(110)[1-1-1] were
imaged in [101] zone axis. The latter is rotated from [-121] direction by 90 around the [11-1] direction. Although the expression of
dLi
dAi

is independent of zone axis along which a NP is viewed, neither W nor ∆h can be straightforwardly determined in [101] zone axis.

To express dLi
dAi

in terms of measurable distances in [101] zone axis, let’s consider Fig. 7S. Fig. 7Sa shows an atomic model of a
particle in [101] zone axis. The outline of the projection is shown in Fig. 7Sb.

Since, the expression of dLi
dAi

in [101] zone axis is the same as in equation (S14), we can write :
dLi
dAi

= 2
√

3
W+ 2∆h

tanφ

= 2
√

3
h111
√

6+ 2∆h

2
√

2
3

which simplifies to :
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Fig. 7S (a) Atomic model of a free FCC particle with truncated octahedral shape viewed along the [101] zone axis Visible facets and their indices are
indicated. (b) Outline of the projection of the particle according to the same zone axis.

dLi

dAi
= 2

√
2

∆h+2h111
(S15)

The geometric factor dLi
dAi

is here expressed as a function of ∆h and h111. Both distances can be determined from a projected image
of a supported FCC truncated octahedron in [101] zone axis as explained in the rest of this section. Fig. 8Sa (top) shows the hexagonal
shape of the (111) facet in contact with the support. The point O′ corresponds to the perpendicular projection of the particle center
O of the NP on this facet. Due to the symmetry of the particle, O′ is at the center of the hexagon. However, O′ does not lie in the
middle of segment L′N′ (L′ and N′ are in the middle of the segments B′B” and D′D” respectively) as the hexagon B′B”C”D”D′C′B′ is
not regular. It results that the position of particle centre O is also not known. Thus, the value of the truncation ∆h and h111 are not
directly measurable on the two-dimensional projection ABDFRQPA of the particle along [101] zone axis.

To determine ∆h and h111, we proceed as follows. The extensions of segments BD and PA meet at point K (Fig. 8Sa). Similarly,
the extensions of segments B′C′, B”C” and D′D” delimiting the (111) facet form a triangle K′P′Q′ (Fig. 8Sb). Note that K′P′Q′ is an
equilateral triangle of center O′. Hence, for an equilateral triangle, we have K′O′ = 2

3 K′N′.
Since K′N′ = KD, we have K′O′ = 2

3 KD. KD can be determined from the projection of the particle in [101] zone axis. Let us now
express K′O′ in terms of h111. Let’s consider OKO′′ which is a right-angled triangle with K̂OO′′ the angle between the (111) and (100)
planes. As K′O′ = KO” and OO′′ = h111, we get KO′′ = OO′′.tanθ = h111.

√
2. Hence,

h111 =
√

2
3

.KD (S16)

Once h111 is known, ∆h that can be deduced from the measurement of the particle height which is equal to 2h111 - ∆h (Fig. 8Sa).
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Fig. 8S (a) (top) Projection of the hexagonal facet (11-1) up and (bottom) projection of the cross section of the NP along the [101]; (b) Schematic of the
equilateral triangle drawn from this facet by geometrical construction.
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