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The nonlinear properties of a turbulence driven magnetic island (TDMI) are investigated. Starting

from a minimal magnetohydrodynamic fluid model that provides for the generation of a TDMI and

using scale separation arguments along with numerical simulation findings, we elucidate the links

between the nonlinear transport properties of such magnetic islands and the characteristic features

of the small scale turbulence. We also explain the phenomenon of partial pressure flattening inside

the TDMI. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4981229]

I. INTRODUCTION

At present, large experimental tokamak devices often hit

a limit in plasma b (where b is the ratio of plasma pressure

to magnetic field pressure), due to the onset of neoclassical

tearing modes (NTMs) that create large magnetic islands on

magnetohydrodynamic (MHD) length scales. Islands grow

nonlinearly due to a loss of the bootstrap current inside

them. For future devices, such as ITER and other burning

plasma experiments, their presence can lead to disruptions

and significantly degrade both the standard ELMy H-mode

operation and other advanced scenarios.1 The degradation in

the plasma stored energy due to NTMs is proportional to the

radial island size,2 and their onset is dependent on the initial

b,3 the ratio between the fluid and magnetic pressures. A pre-

requisite for an NTM to be excited is the existence of a seed

island. Regimes of interest are characterized by a poloidal

beta value much larger than the one required for such islands

to be meta-stable. In other words, the triggering of NTMs in

a device is not directly linked to the b levels but to the mech-

anisms which generate seed islands.4 Previous research has

identified several different causes for the formation of seed

islands such as an unstable tearing mode,5–7 MHD events

such as sawtooth8 and fishbones,9 error fields,10,11 edge local-

ized modes (ELMS),12 nonlinear mode coupling,13 and turbu-

lence.14,15 This diversity of origins poses serious challenges for

experimentally anticipating their appearance and choosing

appropriate control parameters for their avoidance and suppres-

sion.4 Present experimental efforts towards the control of

NTMs rely primarily on tracking the appearance of seed islands

at various mode rational surfaces and preventing their growth

by replacing the missing bootstrap current inside them through

externally driven helical currents. This can be achieved, for

instance, by the generation of non-inductive current through the

injection of radio frequency or electron cyclotron waves into

the plasma (electron cyclotron current drive or ECCD).16,17

Small size islands can also be controlled by electron cyclotron

resonant heating (ECRH), which induces Ohmic currents

because of the temperature dependence of the resistivity.18,19

This strategy has led to successful results including complete

stabilization of both the (3,2) and (2,1) NTMs (see, for instance,

Ref. 20). However, controlling the current deposition with

respect to the position of the island requires active control and

is technically challenging for devices like ITER.1 An alternative

is to control the seed island triggering mechanism. For instance,

ECCD could be used to control the onset of a sawtooth crash

which is known to be a precursor for seed islands.

One puzzling and so far incompletely understood phe-

nomenon is that of a large number of experimental observa-

tions where an NTM onset does not appear to be associated

with any of the known mechanisms of a seed island genera-

tion. Both the 3/2 and 2/1 NTM21,22 have been seen to grow

without the existence of an MHD triggering event. The pos-

sibility of a turbulence triggered NTM onset has been sug-

gested in the past14,15,23,24 but remains to some extent an

open question to date. It has been shown, in numerical simu-

lations, that small scale interchange turbulence can generate

a turbulence driven magnetic island (TDMI), either by a sim-

ple mode beating mechanism in the vicinity of a low order

rational surface15 or remotely by spatial transfer of energy of

turbulent modes to the lowest available low order rational

surface.23 An interesting characteristic of such islands, which

was pointed out in Ref. 25, was the existence of a partial

pressure flattening inside a TDMI and how this could serve

as a signature for their experimental identification. The flat-

tening mechanism has been investigated in the past by using

a basic quasi-linear two-scale length model, which takes into

account interchange modes, to predict the condition under

which a pressure flattening in a TDMI can occur. However,

this model explanation suffers from some shortcomings.

First, the earlier simulations on which the model was based

did not have a clear separation of scales between the inter-

change modes and the large or MHD scales. Therefore, it

was not adequate to provide a proper basis for the model.

The role played by the intermediate scales, the ones in

between the interchange and MHD scales, could not be tack-

led. Second, the reasons leading to the formation of a TDMI
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beyond the beating mechanism and the occurrence of a par-

tial flattening were not theoretically explained. The link

between the properties of the turbulence and such TDMI

properties was not adequately addressed. In this paper, we

will investigate these points theoretically and we will show

that all these questions are closely linked.

This paper is organized as follows. In Section II, we

present the model equations and the key mechanisms which

are required to investigate this problem. In Sec. III, we

focus on the first nonlinear phase where the magnetic island

is generated, present a model of the interchange scales of

this dynamics, evaluate transport parameters, and deduce

an equation for the large scale pressure structure inside the

island. In Sec. IV, we investigate these questions in the

fully nonlinear but statistically stationary regime. We eval-

uate the critical island size above which pressure flattening

occurs inside the island. In Sec. V, we show analytically

why the flattening is partial and spatially uniform inside the

island. In Sec. VI, we propose an explicit analytical link

between the turbulence generated in a radially localized

interchange band (IB) and the mean pressure flattening

throughout the magnetic island. Finally, in Section VII, we

present a discussion of our results and make some conclud-

ing remarks.

II. A MINIMAL DYNAMICAL MODEL FOR GENERATING
A TDMI

Microinstabilities in tokamaks such as the trapped elec-

tron mode and the electron or ion temperature gradient mode

include interchange type branches and are set in a bath of

drift waves. They are characterized by the existence of a crit-

ical gradient length Lrc above which the modes are destabi-

lized. Moreover, well beyond the threshold of the different

instabilities (Lr � Lrc), a common dispersion relation gov-

erns their linear dynamics, namely,26

c2
int ¼ ftxdex

?
pe þ xdix

?
pi / c2

s= RLrð Þ;

where x?
ps ¼ khv?ps and xds ¼ 2kskshvds are the diamagnetic

and vertical drift frequencies, respectively. s refers to the

particle species electrons (s¼ e) and ions (s¼ i), ksh is the

poloidal wave vector, v?ps is the diamagnetic velocity, and ks

is a number depending on the local properties of the equilib-

rium. ft is the fraction of trapped electrons, and cs is the

sound speed. Thus, the interchange turbulence can be consid-

ered as a paradigm for turbulence in tokamaks.

To describe a TDMI, we take the help of a minimal 2D

fluid model that was presented in Refs. 27 and 28 and that

includes the basic features of the microinstabilities. It con-

tains interchange modes and drift waves and is characterized

by a pressure gradient threshold above which an instability

occurs. This model is made up of three nonlinear equations

consisting of the momentum equation describing the time

evolution of the electric potential /, the energy equation

governing the dynamics of the electronic pressure fluctua-

tions p, and Ohm’s law describing the time evolution of the

total magnetic flux w ¼ weq þ ~w:

@

@t
r2
?/þ /;r2

?/
� �

¼ w;r2
?w

� �
� j1

@p

@y
þ lr4

?/; (1)

@

@t
w ¼ w;/� pf g � v?

@w
@y
þ gr2

?
~w; (2)

@

@t
pþ /; pf g ¼ �v? 1� j2ð Þ @/

@y
þ j2

@p

@y

� �
þ q̂2 w;r2

?w
� �

þ v?r2
?p: (3)

Eqs. (1)–(3) are normalized using the characteristic Alfv�en

speed vA, the magnetic shear length L?, and the Alfv�en time

sA ¼ L?=vA. In this model, we will consider the situation

where there is only one resonant surface. For instance, when

the magnetic equilibrium is given by the Harris current sheet

model, namely, Beq xð Þ ¼ tanh x
a

� �
ŷ, the resonant surface,

where the interchange and tearing instabilities can develop, is

x¼ 0. a determines the width of the profile and is linked to the

value of tearing mode stability index parameter D0. This sim-

plified model can capture the essentials of the interchange and

tearing instabilities and as a consequence provides a very use-

ful framework to study the large island generation mechanism

involving small-scale interchange modes. Indeed, with an

appropriate set of parameters and initial conditions, selecting

cases where there is no tearing instability, one can numerically

observe the growth and saturation of magnetic islands called

TDMIs.15 Thereafter, we will consider the evolution of the

poloidal Fourier components of the fields defined as

w x; y; tð Þ ¼
P

m2Z wm x; tð Þ � exp ikmyð Þ. To focus on TDMIs,

we will suppose in the following that there is no unstable tear-

ing mode and that there is a scale separation between the island

and interchange scales. In other words, we suppose that

between the MHD poloidal scales and the interchange poloidal

scales, there exists a range of wavelength scales that are stable

to both tearing and interchange instabilities. This is, in fact, a

normal situation in most tokamak plasmas.

One of the main objectives of this paper is to understand

the mechanisms that sustain a finite pressure profile inside a

TDMI, i.e., dp0=dx 6¼ 0, and to propose a suitable physical

model to describe it. In the small island limit, strong parallel

diffusion would try to flatten the profile as one observes, for

example, in islands that are not excited by turbulence.

However, such a complete flattening would suppress the

source of the interchange instability and therefore the growth

of the TDMI. A finite pressure gradient is necessary for the

existence of the TDMI. These contradictory requirements

can be reconciled if one recognises that small scale fluctua-

tions act as a source inside the island. It is therefore impor-

tant to identify the key ingredients necessary to build a

physical model of a TDMI that incorporates the dynamics of

these fluctuations and explains the mechanism of partial

pressure flattening. In the large island limit, finite perpendic-

ular diffusivity effects would provide an additional mecha-

nism for sustaining the finite pressure gradient.29

The first important ingredient is the basic physical

mechanism that ensures the self-sustainment of TDMIs. We

will assume the existence of a quadrupolar flow which is the

fundamental mechanism that makes a magnetic structure,

like an island, to become self-sustaining or growing.30 Such
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a flow is observed in the case of a tearing instability and also

in alternative scenarios where the Sweet-Parker and/or

Petschek models apply. Basically, when magnetic reconnec-

tion occurs, a large fraction of flow penetrates into the island

transversely to the magnetic field lines in the vicinity of the

X point. It is expelled from the island at the O point, where

the radial island extension is maximal and the magnetic ten-

sion is minimal, as shown schematically in Fig. 1. In our

model, the magnetic flux is advected by /� p. Thus, we

will assume the existence of a large scale quadrupolar /� p
structure as the island appears and evolves.

A second important dynamical assumption is to suppose

that the condition for a partial flattening of the TDMI is satis-

fied. This condition is well defined for tearing driven magnetic

islands, namely, that the radial width of the island w must be

larger than a critical value which is proportional to the one-

fourth power of the ratio of the perpendicular diffusion coeffi-

cient v? to the parallel diffusion coefficient vk.
29 In the case of

TDMIs, the turbulent perpendicular diffusion coefficient vturb
?

needs to be taken instead of v?. Thus, flattening should occur

when w� wturb
c ¼

ffiffiffi
8
p
ðvturb
? =vkÞ1=4

ffiffiffiffiffiffiffiffiffi
a=k1

p
with vk ¼ q̂2=g.25

In the following, we will give an estimate of vturb
? .

The final important step is a proper recognition of the

multi-scale character of the fluctuation dynamics and the

nature of the turbulence. By introducing a scale hierarchy,

we will quantify how interchange turbulence affects the large

scales. However, this requires further analytical develop-

ment. To make this point more precise, we will now intro-

duce some modeling of the dynamics. We will analyze

separately the quasi-linear and nonlinear phases of this

dynamics. The quasi-linear phase follows the linear one

where unstable interchange modes arise. It is characterized

by an exponential growth of the interchange modes as well

as the large scale length modes. The latter grow owing to a

beating of the dominant interchange modes. In particular, if

the most unstable interchange modes with poloidal mode

numbers m? � 1 have a growth rate cm?
¼ c?, then the

modes m � 1 have a growth rate cm � 2c?.
15

III. TRANSPORT PROPERTIES OF TDMIs IN THE
QUASILINEAR PHASE

We denote a mean scale of the island by an overbar and

write p ¼ �p þ p0 with p0 ¼ 0. We set u ¼ pþ peq � / where

p0eq xð Þ ¼ �v?. Thus, the nonlinear terms in the pressure

equation expand according to

f/; pg ¼ f�/; �pg þ f/0; p0g; (4)

and

q̂2fw; jg ¼ vkfw; fw;ugg þ q̂2fw; jeqg

¼ vk rk
2
�u þPþHþ fw0; fw0;u0gg

	 

þ q̂2fw; jeqg; (5)

P ¼ fw0;rk �ug þ rkfw0; �ug þ rk
2
u0; (6)

H ¼ fw0; fw0; �ugg þ fw0; f�w;u0gg þ f�w; fw0;u0gg: (7)

rk ¼ f�w; :g is the parallel gradient along the island-scale

magnetic field. The following approximate relations (exactly

in the quasilinear phase) also hold:

P � P0 and H � �H; (8)

and the fourth term in the RHS of Eq. (5) can be neglected

when considering a large scale average. The equation of evo-

lution of the mean pressure results from the averaging of (3)

on island scales

@

@t
�p þ f/; pþ peqg ¼ �v? j2

@�/
@y
� j2

@�p

@y

 !

þ q̂2fw; jg þ v?r2
?�p: (9)

To obtain an evolution equation for the pressure at large

scales, we need to provide a model of the energy transfer

from the interchange to island scales in order to evaluate

f/0; p0g and �H. To investigate this problem of closure of Eq.

(9), we first need to describe a model which specifies how

the interchange scales interfere with the island dynamics.

A. A model for the interchange scales

There is a poloidal scale separation between the island

scales and the interchange scales in the quasi-linear phase

where mainly two scales are present m � 1 and m ¼ m?. In

this phase, only the interchange modes transfer energy to the

large/island scales through mode beating. In particular, the

nonlinear bracket f/� p;wg produces large scale fluctua-

tions �w, leading to the growth of the magnetic island size

w(t). A key point is that the interchange fluctuations are line-

arly generated in a radially narrow band of width d.31

Numerically, for the set of simulations considered here, one

finds d � l?, where l? ¼ Ly=m? is the poloidal length of the

most unstable interchange mode. We call this band the inter-

change band (IB). Let us introduce the parallel diffusion

time of a structure of width l at radial position x in front of

the O point of the island: sl
k xð Þ � 1=ðvkk2

kÞ ¼ v�1
k = al=xð Þ2.

FIG. 1. Schematic representation of the transfer energy mechanism which

feeds the growth of a magnetic island from interchange fluctuations: ‹

Interchange fluctuations are generated in the interchange band (IB). › They

are advected by the quadrupolar flow outside the IB. fi The diffusion along

the magnetic field lines of the fluctuations is enhanced outside the IB and

generates large scale fluctuations on short time scales sk � c?.
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As soon as w > d, small scale interchange fluctuations
~/; ~p
� �

generated by the interchange instability in this band

(step ‹ in Fig. 1) are advected radially by the mean flow

through the terms f�/;x0g and f�/; p0g (step › in Fig. 1).

Owing to the quadrupole structure of this flow, they cross the

magnetic field lines up to the separatrices. At the same time,

because the characteristic parallel diffusion time within the

island sk � sl?
k w=4ð Þ ¼ L2

yv
�1
k B�2

eq w=4ð Þ is much lower than

the interchange and eddy turnover times, namely, c�1 and

�x1, respectively, pressure fluctuations populate the island

through parallel diffusion along the magnetic field lines and

are then converted into fluctuations at island scales (step fi

in Fig. 1). The parallel diffusion time of potential fluctua-

tions ~sk ¼ L2
y= gk?ð Þ2B�2

eq w=2ð Þ ¼ sk= k?q̂ð Þ2 is of the same

order of magnitude as sk. Note that the parallel diffusion

time becomes infinite at the resonant surface x¼ 0, and

therefore, this mechanism is inefficient in the IB. Thus, only

the fraction advected outside the IB of the small scale inter-

change fluctuations generated in this band populates the

island and feeds large scales. To evaluate this fraction f, let

us first compute the level of fluctuations advected outside the

IB. For this purpose, one has to consider only the advection

mechanism of the fluctuations by the quadrupole. Let us

write the dominant fluctuations in the IB as

dp0‹ x; yð Þ ¼ p̂? xð Þ exp c?tð Þ exp i k?y� x?tð Þð Þ; (10)

where p̂? xð Þ is the eigenfunction of the mode with wavenum-

ber m?, and x? is the frequency of the mode. An estimate of

the quadratic pressure fluctuations in the IB is given by

E‹ ¼
ð

IB

dxdy jdp0‹j2 ¼ exp 2c?tð Þ
ðd=2

�d=2

dx p̂? xð Þ2: (11)

In the regime d < w� Ly, the fluctuations are advected by

the quadrupole, predominantly along and in the vicinity of

the line y¼ yO crossing the O point and pile up outside the

IB. As such, first, the quadratic level of pressure fluctuations

outside the IB, E› ¼
Ð

out IB
dxdy jdp0›j2, is due to the flux

crossing the IB boundary. Second, this flux is approximately

localized in a band of width d � l? around the O point where

�v1 is roughly in the x direction. Thus, one can deduce that

while leaving the IB by crossing x ¼ 6d=2, the pressure

fluctuations roughly rotate by p=2 (see Fig. 1) and, thus, sat-

isfy dp0› x; yð Þ ¼ dp0‹ y; xð Þ. It follows that:

@

@t
E› � 2

ðd=2

�d=2

dy jp̂? yð Þj2 exp 2c?tð Þ�vadv tð Þ; (12)

where �vadv tð Þ ¼ �v1 d=2; yO; tð Þ ¼ �vadv 0ð Þ exp 2c?tð Þ � 2d
w

2p
Ly

/̂1

w=2ð Þ (see Fig. 1). Thus, if one does not yet consider the par-

allel diffusion of the fluctuations, the ratio f of the amplitudes

of interchange fluctuations advected outside the interchange

band to the ones in the band satisfies

f 2 ¼ E›

E‹
� 1

2

�vadv

c?Ly
: (13)

Let us note that, as advection occurs, the parallel diffusion of

the localized fluctuations dp0› occurs along the perturbed

magnetic field lines, including the island structure perturba-

tion. Thus, dp0›! dpfi � d�p: a small scale blob of pres-

sure is elongated along field lines on short time scales

sd
k w=4ð Þ � c�1 and only a large scale structure along the

field line remains.

The mechanisms discussed above indicate that small

scale pressure fluctuations act differently in the IB band where

there is almost no parallel diffusion and outside the IB band

where they are simultaneously advected and elongated along

the island field line structures. More specifically, let us con-

sider a blob of pressure fluctuations with amplitude dp0, gener-

ated by interchange mechanisms in the IB. The energy

content of this blob is proportional to dp02l?d � dp02l2
?.

However, a fraction of interchange free energy that has led to

the growth of the blob has been nonlinearly transferred to

large scales through the mechanism discussed above. First,

according to Eq. (13), in terms of the level of pressure, consid-

ering the presence of a magnetic island of width w, this frac-

tion at a given time is given by g ¼ dp0›=dp0‹ � f
ffiffiffiffiffiffiffiffiffi
d=w

p
.

Second, as the total pressure of the blob is conserved when

the stretching of the blob occurs along the magnetic field lines

of the island, one has dp0›l?d � dp0›l2? � l?Lyd�p where one

has made use of the condition w=Ly � 1. Thus, one can write

dp0l2? ! d�pLyl? þ dp0
‹

l2
?; (14)

where! implies a mean on fast time scales, i.e., larger than

sadv � �vadv tð Þd � c�1
? � sd

k w=4ð Þ. More precisely, one finds

numerically that sadv is much larger than c�1
? at the beginning

of the quasilinear phase and decreases down to a few c�1
? .

This mean allows one to include cumulative effects of the

advection and elongations of interchange fluctuations (see

Eq. (12)).

B. Closure in the quasilinear phase

From this two-scale model approximation, it turns out

that the convective term can be written as

f/0; p0g ! �vturb
? r2

?�p � ~vturb
? r2

?
�/ þ �S/0;p0 : (15)

By construction, p0 is a sum on all the cells or blobs dp0. �S/0;p0

is the local coupling term from interchange modes to large

scales, in the vicinity of the resonance, with radial extension

l?. It is the source of large scale fluctuations, including the

local transport term. It should be noted that vturb
? is not a local

quantity. In fact, the operator vturb
? r2

? acts, by assumption, on

island scales. This model gives the following estimate of the

turbulent transport coefficients and the source:

vturb
? � rA/0 ; (16)

~vturb
? � rAp0 ; (17)

�S/0;p0 � k02/0‹p0‹; (18)

where r ¼ 2pf
ffiffiffiffiffiffiffiffiffi
w=l?

p
; A/0 is the amplitude of the inter-

change fluctuation /0‹, and Ap0 represents the amplitude of
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the pressure fluctuations. The expressions given in Eqs. (16)

and (17) are estimates of the amplitudes of vturb
? and ~vturb

? ,

respectively. They have been taken to be constant for sim-

plicity. We have used a small island width hypothesis k1w
� 1 and assumed r2

? 	 1=w2. In the following, the notation

/0 will correspond to the quantity /0‹ which is localized in

the interchange band of radial extension l?. Keeping in mind

that in the quasilinear phase, wave beating is at play and that

the drive of the m¼ 0 mode is due to the convective terms in

Eq. (3),25 one gets 2c?Ap0
� A/0Ap0k?l

�1
? . In the vorticity

equation (1), the drive is due to both the convective and

Maxwell terms, but none of these two non-linearities domi-

nate. Contributing at the same order of magnitude, we also

have 2c?A/0
� A/0A/0k?l

�1
? which gives an estimate of

A0p=A0/ and

~vturb
? � vturb

? jp00 0ð Þ=/00 0ð Þj: (19)

Note that the evaluation of the ratio A0p=A0/ seems to remain

true numerically in the nonlinear regime after the quasilinear

phase, which can be surmised, for instance, from Figures

7(b) and 9(b) of Ref. 25. In the vicinity of the resonance, one

may link the level of the source to the mean pressure gradi-

ent. Indeed, in the quasilinear phase, first, the interchange

mechanism transfers energy linearly from the mean pressure

gradient to small scale fluctuations. Second, interchange

fluctuations nonlinearly transfer the energy to the mean pres-

sure gradient through the brackets f/; pg25 in the IB

2c?p0 	 �S/0;p0 ; (20)

where p0 refers to the k¼ 0 fluctuation of the pressure.

Third, the energy on the large scales is partly transferred

back to the interchange scales and tends to offset the energy

generated by interchange turbulence

c?p
0 	 p0;/

0� �
	 k?/

0 dp0

dx
: (21)

It gives

vturb
? � r

ffiffiffi
2
p

c?=k2
?; (22)

�S/0;p0 � k2
?/?p? � 2c?p0: (23)

To evaluate the turbulent diffusivity, we have made use of

the fact that p0 is driven by the interchange fluctuations in

the IB and p00 	 k?p0. However, we do not know dp0=dx out-

side the IB at this stage.

To go further, we need to consider the pressure equation

at island scales and specifically the regime, wturb
c < d� w.

Using Eq. (15), one obtains that fa0; f�b; c0gg ¼ fa0; fb0; �cgg
¼ 0. Thus,

�H ¼ rk fw0;u0g ¼ �H0 þrk �Sw0;u0 ; (24)

where by construction �H0 ¼ �Hð�Sw0;u0 ¼ 0Þ heats the plasma

throughout the entire island. Let us introduce Sint ¼ q̂2rk
�Sw0;u0 þ �S/0;p0 . Sint is a radially localized source inside the

island, i.e., it cancels out outside the IB. At island scales, the

pressure equation simplifies to

@

@t
�p þ �/; �p

� �
� q̂2 �H0 � q̂2 �w; jeq

� �

þ v? 1� j2ð Þ @
�/
@y
þ j2

@�p

@y

 !

¼ vkrk
2
�u þ v? þ vturb

?
� �

r2
?�p � ~vturb

? r2
?

�/ þ Sint: (25)

At such scales, the system is linearly stable and the linear

curvature terms have been neglected. The diamagnetic term

can be omitted by transforming to a frame in which the

island is rotating at the diamagnetic velocity.

Let us emphasize that, first, the pressure and the poten-

tial interchange mode structures in the IB have an even par-

ity and the magnetic flux has an odd parity. �w is even

because it is generated by mode beating. Therefore, Sint,

which has the parity of k?@x/
0p0, is anti-symmetric, i.e., odd

with regard to x and localized in the vicinity of the reso-

nance. Second, numerically, one finds jp00 0ð Þ=/00 0ð Þj � 1

and r2
k
�/ � r2

k�p in the island frame. Thus, ~vturb
? � vturb

? and

�u � �p þ peq. Third, in the quasilinear phase, by definition,

the ordering �g � g0 � 1 � jeq is true for any field g. One

can check that the fast dynamics are the dissipative terms on

the RHS of Equation (25) and the localized source Sint

� �S/0;p0 . Setting �P ¼ �p þ peq, it follows that:

vkrk
2 �P þ vturb

? r2
?

�P þ Sint ¼ 0: (26)

For the sake of simplicity, and because, in general, vturb
? � v?,

we have set vturb
? � v? þ vturb

? .

IV. TRANSPORT PROPERTIES OF TDMIs IN THE
NONLINEAR PHASE

There is also a natural poloidal scale separation in the

nonlinear regime as evident from the energy spectral proper-

ties. Indeed, the spectra present some very specific properties

observed for a wide range of parameters, including cases

where w=wc � 125 without clear scale separation and cases

where w is of the order of a few wc
32 but where intermediate

scales are linearly stable. To be more explicit, we introduce

a spatial scale decomposition of a field p ¼ �p þ ~p þ p0 and

specify it now m � 2

(i) corresponds to scales where energy tends to pile up

and will correspond to large island scales as charac-

terized by �p. They dominate energetically and have,

basically, the tearing parity. In other words, there is a

magnetic island. The energy spectra are strongly

decreasing functions of the mode number, and there is

typically a difference of 2 orders of magnitude in the

energy between m¼ 1 and m¼ 3 modes.

(ii) Intermediate scales are characterized by a tendency to

attain an equipartition between the pressure and

kinetic energies, both of which are lower than the

magnetic energy. The latter corresponds to the nonlin-

ear magnetic island structure. They are denoted as ~p
and correspond to poloidal mode numbers in the

range of 3 � m < mth: with mth: � 3. It turns out that

the mode threshold mth: always satisfies mth: < m?.
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This equipartition can be associated with the adiabatic

character of the response of the system at those scales

~p � �~/. Indeed, equipartition implies that 0 ¼ d
dt

~Ek � ~Ep

� �
�
Ð

dS ~pþ /ð Þfw; jg, which cancels in the

case of a strict adiabatic response. ~Ep and ~Ek denote

the pressure and kinetic energy at the intermediate

scales.

The adiabatic trend of the system at intermediate

scales, except in the vicinity of the external part of the

island (x � w=2), is well observed numerically.32

Thus, we will adopt the hypothesis that intermediate

scales are almost adiabatic.

(iii) From the mode number larger than mth:, it is found

that there is a fast transition towards an equipartition

between magnetic and pressure energies. The transi-

tion to this equipartition spectrum property includes

the dominant interchange scales jm� m?j � Dm. The

kinetic, pressure, and magnetic spectral energies at

those scales are larger than those at intermediate

scales.

(iv) Such an equipartition persists at the smallest scales

m > m? þ Dm. It corresponds to Alfv�en modes driven

by the term proportional to the Maxwell stress in the

pressure equation, with weak or marginal interactions.

Indeed for m� m?, the kinetic energy is negligible

compared to the magnetic energy. In fact, for

m� m?, the spectral energies are weak and we will

neglect the impact of those scales on the nonlinear

island dynamics.

A. Closure in the statistically stationary nonlinear
phase

As a consequence of the adiabatic response at the inter-

mediate scales, and because dominant interchange scales

concentrate a large fraction of spectral energy compared to

adiabatic scales, when considering the impact of small scales

on large scales by quadratic interactions and long time

dynamics, we can write

f/; pg � f�/ þ ~/ þ /0; �p þ ~p þ p0g � f�/; �pg þ f/0; p0g:
(27)

This makes explicit a natural separation of scales in terms of

nonlinear interactions, with adiabatic interchange scales

being inactive on average. This also indicates that the IB

band still plays a specific role in the dynamics. Indeed, the

interchange instability is, of course, not suppressed in the

nonlinear phase: if one computes the growth rate from the

mean profile after saturation of the island size, one finds a

growth rate cs
? of the order of c? (cs

? � 0:4c? in Ref. 25) and

corresponding to a mode number ks
? � k?. However, the

radial extension of the dominant interchange mode can differ

from the linear or quasi-linear width d, but it remains of the

same order of magnitude, d � Ly= m? � Dmð Þ.
This discussion leads to our first hypothesis: we suppose

that interchange free energy is mostly provided by spatial

poloidal scales in an extended interchange band including

modes p0; /0; and w0 with the radial width of the order of d.

From an energetic point of view, the physics in the extended

IB is to a large extent unchanged: the linear part provides the

interchange free energy, and the nonlinearities transfer this

energy to large scales and, thus, control the mean pressure

gradient in the IB. Finally, the large scales also advect inter-

change fluctuations outside the IB. These large scales transfer

back a fraction of their energy to the adiabatic, interchange,

and dissipative scales. The dissipative scales correspond to

wave numbers larger than interchange ones.

A second hypothesis is that, when the size of the island

is modified, the mean pressure gradient is also adjusted in

the vicinity of the separatrices. Indeed, this is a well

observed fact in Ref. 25 where the dynamics of large TDMI

has been studied. More precisely, the drive of the mean pres-

sure gradient fluctuations is made by the nonlinear convec-

tive term in the IB and advected to the separatrices. In other

words, on time scales sNL � c�1
? ; �x�1

1

� �
p0=sNL � h�S/0;p0 i; (28)

where h:i indicates a mean on time scales sNL. The choice of

the convective term is based on the observation that this is the

dominant nonlinearity which transfers energy to large

scales.33 sNL is the characteristic nonlinear time, i.e., the time

for the generated interchange fluctuations to operate a cycle

through nonlinearities from interchange scales to dissipative

scales by going to the largest scales. One may expect such a

characteristic time to be of the order of the duration of the

quasi-linear phase or equivalently to be of the order of the

characteristic time for the island to reach a maximum at the

end of this phase s�1
NL � d ln W=dt� 2cs

?. As discussed previ-

ously, the intermediate scales are assumed to be insignificant

with regard to the drive of the mean pressure gradient. Thus,

�S/0;p0 � k02/0p0 : (29)

A third hypothesis is based on stationarity: on time scales

sNL, the interchange free energy supplied to the system through

the linear terms is balanced by the energy nonlinearly trans-

ferred to the dissipative scales: h@tp
0i ¼ hLinearþ Dissipativei.

Stationarity means h�gi ¼ �g; @�g=@t ¼ 0. In other words, ulti-

mately, the interchange energy source feeds the dissipative

scales. Thus,

hf�/; �pgi � q̂2h �H0i � q̂2f�w; jeqg

¼ hvkrk
2
�ui þ vturb

? r2
?�p � ~vturb

? r2
?

�/ þ hSinti: (30)

As the ordering in this phase is g0 � �g � 1 for any field g
and, moreover, as there is also an equipartition up to inter-

change scales, which satisfies w0 � /0 � p0=q̂, the fast dynam-

ics pressure equation can be again simplified to

vkDk �P þ vturb
? D? �P þ hSinti ¼ 0: (31)

We have made the assumption that hvkrk
2 �Pi � vkrk

2
P.

Note that in the limit where there is no source term, we

recover the equation used by Fitzpatrick29 to study the flat-

tening of the pressure in an island without turbulence.
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B. Transport properties and critical island size for a
partial pressure flattening

An order of magnitude of the perpendicular turbulent

diffusion coefficient can also be obtained in the limit

wturb
c < d� w: it is well established that a basic mixing

length estimate vturb
? � c?=k?

2 underestimates transport coef-

ficients of interchange turbulence in the nonlinear phase.31

Quasilinear diffusion transport models give better esti-

mates26 but a precise estimate is out of the scope of this

work. However, noting that the perpendicular diffusion is

enhanced by the interchange turbulence, and more specifi-

cally, by the interchange structures advected outside the IB,

and taking into account the fact that the quasi-adiabatic char-

acter of the mode persists at interchange scales, one finds

vturb
? �

X
jm�m?j�Dm

jgmj2cs
m=km

2: (32)

The index s indicates that the growth rate cs
m is computed

from the nonlinear profile and not the initial equilibrium.

The coefficients gm represent the nonadiabatic effects on the

modes and are close to 1. Thus, one obtains

wturb
c �

ffiffiffi
8
p

v�1
k

X
jm�m?j�Dm

jgmj2cs
mkm

�2
� �1=4

ffiffiffiffiffiffiffiffiffi
a=ky

q

�
ffiffiffi
8
p Dmc?

vkk?

 !1=4 ffiffiffiffiffiffiffiffiffi
a=ky

q
: (33)

Let us emphasize that the above considerations give

some hints at the reason for which the mean pressure gradi-

ent is constant, at least in the IB and when the island is large

enough. Indeed, at the end of the quasi-linear phase, the

amplitudes of the interchange scale fluctuations saturate. The

amplitudes of the modes which are concatenated in p0 and /0

are therefore to a large extent constant. Neglecting, statisti-

cally, the time evolution of the phase shifts in between the

interchange modes p0m and /0m, Eq. (29) implies that the

source term in the IB is constant on time scales sNL.

According to the model, the source controls the mean pres-

sure gradient, both in the IB in the quasilinear phase and at

the separatrices in the subsequent nonlinear phase.

Consequently, according to Eq. (28), the mean pressure gra-

dient is space independent inside the island. In the limit

where statistically h�S/0;p0 i is constant and balanced by dissi-

pative effects on dissipative time scales, we can infer that the

mean pressure gradient should also be time independent in

the limit w� wturb
c . For a large enough island or high turbu-

lence level, one may expect this to be true as far as the sys-

tem enters into the quasi-linear phase (see simulations in

Ref. 25) and therefore observe a constancy from the birth of

the TDMI, including into the IB.

From this model, there is evidence to support that the

role played by the IB in the nonlinear phase is similar to the

one played in the quasi-linear phase although it is not domi-

nated by only one mode. Outside the IB, the reason for which

the pressure gradient is constant has been discussed from a

dynamics point of view and observed numerically but is still

not proved at this stage. Indeed, this should result from the

model we have derived and in particular, from Eq. (31).

V. PRESSURE FLATTENING BY FAST DYNAMICS

Equations (26) and (31) are similar and valid in the

regime, wturb
c < d� w. In order to solve this equation, we

use the condition that the width of the nonlinear island w is

smaller than the characteristic equilibrium current length

w=a < 1. In this limit,34 the flux function and its first deriva-

tives can be approximated by w ¼ x2= 2að Þ þ w1 tð Þ cos k1yð Þ.
This is a valid hypothesis in our simulations. The island

width is w ¼ 4
ffiffiffiffiffiffiffiffiffiffi
w1=a

p
. Following Fitzpatrick,29 we intro-

duce the quantities n ¼ k1y; X ¼ w=w1, and

Z X; nð Þ ¼
ffiffiffi
8
p

x=w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� cos n

p
x > 0ð Þ;

where X ¼ �1 at the O point and X ¼ þ1 at the X point

and/or along the separatrices. In the small island, aspect ratio

limit k1w� 1; D? � @2=@x2. Let us also set

�P x; yð Þ ¼ peq 0ð Þ þ ~p x; yð Þ:

In the space variables (X,n), the diffusion equation (26) can

now be written as

1

4

w

wc

� �4

Z
@

@n
Z
@

@n
~p þ Z

@

@X
Z
@

@X
~p ¼ � 1

2

w

wc

� �2 Sint

v?
:

(34)

Let us first consider the solution for x 
 d=2 where Sint ¼ 0

by construction. The large island limit w=wc � 1 gives that

�p is a function of the island flux surfaces on both the sides of

the band jxj � d

~p ¼ ~pþ Xð Þ if x 
 þd=2

~p� Xð Þ if x � �d=2:

(
(35)

In the limit Sint ! 0; d! 0 and the pressure is a func-

tion of the island flux surface ~p ¼ ~p Xð Þ inside the separatrix

X � 1. By construction, X x; yð Þ is symmetric about the ratio-

nal surface x¼ 0. Thus, this is also the case for ~p. As dis-

cussed in Ref. 29, ~p has to be antisymmetric about the

rational surface x¼ 0. It implies that ~p ¼ 0 inside the island.

In the case Sint 6¼ 0; Sint is an odd localized function with

respect to x. Thus, by taking into account also the structure

of the island, for X�1, the integration of the source along a

given flux surface X ¼ X• satisfiesþ
X¼X•

dnSint ¼ 0 and

þ
X¼X•

dnZ�1 X; nð ÞSint ¼ 0 :

Thus, the average of Eq. (34) on the phase angle n on a flux

surface gives

d

dX

þ
X¼X•

dn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� cos n

p d~p

dX
X; tð Þ

� �
¼ 0: (36)

This equation is valid, both inside and outside the island,

with the restriction jxj 
 d=2. It follows that, for any x0

(jx0j > d=2),
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�P
0
0 x0ð Þ ¼

d

dx

þ
x¼x0

dn
2p

~p x; nð Þ ¼
þ

x¼x0

dn
2p
@X
@x

d~p

dX

¼ 4
ffiffiffi
2
p A6 tð Þ

w tð Þ I x0=wð Þ; (37)

where

A6 tð Þ ¼ d~p6

dX
1; tð Þ

ð2p

0

dn
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos n

p
; (38)

wffiffiffi
8
p

x0

I x0=wð Þ ¼
þ

x¼x0

dn
1þ

X¼X x0;nð Þ
d~n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� cos ~n

q

¼
þ

x¼x0

dn
1þ

X¼X x0;nð Þ
d~n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

x2
0

w2
þ cos n� cos ~n

r :

(39)

By symmetry, d~pþ=dX 1ð Þ ¼ d~p�=dX 1ð Þ, and thus,

Aþ ¼ A�. The graph of I(z) is drawn in Fig. 2 which shows

that this function is almost constant, more precisely

I zð Þ ¼ 1610%. Note that obviously limz!þ1 I zð Þ ¼ 1. In

other words, one finds that P00 xð Þ ¼ �P
0
0 xð Þ is constant in

space. We will denote this spatially constant quantity rPisl
0 .

However, in Eq. (37), rPisl
0 � P00 xð Þ is not explicitly

linked to the intensity of the source and/or the turbulence.

Yet, Eq. (36) is valid as far as the flux surface X ¼ X•, over

which the averaging is done, including points where x 
 d.

Thus, considering the surface X• ¼ 8d2=w2 � 1, we obtain

the interface condition

rPisl
0 ¼ P00 xð Þ ¼ P00 d=2ð Þ for jxj 
 l?=2: (40)

As a result, the mean pressure gradient is constant in the

vicinity of the island. In other words, the localization of the

interchange modes all along the resonance imposes a pres-

sure profile gradient over the entire width of the island. The

source inhibits the complete flattening along the field lines as

observed in Ref. 25.

VI. AN EXPLICIT LINK BETWEEN THE TURBULENCE
AND PRESSURE PROFILE INSIDE THE ISLAND

Eqs. (29) and (28) give a formal link between the mean

pressure gradient inside the island and the interchange turbu-

lence activity. Moreover, so far, it has been assumed that

only the active interchange scales drive the flattening

through direct nonlinear coupling, which eliminates the pos-

sibility of cascade or more complex nonlinear transfer of

energy. According to the model proposed, first, the dynami-

cal flattening of the pressure inside the island occurs in the

vicinity of the separatrices. Second, this process is fed ener-

getically by the beating of interchange modes in the IB.

Third, the pressure gradient is constant in space inside the

island. One can thus write P0 w=2ð Þ ¼ rPisl
0 w=2. Using Eqs.

(28) and (29), it follows that

rPisl
0 tð Þ ¼ �v? þ b



2

w

ðt

0

dth�S/0;p0 ix
�
: (41)

The integrated term in brackets h:ix corresponds to �S/0;p0 . The

coefficient b � 1 has been introduced in the model to specify

that only a fraction of �S/0;p0 contributes to the evolution of

flattening of the pressure in the vicinity of the separatrices.

Indeed, because of the dissipative mechanisms, one should

expect that a fraction 1� b maintains the flattening into the

core of the island. In that context, one may expect this frac-

tion to be of the order of the ratio between the radial exten-

sion of the IB and the size of the island. The spatial mean h:ix
corresponds to a mean value inside the interchange band IB.

Of course, Eq. (41) should be validated numerically to evalu-

ate the robustness of the model developed in this paper.

VII. CONCLUSIONS

In summary, we have developed a model to evaluate the

impact of the interchange scales on the salient properties of

TDMIs. This model calculates the turbulent perpendicular

diffusivity and evaluates the critical island size above which

one should observe a flattening inside the island. It also

introduces a closure on the dynamics of the large scale. On

the basis of a multiscale analysis, we obtain an anisotropic

diffusion equation for the large scale pressure equation

where interchange fluctuations act as a localized source. We

show that the solution of this equation implies the presence

of a constant mean pressure gradient inside the island. This

is in agreement with previous numerical observations done

in the limit w=wc � 1.25 Finally, we have proposed an

explicit link between the level of the interchange source, the

island size, and the pressure flattening inside the island.

These analytical predictions were tested in Part II,32 and we

found a fairly good agreement with the numerical results.
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