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In shop scheduling, several applications exist where it is required that some components perform consecutively. We refer to no-idle schedules if machines are required to operate with no inserted idle time and no-wait schedules if tasks cannot wait between the end of an operation and the start of the following one. We consider here no-idle/no-wait shop scheduling problems with makespan as performance measure and determine related complexity results. We first analyze the two-machine no-idle/no-wait flow shop problem and show that it is equivalent to a special version of the game of dominoes which is polynomially solvable by tackling an Eulerian path problem on a directed graph. We present for this problem an O(n) exact algorithm. As a byproduct we show that the Hamiltonian Path problem on a digraph G(V,A) with a special structure (where every pair of vertices i,j either has all successors in common or has no common successors) reduces to the two-machine no-idle/no-wait flow shop problem. Correspondingly, we provide a new polynomially solvable special case of the Hamiltonian Path problem. Then, we show that also the corresponding m-machine no-idle no-wait flow shop problem is polynomially solvable and provide an O(mn log n) exact algorithm. Finally we prove that the 2-machine no-idle/no-wait job shop problem and the 2-machine no-idle/no-wait open shop problem are NP-Hard in the strong sense.

Introduction

In shop scheduling, typically when machines represent very expensive equipments and the fee is directly linked to the actual time consumption, it is of interest to determine so-called no-idle solutions, that is schedules where machines process the jobs continuously without inserted idle time. Also, particularly in metal-processing industries, where delays between operations interfere with the technological process, it is required to obtain no-wait schedules where each job is subject to the so-called no-wait constraint, that is it cannot be idle between the completion of an operation and the start of the following one.

We attack here the simultaneous combination of these two requirements by considering no-idle/no-wait shop scheduling problems with three different shop configurations namely flow shop, job shop and open shop. We focus on the makespan as performance measure. We first deal with the two-machine flow shop problem and the m-machine flow shop problem showing that both are polynomially solvable and present connections with the game of dominoes and well-known graph problems. Then, we prove that the two-machine job shop and the two-machine open shop are N P -hard in the strong sense. Using the standard three-field notation [START_REF] Lawler | Sequencing and Scheduling: Algorithms and Complexity[END_REF], the three two-machine shop problems are denoted as F 2|no-idle, no-wait|C max for the flow shop, J2|no-idle, no-wait|C max for the job shop and O2|no -idle, no -wait|C max for the open shop, respectively, while the general flow shop case is denoted as F |noidle, no -wait|C max .

With respect to the relevant literature, in one of the pioneering works in scheduling [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF], it is shown that problem F 2||C max is solvable in O(n log n) time by first arranging the jobs with p 1,j ≤ p 2,j in non-decreasing order of p 1,j , followed by the remaining jobs arranged in non-increasing order of p 2,j , where p i,j denotes the processing time of job J j on machine M i . As mentioned in [START_REF] Adiri | Flowshop / no-idle or no-wait scheduling to minimize the sum of completion times[END_REF], F 2|no-idle|C max can also be solved in O(n log n) time by simply packing the jobs on the second machine once the schedule computed by the algorithm in [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF] is given. In [START_REF] Reddi | On the flowshop sequencing problem with nowait in process[END_REF], it is shown that problem F 2|no -wait|C max can be seen as a special case of the Gilmore-Gomory Travelling Salesman Problem [START_REF] Gilmore | Sequencing a one state variable machine: A solvable case of the traveling salesman problem[END_REF] and therefore is solvable too in O(n log n) time. Besides, problems F 3||C max , F 3|no -idle|C max and F 3|no -wait|C max were all shown to be N P -hard in the strong sense by [START_REF] Garey | The Complexity of Flowshop and Jobshop Scheduling[END_REF], [START_REF] Baptiste | A branch and bound algorithm for the F |no -idle|C max[END_REF] and [START_REF] Röck | The three machine no-wait flowshop problem is NP-complete[END_REF] respectively. In [START_REF] Adiri | Flowshop / no-idle or no-wait scheduling to minimize the sum of completion times[END_REF], it is reported that both problems F 2|no -idle| C j and F 2|no -wait| C j are N P -hard by exploiting the fact that the N P -hardness proof of problem F 2|| C j in [START_REF] Garey | The Complexity of Flowshop and Jobshop Scheduling[END_REF] was given by constructing a flow shop instance that happened to be both no-idle and no-wait. Similar consideration holds for problem F 2|noidle, no -wait| C j . For surveys on noidle flow shop scheduling, we refer to [START_REF] Goncharov | Sevastyanov The flow shop problem with no-idle constraints: A review and approximation[END_REF][START_REF] Chrétienne | On scheduling with the non-idling constraint[END_REF]. For surveys on no-wait scheduling, we refer to [START_REF] Hall | A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process[END_REF][START_REF] Allahverdi | A survey of scheduling problems with no-wait in process[END_REF]. In [START_REF] Kalczynski | On no-wait and no-idle flow shops with makespan criterion[END_REF], the links between problems F |no-idle|C max and F 2|no-wait|C max are discussed and some efficiently solvable special cases are shown. The recent literature on no-wait flow shop scheduling includes [START_REF] Höhn | On Eulerian extensions and their application to no-wait flowshop scheduling[END_REF] where it is shown that minimizing the number of interruptions on the last machine is solvable in O(n 2 ) time on two machines (the problem is denoted as F 2|no -wait|G) while it is N Phard on three or more machines. Finally, we mention the contribution of [START_REF] Giaro | NP-hardness of compact scheduling in simplified open and flow shops[END_REF], where it is shown that, if some processing times are allowed to be zero and zero processing times imply that the corresponding operations should not be performed, then problem F 2|no -idle, no -wait|C max is N P -hard in the strong sense. Here, we deal with the standard versions of no-idle/no-wait shop problems where all processing times are required to be strictly positive.

The paper proceeds as follows. In Section 2, we show that problem F 2|no -idle, no -wait|C max is equivalent to an oriented version of the Single Player Dominoes problem which has been shown in [START_REF] Demaine | Playing Dominoes Is Hard, Except by Yourself[END_REF] to be polynomially solvable and presents an O(n) time solution approach. As a byproduct, we also consider a special case of the Hamiltonian Path problem (denoted as Common/Distinct Successors Directed Hamiltonian Path -CDSDHP -problem) on a directed graph G(V, A) with a specific structure so that every pair of vertices i, j either has all successors in common or has no common successor. In other words, either the successors of i coincide with the successors of j or i, j have distinct successors. We prove that problem CDSDHP reduces to problem F 2|no -idle, no -wait|C max . Correspondingly, we provide a new polynomially solvable special case of the Hamiltonian Path problem. In Section 3, we show that also the general F |no -idle, no -wait|C max problem with m machines is polynomially solvable and present an O(mn log n) time solution approach. Finally, section 5 provides the unary N P -Hardness proof of problems J2|no -idle, no -wait|C max and O2|no -idle, no -wait|C max .

Two-machine no-idle no-wait flow shop scheduling

In the F 2|no -idle, no -wait|C max problem, a set of n jobs is available at time zero. Each job J j must be processed non-preemptively on two continuously available machines M 1 , M 2 with known integer processing times p 1,j , p 2,j > 0, respectively. Each machine is subject to the so-called no-idle constraint, namely, it processes continuously one job at a time, and operations of each job cannot overlap. Each job is subject to the so-called no-wait constraint, namely, it cannot be idle between the completion of the first operation and the start of the second operation. All jobs are processed first on machine M 1 and next on machine M 2 and, given the no-wait constraint, the jobs sequences on the two machines must be identical. Let us denote by p(A) = n j=1 p 1,j the sum of processing times on the first machine and by p(B) = n j=1 p 2,j the sum of processing times on the second machine. For any given sequence σ, [j] σ denotes the job in position j.

Consider Figure 1 which provides an illustrative example of a feasible no-idle, no-wait schedule for a 4-job problem. We point out that the noidle, nowait requirement is very strong. Indeed, any feasible sequence σ for problem F 2|no -idle, no -wait|C max , forces consecutive jobs to share common processing times in such a way that

M 1 M 2 p 1,[1] p 1,[2] p 2,[1] p 1,[3] p 2,[2] p 1,[4] p 2,[4] p 2,[3]
p 2,[j]σ = p 1,[j+1]σ ∀j ∈ ..., n -1. (1) 
As mentioned in the introduction, a related problem denoted by F 2|no -wait|G is tackled in [START_REF] Kalczynski | On no-wait and no-idle flow shops with makespan criterion[END_REF], where the aim is to minimize the number of interruptions (idle times) on M 2 . We remark that this problem does not constitute a generalization of problem F 2|no -idle, no -wait|C max since an optimal solution with no interruptions of problem F 2|no -wait|G may be non-optimal for problem F 2|no -idle, no -wait|C max . Consider a 2 -job instance with processing times p 1,1 = b, p 2,1 = a, p 1,2 = a, p 2,2 = b, with b > a. Then, sequence (J 1 , J 2 ) is no-idle, no-wait, has makespan C (J 1 ,J 2 ) max = 2b + a and is optimal for problem F 2|no -wait|G as it has no interruptions. However, it is not optimal for problem F 2|no -idle, no -wait|C max as sequence (J 2 , J 1 ) is also no-idle, no-wait and has makespan C

(J 2 ,J 1 ) max = 2a + b < 2b + a.
2.1. The F 2|no -idle, no -wait|C max problem and the game of dominoes

We first provide a lemma on specific conditions of any instance of problem F 2|no -idle, no -wait|C max for which a feasible solution may exist.

Lemma 1.

(C1) A necessary condition to have a feasible solution for problem F 2|noidle, no -wait|C max is that there always exists an indexing of the jobs so that p Next, we show that for any feasible solution the makespan is determined by the processing time of the first job on the first machine plus p(B). The following lemma holds.

Lemma 2. The makespan of any feasible sequence σ is given by the processing time of the first job on the first machine plus the sum of jobs processing times on the second machine.

Proof. As mentioned above, for any feasible sequence σ, we have p 2,[j]σ = p 1,[j+1]σ ∀j ∈ 1, ..., n -1. Correspondingly,

C [1]σ = p 1,[1]σ + p 2,[1]σ C [2]σ = p 1,[1]σ + p 2,[1]σ + p 2,[2]σ • • • C [j]σ = p 1,[1]σ + j i=1 p 2,[i]σ
Hence,

C maxσ = C [n]σ = p 1,[1]σ + n i=1 p 2,[i]σ = p 1,[1]σ + n i=1 p 2,i . (2) 
One may consider approaching problem F 2|no -idle, no -wait|C max by solving first problem F 2|no -idle, no -wait|G. Then, if a solution without interruption is found, it is immediate to determine the optimal F 2|noidle, no -wait|C max sequence by exploiting Lemmata 1, 2. Alternatively, F 2|no -idle, no -wait|C max has no feasible solution. This would induce, however, the same O(n 2 ) complexity of the algorithm provided in [START_REF] Höhn | On Eulerian extensions and their application to no-wait flowshop scheduling[END_REF] for problem F 2|no -idle, no -wait|G.

To reach a better complexity, we strongly exploit the specific no-idle/nowait constraint that strictly links the F 2|no -idle, no -wait|C max problem to the game of dominoes. Dominoes are 1 × 2 rectangular tiles with each 1 × 1 square marked with spots indicating a number. A traditional set of dominoes consists of all 28 unordered pairs of numbers between 0 and 6. We refer here to the generalization of dominoes presented in [START_REF] Demaine | Playing Dominoes Is Hard, Except by Yourself[END_REF] in which n tiles are present, each of the tiles can have any integer (or symbol) on each end and not necessarily all pairs of numbers are present. In [START_REF] Demaine | Playing Dominoes Is Hard, Except by Yourself[END_REF], it is shown that the Single Player Dominoes (SP D) problem (where a single player tries to lay down all dominoes in a chain with the numbers matching at each adjacency) is polynomially solvable as it can be seen as the solution of an Eulerian path problem on an undirected multigraph (in a way similar to the result provided in [START_REF] Höhn | On Eulerian extensions and their application to no-wait flowshop scheduling[END_REF] but requiring lower complexity). Figure 2 shows the solution of an SP D problem with 12 tiles with numbers included between 0 and 6.

We refer here to the oriented version of SP D, denoted by OSP D, where all dominoes have an orientation, e.g. if the numbers are i and j, only the orientation i → j is allowed but not viceversa. The following Lemma holds. Lemma 3. Problem OSP D is polynomially solvable.

Proof. Following the proof for problem SP D in [START_REF] Demaine | Playing Dominoes Is Hard, Except by Yourself[END_REF], we construct a multigraph G where vertices correspond to numbers and arcs (instead of edges) correspond to oriented dominoes. The rest works similarly. Hence, in this case, the problem reduces to finding an Eulerian directed path in a directed multigraph which in turn is polynomially solvable [6].

The following proposition holds.

Proposition 1. F 2|no-idle, no-wait|C max polynomially reduces to OSP D.

Proof. By generating for each job J j a related domino {p 1,j , p 2,j }, we know that any complete sequence of oriented dominoes in OSP D corresponds to a feasible sequence for F 2|no -idle, no -wait|C max and viceversa. But then, due to Lemma 1, the jobs processing times either respect case 1 or case 2 of condition (C2). In case 1, the related sequence is optimal for F 2|no -idle, no -wait|C max as the processing time of the first job on the first machine is given and correspondingly, due to Lemma 2, the makespan is given. In case 2, we simply rotate the sequence in order to start with a job J k having the smallest processing time on the first machine, that is job J k with p 1,k = min i=1,..,n p 1,i . Correspondingly, the makespan C max = p 1,k + n i=1 p 2,i is minimum and the related solution is optimal.

By means of the reduction in Proposition 1, we propose an optimal algorithm, referred to as AlgF2, which solves problem F 2|no-idle, no-wait|C max in linear time.

Proposition 2. Algorithm AlgF2 solves problem F 2|no-idle, no-wait|C max in O(n) time.
Proof. Algorithm AlgF2 takes upon entry the set of n jobs and its associated multigraph G built as described in Lemma 3: each job processing time p 1,i or p 2,i corresponds to a vertex and there exists an arc from vertex k to vertex iff there exists a job J i such that p 1,i = k and p 2,i = . Then, computing a feasible schedule to the F 2|no -idle, no -wait|C max problem reduces to computing, if it exists, a directed Eulerian path in G. The computation of an optimal solution is done by Algorithm AlgF2 directly by exploiting existence conditions of such a path. Concerning the running time of the algorithm, it can be noticed that lines 1-5 can be executed in O(n) time by an appropriate implementation. Lines 7 and 10 require to compute an Eulerian path in an oriented graph with n arcs, which can be done in O(n) time ( [6]). Notice that the construction of graph G, needed as an input to the algorithm, can also be built in O(n) time.

Consider the 9-job example of Table 1. The corresponding optimal solution is provided in Figure 3.

Algorithm AlgF2: Solving the F 2|no -idle, no -wait|C max problem Data: A set of n jobs to be scheduled with processing times p 1,i and p 2,i , the associated multigraph G Result: An optimal no-wait no-idle schedule, if it exists The input data and the solution of the OSP D problem corresponding to the F 2|no -idle, no -wait|C max instance of Table 1 are provided in Figure 4.

V = {p 1,i , p 2,i /i = 1, ..., n}; d + (α i ) = |{j/p 1,j = α i }|, ∀α i ∈ V ; d -(α i ) = |{j/p 2,j = α i }|, ∀α i ∈ V ; d(α i ) = d + (α i ) -d -(α i ), ∀α i ∈ V ; S = {α i /d(α i ) = 0} ; if (|S|=0) then Compute an Eulerian walk ew in G starting from vertex α i = min α k ∈V (α k ); else if (|S| = 2 and (d(α 1 ) = 1 and d(α 2 ) = -1, α 1 , α 2 ∈ S)) then
16 return s * i J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8 J 9 p 1,i 5 
J9 J8 J7 J6 J5 J4 J3 J2 J1 J 8 J 7 J 6 J 2 J 3 J 4 J 9 J 1 J 5
Figure 4: The dominoes corresponding to the flow shop instance of Table 1 and the related OSP D problem solution

The multigraph computed by Algorithm AlgF2 on the flow shop instance of Table 1 is depicted in Figure 5.

2.2.

The F 2|no -idle, no -wait|C max problem and the Common/Distinct Successors Directed Hamiltonian Path problem. Problem F 2|no-idle, no-wait|C max is also linked to a special case of the Hamiltonian Path problem on a connected digraph. Consider a connected digraph G(V, A) that has the following property: ∀v i , v j ∈ V , either S i ∩ S j = ∅, or S i = S j , where S i denotes the set of successors of vertex v i . In The following straightforward lemma holds.

Lemma 4. Problem OSPD polynomially reduces to problem CDSDHP.

Proof. Given an OSPD problem with n tiles, it is sufficient to generate a digraph G(V, A) where each oriented tile corresponds to a vertex and there is an arc between two vertices if the corresponding tiles can match. Then, any complete sequence of oriented dominoes in OSPD corresponds to an hamiltonian path in the digraph and viceversa.

From Property 1 and Lemma 4, we know that F 2|no-idle, no-wait|C max ∝ OSPD ∝ CDSDHP. Figure 7 depicts the CDSDHP instance corresponding to the OSPD problem of Figure 4 and to the flow shop instance of Table 1.

5,3 V1 4,5 V9 3,4 V2 2,4 V8 4,6 V3 3,2 V7 6,1 V4 5,3 V6 
1,5

V5

Figure 7: The CDSDHP instance corresponding to the OSPD problem of Figure 4 and to the flow shop instance of Table 1 The polynomial reduction between these problems actually works also in the opposite sense as indicated by the following Proposition 3.

For any given instance of problem CDSDHP, consider algorithm AlgGenerF2 which constructs a related instance of problem F 2|no -idle, no -wait|C max .

The following proposition holds.

Proposition 3. CDSDHP polynomially reduces to problem F 2|no-idle, no-wait|C max .

Proof. For any given instance of CDSDHP, we generate an instance of F 2|noidle, no -wait|C max according to Algorithm AlgGenerF2. Notice that the jobs processing times are generated in such a way that, if there is an arc from v i to v j , then, we have p 2,i = p 1,j . If a feasible sequence of F 2|noidle, no -wait|C max exists, then, for each pair of consecutive jobs J i , J j with J i preceding J j , we have p 2,i = p 1,j and, correspondingly, there is an arc from v i to v j . Thus, the corresponding sequence of vertices constitutes an Hamiltonian directed path for the considered instance of CDSDHP. Conversely, if an Hamiltonian directed path exists for the considered instance of CDSDHP, the corresponding sequence of jobs in problem F 2|no -idle, no -wait|C max is also feasible.

Remark 1. Problem CDSDHP is solvable in O(n 2 ) time. Indeed, the whileloop in Algorithm AlgGenerF2 is applied at most O(n) times and the predecessors and successors of any given v k are at most O(n). Correspondingly, Algorithm AlgGenerF2 has O(n 2 ) complexity, while, from Proposition ref-propAlgF2, we know that problem F 2|no -idle, no -wait|C max is solvable in linear time.

m-machine no-idle no-wait flow shop scheduling

In this section we focus on the m-machine no-wait no-idle flowshop problem. Here each job J j has processing times p i,j , for all machines M 1 , ..., M m . Algorithm AlgGenerF2: Generating an instance of problem F 2|noidle, no -wait|C max Data: Let us first introduce a generalized version of Lemma 1 illustrated in Figure 8. Proof. Similar to that of Lemma 1.

A digraph G(V, A) such that ∀v i , v j ∈ V , either S i ∩ S j = ∅,
M 1 M 2 M 3 M m-1 M m . . . 1 2 3 n -1 n 1 2 3 n -1 n 1 2 3 n -1 n
From Lemma 5 and Figure 8 we can evince that in an optimal sequence if job J i immediately precedes job J k we must have p j+1,i = p j,k , ∀j = 1, ..., m -1. Consequently, for a feasible subsequence (J , J i , J k ) we must have: (

) 3 
This can be represented in terms of dominoes as indicated in Figure 9. The following proposition holds. Finally, apply Algorithm AlgF2 to I 2 . If instance I 2 is infeasible, then there does not exist a feasible solution to I m due to equation 3 which cannot be answered for any triplet of consecutive jobs. If instance I 2 admits a feasible solution, then a feasible solution to I m can be easily derived since jobs in I 2 correspond to jobs in I m . Let s be the sequence of jobs of I m obtained from the optimal solution returned by Algorithm AlgF2 on I 2 . If Case 1 of (C4) holds for s then s is also optimal for I m . Otherwise, it means that Case 2 holds and then the optimal solution s * to I m is obtained by considering the circular permutation of jobs in s where job J with = argmin k=1...n ( m-1 j=1 p j,k ) is put first. The building of s * can be done in O((m -1)n) ≈ O(mn) time. Consequently, the solution of the F |no -idle, no -wait|C max problem can be done with an overall O(mn log n) time complexity.

Two-machine no-idle no-wait job shop scheduling

In this section we consider problem J2|no -idle, no -wait|C max . In the job shop configuration, differently from the flow shop, each job has its own processing routing. Also, when jobs with different processing routes are present, for every feasible solution, the jobs sequences on the two machines are necessarily different due to the no-wait constraint on the jobs. We establish the complexity of this problem by proving that it is N P -Hard in the strong sense. To this extent we consider the Numerical Matching with Tar-get Sums (NMTS) problem that has been shown to be N P -complete in the strong sense [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

NMTS

Instance: Disjoint sets X and Y , each containing m elements, a size s(k) ∈ Z + for each element k ∈ X ∪ Y , and a target vector < t 1 , t 2 , ..., t m > with positive integer entries where m i=1 t i = m i=1 s(x i ) + m i=1 s(y i ). Question: Can X ∪ Y be partitioned into m disjoint sets D 1 , D 2 , ..., D m each containing exactly one element from each of X and Y such that, for 1 ≤ i ≤ m, k∈D i s(k) = t i ? Proposition 5. Problem J2|no -idle, no -wait|C max is N P -Hard in the strong sense.

Proof. We show that NMTS polynomially reduces to problem J2|no-idle, no-wait|C max . For any given instance of NMTS, we generate in O(m) time an instance of J2|no -idle, no -wait|C max with n = 3m jobs in the following way. Jobs J 1 , ..., J m and jobs J 2m+1 , ..., J 3m follow the M 1 → M 2 processing route. Jobs J m+1 , ..., J 2m follow the M 2 → M 1 processing route. Let us introduce P = m i=1 t i + m i=1 s(x i ) + m i=1 s(y i ). The processing times are as follows:

p 1,1 , ..., p 1,2m = 1; p 1,2m+i = t i + 3P, ∀i = 1, ..., m; p 2,i = s(x i ) + P, ∀i = 1, ..., m; p 2,m+i = s(y i ) + 2P, ∀i = 1, ..., m; p 2,2m+1 , ..., p 2,3m = 2.
From now on, we will denote jobs J 1 , ..., J m as the x-jobs (as they relate to set X of NMTS). Similarly, jobs J m+1 , ..., J 2m are denoted as the y-jobs and jobs J 2m+1 , ..., J 3m are denoted as the t-jobs. Also, we will refer to a pattern αβγ whenever a triplet αβγ is consecutively repeated on one machine. As an example, the triplet xty on M 1 indicates that a x-job is immediately followed by a t-job and then by a y-job on M 1 . Correspondingly, the pattern xty on M 1 indicates that the sequence on M 1 is given by m consecutive triplets xty.

The total load of machine M 1 is given by L

1 = 3m i=1 p 1,i = 2m + 3mP + m i=1 t i . Also, the total load of machine M 2 is given by L 2 = 3m i=1 p 2,i = 2m+ 3mP + m i=1 s(x i ) + m i=1 s(y i ). Hence L 1 = L 2 . Then, L = max{L 1 , L 2 } = L 1 = L 2 constitutes
a trivial lower bound on the makespan of the problem. We remark that, on the one hand, the processing times on M 1 are unitary for x-jobs and y-jobs and have value > 3P for t-jobs. On the other hand, the processing times on M 2 have value 2 for t-jobs and value > P for x-jobs and > 2P for y-jobs respectively.

In any feasible no-idle no-wait schedule, on M 1 every t-job (except possibly the last one) must be immediately followed by a y-job first and then by a x-job, that is a t-job necessarily induces on M 1 a triplet tyx. Indeed, two t-jobs cannot be adjacent on M 1 , or else there would be idle time on M 2 between the completion of the first t-job and the start of the second t-job. Also, a t-job cannot be immediately followed by an x-job on M 1 , or else the x-job would be waiting one unit of time between its completion on M 1 and its start on M 2 . Finally, a triplet tyy cannot hold as it would induce an idle time between the two y-jobs on M 1 and a triplet tyt cannot hold as it would induce an idle time between the two t-jobs on M 2 . As a consequence, as there are m t-jobs, a feasible schedule on M 1 follows either pattern tyx, or pattern yxt or pattern xty.

First consider pattern yxt on M 1 . This means that the first y-job, say job J j , would be the first job in the sequence of M 1 and (due to the M 2 → M 1 processing order) would be processed first on machine M 2 so that C 1,j = C 2,j + 1. Hence, the following job on M 2 is necessarily the x-job, say job J i , with C 1,i = C 1,j + 1 = C 2,j + 2 which means that there is an idle time on M 2 between the end of job J j and the beginning of job J i . So, pattern yxt on M 1 cannot lead to a feasible schedule.

Hence, every feasible sequence on M 1 either follows pattern xty or pattern tyx. In the first case, the pattern on M 2 is xyt and the relevant Gantt diagram is shown in Figure 10 for the case of 6 jobs. In this case, the makespan is given by the load of M 2 plus the processing time on M 1 of the first x-job, that is C max = L 2 + 1 = L + 1. Further, note that each t-job J k on M 1 starts and completes when an x-job J j starts and a y-job J i completes on M 2 , respectively. Also, the sum p 2,i + p 2,j of the processing times on M 2 of the x-job and the y-job is equal to the processing time p 1,k on M 1 of the t-job. But then, it provides a true assignment to the corresponding NMTS problem, as p 2,i + p 2,j = s(x i ) + s(y j ) + 3P and p 1,k = t k + 3P , that is s(x i ) + s(y j ) = t k . In the latter case, the sequence on M 1 follows pattern tyx, that is starts with a t-job and ends with an x-job. The corresponding pattern on M 2 is y-t-x. Hence, as the x-jobs follow the M 1 → M 2 processing route, the last x-job on M 1 will then need to be processed also on M 2 . Thus, if we denote by J h this last x-job, the makespan will be C max = L 1 + p 2,h > L 1 + P = L + P which is worse than the schedule obtained with pattern xty on M 1 .

To conclude, if there exists a feasible schedule for the two-machine job shop problem with the shape xty on M 1 and xyt on M 2 and value = L + 1, then this schedule is optimal and enables to derive in O(m) time a yes answer to NMTS. Conversely, if there is no feasible solution to the job shop problem or the value is > L + P , then the answer to NMTS is no. This shows that the two-machine job shop problem is NP-hard.

Two-machine no-idle no-wait open shop scheduling

In this section we consider problem O2|no -idle, no -wait|C max . In the open shop configuration, no specific routing is assumed for each job which can be either started first on M 1 and then on M 2 or viceversa. We establish the complexity of this problem by proving that it is N P -Hard in the strong sense. Proposition 6. Problem O2|no -idle, no -wait|C max is N P -Hard in the strong sense.

Proof. We show that NMTS polynomially reduces to problem O2|no-idle, no-wait|C max in a way similar to Proposition 5. From any given instance of NMTS, we generate in O(m) time an instance of O2|no-idle, no-wait|C max with 3m jobs having the same processing times as in the job shop case.

To show the reduction, we first show that no feasible solution exists with C max = L and that, if a feasible solution exists with value C max = L + 1, then a true assignment to the related NMTS problem holds and can be derived in O(m) time from the solution of the O2|no -idle, no -wait|C max problem.

In order to have C max = L, both machines should start processing at time 0. However, if an x-job (or a y-job) starts at time 0 on M 1 , then no job can start at time 0 on M 2 or else the no-wait requirement on the x-job (the y-job) would be violated as all processing times on M 2 have length ≥ 2. Besides, if a t-job starts at time 0 on M 1 , whatever job starting at time 0 on M 2 would then violate the no-wait requirement as any processing time on M 2 has length inferior to the processing time of any t-job on M 1 . To fulfil the no-wait requirement, the considered job on M 2 would need to start at a time t 0 >> 0 but then C max would be much larger than L. Thus, no feasible solution exists with C max = L.

In order to have C max = L + 1, the first job cannot start on any machine after time 1. Notice, that the same argument explicited above rules out the possibility of having a t-job starting at time t 0 ≤ 1 on M 1 . Also, if an xjob (a y-job) starts at time 1 and completes at time 2 on M 1 , in order to fulfil the no-wait requirement on the x-job (the y-job), a t-job should start at time 0 on M 2 . But then, the t-job will start at time 2 on M 1 and the xjob (y-job) will start at time 2 on M 2 . Correspondingly, to fulfil the no-idle no-wait requirement only a y-job (x-job) can be processed on M 2 once the x-job (y-job) is completed and the sum of the processing times of the x-job and y-job on M 2 must be equal to the processing time of the t-job on M 1 . This corresponds to the start of a pattern xty (y -tx) on M 1 and txy (t -yx) on M 2 where all the t-jobs and y-jobs (x-jobs) follow the M 2 → M 1 processing route and all the x-jobs (y-jobs) follow the M 1 → M 2 processing route. The resulting makespan is L + 1. The corresponding two feasible schedules for a 6-job problem are depicted in Figure 11. Alternatively an x-job (y-job) must start at time 0 on M 1 and at time 1 on M 2 and, by applying the same reasoning it turns out that the only way to have a feasible schedule with C max = L + 1 is to stick to patterns xty (y -tx) on M 1 and xyt (y -xt) on M 2 . We remark that patterns xty on M 1 and xyt on M 2 are the same patterns of the job shop problem, hence Figure 10 for a 6-job instance holds also here. Besides, by swapping every x-job with a y-job in Figure 10, we get the graphical representation of the solution with patterns ytx on M 1 and yxt on M 2 .

By the same reasoning of the job shop case, we can see for all four cases, that if a feasible schedule with C max = L + 1 exists, then it provides also a true assignment to the corresponding NMTS problem by matching every pair of x-job, y-job to the related t-job. Hence, given the solution of the generated instance of the O2|no -idle, no -wait|C max problem, either a feasible solution exists with C max = L+1 and a true assignment to the corresponding NMTS problem is then obtained in O(m) time, or else either C max > L + 1 or no feasible solution exists for problem O2|no -idle, no -wait|C max and correspondingly no true assignment exists for the NMTS problem.

Conclusions

We considered no-idle/no-wait shop scheduling problems with makespan as performance measure. We firstly focused on the F 2|no-idle, no-wait|C max problem for which we established the connection to a special game of dominoes, namely the Oriented Single Player Dominoes, and provided an O(n) algorithm to solve both problems to optimality. As a byproduct, we also considered a special case of the Hamiltonian Path problem (denoted as Common/Distinct Successors Directed Hamiltonian Path) and proved that it reduces to problem F 2|no-idle, no-wait|C max . Correspondingly, we presented a new polynomially solvable special case of the Hamiltonian Path problem. Then, we extended our analysis to the more general F 2|no -idle, no -wait|C max problem showing that it can be transformed into a two-machine instance. Correspondingly, by applying the same approach as in the twomachine case, we showed that it can be solved with complexity O(mn log n).

For this problem we have also proposed a vectorial version of the Oriented Single Player Dominoes problem with tiles composed by vectors of numbers. Finally, we proved that both the two-machine job shop and the two-machine open shop problems are NP-hard in the strong sense by reduction from the Numerical Matching with Target Sums.
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