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ABSTRACT

The Navier Stokes incompressible model is used to describe 2-dimensional
metal casting flow. In a die-filling simulation the free moving boundary must be
known precisely. For this reason the Lagrangian formulation is chosen instead
of the Eulerian one. The computation domain and the velocity field are
approached by means of the finite element method. A non-structured mesh is
built by using quadratic six-noded triangular elements. In time the mesh
degenerates. A remeshing technique, based on the Delaunay algorithm, provides
a new computation mesh. As for the application, we present the computation
of a die- filling case with low Reynolds number.

1. Introduction.

From the practician's point of view, the numerical simulation of the
filling stage in the casting process is of major interest for many reasons :

- the prediction of defects, such as the incomplete filling of some regions or the
merging of metal free surfaces at too low a temperature,

- the possible optimisation of filling conditions, especially the gate systems,

- the determination of the temperature field at the end of the filling, in order to
define consistent initial conditions for a thermomechanical model of the
solidification stage,

- and more generally, to be able to study the feasibility of new operating
conditions or new processes.

Such industrial ambitious objectives have induced the development of
various numerical models using different approaches. The finite difference and
finite volume method have been first worked out and remain the more frequently
used, with many variations : Marker And Cell (MAC) technique [1], Sola-Vof
method... [2-4]. Their main drawbacks are :

- a spatial description which is mandatory structured and regular,

- the approximations by finite differences of the derivatives included in the
Navier Stokes equations,

- a coarse description of the external surfaces of the computation domains :
mould/fluid interface, free surface of the fluid.
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The finite element method presents the major advantage of the more
precise integral formulation, associated to a more general spatial discretisation.
The method can be adapted to either Eulerian (the mesh is fixed in space) [5-61
or Lagrangian formulation (the mesh is then convected with the material flow).
The latter is original and has been developed by very few authors for the
simulation of fluid flow [7-9]. The better representation of free surfaces ("front
tracking” procedures can be avoided), and also the easy introduction of surface
tensions make it especially attractive.

However, in the case of very large deformations, such as those
encountered in die filling, this method can give satisfying results only when it is
associated to a remeshing technique of the fluid domain, in order to regenerate
periodically elements having a correct shape ratio. Ramaswamy gives simple
examples of a remeshing technique with application to wave propagation [9]
with moderate distorsions. In this paper, we aré mainly concerned with a general
method for automatic remeshing to cope with the fluid flow simulation in the
casting process. The flow is considered isothermal. In the first part, the
Lagrangian formulation of Navier Stokes equations is briefly outlined. Then, the
capability of the remeshing technique is demonstrated with an example.

2. Theoretical formulation.

2.1 Navier Stokes equation in Lagrangian variables.

The motion of a liquid melt is well governed by a Newtonian
incompressible fluid flow model. To respect precisely the motion of the fluid
free surfaces the Lagrangian variables are used. This consists of takingthe timet
and the particle coordinates X at an initial time, as variables . Let x(xo,t) be
the coordinates at time t of the particle initially at xq . The velocity and the
acceleration of the particle may be expressed with the following partial

derivatives

v=0%
gt w
AV
V="
at ?

The Navier Stokes equations postulate the conservation of linear
momentum and mass in any point of the body at any time. In Lagrangian
variables they take the following form

oV
p_é_[_=V.o +tpg (3)
VvV =0 “

where the stress tensor ¢ satisfy the linear constitutive law

G:—pI+2IJ.D (5)
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in which T is the unit tensor and D is the tensor of rates of deformation

D) = L(vv + vvh
2 (6)

Fhe ;up;:rscnpt t denoting the transpose of a tensor. In the above equations p
is the density, W the dynamic viscosi i

. 5 osity, i i i
ik b bl ¥, g is the gravity and p is the

ineriiil el S LA e e raeeoer fho
) : angian formulation. While i i
one a non linear convective term must be added. While in the Eulerian

The mechani iti
followin fo rn??l g?lcal problem needs boundary conditions. They take the

o.n =1 4t on Iy (7

V=0 on Ity (8)

a.\,vth;lreefl“ £ is ;1;& free surface , I'y thp fluid-mould interface, n the unit normal
retz surface, s(xq,t) the curvilinear coordinates on the free boundary at

time t, t is the unit tangen .
- gent at the free surface, and 7T is the surface tension

The momentum equation is a fi i i
he 1 irst order partial derivativ i i
needs an initial value for the velocity. Commonly we will take Sl

V=0 in Qp ()]

where Qp is the open which represent the initial position of the fluid.

2.2 Weak formulation.

We adopt a perturbation (penalizati
D e (Eg ization) method, proposed by Temam([11],

ep + V.V =0 e — 0+ (10)

It is then possible to eliminat
en | e the pressure p from the momentum equati
: ] press uation (3).
z’hc elimination of p is made to simplify the formulation and save ir(i1 the s (3)1
omputational cost. e

A weak formulation of the momentum e i
A we _ quation may be obtain b
muItl-pllymg it by any virtual velocity field V" , which satisfy the bounrtliari
condition (8), and by summing it over g . By using (10) we obtain
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¥ V*(+B.C.) P CARYS aQy = L V(V.V).V" dQq
dt € Qo
Qo
+ 2uf (V.D(V)).V" dQo+p J g.V* dQo (11
Qo Qp

By means of integrations by part and by using equations (10) (5) and (7) we
obtain while V* isnullon I'y

Y V*(+B.C.) p a—\i.v* dQy = % f V.V V.V dQo
Qo

ot
Qo

g V* dQp -1 [ E.%fsi dr; (12)

. 2;1[ tr (D(V)D(V")) dQuﬂ’f
Qo Tt

Qo

where tr is the trace operator.
Neglecting inertial and surface tension effects we will obtain an elasticity

problem to be solved, where the constants 1/e and 2u are the Lamé
coefficients.

2.3 Time integration with a Lagrangian updating.
Now we look at the integration scheme. The time length is divided in N

time steps At =T/N . Let us denote tj =iAt an intermediate time.
The first step consists to find at time t1 the location x(xq,t1), the

aV
velocity V(xg,t1) and the acceleration —a——(xo,n) of any fluid particle initially
t

A%
located in xq with the velocity V(x0,0) and the acceleration af(xo,O) . We
t

have three unknowns. We search for them as the solution of equation (12)
which satisfy also the two following integration rules:

V(xpit) = V(x0,0)+ At {(1-9)5?(%»0) +6 aa—v(mtl)} (13)
t t

2
x(x,t1) = x(x0,0)+ At V(xq,t1) +’% {(1-9)?81(xo,0) +0 z—v(xutl)} (14)
t t
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where 0 is the explicit/implicit parameter, which belongs to [0,1] . This scheme

if] Newmark [12] type. Note that themomentumequation (12) is not seton
that ll}lgans an explicit treatment of the momentum conservation. Equation (13) is
};I}}lg 11(;13 ;)t?ggli)sftg links tllle unkgi)wn velocity with the unknown acceleration

) e particle coordinates by means of (1 i .
simultaneous solution of equations (12)—(1%). Of (1) will be made after the

When we have found x(xq,t1), the velocity V(xq,t1) and the acceleration

v
—(xp,t1), : . ;
9t (x0,t1), we start to compute the second time step by a Lagrangian updating.

Attime t; anew Lagrangian i x( 1 i i
_ coordinates x() is defined. Loc i
acceleration of particles are reinitialized : 0 Bt £

X0 = x(x(,t1) (15)
V(x0,0) = V(xq,tp) (16)
Vv LAY
—(X0,0) = —(x0.t1) 4D
at at
and the new unkn Al
unknowns x(xq,t2), V(xq,t2), ?(XOJZ) are noted:
t
x(x0,t2) = x(X(:t1) 18)
V(x.t2) = V(X(:t1) (19)
oV dV o
—(xQ,t2) = —(x(:t1) @0)
dt dt

They are the solution of relations (13)-(14) in which xq is replaced by X and
of relation (12) set on £2a; .

; Wc repeat the algorithm while i.At<T . This updated Lagrangian
ormulation is a sequence of computations on successive current configurations.

2.4 Space discretization by finite elements.
Now we look at space and velocity field approximations. The open Qg

is approached by a set of ne elementary cells Qe . Each point x¢g of Qg is

located by means of th i :
fun(:tions)_, s of the nodes location {xqe} and the matrix [N] of the shape

X0 = [N] {x0e} @1




g
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Isoparametric element will be used in the sequel. Let us denote by {vie} the

unknown velocities of the cell nodes, by {voe} and {Voe} respectively their
velocity and acceleration at the previous time step. In each cell starting from
these vectors we can obtain the asssociated field by means of the matrix [N] .

Let <V.N> be the vector which links the divergence of a vector field in
any point of € in term of nodal values

V.V = <V.N> {vie} 22)

Let [DN] be the matrix which links in vectorial form the strain rate
tensor in term of nodal velocities

{D(V)} = [DN] {Vie} (23)

The free boundary Tt of Qo is approached by np element sides Tp. A
boundary particle is located by means of the matrix [N]

xo(s) = [N()] {x0p} 24)

where s is the curvilinear coordinate defined on Ty and {xop} the nodal

points of T'p . The unit tangent at I} in s is denoted by E;(s).

2.5 Momentum equation in terms of a linear system.

We use for the virtual velocity V* the same approximation as for the
velocity field (Galerkin method). Using the above approximations (21)-(24),
and the numerical integration scheme (13), the momentum equation (12)
becomes the linear system

CV=F _ (25)

where the vector V is the assemblage of the free nodal velocity components

v = A2 q{vie) (26)
C is the matrix defined by
c= Al (Ch+CE+Cp) @7)

F is the vector of the applied forces

B Al (5D + AR B
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The elementary mass matrix Cg is defined by

(% =l t
P g j QE[N] [N] a2 29)

CE the el i i i
¢ the elementary matrix which comes from the incompressibility is set by

-1 ey e =

The viscous elementary matrix takes the following form
Cﬁ =2UL jg [DN]t [DN] dQ, (31)
{+]

The inertial forces are given by

(F) = ;i{ fvo,e) + (-0 o)) f SN e

The gravity forces is done by

Fg) = p [ o [N] dQ. (33)

The forces given by surface tension are
o | [dﬁ ]
12y [rb<b(8)) ds 8] ds (34)

The momentﬁm equation is lin i implici
i : : ear while an implicit treatm
tgl:c;ual éﬁ:rm in term of velocity. Hughes et al. [13] use% lumped m:?:st Iglgtttg'le
gon 13 tv;flhﬂc herelz we use the full mass matrix (Galerkin one) *
e sequel we use the six node triangular quadratic el
. . . e ¥
the four Gauss points integration rule to evaluate the gifferent elcmnclst?ryvgfa:g;

~ and vectors defined by equati i

. ! quations (29)-(34). The matrix of inco ibility i
| ::;fetly integrated. If a reduced integration is used, with the one:n é)ggzs%lgﬁ:ltzlls
.:- numerical problems occur, like zig-zag pattern velocity field. ‘
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3. Automatic remeshing.
3.1 Metal forming calculation and remeshing.

A lot of work has been presented on the mesh generation problem and a
number of algorithms of varying degrees of automation have been proposed in
two dimensions for a variety of applications. For metal forming calculation, the
remeshing step was concerned primarily with remedying to mesh distorsions
and consequently was only understood as reshaping an existing finite element
mesh. A radical alternative to the stuctured mesh updating is the use of triangles.
This element gives unstructured meshes more flexible in treating complex
geometries while retaining an appropriate mesh point distribution. Moreover
several triangle mesh generation schemes are now available and can be used for
general purpose. More particulary we are concerned with large deformation
occuring in metal forming or unsteady flow and our problem is to create several
meshes for only one calculation.

The mesh generator presented here, was developed to solve the remeshing
stage, in Lagrangian finite element analysis (updated Lagrangian description or
incremental scheme) and more particularily for the numerical simulation of the
forging process [14]. The drawback of classical reshaping method is finally the
lack of flexibility of the structured grid because of the constraint of the
connectivity. Another difficulty well solved with the help of unstructured grid is
the dynamic mesh adaptation to the contact problem.

Obviously, the calculation presented here needs a fully automatic
remeshing procedure and shows the effectiveness of our mesh generation
scheme which seems very general and well adapted for any formulation using a
convected mesh (Lagrangian element) and a time integration scheme.

3.2 The remeshing scheme.

The remeshing main procedure verifies at each step of calculation the
distorsion of elements and the accuracy of the mesh boundary (penetration of the
lines into the die or other obstacles, free surfaces curvature ...) and decides itself
to remesh or not according to prescribed tolerances.

In case of remeshing, a new boundary is deduced from the old mesh
fitting perfectly the external geometric constraint (contact adaptivity). A
generalized algorithm of the Delaunay triangulation ([15],[16],[17]) is used to
create a mesh fitting exactly the prescribed boundary without internal node. At
this stage, points can be created into elements according to the method proposed
in [16] and [17]. The mesh is refined by adding internal nodes in order to obtain
elements having the best possible shape. It is easy to show that this condition is
sufficient to finish the nodes generation algorithm.

Two procedures are used to perfect the mesh. The first one is a topological
operation : exchanging the diagonal between two adjacent triangles [18], and the
second one is a mesh regularisation using a Laplace algorithm (internal nodes are
moved to the barycenter of neightbouring nodes). A combination of these two
procedures in a global and iterative algorithm gives a mesh very close to the
optimal one. At last, the time depending parameters are interpolated from the old
grid to the new one and the calculation may continue.

Each stage of that remeshing scheme is fully automatic and does not need
user intervention (although it is possible to change the tolerances and the mesh
size parameters during computation). Moreover the history of remeshing 18
automatically stored and usable by the post processing system as a time
depending solution.
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4. Die filling example.

We look at a filling case by injection. Figure 1 i i
the mould. The fluid is initially located in th pria el pad
i veloeiy a6) sy y ¢ channel of injection with zero

:uua

NN IIOY)

Lt L2l Sy

9
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Figure 1. Initial configuration and mould dimensions.

_ The upper bound of the fluid is a free surface. We su

adhesion between the fluid and the die. The lower bound ispslzl%srfﬁz:tggrfgc;
c?nts]tant pressure p=85000 ‘N.m'2 . To simulate material injection the location
of the n_odes on the pressurized bound are not updated. The fluid is a steel in
semisolid state. Its viscosity is 100 N.m2.s, the density is 7000 Kg.m™3 , the
gravity is g=10 m.s"2, the surface tension is equal to 0.9 N.m2 .

The computation is stopped after 1860 time ste 3
_ i ps of 2 103 s. That
requires 132 remeshings of the fluid. The CPU time i
e Apollo somngs « me 1s around 2 hours on
Figures 2 - 3 show the time sequence of liquid filling th
: e mould
meish‘_as. After 2.5 s. the fluid reaches the top of thcqmould. Figures 4 E-n}‘i sha(;lg
ve (l)cslty fiellds. The velocity is maximum in the injection channel. Its main value
18 1.oms™", giving a Reynolds number of 5.25 in the channel. We can n
- 4 i ot

Rn Flgqres 2 -3 that the meshes degenerate essentially where injection is madee.

hn arbitrary Lagragian-Eulerian formulation (ALE) may be interesting in the
f’l annel to reduce the mesh distorsions. We can note the smoothness of the free

ow surface which is a consequence of surface tension effects.
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Figure 3. Computed mesh (the plot are time 2.52 3.32 3.87 s.)

Figure 2."Computed mesh (the plot are time .079 .47 1.765s.)
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t=252s
t=332s
387s

t

Figure 5. Computed velocity vectors (the plot are time 2.52 3.32 3.87 5.)

Figure 4. Computed velocity vectors (the plot are time .079 .47 1.765.)

0.079 s
t=047 s
t=176s
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5. Conclusion.

Our updated Lagrangian formulation of the Navier-Stokes equations is
attractive. It allows to treat practical cases with low computation cost, the
viscosity being aroud 100 Pa.s. Numerical comparisons of our solutions with
analytical results and with other numerical schemes are in current development.

The automatic remeshing algorithm permit us to treat mould geometries
and filling conditions of industrial complexity. With the automatic remeshing
procedure there are no theoretical limitations on the flow geometry and its time-

length.
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