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In this paper, we investigate the estimation of the proportional hazard premium for randomly right-censored risks. The asymptotic normality of the proposed estimator is established under mild conditions.

Introduction

Let X 1 , ..., X n be n ≥ 1 independent copies of a non-negative random variable (rv) X, with continuous cumulative distribution function (cdf) F. An independent sequence of independent rv's Y 1 , ..., Y n with continuous cdf G censor them to the right, so that at each stage j we only can observe Z j := min(X j , Y j ) and the variable δ j := 1 {X j ≤ Y j } (with 1 {•} denoting the indicator function) informing whether or not there has been censorship. This model is very useful in a variety of areas where random censoring is very likely to occur such as in biostatistics, medical research, reliability analysis, actuarial science,... In insurance, the worst scenarios are those caused by extreme events such as natural catastrophes, human-made disasters and financial crashes. These events increase the bill of insurance and reinsurance companies. A typical requirement for actuaries is the determination of adequate premiums for such risks. Usually, the insurer's claims data do not correspond to the underlying losses, because they are censored from above, since the insurer stipulates an upper limit to the amount to be paid out and the reinsurer covers the excess over this fixed threshold. This kind of reinsurance is called excess-of-loss reinsurance and the upper limit has distinct designations that are specific to each insurance type.

For instance, in life insurance, it is called the cedent's company retention level while in non-life insurance, it is called the deductible, where the losses should be treated separately.

Model and estimators

Let us assume that both F and G are heavy-tailed, that is there exist two constants γ 1 > 0 and γ 2 > 0, called tail indices or extreme value indices, such that

F (z) ∼ z -1/γ 1 ℓ 1 (z) and G(z) ∼ z -1/γ 2 ℓ 2 (z), as z → ∞, (2.1)
where ℓ 1 and ℓ 2 are slowly varying functions at infinity, i.e. lim z→∞ ℓ i (xz)/ℓ i (z) = 1 for every x > 0, i = 1, 2. Throughout the paper, we use the notation S(x) := S(∞) -S(x),

for any function S (x) of x > 0. If relations (2.1) hold, then we have, for any x > 0

lim z→∞ F (xz) F (z) = x -1/γ 1 and lim z→∞ G(xz) G(z) = x -1/γ 2 , (2.2)
and we say that F and G are regularly varying at infinity as well, with respective tail indices -1/γ 1 and -1/γ 2 , which we denote by F ∈ RV -1/γ 1 and G ∈ RV -1/γ 2 . Note that, in virtue of the independence of X and Y, the cdf of the observed Z ′ s, that we denote by H, is also heavy-tailed and we have -i+1:n] being the proportion of upper non-censored observations.

H ∈ RV -1/γ with γ := γ 1 γ 2 /(γ 1 + γ 2 ).
(i.e. δ [i:n] = δ j if Z i:n = Z j ), then Hill's estimator of γ 1 adapted to censored data is defined as γ (H,c) 1 := γ H / p, where γ H := k -1 k i=1 log (Z n-i+1:n /Z n-k:n ) represents Hill's estimator of γ, with k = k n being an integer sequence satisfying 1 < k < n, k → ∞ and k/n → 0 as n → ∞, (2.3) and p := k -1 k i=1 δ [n
In the excess-of-loss reinsurance treaty, the ceding company covers claims which do not exceed a (high) number R ≥ 0 (called retention level), while the reinsurer pays the part

(X i -R) + := max (0, X i -R) of each claim beyond R. Applying Wang's premium cal-
culation principle with a distortion function equal to x 1/ρ , one defines what is called the proportional hazard premium (PHP), where ρ ≥ 1 represents the distortion parameter or the risk aversion index. Then, the PHP of loss for the layer from R to infinity is defined as follows:

Π ρ (R) := ∞ R F (x) 1/ρ dx,
which may be rewritten into

Π ρ (R) = R(F (R)) 1/ρ ∞ 1 F (Rx) F (R) 1/ρ dx. Karamata theorem entails Π ρ (R) ∼ ρ 1/γ 1 -ρ R F (R) 1/ρ , 0 < γ 1 < 1/ρ, for large R. Since F ∈ RV -1/γ 1 , then F (x) ∼ F (h) (x/h) -1/γ 1 as x → ∞, where h = h n := H ← (1 -k/n
) with H ← (y) := inf {x : H (x) ≥ y} , 0 < y < 1, denoting the quantile function pertaining to H. We refer to [13,36,14,19,30,10,31,20,5,8,18] for other works linking risk theory with extreme-value statistics. The above formula leads us to derive a Weissman-type estimator for the distribution tail F for censored data as follows:

F (x) = x Z n-k:n -1/ γ (H,c) 1 F n (Z n-k:n ) .
In the context of randomly right censored observations, the nonparametric maximum likelihood estimator of F is given as the product limit estimator

F n (x) := Z i:n ≤x 1 - δ [i:n] n -i + 1 = Z i:n ≤x n -i n -i + 1 δ [i:n] , for x < Z n:n , which gives F n (Z n-k:n ) = n-k i=1 1 - δ [i:n]
n-i+1 . Thus, the distribution tail estimator is of the form

F (x) := x Z n-k:n -1/ γ (H,c) 1 n-k i=1 1 - δ [i:n] n -i + 1 ,
and consequently, we define the PHP estimator as follows:

Π ρ (R) := ρR 1/ γ (H,c) 1 -ρ R Z n-k:n -1/ ρ γ (H,c) 1 n-k i=1 1 - δ [i:n] n -i + 1 1/ρ .
The outline of the paper is as follows. In Section 3, we state our main result that consists in the asymptotic normality of the newly proposed estimator Π ρ (R), which we prove in Section 5. Finally, technical results are postponed to the Appendix.

Asymptotic distribution

It is well-known that the asymptotic normality of extreme value theory based estimators is adequately achieved within the second-order framework. Thus, it seems quite natural to suppose that cdf's F and G satisfy the well-known second-order condition of regular variation. That is, we assume that there exist two constants τ j ≤ 0 (called second-order parameters) and two functions A j , j = 1, 2, tending to zero and not changing sign near infinity, such that for any x > 0

lim t→∞ F (tx)/F (t) -x -1/γ 1 A 1 (t) = x -1/γ 1 x τ 1 /γ 1 -1 γ 1 τ 1 , lim t→∞ G(tx)/G(t) -x -1/γ 2 A 2 (t) = x -1/γ 2 x τ 2 /γ 2 -1 γ 2 τ 2 .
(3.4) Theorem 3.1. Assume that the second-order conditions of regular variation (3.4) hold, with 0 < γ 1 < 1/ρ and let k = k n be an integer sequence satisfying, in addition to

(2.3) , √ kA 1 (h) → λ 1 . Assume further that R/h → 1. Then √ k Π ρ (R) -Π ρ (R) (R/h) -1/ργ 1 R F (h) 1/ρ D → N µ, σ 2 , as n → ∞,
where

µ := ρλ 1 (1 -pτ 1 ) (1 -ργ 1 ) 2 + λ 1 ρ (γ 1 + τ 1 + ρ -2) (2 -ρ -γ 1 )
, and

σ 2 := γ 2 1 (1 -ργ 1 ) 2 p (2 -p) + ρ (p -1) (1 -ργ 1 ) + ρ 2 (1 -2p) p (1 -ργ 1 ) 2 .

Further work

When the studied phenomena X depends on a covariate, the associated risk measure also depends on X and one has to deal with conditional extreme-value analysis. This branch of statistics has become very active these past ten years, the main contributions to this domain are listed below:

• Theoretical issues: [33,34,32,16,23,25,12,11,22,26,21,24,4,17,9,15,3,1,39,38] • Quantile regression: [28,35] • Application to finance: [6,2,27,7,29,37] Our goal will be to adapt our methodology to this framework.

Proof of the main result

Before starting the proof of the main theorem, let us give a brief introduction on some uniform empirical processes under random censoring. To this end, let us define

H (j) (v) := P (Z ≤ v, δ = j) , j = 0, 1; v ≥ 0,
which have a prominent role to play in the random censorship setting. Their empirical counterparts are defined by

H (j) n (v) := 1 n n i=1 1(Z i ≤ v, δ i = j), j = 0, 1; v ≥ 0.
In the sequel, we will use the following two empirical processes

√ n H (j) n (v) -H (j) (v) , j = 0, 1; v ≥ 0,
which may be represented, almost surely, by a uniform empirical process. Indeed, let us define, for each i = 1, ..., n with θ := H (1) (∞) , the following rv

U i := δ i H (1) (Z i ) + (1 -δ i )(θ + H (0) (Z i )).
The rv's U 1 , ..., U n are independent and identically distributed according to the (0, 1)uniform law. The empirical cdf and the uniform empirical process based upon U 1 , ..., U n are respectively denoted by

U n (s) : = 1 n n i=1 1(U i ≤ s) and α n (s) := √ n(U n (s) -s), 0 ≤ s ≤ 1.
One has almost surely

H (0) n (v) = U n (H (0) (v) + θ) -U n (θ), for 0 < H (0) (v) < 1 -θ,
and

H (1) n (v) = U n (H (1) (v)), for 0 < H (1) (v) < θ.
It is easy to verify that we almost surely have √ n H

(1)

n (v) -H (1) (v) = α n (θ) -α n θ -H (1) (v) , for 0 < H (1) (v) < θ, (5.5) and √ n H (0) n (v) -H (0) (v) = -α n 1 -H (0) (v) , for 0 < H (0) (v) < 1 -θ.
(5.6)

Our methodology strongly relies on the well-known Gaussian approximation given in 6.1.

For our needs, we use the following form:

sup 1/n≤s≤1 n ζ |α n (1 -s) -B n (1 -s)| s 1/2-ζ = O P (1).
(5.7)

For the increments α n (θ)α n (θs), we will need an approximation of the same type as (5.7). Following similar arguments, we may show that, for every 0 < θ < 1 and

0 ≤ ζ < 1/4, we have sup 1/n≤s≤θ n ζ |{α n (θ) -α n (θ -s)} -{B n (θ) -B n (θ -s)}| s 1/2-ζ = O P (1).
(5.8)

The following Gaussian processes will be crucial to our needs:

B n (v) := B n (θ) -B n θ -H (1) (v) , for 0 < H (1) (v) < θ,
(5.9) and

B * n (v) := B n (v) -B n 1 -H (0) (v) , for 0 < H (0) (v) < 1 -θ.
(5.10)

Proof of Theorem 3.1. In the sequel, for two sequences of rv's, we write

V (1) n = o P V (2) n and V (1) n ≈ V (2)
n , as n → ∞, to say that V

(1) n /V

(2) n → 0 in probability and

V (1) n = V (2) n (1 + o P (1)) respectively. With the premium Π ρ (R) = R(F (R)) 1/ρ ∞ 1 F (Rx) F (R) 1/ρ dx,
and its estimator

Π ρ (R) = ρR 1/ γ (H,c) 1 -ρ R Z n-k:n -1/ ρ γ (H,c) 1 F n (Z n-k:n ) 1/ρ , it is easy to verify that √ k Π ρ (R) -Π ρ (R) (R/h) -1/(ργ 1 ) R F (h) 1/ρ = 5 i=1 S ni ,
where

S n1 := ρ 1/ γ (H,c) 1 -ρ F (Z n-k:n ) F (h) 1/ρ F n (Z n-k:n ) F (Z n-k:n ) 1/ρ × √ k        (R/Z n-k:n ) -1/ γ (H,c) 1 (R/h) -1/γ 1   1/ρ -1      , S n2 := F (Z n-k:n ) F (h) 1/ρ F n (Z n-k:n ) F (Z n-k:n ) 1/ρ √ k ρ 1/ γ (H,c) 1 -ρ - ρ 1/γ 1 -ρ , S n3 := ρ 1/γ 1 -ρ F (Z n-k:n ) F (h) 1/ρ √ k F n (Z n-k:n ) F (Z n-k:n ) 1/ρ -1 , S n4 := ρ 1/γ 1 -ρ √ k F (Z n-k:n ) F (h) 1/ρ -1 , and 
S n5 := √ k ρ 1/γ 1 -ρ - F (R) /F (h) 1/ρ (R/h) -1/(ργ 1 ) ∞ 1 F (Rx) F (R) 1/ρ
dx .

We will represent the first three terms S ni , i = 1, 2, 3, in terms of the Gaussian processes B n and B * n and we will show that S n4 P → 0 while S n5 converges to a deterministic limit.

For the first term S n1 , we have γ 

F n (Z n-k:n ) /F (Z n-k:n ) P → 1. It follows that S n1 = S (1) n1 + S (2)
n1 , where

S

(1)

n1 := (1 + o P (1)) ργ 1 1 -ργ 1 × √ k    Z n-k:n h 1/ ρ γ (H,c) 1 -1      R h 1/γ 1 -1/ γ (H,c) 1   1/ρ , and 
S
(2)

n1 := (1 + o P (1)) ργ 1 1 -ργ 1 √ k        R h 1/γ 1 -1/ γ (H,c) 1   1/ρ -1      .
For S

(1) n1 , we use the mean value theorem, the consistency of γ (H,c) 1

and the fact that

Z n-k:n /h P → 1, to have S (1) n1 = (1 + o P (1)) 1 1 -ργ 1 √ k Z n-k:n h -1 .
Next,

S

(1)

n1 = (1 + o P (1)) γ 1 -ργ 1 n k B * n (h) .
In view of the consistency and asymptotic normality of γ (H,c) 1

and the assumption R/h → 1, we show, by applying the mean value theorem twice, that S

(2) n1 = o P (1). Thus, we end up with

S n1 = (1 + o P (1)) γ 1 -ργ 1 n k B * n (h) + o P (1).
(5.11)

By similar arguments and using the mean value theorem once again, we easily show that

S n2 = (1 + o P (1)) ρ (1 -ργ 1 ) 2 √ k γ (H,c) 1 -γ 1 , S n3 = (1 + o P (1)) γ 1 1 -ργ 1 √ k F n (Z n-k:n ) F (Z n-k:n ) -1 ,
and

S n4 = (1 + o P (1)) γ 1 1 -ργ 1 √ k F (Z n-k:n ) F (h) -1 .
We get, after a change of variables, that

S n2 = (1 + o P (1)) ρ (1 -ργ 1 ) 2 1 p n k ∞ 1 v -1 B * n (hv) dv - γ 1 p n k B n (h) + (1 + o P (1)) ρ √ kA 1 (h) (1 -pτ 1 ) (1 -ργ 1 ) 2 .
(5.12)

From Proposition 6.2, we infer that

S n3 = (1 + o P (1)) γ 1 1 -ργ 1 n k B n (h) + k n ∆ n + o P (1) .
(5.13) Now, we decompose S n4 into the sum of two terms

S

(1)

n4 := (1 + o P (1)) γ 1 1 -ργ 1 √ k F (Z n-k:n ) F (h) - Z n-k:n h -1/γ 1 , and 
S
(2)

n4 := (1 + o P (1)) γ 1 1 -ργ 1 √ k Z n-k:n h -1/γ 1 -1 .
The second-order condition (3.4) of F and the fact that Z n-k:n /h

P → 1 yield that S (1) n4 = o P √ kA 1 (h) = o P (1) .
For S

(2) n4 , we, once again, apply the mean value theorem (with Z n-k:n /h

P → 1) to get S (2) n4 = -(1 + o P (1)) γ 1 -ργ 1 n k B * n (h) .
Consequently, we have

S n4 = -(1 + o P (1)) γ 1 -ργ 1 n k B * n (h) + o P (1) .
(5.14)

For the last term S n5 , we start by decomposing it into the sum of

S

(1)

n5 := - ργ 1 1 -ργ 1 1 (R/h) -1/(ργ 1 ) √ k    F (R) F (h) 1/ρ - R h -1/γ 1 1/ρ    , and 
S
(2)

n5 := - F (R) /F (h) (R/h) -1/γ 1 1/ρ √ k ∞ 1 F (Rx) F (R) 1/ρ -x -1/γ 1 1/ρ dx.
By similar arguments as those used for S

(1) n4 , we show that (here we use the assumption that R/h → 1)

S (1) n5 = o P √ kA 1 (h) = o P (1) .
For S

(2) n5 , we first apply the mean value theorem to have

S (2) n5 = - 1 ρ √ k ∞ 1 F (Rx) F (R) -x -1/γ 1 ζ 1/ρ-1 (x)dx,
where ζ lies between F (Rx)/F (R) and x -1/γ 1 . Then we use Potter's bounds to get

S

(2)

n5 = (1 + o (1)) √ kA 1 (h) ρ (γ 1 + τ 1 + ρ -2) (2 -ρ -γ 1 )
.

Therefore

S n5 = (1 + o (1)) √ kA 1 (h) ρ (γ 1 + τ 1 + ρ -2) (2 -ρ -γ 1 )
+ o P (1) .

(5.15)

Finally, by gathering results (5.11) , (5.12) , (5.13) , (5.14) and ( 5.15) , we obtain the following asymptotic representation to the premium estimator:

√ k Π ρ (R) -Π ρ (R) (R/h) -1/ργ 1 R F (h) 1/ρ = o P (1) + γ 1 1 -ργ 1 k n ∆ n + 1 1 -ργ 1 n k Γ n (5.16) + ρ √ kA 1 (h) (1 -pτ 1 ) (1 -ργ 1 ) 2 + √ kA 1 (h) ρ (γ 1 + τ 1 + ρ -2) (2 -ρ -γ 1 )
,

where ∆ n is as defined in 6.18 and

Γ n := γ 1 1 - ρ p (1 -ργ 1 ) B n (h) + ρ p (1 -ργ 1 ) ∞ 1 v -1 B * n (hv) dv.
From (5.16) , we deduce that

√ k Π ρ (R) -Π ρ (R) / (R/h) -1/ργ 1 R F (h) 1/ρ is asymp- totically Gaussian with mean ρ (1 -pτ 1 ) (1 -ργ 1 ) 2 + 1 ρ (γ 1 + τ 1 + ρ -2) (2 -ρ -γ 1 ) lim n→∞ √ kA 1 (h) = µ,
and variance

lim n→∞ E γ 1 1 -ργ 1 k n ∆ n + 1 1 -ργ 1 n k Γ n 2 .
Note that from the covariance structure, we have the following useful formulas:

           E [B n (u) B n (v)] = min H (1) (u) , H (1) (v) -H (1) (u) H (1) (v) , E [B * n (u) B * n (v)] = min H (u) , H (v) -H (u) H (v) , E [B n (u) B * n (v)] = min H (1) (u) , H (1) (v) -H (1) (u) H (v) .
(5.17)

After elementary but very tedious computations, using these formulas with l'Hôpital's rule, we get as n → ∞,

h 0 E [B n (u) B n (h)] H 2 (u) dH (u) → -p, h 0 E [B n (h) B * n (u)] H 2 (u) dH (1) (u) → -p 2 , h 0 ∞ 1 E [B n (v) B * n (hu)] uH 2 (v) dudH (v) → -pγ, h 0 ∞ 1 E [B * n (v) B * n (hu)] uH 2 (v) dudH (1) (v) → -pγ, k n h 0 h 0 E [B n (u) B n (v)] H 2 (u)H 2 (v) dH(u)dH (v) → 2p, k n h 0 h 0 E [B * n (u) B * n (v)] H 2 (u)H 2 (v) dH (1) (u)dH (1) (v) → 2p 2 , and k n h 0 h 0 E [B n (u) B * n (v)] H 2 (u)H 2 (v) dH(u)dH (1) (v) → 2p 2 ,
Collection the results above with some further calculations leads to σ 2 .

Appendix

Proposition 6.1. There exists a probability space (Ω, A, P) with independent (0, 1)-uniform rv's U 1 , U 2 , ... and a sequence of Brownian bridges {B i (s); 0 ≤ s ≤ 1} (i = 1, 2, ...) such that, for every 0 < λ < ∞, we have as n → ∞

sup λ/n≤s≤1 n ζ |α n (s) -B n (s)| s 1/2-ζ =      O P (log n) when ζ = 1 4 , O P (1) when 0 ≤ ζ < 1 4 , sup 0≤s≤1-λ/n n ζ |α n (s) -B n (s)| (1 -s) 1/2-ζ =      O P (log n) when ζ = 1 4 , O P (1) when 0 ≤ ζ < 1 4 , and 
sup λ/n≤s≤1-λ/n n ζ |α n (s) -B n (s)| (s(1 -s)) 1/2-ζ =      O P (log n) when ζ = 1 4 , O P (1) when 0 ≤ ζ < 1 4 .
In the next basic proposition, we provide an asymptotic representation to the Kaplan-Meier product limit estimator in Z n-k:n . This result will be of prime importance in the study of the limiting behaviors of many statistics based on censored data exhibiting extreme values.

Proposition 6.2. Assume that all second-order conditions (3.4) hold. Let k = k n be an integer sequence satisfying, in addition to (2.3) √ kA j (h) = O(1), for j = 1, 2, as n → ∞.

Then there exists a sequence of Brownian bridges {B n (s); 0 ≤ s ≤ 1} such that

√ k F n (Z n-k:n ) F (Z n-k:n ) -1 = n k B n (h) + k n ∆ n + o P (1) ,
where (6.18) with B n (v) and B * n (v) respectively defined in (5.9) and (5.10) . Consequently,

∆ n := h 0 B n (v) H 2 (v) dH (v) - h 0 B * n (v) H 2 (v) dH (1) (v) ,
√ k F n (Z n-k:n ) F (Z n-k:n ) -1 d → N (0, p(1 -p)) , as n → ∞, (6.19) 
Proof. We have for any

x ≤ Z n-k:n , F n (x) -F (x) F (x) = x 0 d H (1) n (v) -H (1) (v) H (v) - x 0 H n (v) -H (v) H 2 (v) dH (1) (v) + O P 1 k .
Upon integrating the first integral by parts, we get

F n (x) -F (x) F (x) (6.20) = -H (1) n (0) -H (1) (0) + H (1) n (x) -H (1) (x) H (x) + x 0 H (1) n (v) -H (1) (v) H 2 (v) dH (v) - x 0 H n (v) -H (v) H 2 (v) dH (1) (v) + O P 1 k . Recall that √ n H n (v) -H (v) = √ n H 1 n (v) -H 1 (v) + √ n H 0 n (v) -H 0 (v) ,
which by representations (5.5) and (5.6) becomes

√ n H n (v) -H (v) = α n (θ) -α n θ -H (1) (v) -α n 1 -H (0) (v) .
On the other hand, by the classical central limit theorem, we have H

(1)

n (0) -H (1) (0) = O P n -1/2
. Using these results in (6.20) and then multiplying by √ k, we get

√ k F n (x) -F (x) F (x) = O P k n + O P 1 √ k + k n α n (θ) -α n θ -H (1) (x) H (x) + k n x 0 α n (θ) -α n θ -H (1) (v) H 2 (v) dH (v) - k n x 0 α n (θ) -α n θ -H (1) (v) -α n 1 -H (0) (v) H 2 (v) dH (1) (v) .
The Gaussian approximations (5.7) and (5.8) , in x = Z n-k:n , and the facts that k/n and 1/ √ k tend to zero as n → ∞, lead to

√ k F n (Z n-k:n ) -F (Z n-k:n ) F (Z n-k:n ) = n k B n (Z n-k:n ) + k n Z n-k:n 0 B n (v) H 2 (v) dH (v) - k n Z n-k:n 0 B * n (v) H 2 (v) dH (1) (v) + o P (1) .
Applying Lemma 6.1 completes the proof. The asymptotic normality property is straightforward. For the variance computation, we use the covariance formulas (5.17) and the results at the end of Section 5.

Lemma 6.1. Assume that the second-order conditions of regular variation (3.4) and let k := k n be an integer sequence satisfying (2.3). Then

(i) k n Z n-k:n h B n (v) H 2 (v) dH (v) = o P (1) . (ii) k n Z n-k:n h B * n (v) H 2 (v) dH (1) (v) = o P (1) . (iii) n k {B n (Z n-k:n ) -B n (h)} = o P (1) (iv) n k {B * n (Z n-k:n ) -B * n (h)} = o P (1) .
Proof. We begin by proving the first assertion. For fixed 0 < η, ε < 1, we have

P k n Z n-k:n h B n (v) dH (v) H 2 (v) > η ≤ P Z n-k:n h -1 > ε + P k n (1+ε)h h B n (v) dH (v) H 2 (v) > η .
It is clear that the first term the right-hand side tends to zero as n → ∞. Then, it remains to show that the second one goes to zero as well. Indeed, observe that

E k n (1+ε)h h B n (v) dH (v) H 2 (v) ≤ - k n (1+ε)h h E |B n (v)| dH (v) H 2 (v) .
From the first result of (5.17) , we have

E |B n (v)| ≤ H 1 (v). Then E k n (1+ε)h h B n (v) dH (v) H 2 (v) ≤ - k n (1+ε)h h H 1 (v) dH (v) H 2 (v) ,
which, in turn, is less than or equal to

k n H (1) (h) 1 H ((1 + ε) h) - 1 H (h)
.

Since H (h) = k/n, then this may be rewritten into

H (1) (h) H (h) H (h) H ((1 + ε) h) -1 .
Since H

(1) (h) ∼ pH (h) and H ∈ RV (-1/γ) , then the previous quantity tends to p 1/2 (1 + ε) 1/γ -1 as n → ∞. Being arbitrary, ε may be chosen small enough so that this limit be zero. By similar arguments, we also show assertion (ii) , therefore we omit the details. The last two assertions are shown following the same technique, that we use to prove (iv). Notice that, from the definition of B * n (v) and the second covariance formula in (5.17) ,

{B * n (v) ; v ≥ 0} d = B n H (v) ; v ≥ 0 ,
where {B n (s) ; 0 ≤ s ≤ 1} is a sequence of standard Brownian bridges. Hence

n k {B * n (Z n-k:n ) -B * n (h)} d = n k B n H (Z n-k:n ) -B n H (h) .
Let {W n (t) ; 0 ≤ s ≤ 1} be a sequence of standard Wiener processes such that B n (t) =

W n (t) -tW n (1) . Then n/k {B * n (Z n-k:n ) -B * n (h)} equals in distribution to

n k W n H (Z n-k:n ) -W n H (h) -H (Z n-k:n ) -H (h) W n (1)
.

By using the facts that H (h) = k/n and H (Z n-k:n ) /H (h) ≈ 1, we get .

Since E W n ǫH (h) ≤ ǫH (h) and P {A c n (ǫ)} < ǫ, thus P (|ϑ n | > η) ≤ η -1 ǫ 1/2 + ǫ which tends to zero as ǫ ↓ 0, as sought.

  and Z n-k:n /h P → 1, which, in view of the regular variation of F , implies that F (Z n-k:n ) /F (h) P → 1. Moreover, from (6.19) we have

  o P (1) .Next we show thatϑ n := n k W n H (Z n-k:n ) -W n H (h) = o P (1) .Let η > 0 be a fixed real number and show that P (|ϑ n | > η) → 0, as n → ∞. Since Z n-k:n /h P → 1, then for an arbitrary ǫ > 0 and sufficiently large n, the probability ofA n (ǫ) := {|Z n-k:n /h -1| ≤ ǫ} is close to 1.Next, we will use the following useful inequality:P (|ϑ n | > η) ≤ P {|ϑ n | > η, A n (ǫ)}+P {A c n (ǫ)}, where A c n (ǫ) denotes the complement set of A n (ǫ) . It is easy to verify that ϑ n may be rewritten intoW n H (h) ξ n + H (h) -W n H (h) H (h) , where ξ n := H (Z n-k:n ) /H (h)-1. Since H isregularly varying, then we may show readily that, in the set A n (ǫ) , we have |ξ n | ≤ ǫ too, therefore P (|ϑ n | > η) ≤ I n + P {A c n (ǫ)} + P {A c n (ǫ)} , where I n := P sup 0≤t≤H(h)ξn