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NUMERICAL DYNAMICS
OF GRANULAR MATERIALS

Jean Jacques MOREAU
Laboratoire de Mécanique et Génie Civil

Université Montpellier II/CNRS, Montpellier, France.

Abstract

Contact Dynamics is a numerical method, suitable for computing the dynamical motion of large
collections of rigid bodies, with Coulomb friction taken into account in the event of contact. The
principles of the method are sketched, in particular the way possible collisions or other nonsmooth
features of the evolution are handled. As applications to granular dynamics, the construction of
dry deposits and banks is simulated, in order to investigate their microstructure: force chains,
geometrical anisotropy, Cauchy stress and some unexpected features of force transmission.

1 Introduction

1.1 Addressed problems

In diverse domains, computation methods are needed for the statics or the dynamics of collections
of rigid bodies subject to the constraints of non-interpenetrability, with friction taken into account
in the event of contact. This includes the dynamics of machines, in particular robots, the dynamics
of masonry works submitted to transient actions (earthquakes, gusts of wind or impacts), animated
computer graphics and numerical simulation in granular mechanics. Possibly, some variables are added
in order to also account for a certain deformability of the bodies [13] without essentially changing the
computational strategies. Of course, for the handling of non-interpenetrability and friction, much may
be learned from the rich literature devoted to the treatment of contact between deformable media,
discretized through finite elements; see e.g. [2][5][6][7][32].

The main part of the lecture at the Symposium consisted of projected animations, intended to
show what sort of knowledge may be gained from the numerical simulation of granular processes. The
present paper begins with an overview of the ‘Contact Dynamics’ time-stepping technique used in
these simulations. More detailed accounts of the method, originated in [20], may be found in [25][26].
Finally, some drawings created in the course of computations are commented.

1.2 Analytical setting

The analytical description of a multibody system begins with the choice of a parametrization – at
least a local one – of the set of possible configurations through an element q := (q1, . . . , qn) of Rn. In
terms of this parametrization, the geometric effect of the non-interpenetration of the system members,
or of their confinement by external obstacles with prescribed motion, is assumed expressed by a finite
set of inequalities

gα(t, q) ≥ 0, α ∈ {1, . . . , κ}, (1)
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where the functions gα(t, q) are measures of the gaps between bodies, counted as negative if the
configuration q at time t involves overlap. The event of equality in (1) for some value of α, corresponds
to contact between a member B of the system and a body B′ which may be another member of the
system or an external obstacle.

Non-interpenetrability is a unilateral constraint ; as always in Mechanics, its description cannot
reduce to merely specifying the corresponding set of feasible states (such, in contrast, is the meaning
of the word ‘constraint’ in Optimization and similar contexts). Some information must be added about
the mechanical process through which the geometrical restriction is enforced. For instance the use of
servomechanisms to secure (1) should result in other motions than those investigated in what follows.

Generically, let us conceive a contact law as a relationship involving the contact force Rα experi-
enced by B from B′ at the contact point Mα and the local velocity Uα of B relative to B′, relationship
which a priori depends on time and on the configuration attained by the system, say

lawα(t, q, Uα,Rα) = true. (2)

On numerical and analytical purposes, the definitions of the elements Uα and Rα of E3 are extended,
at least locally, to configurations with nonzero gα(t, q). Saying that (2) models a contact phenomenon
involves that this law yields Rα = 0 whenever gα(t, q) > 0. Of course, more complex situations may
be addressed, for instance with contact actions not reducing to single forces.

The system motion on a time-interval I, with origin t0, is described by a function t 7→ q(t) of I
into Rn. Classical Kinematics requires of this function to be locally absolutely continuous, so that
its derivative q′ makes an element of L1

loc(I,Rn) from which q may be retrieved through Lebesgue
integration. The components of q′(t) are commonly referred to as the velocity components of the
system with regard to the parametrization in use.

When dealing with stereodynamical problems one may also characterize the system velocity by
some otherwise defined set of components, making an element u of Rn whose dependence on t may
generically be called the velocity function. Commonly, one attaches to each rigid body an orthonormal
frame emanating from its mass center and principal with regard to body inertia. The components
relative to these axes of the spin vector of the body are entered as elements of the column u(t). Re-
trieving from the function u the evolution of q then rests on the integration of elementary kinematical
relationships. The moments, about the same axes, of the forces experienced by the body are concomi-
tantly entered at the corresponding places in the row of the covariant components of the forces acting
on the system.

The classical framework of ‘smooth’ dynamics requires in turn of u to be locally absolutely con-
tinuous on the interval I. By Lagrange’s method or any stereodynamical practice, one writes the
dynamical equations as the following equality of elements of Rn

A(t, q)
du

dt
= F (t, q, u) +

∑
α

rα, (3)

to hold for almost every t. Here A denotes in general the n×n inertia matrix , diagonal and constant in
(t, q) if u has been constructed according to the technique of mass centers and principal axes mentioned
above. Expression F comprises certain standard terms, sometimes referred to as ‘centrifugal’ and
‘gyroscopic’, and also the covariant components of possible applied forces, supposed given as functions
of time, the position of the system and its velocity. The elements rα, α ∈ {1, 2, . . . , κ}, are made of
the covariant components of the respective contact forces.

In order to take the contact laws (2) into account, one has to connect the elements rα and u of
Rn with the vectors Rα and Uα of E3. By the kinematical analysis of the way the parametrization
(q) has been constructed, one obtains an expression of the form

Uα = Gα u + Wα, (4)
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where Gα : Rn → E3 denotes a linear mapping, depending on t and q. In case the contact labelled α
involves an external obstacle, the term Wα ∈ E3, a known function of t and q, accounts for the given
motion of this obstacle. No attention is paid at this stage to the imagined motion preserving contact
or not.

By applying the standard virtual power machinery, one correlatively obtains the following expres-
sion for the covariant components of the contact forces acting on the system at Mα (a pair of opposite
forces if B′ is a member of the system, a single force if it is an external obstacle)

rα = G∗
α Rα, (5)

with G∗
α : E3 → Rn denoting the transpose of Gα.

As said before, the elements associated with each α, such as Gα here or a common normal unit nα,
directed toward B, invoked in the sequel, are conventionally extended in a smooth way to neighbouring
configurations without requiring gα = 0.

1.3 Approximation

Relationships (1) to (5) convey all the retained information about the considered mechanical system.
For the numerical treatment of evolution problems, it is easy to conceive time-stepping procedures
of approximation to the differential equation (3), under the kinematical relationship connecting q an
u. Through (4) and (5), the contact laws (2) are entered into the management of each time-step.
The difficulty comes from the necessity of taking the non-interpenetration inequalities (1) also into
account.

In the majority of the techniques described in literature and applied in commercial software pack-
ages, this is achieved through the classical trick of penalizing inequalities. Mechanically, this means
that the strict non-interpenetrability of a pair of bodies is approximately replaced by elastic repulsion
forces which become effective when the bodies come close to each other. Such a procedure amounts
to approximate the joint conditions (1) and (2) by relationships connecting the same variables, but
smoother. In principle, the resulting system of differential equations should be sufficiently regular for
standard time-stepping procedures to apply. Similar interaction laws are used in the computer simu-
lation of molecular motions, hence the name of Molecular Dynamics (abbr.: MD) commonly given to
this approach.

The drawback is that the need of precision requires of the artificial repulsion laws to be very stiff.
Numerical stability in integration then calls for the use of very short time-steps and frequently also for
the introduction of some artificial damping or artificial increase of inertia. When treating dynamical
applications, the effect of such alterations of the mechanical data may blur the picture. Significant
simulations of loose, collisional, flows of granular materials have been obtained in that way, but when
dense collections of bodies are concerned (masonry works or compact granulates) the method is mainly
applied to quasi-static evolutions in which only a succession of equilibrium states is looked for.

For these reasons, other numerical strategies may be preferred in unilateral multibody dynamics.
In the line of the traditional stereodynamic practice are approaches qualified as event-driven (abbr:

ED). Starting from a state in which certain contacts are in effect, one attempts to calculate the
subsequent motion under the provisional assumption that these contacts persist and that their status
– sticking or sliding – in regard to Coulomb law is invariant. Calculation is then the same as with
bilateral constraints, but requires to watch the evolution of some indicators. If, for instance, the normal
components of some contact forces take directions incompatible with unilaterality, one concludes that
the subsequent motion has to be calculated otherwise. Finding the further status of contacts without
having to try all combinations is a nontrivial matter. It is usually reduced to Linear Complementarity
Problems [19][29][32][1].

The ED strategy becomes unpractical if the number of contacts in presence is too large. Some time-
stepping integration procedures with preselected time-intervals have been developed instead [28][30].
The following one belongs to this class.
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2 The ‘Contact Dynamics’ approach

2.1 Handling non-interpenetration in terms of velocity

For every label α, it has been agreed to extend, at least locally, the definition of contact descriptors
such as the normal unit nα, to configurations with nonzero gα. Then put

Kα(t, q) :=

{
{V ∈ E3 | V.nα ≥ 0} if gα(t, q) ≤ 0
E3 otherwise.

If gα(t, q) ≥ 0, this is the set of the values of U+
α , the contact right-velocity, which are kinematically

compatible with non-interpenetration.
The elements for the proof of the following may be found in [24]:

Lemma. Let a motion be defined by a locally integrable velocity function u : I → Rn. If the
corresponding expression of Uα : I → E3 , as it results from (4), satisfies Uα ∈ Kα(t, q) for almost
every t and if the non-interpenetration inequality (1) holds at the initial instant t0, then it holds
throughout I.

The decisive move of the Contact Dynamics strategy consists in complementing the contact laws
(2) so as to obtain relationships in the same variables, containing the same stipulations as before and
additionally the following ones: • in all cases Uα ∈ Kα, • if Uα ∈ interior Kα, then Rα = 0. In other
words, these relationships secure the implications

gα(t, q) ≤ 0 ⇒ nα.Uα ≥ 0 (6)
nα.Uα > 0 ⇒ Rα = 0. (7)

We propose to say that a package of information concerning the possible contact labelled α, if it
possesses these properties, is a contact law of prospective type. The underlying idea is that such a
law does not properly govern the values of Uα and Rα at the actual instant, but their limits on the
right of this instant, assumed to exist. In fact, if nα.Uα. > 0, the concerned instant is followed by
a contactless time-interval. Since Rα must vanish over this interval, the same should be true for its
right-limit.

Once all the contact laws (2) have been complemented in that way, the Lemma shows that condition
(1) becomes redundant, provided it is satisfied at the initial instant. It then becomes easy to imagine
time-stepping procedures for the approximation of the evolution problem.

The very structure of the Coulomb model of friction induces to organize the step computation as
an implicit scheme, at least with regard to the velocity function u, i.e. it is the unknown value of this
function at the step end which, as an approximation, is entered into the law. A contact law of the
prospective type is adequate here, since step end values mimick right-side limits. The possibility of
contacts to get loose at every instant is then managed automatically, without needing any analysis of
complementarity conditions.

Each time-step makes a nonlinear problem whose computational cost grows rapidly with the num-
ber of contacts in presence. As a compensation for this cost, the method accepts much larger step-
lengths than those required by the regularization techniques referred to in 1.3. Usually an iteration
procedure à la Gauss-Seidel is applied. It amounts to treat cyclically a sequence of dynamical prob-
lems, each of them involving a single contact. In dense collections of bodies with slowly evolving
contact list, computation efficiency may be greatly enhanced by taking as starting guess in iterations
the contact forces calculated at the antecedent time step, whenever the same contact was already in
effect.

The Contact Dynamics strategy may also be applied with other solvers used at each time step [15].
A single computation step is needed to check whether a given position of the system is that of

a possible equilibrium. One just have to launch iterations with zero initial velocity; if the step-end
velocity is found zero, the values obtained for the contact forces agree with equilibrium.
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2.2 Nonsmoothness in time and collisions

The sudden occurrence at some instant tc of a new contact, i.e. a collision, is expected to generate
a velocity jump, the dynamics of which cannot be governed by the differential equation (3). Even in
the absence of events of this sort, dry friction at a contact point has long been known, in some cases,
to forbid the existence of any smooth solution beyond a catastrophic instant, on the left of which the
contact forces, as well as the derivative u′, may become unbounded [10]. This is a dynamic analogue
to the locking situations familiarly met in the statics of frictional systems. Around year 1900, such a
lack of solution for an apparently well set problem seemed inadmissible to P. Painlevé and induced
him to question the very concept of a contact force. Hence the misleading denomination of ‘Painlevé’s
paradox’ which has been given to the observation. Today, one is accustomed to see models reaching
the limits of their validity domain. Such is the case for smooth dynamics at a catastrophic instant of
any sort, leading to enlarge the function space where u is looked for [20][30].

A readily available mathematically framework is that of Rn-valued functions of locally bounded
variation on the time-interval I; notation lbv(I,Rn) [21]. With every u in this space, an Rn-valued
measure on I is classically associated that we shall denote by du: this is the differential measure (or
Stieltjes measure) of u. In the smooth case, this measure admits the derivative u′ as density function
relative to dt (the Lebesgue measure on I). A natural generalization of (3) therefore is

A(t, q) du = F (t, q, u) dt +
∑
α

dsα, (8)

where the Rn-valued measures dsα constitute the ‘components’, relative to the parametrization in use,
of the respective contact impulses dSα which are E3-valued measures. This is a measure differential
equation. Concerning the theoretical foundation of such an extension of Classical Dynamics, one may
refer to [22].

On a time interval of smooth motion dSα = Rα dt, while at the instant tc of a collision, each
measure dSα is expected to present an atom whose value is nothing else than the percussion vector of
the traditional theory of shocks, say Pα. The latter is a priori unknown and the question arises whether
it may be involved in some phenomenological relationship playing at instant tc a role similar to that
of (2) on intervals of smooth motion. The laws of restitution of Newton, Poisson or others amount to
pragmatic tricks of this sort, but it is now clear [31][12] that the empirical coefficients involved in such
laws cannot in general be identified a priori. Apart the simple case of the collision of two, otherwise
free, nearly spherical objects, the outcome of a collision can be predicted with some precision only
through a detailed analysis of the contact interaction which actually involves a certain amount of
deformation of the concerned bodies. When so studied, the process takes place on a nonzero time
interval, contact forces and accelerations exist in the proper sense, leaving smooth mechanics valid.
Another classical approach consists of a multiple scaling technique, using some microtime variable in
the analysis of the process.

A critical issue, when restitution laws are used, is the energy balance of the instant process. A
theoretical framework securing the dissipativity required by the Second Law of Thermodynamics may
be found in [9].

2.3 The CD handling of nonsmooth evolutions

Formally, at each time-step of a CD computation scheme, say [ti, tf ] (‘i’ as in initial , ‘f’ as in final),
tf = ti + h, the algorithm is ready to face collisions. Throughout this interval, the elements A, Gα,
Wα are approximated by constants, namely the value they take at the ‘midpoint’ (tm = ti +h/2, qm =
qi+h ui/2) and the element F by the value it takes at (tm, qm, ui). It is also at (tm, qm) that inequalities
(1) are checked in order to determine the set Jm of the labels α to be treated as effective. By integrating
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both members of (3) over the interval, or both members of (8) as well , one obtains

uf = ui + h A−1F + A−1
∑
α

pα, (9)

where the quantities pα are the covariant components of the contact impulses, i.e. the integrals of the
dsα. The relationship that (2), (4), (5) establish between rα and u, does not commute in general with
time integration because contact laws are nonlinear. When the motion one intends to approximate
is smooth, the variation of rα and u over the time-step may be small enough for the decision of
connecting pα with the final velocity uf by the said relationship to merely reflect the choice made in
2.1 of a time-stepping strategy of the implicit type.

But if some collisions occur in [ti, tf ], i.e. Jm includes labels it did not contain at the antecedent
step, large variations of u are expected. The designation of any value of u to be connected with pα,
constitutes an assertion about the collisional process, the phenomenological quality of which has to
be checked in regard to physical circumstances.

To uf corresponds the final value Uαf of the local velocity. The above choice amounts to connect
with it, through the admitted contact law, the total local impulse on [ti, tf ]. If this interval contains
a single collisional instant tc, the initial and final values of Uα may be viewed as approximants of the
left and right limits U−

α (tc) and U+
α (tc).

Therefore, the collisions met in the course of the above computation are treated according to the
following rule: for each contact α present at instant tc, the contact percussion Pα is related, through
the admitted contact law, to the right limit U+

α (tc).
Contact laws here are assumed of the prospective type. In view of (6) and (7), this yields the

implication Pα 6= 0 ⇒ nα.Uα = 0, expressing that the collision is soft, i.e. completely inelastic.
But the possibility nα.Uα > 0 with Pα = 0 is left open. This model of soft collision in multicontact
systems thus improves on the mere assumption of zero Newton restitution coefficient, because all the
contacts present at instant tc are involved together in the dynamics.

An extension of the preceding enables CD algorithms to produce bouncy collisions: it consists in
connecting, through the admitted contact law, the total local impulse with some weighted mean of
Uαi and Uαf [20][25][26]. The choice of the weighting coefficients (possibly distinct for the normal and
tangential components of velocities) directly determines some restitution rules, improving as before
on those of Newton.

Anyway, such laws of restitution do not elude the criticism made in 2.2. Their advantage is only
that their implementation in a CD algorithm adds nothing to the computation cost.

3 Numerical simulation in Granular Mechanics

3.1 What can be expected from computation

Granular mechanics has long been a topic in Civil Engineering as a part of Soil Mechanics. For
a certain number of years, it has also attracted the attention of another public, coming from the
Condensed Matter and Disordered Systems community. It is expected that the forms of statistical
reasoning used in the latter domain could provide some insight into the many intriguing features of
the granular behaviour. On this purpose, the model consisting of rigid grains which interact only
through contact and Coulomb friction, without any adhesive effect, makes a sufficiently rich concept
for investigating some fundamental questions.

In contrast dry sand, to which the above model is relevant, is not the most frequently met soil
in Civil Engineering. In the numerical treatment of most problems, the soil material is viewed as a
continuous medium, for which some empirical constitutive law should be available. Finite Element
softwares are then applied to the corresponding boundary value problem. The difficulty lies in the
determination of the constitutive law which anyway has to be tested against all available experimental
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information about the considered soil. Engineering needs may be met hrough this approach, but no
insight into the intimate granular behaviour can be gained.

While the abbreviation FEM (for Finite Element Method) is used to refer to the above strategy, the
representation of a granular sample as a collection of solids is called a Distinct Element Method (abbr.
DEM, sometimes also read as Discrete Element Method). Numerical simulation may be conducted
thanks to the methods referred to in the foregoing. Clearly the boundary problems of Civil Engineering
cannot directly be handled that way since the number of grains involved in real soils exceeds the
possibility of computers. The availability of scaling rules which would allow one to approximate these
boundary problems through DEM with oversized grains is still an object of investigation [27].

3.2 Force chains

It is known from experiments with assemblies of photoelastic grains that the transmission of forces in
the bulk of a granular material is concentrated in chains of grains more loaded than the surrounding
ones.

A two-dimensional model of railway track is shown on Figure 1. In view of the elastic deformation
of the rail, the force exerted by a passing wheel is distributed between the closest supporting concrete
blocks, in relation with their distances. The blocks, as well as the ballast grains, are drawn with
levels of gray corresponding to their respective loads, i.e. the sum of the normal components of the
experienced contact forces. This makes visible that forces are transmitted to the ground across the
ballast layer along some preferred chains of grains.

Figure 1: A two-dimensional model of railway ballast.

3.3 Deposition anisotropy

The response of a grain collection to some mechanical action strongly depends on the way it has been
prepared or, more generally, on its past evolution. Some message from history is therefore written
in the current state of the granulate. As a part of this message the statistical distribution of the
directions of the normals at the grain to grain contacts is commonly viewed as a descriptor of a
possible microstructural anisotropy. Here is an intriguing example.

A usual way of preparing granulates consists of producing a random rain of grains under gravity.
If this rain is received on a fixed horizontal ground, a certain statistical anisotropy of the collected
granular mass is expected, since the vertical direction plays a special role in the deposition process.
The surprise was to discover experimentally that the most frequent directions of contact normals are
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not vertical nor horizontal but at some angle on both sides of the vertical. The physical experiment was
performed with the model of two-dimensional granulate called a Schneebeli material, i.e. a collection
of cylindrical rods of equal lengths stacked parallel and observed laterally; it was well reproduced by
CD numerical simulations [8].

Figure 2: Histograms of contact directions.

Instead of circular objects, the two examples presented on Figure 2 concern convex irregular
polygonal grains of random shapes, with two different distributions of sizes. In each sample, for all
contact points detected in the rain-deposited layer, the normal directions – in an extended sense,
since contact may affect a vertex – are recorded. Histograms of the distributions are constructed by
dividing the 360◦ range about the origin into 24 equal sectors. Each sector is filled in gray up to a
radius proportional to the number of contact points whose normals have the corresponding directions.
For legibility or for quantitative treatment, one may choose to fit a continuous curve to the distribution,
the graph of a probability density expressed as a function of the angle θ by a linear combination of
cosine and sine of multiples of 2θ. The same preference for two oblique directions as with circular
grains is found.

Three-dimensional simulations yield similar results: in the granular layer created by raining spher-
ical grains of dispersed sizes, contact directions of largest frequency make an angle with the vertical.

3.4 The stress tensor

In the Civil Engineering situations referred to in 3.1, the granular material is treated in the framework
of classical Continuum Mechanics, with the Cauchy stress field as central concept. This macroscopic
approach does not prevent one, at the stage of assessing the constitutive laws wich govern the medium
behaviour, to refer to smaller scale features. Connecting with micromechanical quantities some tensor
which could be identified as the stress is not trivial [11]. Since the very time of Cauchy, this question
has mainly been addressed for assemblies of points subject to some interaction potentials. Granular
media offer a very different sort of microstructure.
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Figure 3: Quality of the stress tensor estimate.

On Figure 3 there is shown a part of a two-dimensional collection of irregular polygonal grains
(grain to grain friction: 0.4) submitted to a ‘biaxial test’, i.e. the granulate is squeezed between
frictionless rectilinear vertical boundaries in imposed motion while some containing pressure is exerted
by horizontal ones. The representation of contact forces as line segments makes the force chains visible.
The programme allows one to superimpose a circular probing area over which the average stress is
computed according to the definition introduced in [23], practically equivalent to some other ones
found in literature. If this tensor is used in the standard way to express the normal and tangential
components of the tension upon a cut with direction ϑ, the results are sinusoidal functions of ϑ whose
graphs are drawn in gray. On the other hand, 31 diameters of the probing area have been selected. By
computing, for each of them, the resultant of the contact forces exerted by the grains on one side upon
the grains on the other side, one estimates the corresponding tensions. When the plots of the normal
and tangential components of these vectors are compared with the preceding sinusoids, one concludes
that the computed tensor, in spite of the small size of the sample and the inhomogenity due to force
chains, plays with satisfactory precision the role expected from the Cauchy stress in continuous media.
The cross drawn in the circular area represents the principal stresses.

3.5 Banks created by avalanches of dry grains

Figure 4 has been created in the course of the following two-dimensional simulation. Random polygonal
grains are deposited at the top of a rigid incline, made of a collection of fixed grains with similar
characteristics, so as to simulate roughness. Thanks to a landing plate placed at the bottom of the
incline, a layer of some thickness accumulates, sporadically perturbed by avalanches. The angle that
the free surface makes with horizontal fluctuates between two values: the angle of repose θrep (approx.
25◦), observed after an overall avalanche has remodelled the layer, and some larger value θlim(approx.
29◦), the limit angle, attained as the result of progressive accretion. At θlim, the layer becomes instable.
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Figure 4: Two cuts in a bank.

Similarly to that was done in 3.4, the programme allows one to choose a line segment and to
calculate the resultant contact force transmitted across such an imagined cut.

For a line segment parallel to the free surface (the difference between θrep and θlim is neglected
here), one finds a vertical force. This feature looks natural since the bank is made of layers successively
deposited by avalanches. When such a layer stops, the supporting forces it experiences from the
material beneath should equilibrate its weight, and this verticality of transmitted forces is expected
to persist after other layers possessing the same property have been superimposed. This confirms the
assumption commonly made in Civil Engineering that a freshly deposited bank is everywhere in a
state of incipient failure.

For a vertical line segment, one finds a force parallel to the free surface. This observation, which
seems novel, is connected in an essential way with the preceding one through the symmetry of the
Cauchy stress tensor. It provides a convincing insight into the following subject which, in recent years,
started a lot of speculation and controversy.

Let a conical pile be created by pouring grains from a source onto a rough rigid horizontal ground.
Some experimentalists have been surprised to observe that the distribution of the pressure exerted
upon the ground was not proportional to the height of the material above and even that a local
minimum of ground pressure may be present at the vertical of the apex.

Actually, the fact that the free surface is not horizontal makes clear that the statics of the granular
assembly has nothing to do with hydrostatics. In a three-dimensional CD numerical experiment [26]
not shown here, we have reproduced the construction of a conical pile of 14.000 spherical grains with
dispersed sizes. Computed results reveal first that a test surface portion placed inside the peripheral
bank of the pile and parallel to the free surface transmits a vertical force, indicative of a state of
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incipient failure. Secondly, a test surface in the shape of a cylinder coaxial with the conical pile is
found to transmit average forces parallel to the free surface. As before, this couple of observations
reflects the symmetry of the stress tensor. If such a cylinder is used to delimit some ‘central core’
of the pile, this core consequently has part of its weight supported by an arching action from the
surrounding bank, which explains the experimental findings.
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[9] Frémond, M. (1995) Rigid body collisions, Physics Letters A 204, 33–41.
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