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5 Inserm, U955-E10, Créteil, France
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Abstract

In genetic diseases with variable age of onset, survival function estimation for the
mutation carriers as well as estimation of the modifying factors effects are essential to
provide individual risk assessment, both for mutation carriers management and
prevention strategies. In practice, this survival function is classically estimated from
pedigrees data where most genotypes are unobserved. In this article, we present a
unifying Expectation-Maximization (EM) framework combining probabilistic
computations in Bayesian networks with standard statistical survival procedures in
order to provide mutation carrier survival estimates. The proposed approach allows to
obtain previously published parametric estimates (e.g. Weibull survival) as particular
cases as well as more general Kaplan-Meier non-parametric estimates, which is the main
contribution. Note that covariates can also be taken into account using a proportional
hazard model. The whole methodology is both validated on simulated data and applied
to family samples with transthyretin-related hereditary amyloidosis (a rare autosomal
dominant disease with highly variable age of onset), showing very promising results.

Keywords: Non-parametric survival function, proportional hazard model,
Kaplan-Meier estimator, pedigrees, Bayesian networks, EM algorithm, Elston-Stewart
algorithm, sum-product algorithm.

Introduction 1

In monogenic diseases with variable age of onset, an accurate estimation of the survival 2

function for the mutation carriers is essential. Since potential factors (e.g. genetic or 3

environmental factors) can modify this age of onset, it is important to identify these 4

factors and estimate their effects. These estimations are then usually combined into a 5

proportional hazard model that is typically used to provide individual risk assessment 6

as well as to establish prevention strategies. 7
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In the context of genetic diseases with variable age of onset, geneticists usually focus
on the penetrance function defined by

F (t) = P(the disease is diagnosed before age t)

as the age-specific cumulative distribution function of the waiting time to disease
diagnosis [1–3]. Since in this paper one aims at exploiting standard statistical survival
analysis, we will rather consider the survival function defined by:

S(t) = P(the disease is not diagnosed before age t)

However it is straigthforward to obtain the penetrance function from the survival one 8

(and conversely) since F (t) = 1− S(t). In order to avoid any confusion, please note that 9

the survival function considered here corresponds to the cause-specific survival (disease 10

diagnosis) and not to the overall survival. 11

When estimating mutation carrier survival, the main challenge comes from the fact 12

that most genotypes are not observed. Taking into account this uncertainty is then 13

slightly different depending on whether the disease has sporadic cases or not. In 14

complex diseases with monogenic sub-entities, in which only a minority of cases is due 15

to rare mutations (e.g. breast cancer with BRCA mutations [4–6]) both non-carriers 16

and mutation carriers might be affected. It is therefore necessary to provide a survival 17

function for non-carrier which is typically obtained from the general population. In 18

monogenic diseases such as the Transthyretin-related Hereditary Amyloidosis (THA) [2], 19

all affected individuals are necessary carriers and thus, the disease incidence among 20

non-carrier is equal to zero. Nevertheless the problem remains challenging since a 21

non-affected individual at age t might either be a non-carrier or a carrier who “survived” 22

until age t. For the sake of simplicity, we only consider in this article the monogenic 23

diseases case; however the suggested method is straightforward to extend to complex 24

diseases with monogenic sub-entities as long as the incidence or survival among 25

non-carriers is available. 26

In the last decades, several methods have been proposed for estimating the 27

penetrance or survival functions from pedigrees (see e.g., [1–3,6]). All these methods 28

rely on a parametric model, namely the Weibull function, to describe the penetrance 29

function. In these papers, unknown genotypes are handled through the Elston-Stewart 30

algorithm [7] and likelihood function is maximized with ad hoc implementations [8]. 31

Probably due to their complexity, the resulting methods were never made publicly 32

available and were therefore scarcely used. The main objective of this paper is to 33

provide a unified and flexible publicly available methodology that can both provide a 34

stable implementation of the previously published parametric estimators and more 35

general non-parametric estimates. Such estimates were previously considered in [9] but 36

only in the non-realistic case where all genotypes were observed. 37

In order to achieve this objective, we reformulate the problem in the 38

Expectation-Maximization (EM) framework [10] which provides a general iterative 39

algorithm for optimizing the likelihood of any statistical model with partially missing 40

data (here the unobserved genotypes). In the EM algorithm we alternate two main 41

steps: the E-step where we compute individual weights as posterior mutation carrier 42

distributions using the current estimates; and the M-step where we update the 43

estimates using the observations and the weights computed at the E-step. Unlike 44

previous works [1–3,6] we do not want to provide an ad hoc implementation of these 45

two steps but rather taking advantage of well established and robust procedures. We 46

use probabilistic computations in Bayesian networks for the E-step [11], and classical 47

survival analysis methods for the M-step [12]. 48

The paper is organized as follows: Section “Methods” contains the main contribution 49

of this paper which includes the model formulation, the EM-framework and the detailed 50
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E- and M-steps. Then, Section “Validation on Simulated Datasets” presents several 51

simulation analyses that validate the method while Section “Application to the THA” 52

applies the proposed method to THA families from different origins (French, Portuguese, 53

and Swedish). Finally, some conclusions are drawn in Section “Discussion”. A minimal 54

R [13] source code demo is provided as supplementary material. 55

Methods 56

This section is devoted to the description of the proposed methodology. The objective is 57

to estimate the cause-specific survival function for individuals carrying the disease 58

mutation. We first introduce the model (Subsection “The Model”) decomposed into a 59

genetic-specific part (Subsection “Genetic part”) and a survival-specific part 60

(Subsection “Genetic part”). Then we present the EM framework (Subsection “The 61

Expectation Maximization algorithm”) and detail both the E-step using belief 62

propagation in Bayesian networks (Subsection “E-step”) and the M-step using existing 63

tools from the survival analysis community (Subsection “M-step”). 64

The Model 65

Let us consider n individuals in set I = {1, . . . , n}. We denote by F ⊂ I the subset of
founders (i.e. individuals without ancestors in the pedigree) and we denote by I \ F the
set of non-founders (i.e. individuals with ancestors in the pedigree). Let us denote by
X = (X1, . . . , Xn) ∈ {00, 01, 10, 11}n the genotypic random vector defined such as Xi is
the genotype of the individual i. The first entry (respectively the second entry)
represents the number of paternal (resp. maternal) disease alleles. For instance Xi = 01
means that the individual i carries the mutation, is heterozygous and that his mutation
has been transmitted by his mother. Also, we denote by Xpati (resp. Xmati) the
paternal (resp. maternal) genotype of any non-founder individual i ∈ I \ F . Let us
remind that the vector X is partially observed; first because individuals are rarely
genotyped, secondly because the parental transmission pattern is only indirectly
observed through the family relationship. Therefore, unobserved genotypes will be
estimated according to genotypic information on the whole pedigree (see
Section “E-step”). We denote by T = (T1, . . . , Tn) ∈ Rn the random vector defined such
as Ti is the time at diagnosis if the individual i is affected by the disease (i.e. δi = 1)
while Ti is the time at last follow-up (censoring) if the individual i is not affected (i.e.
δi = 0); where δ ∈ {0, 1}n is the censoring indicator. Finally, the model can be written
as follows:

P(X,T ) = P (X)︸ ︷︷ ︸
genetic part

× P(T |X)︸ ︷︷ ︸
survival part

where P(X,T ) denotes the joint probability distribution of T and X and P(T |X) 66

denotes the conditional distribution of T given X. 67

As an example, let us consider a simple nuclear family defined by two ancestors and 68

three children. In Table 1, the first column corresponds to the index i of the individual, 69

the second one to the paternal index (with the convention that we use 0 for founders), 70

the third one to the maternal index (0 for founders), the fourth one to the censoring 71

indicator (δi = 1 if the individual i is affected and δi = 0 if not), the fifth one to the 72

time Ti and the last one to the genotype Xi. 73

Genetic part 74

We assume the Mendelian transmission of the alleles and the Hardy-Weinberg
distribution of the founder’s alleles with allele frequency f . This means that for any
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Table 1. Example: a simple nuclear family.

i pati mati δi Ti Xi

1 0 0 1 45 01
2 0 0 0 64 00
3 1 2 0 25 00
4 1 2 0 31 10
5 1 2 0 36 00

i is the individual index, pati the paternal index (0 for a founder), mati the maternal
index (0 for a founder), δi the event indicator (0 if unaffected at age Ti, 1 if affected at
age Ti), Ti is the observed age either at last follow-up (δi = 0) or at disease diagnosis
(δi = 1), Xi ∈ {00, 01, 10, 11} is the genotype.

founder i ∈ F we have P(Xi = 00) = (1− f)2, P(Xi = 01) = P(Xi = 10) = f(1− f),
and P(Xi = 11) = f2. For identification issues due to the non-parametric nature of our
model, we assume that f is known. However, Let us note that it is quite common for f
to be known for such genetic disease (e.g. BRCA mutations in breast cancer). In the
extreme situation where this information is unknown, it is possible to use a parametric
model (e.g. Weibull) to fit this parameter as a prior step before refining survival
estimates using our non-parametric approach. Thus, the genetic part can be written as
follows:

P (X) =
∏
i∈F

P(Xi)
∏

i∈I\F

P
(
Xi|Xpati , Xmati

)
Since the n individuals might belong to completely independent families, it is clear that 75

the genetic likelihood function can be computed separately on these independent 76

families. However, the notations are still valid but simpler by combining all families into 77

a single pedigree file. 78

As an example, let us compute this probability for the family of Table 1 where the 79

observed genotypic vector is x = (01, 00, 00, 10, 00): 80

P(X = x) = P(X1 = 01, X2 = 00, X3 = 00, X4 = 10, X5 = 00)

= P(X1 = 01)× P(X2 = 00)× P(X3 = 00|X1 = 01, X2 = 00)

×P(X4 = 10|X1 = 01, X2 = 00)× P(X5 = 00|X1 = 01, X2 = 00)

= f(1− f)× (1− f)2 × 1

2
× 1

2
× 1

2
=
f(1− f)3

8

However, in practice, the true genotype Xi is almost always either partially observed 81

or not observed at all. Indeed, when a genotyped individual carries the disease 82

mutation, we know that Xi = 11 in the (rare) homozygous case, but we only know that 83

Xi ∈ {10, 01} in the heterozygous case. Similarly, a non genotyped but affected 84

individual only implies that Xi 6= 00 (since all affected individual are mutation carriers). 85

Moreover, a non genotyped and non affected individual i implies that 86

Xi ∈ {00, 01, 10, 11}. Finally, a non carrier genotyped individual implies that Xi = 00 87

(assuming a 100% sensitivity of the mutation search procedure1). This uncertainty will 88

be later rigorously taken into account through probabilistic computations using belief 89

propagation in Bayesian networks (see Section “E-step”). 90

1Genotyping errors can easily be added to the model.
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Survival Part 91

We recall that δ ∈ {0, 1}n is the censoring indicator. The survival part is defined as
follows:

P(Ti = t|Xi) =

{
S(t)λ(t)δi if Xi 6= 00
1 if Xi = 00

where λ(t) is the hazard function, S(t) the survival function defined by

S(t) = exp(−Λ(t)) and Λ(t) =
∫ t
0
λ(u)du the cumulative hazard. Note that for the sake

of simplicity, we abusively use the probability symbol P to actually denote a
(conditional) density in the case where δi = 1. In log-scale, this conditional
probability/density can be rewritten as:

logP(Ti = t|Xi) =

{
−Λ(t) + 1δi=1 log λ(t) if Xi 6= 00
0 if Xi = 00

where 1A is the indicator function of event A (1A = 1 if the event occurs, and 0 else). 92

Accounting for covariates 93

Note that covariates can easily be added to the model through a proportional hazard
model defining hereafter. Let Z ∈ Rn×p be the covariate matrix, the model accounting
for Z can be written as follows :

logP(Ti = t|Xi) =

{
−Λ0(t)eZiβ + 1δ1=1 (log λ0(t) + Ziβ) if Xi 6= 00
0 if Xi = 00

where λ0(t) is the baseline hazard, Λ0(t) is the baseline cumulative hazard, Zi ∈ R1×p
94

the ith row of Z and β ∈ Rp×1 is the proportional effect coefficient. 95

The Expectation Maximization algorithm 96

As stated above, most of the genotypes Xi are not observed at all, and even for the
genotyped individuals, we often only have partial information (e.g., we cannot
distinguish between 01 and 10). We therefore consider the variable X as a latent
variable and denote by X the set of acceptable genotypes (e.g. Xi = {00, 01, 10, 11} if
we have no information on Xi, Xi = {01, 10} if we know that Xi is heterozygous,
Xi = {00} for a non-carrier, etc.). We denote by “ev” the evidence corresponding to all
the available information, i.e. the available genotype informations (X ∈ X ) as well as
the partially censored T . In order to maximize the log-likelihood function of the model
in the presence of incomplete data, we use the EM algorithm [10]. To that end, let us
introduce the following auxiliary Q function:

Q (θ|θold) =

∫
P (X|ev;θold) logP(X, ev;θ)dX

where θ (resp. θold) contains the current (resp. previous) version of the parametric 97

(proportional effect coefficients) and non-parametric (survival functions) components of 98

the model. 99

Since the genetic component of the model has no parameter (the allele frequency f is 100

supposed to be known and a Mendelian transmission of the alleles is assumed – see 101

Section “Genetic part”), by using the model properties it is straightforward to rewrite 102

the Q function as follows 103

Q (θ|θold) = cst. +

n∑
i=1

P (Xi 6= 00|ev;θold)︸ ︷︷ ︸
wi

logP(Ti|Xi 6= 00;θ) (1)
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Starting from an arbitrary value of θ = θ0, the following two steps are iterated until 104

the estimates converge: 105

• E-step: for computing the weights wi = P (Xi 6= 00|ev;θold) using θold = θ (that are 106

conditional probabilities); 107

• M-step: for maximizing the Q function with respect to θ and obtaining a new 108

estimate. 109

E-step 110

In order to compute the conditional probabilities wi = P (Xi 6= 00|ev;θold) it is first 111

necessary to compute their common denominator: 112

P(ev;θold) =
∑
X

P(X, ev;θold)

=
∑
X


n∏
i=1

1Xi∈Xi
P(Ti|Xi;θold)

∏
i∈F

P(Xi)
∏

i∈I\F

P(Xi|Xpati , Xmati)


Since X has 4n possible configurations in the worst case, it is clearly impossible to 113

simply enumerate these configurations even for moderate size pedigrees. Therefore, one 114

needs a computationally more efficient approach. When the pedigree has no loop (i.e. 115

the pedigree is a tree), the Elston-Stewart algorithm [14] suggests to eliminate the 116

variables Xi from the above sum-product by peeling individuals from the last 117

generations up to the oldest common ancestor. The resulting algorithm has a O(n× 43) 118

complexity which allows to efficiently handle even large pedigrees as long as they have 119

no loop. However, in practice, it is not rare to encounter loops in pedigree (e.g., 120

consanguinity loops). Fortunately, Elston-Stewart can be adapted to the presence of 121

loops by introducing the notion of cut-sets [15] which results in a O(n× 4k) complexity, 122

where k > 3 correspond to the size of the largest cut-set in the peeling sequence. 123

Typically k = 4 to 6 for most pedigrees, but k can also grow very large resulting in 124

intractable exact computations for highly complex pedigrees (e.g. inuit pedigree [16]). 125

This cut-set version of Elston-Stewart (as well as variants of Lander-Green [17] for 126

multi-point analysis) is implemented in the well-known Mendel software [18] which can 127

efficiently perform likelihood computations in complex pedigrees. 128

As pointed out in [19], the distribution of genotypes in pedigree can also be 129

described as a Bayesian network, a model that belongs to a wide class of probabilistic 130

graphical models with strong mathematical background and well-known theory for 131

efficiently performing sum-product computations [11]. The approach consists in 132

sequentially eliminating variables from the graphical model taking into account the 133

clique structures of the corresponding graph. This approach results in the construction 134

of a junction tree whose tree-width (size of the largest clique) is precisely equivalent to 135

k for cut-sets approaches. These algorithms are called sum-product, message passing, or 136

belief propagation algorithm and they have been used by many authors in the context 137

of genetics [19–23]. One interesting feature of belief propagation in pedigree is that, for 138

the computational cost of two likelihood computation, this approach provides the full 139

posterior distribution of the system, including the marginal posterior distribution of all 140

genotypes (see [11,19]). But as pointed out by [24], the Elston-Stewart peeling 141

algorithm can be extended to obtain a similar feature. The resulting algorithm is in fact 142

exactly the forward/backward equivalent of belief propagation for a peeling sequence 143

(sequence of variable elimination). 144

In this paper, we use a ad hoc C++ implementation of belief propagation in 145

pedigree called bped (available on request). At each E-step of the EM algorithm, we 146

provide to this command-line program two files: 147
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a) a pedigree structure file as a classical .ped file; 148

b) an evidence file containing the evidence 1Xi∈evP(Ti|Xi;θold) for all i ∈ {1, . . . , n} 149

and for all Xi ∈ {00, 01, 10, 11}. 150

For a non-affected individual (δi = 0), one has:

P(Ti|Xi;θold) =

{
S(Ti) if Xi 6= 00
1 if Xi = 00

and for a affected individual (δi = 1) one has:

P(Ti|Xi;θold) =

{
S(Ti)λ(Ti) if Xi 6= 00
0 if Xi = 00

= S(Ti)λ(Ti)×
{

1 if Xi 6= 00
0 if Xi = 00

Since the proportion factor S(Ti)λ(Ti) does not depend on Xi, its values will not affect
in any way the posterior distribution P (Xi|ev; θold). Hence we can replace this
proportion factor by 1 and simply use:

P(Ti|Xi;θold) ∝


S(Ti) if δi = 0 and Xi 6= 00
1 if δi = 0 and Xi = 00
1 if δi = 1 and Xi 6= 00
0 if δi = 1 and Xi = 00

in the evidence file. It is therefore clear that the knowledge of λ(t) is not required for 151

this procedure which is of particular interest since non-parametric survival estimate like 152

Kaplan-Meier usually provides only the expression of S(t) and not the one of λ(t). 153

Then, bped performs the BP and computes the posterior marginal distribution 154

P(Xi|ev;θold) for all individual i, from which the weights wi = P (Xi 6= 00|ev;θold) are 155

derived. 156

M-step 157

Once the weights wi have been computed (at the E-step), the model components can be 158

updated by maximizing Eq. (1) which is simply a weighted survival log-likelihood 159

function where each individual observation receives the weight wi. Since most statistical 160

softwares allow for weighted observations, we can therefore rely on well-established 161

existing survival tools for performing our M-step. Using the programming software 162

R [13], we can for example take advantage of the robust survival package [12,25] which 163

provides non-parametric Kaplan-Meier estimation of the survival through the survfit() 164

function. Note that the coxph() can also be combined with survfit() to provide 165

non-parametric Nelson-Aalen survival estimates taking into account proportional hazard 166

effects. In addition, using full parametric survival estimation procedures, such as the 167

survreg() function, allows the method to provide alternative classical survival 168

estimation (namely Weibull, exponential, Gaussian, logistic, log-normal, log-logistic) 169

with no additional development costs. Even if the primary purpose and novelty of our 170

method is to provide non-parametric survival estimate, the possibility to fit classical 171

parametric survival estimates is also an interesting feature especially considering that 172

few or none of the previously published methods provide any practical implementation. 173

Practical Implementation 174

EM initialization is performed by affecting random weights wi to all individuals in each 175

pedigree (e.g., drawn from a uniform distribution on [0, 1] and normalized to ensure the 176

sum-to-one constraint). Then, a first M-step is performed using these weights in order 177
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Fig 1. Simulated dataset. Reference and estimation of the survival function S(t) for carriers with 95% point-wise
confidence intervals (dashed lines). A total of n = 3, 285 (1, 641 males and 1, 644 females) individuals including 441 affected
and 319 genotyped. Left: simulation and estimation without gender effect. Right: simulation and estimation with a
proportional protective effect for females (gender=2).

to provide an initial value of θ. The EM iterations are run until numerical convergence 178

is achieved. The usual convergence criterion is such that the absolute error between 179

survival estimates (e.g., baseline survival at age 20, 40, 60, 80) decreases below a 180

threshold (e.g., 10−10) between two consecutive iterations of the algorithm. The 95% 181

pointwise confidence intervals are simply provided by the standard (weighted) 182

Kaplan-Meier (or Nelson-Aalen if we consider covariates) estimation of the survival. 183

1 Validation on Simulated Datasets 184

For validation purposes we first consider the application of our method on simulated
datasets. In order to simulate realistic pedigree structure (parental relationships and
individual genders), we use 64 French and Portugese THA families from [2] totalizing
1, 095 individuals. These 64 families were replicated three times resulting in a dataset of
n = 3, 285 individuals in 192 families. Genotypes were assigned using the
Hardy-Weinberg distribution for the founders and respecting the Mendelian
transmission for the non-founders. We have used an allele frequency of f = 0.20 in order
to obtain enough informative families (without simulating any ascertainment process).
The gender of the transmitting parent was not taken into account in this work (no
distinction between X = 01 and X = 10). Thus, the genotype of individual i was binary
and individual i was a mutation carrier if Xi ∈ {01, 10, 11} and non carrier if Xi = 00.
The age at diagnosis was simulated according to a piecewise constant hazard rate
function, λ(t), given as follows:

λ(t) =


0 if t ∈ [0, 20]
0.02 if t ∈]20, 40]
0.10 if t ∈]40, 60]
0.05 if t > 60

.

A uniform censoring data between 15 and 80 years resulting in a censoring rate of 185

roughly 30% (similar to real data censoring rates) was simulated. A total of 10% of the 186

individuals (uniformly selected) was supposed to be genotyped (without error) while the 187

90% remaining individuals were not. 188

One can see on Figure 1 (left) the non-parametric Kaplan-Meier estimation obtained 189

at the end of the EM algorithm. Despite the fact that only 10% of the individuals 190

where genotyped, the method clearly manages to provide accurate estimates. 191

PLOS 8/20



Unsurprisingly, the size of the confidence intervals decrease when the sample or the 192

number of affected individuals increases (data not shown). 193

In order to demonstrate the ability of our method to deal with semi-parametric 194

estimation (non-parametric baseline survival and proportional hazard) we now consider 195

the previous incidence λ(t) as a baseline incidence which is also the male incidence. 196

Moreover, we assume that the females benefit from a protective effect and we use the 197

relative hazard (RH) 0.55 = exp(−0.6) (which means that males have an instantaneous 198

risk 1.8 higher than females). We denote by β = −0.6 the regression parameter. In our 199

simulation, we hence generate the time to diagnosis with the survival 200

S1(t) = exp(−Λ(t)) for males and with the survival S2(t) = exp(−Λ(t)eβ) for females. 201

Censoring and genotyping remain unchanged. 202

Covariates can be taken into account by stratifying on these covariates. However, 203

since proportional hazard models are commonly considered in this context, we also 204

perform a simulation where we assume a PH effect of the gender. At each M-step of the 205

EM algorithm we fit both a Cox PH model using gender as factor (gender=1 as default) 206

and then perform a non-parametric (Nelson-Aalen) estimation of the baseline survival. 207

At the end of the algorithm, estimation of the proportional effect can be combined with 208

the baseline survival estimation to provide survival estimations for the two classes. 209

Alternatively, a purely stratified approach is also possible and give very similar results 210

(data not shown) but since our purpose was here to illustrate the semi-parametric 211

approach, we only give its results. The final Cox fitting gives that the β parameter was 212

estimated by β̂ = −0.59 (p-value < 0.01) which is very close to the true value β = −0.6, 213

and one can see on Figure 1 (right) the survival estimates for the two classes. Like for 214

the simpler case with no covariates, the estimations are quite consistent with the ground 215

truth. Again, increasing the sample size or the number of affected individuals leads to 216

sharper confidence intervals (data not shown). 217

Now that the method appears to be validated on simulated datasets, we can consider 218

real datasets. 219

2 Application to the THA 220

In this section the proposed method is applied to the transthyretin hereditary 221

amyloidosis (THA), a severe autosomal dominant disorder caused by a mutation of the 222

transthyretin (TTR) gene. The disorder initially described in Portugal is now 223

recognized across the world with areas of highest prevalence like in Sweden or in 224

Japan [26]. The ATTR-Val30Met (denoted MET30 from now on) is the most frequent 225

pathogenic variant in Europe and virtually the only one detected in Portugal and 226

Sweden. For this particular variant, a wide range of age at onset is observed with an 227

average 30 (resp. 56) in Portuguese (resp. Swedish) families. 228

In France, the population of THA is heterogeneous including families from 229

Portuguese descent presenting alike those from Portugal and families from French 230

descent. The latter are characterized by a heterogeneity of pathogenic TTR variants, 231

including the MET30 in 40% and a later onset of symptoms averaging 58 years of age. 232

Fortunately, significant therapeutic advances occurred in the recent years with the aim 233

to stabilize the disease progression. In this setting, a better knowledge of the risk of 234

being symptomatic for carrier is highly needed to guide their follow up and to manage 235

patients at the very onset of symptoms. It may also give clues on our understanding of 236

the pheno-genotypic variability observed. 237

Because of the low allelic frequency, random sampling is not a tractable approach to 238

obtain informative samples. As a consequence, data are usually obtained from families 239

ascertained through affected individuals. Indeed, as all affected individuals necessarily 240

carry the mutation, families ascertained in this way are very informative for estimating 241
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Table 2. The three THA datasets

Dataset French Portuguese Swedish
number of families 46 33 77
number of individuals 624 384 1, 353
number of affected 115 122 230
known genotypes 58.3% 60.8% 24.8%

survival function. The drawback of this procedure is that the survival function can be 242

significantly overestimated if the ascertainment process is not taken into account [27]. 243

Therefore, an adjustment for the ascertainment bias is required. Different adjustments 244

for ascertainment bias have already been proposed in order to provide valid risk 245

estimates of a genetic disease (see for instance [1, 3, 6]). In these applications, the 246

ascertainment bias was corrected by a classical method that consists in simply removing 247

the phenotypic information of the individual (called proband) who allowed his family to 248

be selected. This ascertainment correction is a well-known (and validated) preprocessing 249

technique whose relevance is not discussed here. 250

Here we considered three datasets (see Table 2): the French dataset totalized 46 251

families from French descent with as many as 12 different pathogenic TTR variants 252

including the MET30 in 22; the Portuguese dataset included 33 MET30 families from 253

Portugal; the 3rd dataset enrolled 77 MET30 kindreds from Northern Sweden. The 254

frequency of mutated allele was set to f = 0.001 [6, 28]. This parameter is generally 255

unknown in practice. In addition, it has been shown in [6] that the survival estimations 256

are not highly sensitive to this parameter. 257

For each dataset, we provide a semi-parametric survival estimation with a gender 258

proportional hazard effect. We provide p-values for the gender effect through Cox’s 259

(partial-) likelihood ratio tests. For each dataset, the results are compared to previously 260

published analyses. 261

Figure 2 shows the survival estimates by gender for the three datasets. For the 262

French dataset (top-left Figure 2), one observes a later disease onset (median around 70) 263

than in the Portuguese sample (Figure 2, top-right) showing a median around age 45 264

years. A significantly higher instantaneous risk is observed for men compared to women 265

in both the French (RH 1.7, Cox’s p-value 0.03) and the Portuguese (RH 1.57, Cox’s 266

p-value 0.033) datasets. In contrast, we found no gender effect in the Swedish dataset 267

(Figure 2, bottom-left, Cox’s p-value 0.42) and hence present the estimate without 268

gender effect in Figure 2 (bottom-right). The disease onset appears to be much later in 269

the Swedish population in comparison with the French and Portugese populations. 270

These observations are highly consistent with the previously published 271

analyses [2,29]. In the previous stratified analysis, the gender difference was found lower 272

and not significant in the whole French dataset. This difference can be explained by the 273

additional power provided by the proportional hazard model used here. For comparison 274

purposes we fitted on the French data a stratified non-parametric survival and tested for 275

difference between genders using the log-rank test resulting in a non significant p-value 276

of 0.122, which is consistent with the previous study. The previously reported 277

heterogeneity in age of onset across the three datasets is confirmed in the present study. 278

3 Discussion 279

In the present article we introduced a flexible and robust framework to estimate survival 280

function from familial data in cases of age-dependent genetic diseases. Our new method 281

provides a unifying way to simply implement both previously published methods 282

(parametric Weibull-based) as well as new interesting extension such as the 283
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Fig 2. Survival estimates. Top-Left: French dataset with a gender PH effect (RH 1.7, Cox’s p-value 0.030); Top-Right:
Portugese dataset with a gender PH effect (RH 1.57, Cox’s p-value 0.033); Bottom-Left: Swedish dataset with a
non-significant gender PH effect (Cox’s p-value 0.42). Bottom-Right: Swedish dataset without any gender PH effect. 95%
point-wise confidence intervals are given by the colored regions.
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non-parametric or semi-parametric extensions. 284

In order to tackle the challenging problem of the unknown genotypes in the family 285

data, our method relies on the EM algorithm and decomposes the problem into two 286

steps: the E-step which uses belief propagation in Bayesian networks to compute 287

marginal individual posterior carrier distribution, and the M-step which estimates 288

survival using weighted observations. 289

The key feature of our approach is that these two steps are handled by robust and 290

validated implementations: the bped command-line program for the belief propagation, 291

and the survival package (statistical software R [13]) for the survival estimates. We 292

can therefore consider any baseline survival estimators, either parametric (e.g., Weibull, 293

exponential, log normal, etc.) or non parametric (Kaplan-Meier). Moreover, these 294

estimators can be easily combined with Cox’s proportional hazard models and with 295

stratification. 296

Note that in the present paper we focused on the particular case where non-carriers 297

cannot be affected (survival of 1.0) and where the genetic model is dominant. However, 298

the method can be easily extended to more general models (sporadic cases, recessive 299

model, etc.) as long as the incidence among non-carriers is known (i.e. estimated from 300

the general population). Moreover, more complex models allowing for genotyping errors 301

or even pedigree errors (for instance wrong filiation) can be incorporated, as done in [30], 302

even if, in the present work, we have focused on the most basic (but reasonable) model. 303

In the application part, as pedigrees are ascertained through an affected individual, 304

the proband’s phenotype exclusion method is used to avoid ascertainment bias. 305

However, other ascertainment corrections can be used if the ascertainment process is 306

more complex (e.g., ascertainment on family criteria in a complex disease with 307

monogenic sub-entities, such as breast and ovarian cancers with the BRCA mutations). 308

Again, this is in favor of the flexibility of the proposed method. 309

Concerning the perspectives, an interesting extension of this work would be to 310

account for a possible correlation between members of the same family by including a 311

frailty in the survival function. The familial frailty would typically represent an 312

unknown shared exposure to some environmental factors or to some kinds of polygenic 313

effect. However, the estimation of such models is known to be challenging, especially in 314

the context of non-parametric survival estimation (see e.g., [31, 32]). Further 315

investigations will be conducted on this important topic in a forthcoming work. 316

However, in this work and particularly for applications to monogenic diseases (such as 317

THA), this frailty aspect should not modify the estimation results. Moreover, the 318

proposed method allows to take into account the parent of origin effect. Thus, it would 319

be very interesting to study the robustness of the survival function estimation when the 320

parent-of-origin effect is analyzed. 321

Supporting information 322

S1 R source code demo. 323
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R demo source code
G. Nuel

12/02/2017

Survival Estimate with Known Genotypes

load("ped.Rdata")
require(survival)
idx=(ped$geno>0)
fit=survfit(Surv(ped$time[idx],ped$status[idx])~1)
plot(fit)
lines(c(0,20:80),c(1,pexp(0:60,rate=1/20,lower.tail=FALSE)),col="red")
legend("topright",c("Kaplan-Meier","True Survival"),col=1:2,lty=1,bg="white")
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Survival Estimate with Unknown Genotypes

n=nrow(ped)
# write the ped file
write.table(file="test.ped",ped[c("fam","id","pat","mat")],

row.names=FALSE,col.names=FALSE,sep="\t")
# random initialization
weights=runif(n)
# but all affected must be carriers
affected=(ped$status==1)
weights[affected]=1.0
# main loop
for (iter in 1:50) {

# weight Kaplan-Meier fit
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fit=survfit(Surv(ped$time,ped$status)~1,weights=weights)
# retrieve survival and hazard as step functions
S=stepfun(fit$time,c(1.0,fit$surv))
# verbose output
cat("iter=",iter,"S(30)=",S(30),"S(50)=",S(50),"S(70)=",S(70),"\n")
# build evidence
ev=matrix(NA,n,4)
ev[affected,1]=0.0; ev[affected,2]=1.0;
ev[!affected,1]=1.0; ev[!affected,2]=S(ped$time[!affected]);
ev[,3]=ev[,4]=ev[,2]
# write the evidence file
write.table(file="test.ev",cbind(ped[c("fam","id")],ev),

row.names=FALSE,col.names=FALSE,sep="\t")
# bped call
system("/Users/nuel/Downloads/bped/bped test.ped test.ev 0.10 > test.out")
post=read.table("test.out")
weights=apply(post[,3:5],1,sum)

}

## iter= 1 S(30)= 0.884187 S(50)= 0.7747784 S(70)= 0.7295431
## iter= 2 S(30)= 0.7709153 S(50)= 0.5549793 S(70)= 0.4689062
## iter= 3 S(30)= 0.7090603 S(50)= 0.4350193 S(70)= 0.3266796
## iter= 4 S(30)= 0.6717274 S(50)= 0.3626087 S(70)= 0.2409144
## iter= 5 S(30)= 0.6484126 S(50)= 0.31736 S(70)= 0.1872666
## iter= 6 S(30)= 0.6336336 S(50)= 0.2886447 S(70)= 0.1530979
## iter= 7 S(30)= 0.6241745 S(50)= 0.2702362 S(70)= 0.1310548
## iter= 8 S(30)= 0.6180655 S(50)= 0.2583246 S(70)= 0.1166727
## iter= 9 S(30)= 0.614084 S(50)= 0.2505457 S(70)= 0.1071952
## iter= 10 S(30)= 0.6114667 S(50)= 0.2454228 S(70)= 0.1008999
## iter= 11 S(30)= 0.6097341 S(50)= 0.2420264 S(70)= 0.09669583
## iter= 12 S(30)= 0.6085819 S(50)= 0.2397648 S(70)= 0.09388105
## iter= 13 S(30)= 0.6078139 S(50)= 0.2382561 S(70)= 0.09199646
## iter= 14 S(30)= 0.607302 S(50)= 0.2372499 S(70)= 0.09073727
## iter= 15 S(30)= 0.6069616 S(50)= 0.2365806 S(70)= 0.089899
## iter= 16 S(30)= 0.606736 S(50)= 0.2361368 S(70)= 0.08934343
## iter= 17 S(30)= 0.6065871 S(50)= 0.2358439 S(70)= 0.08897703
## iter= 18 S(30)= 0.6064892 S(50)= 0.2356514 S(70)= 0.08873664
## iter= 19 S(30)= 0.6064252 S(50)= 0.2355255 S(70)= 0.08857967
## iter= 20 S(30)= 0.6063835 S(50)= 0.2354436 S(70)= 0.08847765
## iter= 21 S(30)= 0.6063565 S(50)= 0.2353905 S(70)= 0.08841165
## iter= 22 S(30)= 0.606339 S(50)= 0.2353562 S(70)= 0.08836908
## iter= 23 S(30)= 0.6063279 S(50)= 0.2353341 S(70)= 0.08834176
## iter= 24 S(30)= 0.6063206 S(50)= 0.23532 S(70)= 0.08832427
## iter= 25 S(30)= 0.6063161 S(50)= 0.235311 S(70)= 0.08831309
## iter= 26 S(30)= 0.6063131 S(50)= 0.2353052 S(70)= 0.08830597
## iter= 27 S(30)= 0.6063113 S(50)= 0.2353015 S(70)= 0.08830147
## iter= 28 S(30)= 0.6063101 S(50)= 0.2352992 S(70)= 0.0882986
## iter= 29 S(30)= 0.6063094 S(50)= 0.2352978 S(70)= 0.0882968
## iter= 30 S(30)= 0.6063089 S(50)= 0.2352969 S(70)= 0.08829567
## iter= 31 S(30)= 0.6063086 S(50)= 0.2352963 S(70)= 0.08829495
## iter= 32 S(30)= 0.6063084 S(50)= 0.2352959 S(70)= 0.08829449
## iter= 33 S(30)= 0.6063083 S(50)= 0.2352957 S(70)= 0.08829419
## iter= 34 S(30)= 0.6063082 S(50)= 0.2352955 S(70)= 0.08829401
## iter= 35 S(30)= 0.6063081 S(50)= 0.2352954 S(70)= 0.0882939
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## iter= 36 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829383
## iter= 37 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829379
## iter= 38 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829376
## iter= 39 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829375
## iter= 40 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829374
## iter= 41 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829373
## iter= 42 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829373
## iter= 43 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829372
## iter= 44 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829372
## iter= 45 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829372
## iter= 46 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829372
## iter= 47 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829372
## iter= 48 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829372
## iter= 49 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829372
## iter= 50 S(30)= 0.6063081 S(50)= 0.2352953 S(70)= 0.08829372
plot(fit)
lines(c(0,20:80),c(1,pexp(0:60,rate=1/20,lower.tail=FALSE)),col="red")
legend("topright",c("EM Kaplan-Meier","True Survival"),col=1:2,lty=1,bg="white")
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carrier=(ped$geno>0)
plot(weights,col=carrier+1,pch=carrier+1)
legend("right",c("non-carrier","carrier"),col=1:2,pch=1:2,bg="white")
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require(pROC)
res=roc(cases=weights[carrier],controls=weights[!carrier],ci=TRUE)
plot(res)
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##
## Call:
## roc.default(controls = weights[!carrier], cases = weights[carrier], ci = TRUE)
##
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## Data: 1496 controls < 304 cases.
## Area under the curve: 0.9849
## 95% CI: 0.9768-0.9931 (DeLong)
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method for estimating age-dependent disease risk associated with mutation
carrier status from family data. Genet Epidemiol. 1995;12(1):13–25.

2. Plante-Bordeneuve V, Carayol J, Ferreira A, Adams D, Clerget-Darpoux F,
Misrahi M, et al. Genetic study of transthyretin amyloid neuropathies: carrier
risks among French and Portuguese families. J Med Genet. 2003;40(11):e120.
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26. Planté-Bordeneuve V, Said G. Familial amyloid polyneuropathy. The Lancet
Neurology. 2011;10(12):1086–1097.

27. Carayol J, Khlat M, Maccario J, Bonäıti-Pellié C. Hereditary non-polyposis
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effect in transthyretin related amyloid polyneuropathy. Amyloid.
2009;16(3):149–150.

29. Hellman U, Alarcon F, Lundgren HE, Suhr OB, Bonäıti-Pellié C,
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