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Abstract:

Detecting gene-environment (G×E) interactions in the context of genome-wide association stud-

ies (GWAS) is a challenging problem since standard methods generally present a lack of power.

An additional difficulty arises from the fact that the causal exposure is seldom observed and only

a proxy of this exposure is observed. This leads to an additional drop in terms of power and

it explains the failure of standard methods in detecting interactions, even very strong ones. In

this article, we consider the latent exposure as a source of heterogeneity and we propose a new

powerful method, named “Breakpoint Model for Logistic Regression” (BMLR), based on a break-

point model, in order to detect G ×E interactions when causal exposure is unobserved. First,

the BMLR method is compared to the ordered-subset analysis for case-control method, that has

been developed for the same purpose, through simulations. This highlights the ability of BMLR

to detect the heterogeneity, and therefore, to detect interaction with latent exposure. Finally,

the BMLR method is compared to standard methods, such as Plink, to perform a GWAS on a

published realistic benchmark.
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founding Factor, GWAS.

1 Introduction

In recent years, there has been a growing interest in detecting heterogeneity for complex human

diseases (e.g., genetic heterogeneity, phenotypic heterogeneity, etc) in the context of genome-

wide association studies (GWAS). Among others, a reason is that heterogeneity that is not con-

sidered (or detected) will involve a strong loss on the resulting power of the study.

On the other hand, detection of gene-environment interactions is of utmost interest in genetic

epidemiology since it can help to identify high-risk subgroups in the population. This problem is

well known to be challenging and several methods to detect gene-environment interactions (G ×

E) have been proposed (see e.g., [1, 2, 3, 4]). However, few loci that interact with environmental

factors have been identified so far. On top of this low power, one of the reason that could explain

this difficulty in detecting G × E interactions is that the causal exposure is seldom observed in

practice. Indeed, it is frequent that only proxy covariates are observed instead of the causal

exposure (e.g. body mass index (bmi) for appetite suppressant treatment). In such a situation,

the latent exposure can be seen as a source of heterogeneity.

Moreover, the presence of an interaction between a genetic locus and a latent exposure can

also be seen as an unexplained source of heterogeneity in GWAS. Indeed, the heterogeneity in

term of exposure can be seen as a phenotypic heterogeneity (disease with or without exposure).

However, classical methods for detecting G × E interactions have been shown to be inefficient

when the causal exposure is unobserved [5]. Indeed, [5] has introduced a benchmark dataset

simulated from data using a complex simulation framework. The goal of such benchmark dataset

was to assess the power of detecting G × E interactions between a causal single-nucleotide poly-

morphism (SNP) and an unobserved environmental factor. Instead of this unobserved environ-

mental factor, several proxy covariates were provided, all more or less correlated with the causal

environmental factor. By comparing popular approaches, such as PLINK, Random Forest and

FastLMM, this work has shown the lack of power in detecting G × E interactions when causal

exposure are unobserved. Indeed, the disease model was simulated without marginal effect of

the causal SNP and with a high relative risk of 50 for the interaction of the disease and the binary
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latent exposure (which is an extreme scenario). Despite such a relative risk and the simulation

of 595 cases and 596 controls, the power for detecting the G × E interaction on Chromosome 6

did not exceed 66% (best result obtained with the random forest) while this power was 100%

when the causal exposure was artificially observed.

In the context of linkage analysis, Hauser et al. [6] (ordered-subset analysis) suggest iden-

tifying families subsets defined by the level of a trait-related covariate that provide maximal

evidence for linkage and show that this approach might allow to uncover latent heterogeneity

in the data. In [7] this idea was extended to case-control data. More precisely, to test whether

the association between SNP genotypes and disease status is significantly stronger in a subset of

individuals, individuals are sorted from small to high covariate values. Then, a 2×2 contingency

table is created and an allelic association χ2-statistic is computed for each subset of individuals.

Finally, the subset with maximum association evidence is identified. This method, named OSACC

for ordered-subset analysis for case-control), is simple but does not account for the complexity

of the problem. Moreover, this method is computationally expensive and consequently, it cannot

be applied to the whole genome.

In this paper, we follow these lines of works and propose a new method to detect the G × E

interactions when causal exposure is unobserved by explicitly estimating the regression param-

eters. For that purpose, one deals with this problem as if it was a problem of detecting het-

erogeneity by considering the latent exposure as a source of heterogeneity. More precisely, the

proposed approach allows to detect an interaction between a loci and a latent environmental

exposure. This method is called BMLR for “Breakpoint Model for Logistic Regression”. The main

idea is to treat the latent exposure as longitudinal heterogeneity across individual in a proximity

space (like the body mass index covariate or the age covariate) and to use a breakpoint model

based on constrained Markov chain to detect the separation between the homogeneous groups.

Then, we develop a statistic to test the presence of a genetic interaction with a latent exposure

in the context of logistic regression. In comparison with OSACC, the proposed method is com-

putationally efficient, more flexible and provides estimation for all parameters involved in the

problem.

The paper is organized as follows: Section 2 introduces the BMLR model and presents val-

idations on a simple simulated dataset. In section 3, we compare the proposed method to the
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OSACC method, first on simple simulations and then on more realistic ones. Finally, our method

is used to perform a GWAS on the published realistic benchmark and is compared to standard

techniques (e.g. PLINK, random forests).

2 Methods

The Breakpoint Model

The breakpoint model aims at finding the best (in terms of data separation) breakpoint that

highlights the heterogeneity due to a latent exposure in the observed data. For that purpose, the

idea is to treat the latent exposure as longitudinal heterogeneity across the ordered individuals

in a proximity space (e.g. individuals ordered by increasing bmi).

Let us consider n observations, a binary response variable y ∈ {0, 1}n and covariates X ∈

Rn×p. If we denote by bp ∈ {1, 2, . . . , n − 1} the breakpoint, one decomposes I = {1, . . . , n}

into the partition I1 ∪ I2 with I1 = {1, . . . , bp} (n1 observations) and I2 = {bp + 1, . . . , n}

(n2 observations), and the vector y can therefore be written as (y1 y2)
T where y1 ∈ Rn1×1

corresponds to the ordered observation between 1 and bp and y2 ∈ Rn2×1 corresponds to the

ordered observation between bp+1 and n. Similarly, we have X = (X1 X2)
T , with X1 ∈ Rn1×p,

and X2 ∈ Rn2×p.

For all breakpoint bp, we want to test the following hypothesis: H0 : {logit y = Xβ} versus

H1 : {logit y1 = X1β1 and logit y2 = X2β2} where β, β1, β2 ∈ Rp×1.

For that purpose, our objective is then to find the most probable segmentation defined as the

breakpoint configuration achieving the highest likelihood when fitting our regression model on

each segment. Thus, the breakpoint is such that it maximizes the criterion

crit(bp) =

max
β1

loglik(β1|y1, X[1 : bp, ]︸ ︷︷ ︸
X1

) + max
β2

loglik(β2|y2, X[bp + 1 : n, ]︸ ︷︷ ︸
X2

)

 ,

where loglik denote the log-likelihood function. Finally, the breakpoint is such as:

bp∗ = argmax
bp

crit(bp)
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Figure 1 shows likelihood values according to the breakpoint position on data simulated

under a model M0 for individuals ordered from 1 to 2000 and under a model M0’ (see below for

a description of the various simulation models) for individuals ordered from 2001 to 3000. We

note that the criterion is maximal very closed to the true breakpoint location which is in 2000.

One drawback of this strategy is that the computation of the criterion for all possible seg-

mentations is time-consuming. This is why an efficient approach using the constrained Hidden

Markov Model (HMM) introduced in Luong et al.(2013) [8] will be preferred here. Let us note

that this method also has been used recently for detecting heterogeneity in survival responses

[9].

Computational speed-up

In this section, we present a faster way to find the breakpoint that maximizes the criterion. Our

approach is directly inspired from [8, 9] where the segmentation of n points into K segments

(K = 2 in our case) is modelled through an hidden constrained Markov model.

Constrained Markov chain for breakpoint models

Let us denote by y ∈ {0, 1}n the vector of (ordered) binary response variables, and by S ∈ {1, 2}n

the (hidden) segmentation process. Without any constraint on S, we define our model as follows:

P(y, S;β) ∝ P(S1)

n∏
i=2

P(Si|Si−1)︸ ︷︷ ︸
Markov part

n∏
i=1

P(yi|Si;β)︸ ︷︷ ︸
logit part

with logP(yi|Si = k;β) = 1yi=1Xiβk − log
(
1 + eXiβk

)
and P(Sk) = 1k=1, P(Si = k|Si−1 = j) =

1(k−j)∈{0,1}. Note that the Markov transition are improper since they do not sum to 1 which is

not a problem since we only define this distribution up to a normalizing constant. Indeed, in

order for this model to correspond to our breakpoint framework, we need to work conditionally

to the constraint C = {Sn = 2}. Using this constraint, with n = 10 and bp = 6 we get for example

S = 1111112222.
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Max forward / max backward

Now, following [8, 9] we need to introduce the so-called max-forward (denoted Fmax) and max-

backward (denoted Bmax) quantities for all i ∈ {1, . . . , n} and k ∈ {1, 2}:

 Fmax
i (k) = maxS1,...,Si−1

P(S1, . . . , Si−1, y1, . . . yi, Si = k)

Bmax
i (k) = maxSi+1,...,Sn

P(Si+1, . . . , Sn, yi+1, . . . yn, C|Si = k )

with the convention that Bmax
n (·) ≡ 1.

We now introduce the log-evidence as:

log ei(k) = 1yi=1Xiβk − log
(
1 + eXiβk

)
and using the results from [8] (by simply replacing the sum operator by max), we easily establish

the following recursions:

 logFmax
1 (k) = log (1k=1e1(k))

logFmax
i (k) = log ei(k) + max(logFmax

i−1 (k − 1), logFmax
i−1 (k)) for i = 2, . . . , n

and logBmax
n (k) = 0 and logBmax

n−1(k) = log (1k=2en(k))

logBmax
i−1(k) = max(log ei(k) + logBmax

i (k), log ei(k + 1) + logBmax
i (k + 1)) for i = n− 1, . . . , 1

Once the max-forward and max-backward quantities have been computed, one can easily

derive from them our quantities of interest:

crit(θ) =

{
max
β1

loglik(β1|y1, X1) + max
β2

loglik(β2|y2, X2)

}
= logFmax

n (2)

where θ = (β1, β2), and if we denote by S∗ the segmentation maximizing this criterion, we

obtain:

S∗i = argmax
k
{logFmax

i (k) + logBmax
i (k)}
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method bp∗ β11 β12 β21 β22 time
brute force 2005 −0.63077 0.30422 0.19324 −0.37095 62.7 s

max-forward 2005 −0.63078 0.30424 0.19321 −0.37090 24.1 ms

Table 1: Comparison of the performance on the brute force algorithm and max-forward on a
simple example. Computations performed on a standard laptop computer.

and bp∗ = i such that S∗i+1 − S∗i = 1.

As a consequence, it is therefore possible to compute for any θ the objective function crit(θ)

and the corresponding bp∗ with a complexity O(n). The optimization on θ can then be obtained

through any multidimensional optimizer (e.g. Newton-Raphson). As an example, let us consider

the following design: n = 3000, θ = (−0.7, 0.3, 0.2,−0.5) and bp∗ = 2005 . We can see in

Table 1 that both the brute force approach and the max-forward one are giving very similar

results but with a noticeable difference: max-forward is roughly 3000 time faster than the brute

force approach.

Likelihood Ratio (LR) test

Now, if we want to test for heterogeneity, the idea is to perform a likelihood ratio test to compare

the best segmentation with K = 2 segments to the best (and only one) segmentation with K = 1

segment. In the same way, the test allows to test the interaction between a genetic covariate

and a latent environmental exposure provided that the observations are ordered such as they

can display an heterogeneity. For example, the data can be collected over time, or we may use

a PCA over the covariate space and project the data on the first component. Then, one can fit a

model with one breakpoint against the heterogeneous model. P-values can be produced using the

likelihood ratio statistics. We consider the logistic regression model : logit y = β0+β1XP +β2G,

where XP is considered as a nuisance covariate, correlated with a latent exposure (i.e. XP is a

proxy of the causal exposure). The binary hypothesis testing formulation is:

• H0: homogeneous model (θ = (β0, β1, β2))

• H1: breakpoint model with one breakpoint (θ1 = (β01, β11, β21) et θ2 = (β02, β12, β22) )
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And the test statistic is defined by:

LR = 2×
(
max

bp
crit(bp)−max

θ
loglik(θ)

)
.

Obviously, we can easily adjust on confounding factors in the previous model, increasing the

dimension of the parameters vector θ.

Since the two models are clearly nested, it might seem a good idea to assume that the dis-

tribution of the LR statistic under H0 should follow a χ2-distribution with 2 degrees of freedom

(df). A simple simulated dataset was performed (as described in the following section where

n = 3000 and bp = 2000). Figure 2 shows the histogram of the distribution of the LR statistic

under H0 and the distribution of a χ2(df = 2) (blue curve). We observe that it does not work

since this LR test is indeed the maximum of this statistic over all possible segmentations. If all

tests were independent (which is *not* the case), the resulting statistics would be distributed as

the maximum of n χ2(df = 2) which is not distributed as a χ2.

However, the empirical distribution of the LR statistic can be easily obtained by permuting

the response variable y and the observed covariates X.

Constrained breakpoint model

The method can be easily extended if parameter coordinates are fixed. For exemple, if we con-

sider the previous logistic regression model logit y = β0 + β1XP + β2G and if we are interested

to test only the interaction between the genetic covariate G and the latent exposure E, we can

constrained parameters β01 and β02 to be the same under H1 as well as β11 and β12 . Thus, the

hypotheses become:

• H0: homogeneous model (θ = (β0, β1, β2))

• H1: breakpoint model with one breakpoint (θ1 = (β0, β1, β21) et θ2 = (β0, β1, β22) )

Simulations

In this section, we compare our BMLR method with unconstrained or constrained parameters (re-

spectively denoted as BMLR and cBMLR) with the OSACC method on several simulated datasets.

8



The performance of the two approaches is assessed through the area under the receiver oper-

ating characteristic (AUROC). Let us recall that ROC curves provide a graphical representation

of the specificities and sensitivities that can be obtained for all possible values of the threshold

of significance [10]. All AUROC presented in this paper (including 95% confidence intervals)

have been empirically obtained using finite sample size under H0 and H1 and the R package

pROC [11]. An AUROC from 0.5 to 0.7, 0.7 to 0.8, 0.8 to 0.9, or above 0.9 can be respectively

interpreted as a classifier of ’weak’, ’good’, ’excellent’, or ’perfect’ statistical power.

In all simulations of case-control dataset, we used the package waffect [12] to generate the

phenotypic status (case or control) for a chosen causal disease model. The package waffect are

freely available on the CRAN website of R package [13]. Moreover, simulations under H0 are

simply obtained by performing a permutation on the individual sample.

A simple simulated dataset

First, the two approaches (BMLR and OSACC) are evaluated and compared on a simple scenario.

We consider the following logistic regression model:

logit y = β0 + β1G,

where G represents the genotypic observed exposure taking the values {0, 1, 2} with respective

probabilities {0.8, 0.15, 0.05}. y ∈ {0, 1} is the binary phenotypic variable (generated with waf-

fect package). n = 1200 ordered individuals are simulated, among which 600 are cases and 600

are controls. The breakpoint is arbitrarily chosen at position bp = 500 (so, after the 499th indi-

vidual) and the number of replicates is set to 500 for the AUROC estimation with the correspond-

ing 95% confidence intervals. Thus, the n1 = bp first observations are simulated with parameter

θ1 = (β01, β11) and the n2 = n− bp following observations with parameters θ2 = (β02, β12).

In the first scenario (S1), that refers to the constrained model, β01 and β02, the intercept

for the two models before and after the breakpoint, are fixed to the same value equal to −5.

β11 are fixed to 3.0 and β12 varies from 0 (i.e. an important heterogeneity before and after the

breakpoint) to 3 (i.e. no heterogeneity). In the second scenario (S2), that is the unconstrained

model, parameters are fixed as follow : β11 = 3.0 and β12 = 2.5. The intercept β02 is fixed to
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−5.0 while β01 varies from −6.0 to −4.0. So, when β01 is equal to −5.0, the model is weakly

heterogeneous.

A more realistic simulated dataset

This section presents a more realistic simulated dataset in order to compare the two methods.

Here, we distinguish our approach between two sub-approaches: BMLR and BMLRc where co-

efficient of the model parameter could be fixed. First, a covariate named bmi (representing the

body mass index) is simulated with respect to a uniform distribution between 18 and 35. The

latent exposure E ∈ {0, 1} is simulated according to the logit model such as the probability to

be exposed for individual with bmi = 18 is 0.01 and the probability to be exposed for individ-

ual with bmi = 35 is 0.99 (i.e. P(E = 1|bmi = 18) = 0.01 and P(E = 1|bmi = 35) = 0.99). A

genotypic exposureG is simulated as previously with values {0, 1, 2}with respective probabilities

{0.8, 0.15, 0.05}. The response covariate y is simulated with waffect according to the following

model:

logit y = β0 + β1bmi+ β2G+ β3E + β4(bmi× E) + β5(G× E)

Again 1200 ordered individuals are partitioned between 600 cases and 600 controls. We consider

100 replicates and we denote by θ the parameter vector θ = (β0, β1, β2, β3, β4, β5).

Five different models are considered in these simulations. In each model, except for model

M5, we consider a marginal effect of the genotypic exposure G (corresponding to β2 = 0.7) and a

marginal effect of the observed covariate bmi (corresponding to β1 = 0.05). Models are detailed

here below:

• Model M0 with θ = (−8.3; 0.05; 0.7; 0.0; 0.0; 0.0) represents the null model, without any

effect of latent exposure.

• Model M0’ with θ = (−8.3, 0.05, 0.7, 1.0, 0.0, 0.0) represents a model with only a marginal

effect of latent exposure.

• Model M3 where θ = (−8.3, 0.05, 0.7, 0.0, 0.0, 2.0) is one with an effect of interaction be-

tween the genotypic exposure and the latent exposure (no marginal effect of latent expo-

sure neither interaction between bmi and latent exposure).
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• Model M4 where θ = (−8.3, 0.05, 0.7, 1.0, 0.0, 2.0) is a model with a marginal effect of latent

exposure and an effect of the interaction between the genotypic exposure and the latent

exposure (no interaction between bmi and latent exposure).

• Model M5 where θ = (−8.3, 0.0, 0.0, 0.0, 0.0, 5.0) is the model that gives an advantage to

the OSACC method as it does not contain any effect except a strong interaction between

the genotypic exposure and the latent exposure.

Figure 3 represents boxplots of the bmi distribution. It should be noticed that this enlightens

the link between the observed covariate bmi and the latent exposureE. Indeed, figure 3(a) shows

that exposed individuals have a higher bmi than the unexposed ones. Moreover, figure 3(b)

shows the bmi boxplots from a disease response variable Y simulated with model M3. In this

case, the bmi distributions illustrated by the boxplots are not as different as from the exposure

case.

3 Results

Comparison between BMLR and OSACC on a simple simulated dataset

In the simple simulated dataset, the goal is to detect the underlying heterogeneity. To that end,

one compares our BMLR method with the OSACC one according to both parameters β12 and

β01. Figure 4 shows the AUROC with the 95% confidence intervals for the two methods in the

scenario S1 (i.e. according to β12). One can notice that both methods give the same perfect

statistical power when the model before the breakpoint (i.e. with θ1 = (β01 = −5.0 ; β11 = 3.0))

is very different from the model after (i.e. with θ2 = (β02 = −5.0 ; β12 = 0.0)). Then, as expected

when the two models become closer (i.e. when β12 get closer to β11 = 3.0), the statistical power

decreases for both methods and converges to a weak statistical power when β12 = β11 = 3.0.

However, the BMLR method performs always better than the OSACC one in all these scenarios,

demonstrating the interest of the method. Indeed, when β12 = 1.0, the AUROC obtained with

OSACC is around 0.5 while the AUROC obtained with BMLR is around 1.00. A blue vertical lines

is drawn at β12 = 2.5 where the two methods have a weak statistical power. Now, we take this

point (β11 = 3.0 and β12 = 2.5) and plot the AUC with the 95% confidence intervals for the two
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methods , according to the β01 parameter (see Figure 5). This scenario do not penalized OSACC

method as much.

When β01 diverts from β02, BMLR performance rapidly increases while OSACC performance

remains constant, and consequently poor. As expected, as β12 is fixed to 2.5, the OSACC method

does not have any power as well as BMLR method when β01 = β02 = −5.0. However, the power

obtained with BMLR is very good as soon as β01 deviates from β02, reaching an AUC of 1 when

β01 > −4.5 or β01 < −5.5.

In conclusion, BMLR performance is very promising for detecting heterogeneities while OS-

ACC method poorly performs, even in these toy-examples scenarios.

Comparison between BMLR and OSACC on a more realistic simulated dataset

This section provides comparisons between the different methods in a more realistic scenario.

First let us recall that the exposure E is not observed (i.e. it is a latent exposure). Thus, to

perform the power studies, we consider the following logistic regression model:

logit Y = β0 + β1bmi+ β2G

In addition to the OSACC method, three different extensions of the BMLR method are con-

sidered:

1) The BMLR method in which the breakpoint is defined as the maximum of the quantity

{
max
θ1

loglik(θ1|y1, X1) + max
θ2

loglik(θ2|y2, X2)

}
,

where θ1 = (β01, β11, β21) is different to θ2 = (β02, β12, β22)

2) The BMLRc2, where both intercept and bmi coefficients are supposed to be fixed: θ1 =

(β0, β1, β21) and θ2 = (β0, β1, β22). Thus we are testing for an interaction between the geno-

typic and a latent exposure.

3) The BMLRc1 where only the bmi coefficient is fixed: θ1 = (β01, β1, β21) and θ2 = (β02, β1, β22).

Thus we are again testing for an interaction between the genotypic and a latent exposure,
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Model OSACC BMLR BMLRc2 BMLRc1
M0 0.50 [0.42− 0.58] 0.50 [0.42− 0.58] 0.53 [0.45− 0.61] 0.58 [0.50− 0.66]
M0’ 0.51 [0.43− 0.59] 0.58 [0.50− 0.66] 0.58 [0.50− 0.66] 0.60 [0.52− 0.68]
M3 0.53 [0.45− 0.61] 0.86 [0.80− 0.91] 1.00 [0.99− 1.00] 0.99 [0.98− 1.00]
M4 0.52 [0.44− 0.60] 0.87 [0.82− 0.93] 0.99 [0.98− 1.00] 0.98 [0.96− 0.99]
M5 0.64 [0.46− 0.62] 0.94 [0.91− 0.98] 1.00 [1.00− 1.00] 1.00 [1.00− 1.00]

Table 2: AUROC for the methods according to the five simulated models.

but without fixing the intercept coefficient.

Table 2 shows the power of the methods according to the five models M0, M0’, . . . , M5. The

M0 model is the null model, without any heterogeneity. Thus, as expected, each method has a

weak power.

For models M0’ to M5, the OSACC method has the weakest AUROC, demonstrating the limits

of this method. Otherwise, BMLR is a powerful method to detect the interaction between the

genotypic exposure and the latent exposure (models M3 to M5) with a power always greater

than 0.86. Moreover, constrained BMLR methods perform better than reaching AUROC greater

than 0.98 in models M3 to M5. On top of that, notice that even for model M0’, that is not

particularly in favor of BMLR, this method performs better than OSACC for both constrained and

unconstrained cases. For completeness, we also applied the classical linear regressions of PLINK

to the same models, and obtained for all of them an AUROC of 0.50 (with [0.42−0.58] confidence

interval), hence showing that PLINK has absolutely no power for detecting the interaction in our

simulations.

In conclusion, BMLR generally achieves a very good power to detect interaction with a latent

exposure while the OSACC performance shows that this method fails to detect interaction.

Application on a published realistic benchmark

Finally, these methods are applied and compared with standard methods (Plink, random forest,

mixed model) on a published realistic benchmark described in [5]. Briefly, the dataset has been

simulated in order to mimic a situation in which the causal exposure is unobserved but some

covariates correlating with this hidden exposure are observed, such as bmi, smoking, sex. This

dataset is based on the publicly available HapMap project datasets [14, 15] for real genotypes

13



with population structures (i.e. simulation of Single Nucleotide Polymorphism, SNP). Analyses

were restricted to Chromosome 6 that contains more than 10 000 SNP. As in our previous sim-

ulations, waffect was used to generate phenotypes for a chosen causal disease model. Thus, we

adjust for all observed covariates in the model as well as the five first PCA components. More-

over, we constrain parameters to be the same before and after the breakpoint except for the snp

parameter. Finally, the model is written as follows:

logit y = α+

5∑
i=1

βipcai + γ sex+ δ smoking+ ε bmi+ η snp

The aim is to perform a GWAS to estimate the power of detecting the SNP that interacts with

the latent exposure. Several genotypic regions are considered on Chromosome 6, centered on

the causal SNP. BMLR and OSACC are compared with the power obtained in the different regions

with popular methods (PLINK, random forest, linear mixed models) [5].

The OSACC method is only applied in cases where the genotypic region analyzed on Chro-

mosome 6 was small (i.e. on causal SNP and on the region of 200 SNP centered on causal

SNP). Indeed, the OSACC method is very slow and it takes several weeks to analyze the whole

Chromosome 6 for 100 replicates.

Table 3 shows the AUROC estimated with the two methods appropriate for the detection

of the causal SNP in the context where the causal exposure is unknown : OSACC and BMLR,

according to the region on the Chromosome 6, centered on the causal SNP. As previously, two

cases have been considered for BMLR : BMLR where no parameter was fixed after and before the

breakpoint, and BMLRc, that fixes all parameters except the SNP coefficient (i.e. η).Concerning

the OSACC method, table 3 shows that the estimated statistical power is weak, even when the

region is restricted to the causal SNP.

The BMLR method reaches an excellent power to detect the SNP that interacts with the

latent exposure. In particular, the BMLRc method that focuses on the G×E interactions (where

E denote the latent exposure) gives excellent statistical power and outperforms clearly the other

methods. Indeed, the AUROC obtained for the whole Chromosome 6 is 0.96 [0.94 − 0.99] and it

is 0.99 [0.99− 1.00] when the region is restricted to the causal SNP.

Table 4 shows the AUROC obtained with popular methods such as PLINK, random forests (RF)
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AUROC (%) OSACC BMLR BMLRc
whole Chromosome 6 (100 replicats) NA 0.77 [0.70− 0.84] 0.96 [0.94− 0.99]

8 000 SNPs region NA 0.80 [0.74− 0.87] 0.93 [0.89− 0.97]
2 000 SNPs region NA 0.79 [0.72− 0.86] 0.97 [0.95− 0.99]
800 SNPs regions NA 0.81 [0.75− 0.88] 0.96 [0.93− 0.98]
200 SNPs region 0.60 [0.52− 0.68] 0.81 [0.76− 0.87] 0.94 [0.92− 0.97]

causal SNP 0.56 [0.48− 0.64] 0.86 [0.81− 0.91] 0.99 [0.99− 1.00]

Table 3: AUROC performed on the benchmark according to the region on Chromosome 6 with
OSACC and BMLR approaches. Restricted regions are centered on causal SNP.

and linear mixed models (Fast-LMM) to detect G×E interaction when the causal exposure (E) is

unknown, adapted from [5]. The approach referred to as ”PLINK SNP” consisted in performing

analysis regardless of G×E interactions by looking at the p-value associated to the significant

coefficient for the SNPs, while the approach referred to as ”PLINK SNP×bmi” accounted for in-

teractions between the analyzed SNPs and bmi through the p-value associated to the significance

coefficients of such interactions. For all popular methods considered, power is low, particularly

when estimation is done on whole Chromosome 6.

The RF method gives results comparable to those obtained with the BMLR method, even if

the BMLR method is more powerful for larger regions, which is a more realistic situation. For

example, on the whole Chromosome 6, the AUROC estimated with BMLR is 0.77 [0.70 − 0.84]

while it is 0.66 [0.62 − 0.73] with the RF method. The best estimated powers are obtained with

BMLRc method, with AUROC estimations between 0.93 and 1.00.

However, the low power estimated with popular approaches shows that this methods does

not suited to this context.

Moreover, the statistical power increases when the genotypic region length decreases both

with BMLR estimation and with RF, while the power does not vary much with the BMLRc esti-

mation. BMLR methods is thus able to detect interactions between a genetic locus and a latent

environmental exposure in GWAS, that can be seen as a source of heterogeneity.
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AUROC (%) PLINK SNP PLINK SNP × bmi Fast-LMM RF
whole Chromosome 6 (100 replicats) 0.65 [0.59− 0.70] 0.56 [0.51− 0.62] 0.62 [0.56− 0.67] 0.66 [0.62− 0.73]

8 000 SNPs region 0.72 [0.67− 0.77] 0.55 [0.50− 0.61] 0.69 [0.64− 0.74] 0.72 [0.67− 0.77]
2 000 SNPs region 0.74 [0.69− 0.79] 0.58 [0.52− 0.64] 0.71 [0.66− 0.76] 0.76 [0.71− 0.81]
800 SNPs regions 0.82 [0.77− 0.86] 0.60 [0.55− 0.66] 0.81 [0.76− 0.85] 0.79 [0.75− 0.84]
200 SNPs region 0.85 [0.85− 0.92] 0.69 [0.63− 0.74] 0.87 [0.83− 0.90] 0.85 [0.81− 0.89]

causal SNP 0.99 [0.98− 1.00] 0.89 [0.85− 0.92] 0.99 [0.98− 1.00] 0.89 [0.86− 0.92]

Table 4: AUROC performed on the benchmark according to the region on Chromosome 6 with
classical approaches (PLINK, Fast-LMM, Random Forest). Restricted regions are centered on
causal SNP (source: [5]).

4 Conclusion

In this article, we have proposed an original and powerful method, the BMLR, based on a break-

point model for logistic regression, that is able to detect interaction with a latent exposure. This

method is also very useful to detect SNPs that interact with a non observed exposure in GWAS.

Moreover, the method allows to distinguish confounding factors from causal factors. Of course,

it can also detect an effect of a latent exposure in the absence of any interaction. In addition to

the latter, an important advantage of the method is its speed in maximizing the likelihood on all

possible breakpoint thanks to efficiently execute max-forward/backward recursions.

The proposed method is used to perform a GWAS on a dataset previously described in [5]

where a GWAS had been performed with standard methods (Plink, Random Forest and Fast-

LMM), all providing a weak statistical power to detect the interaction between the causal SNP

and the latent exposure. In this case, the method we proposed is shown to be able to reach a

perfect statistical power. Moreover, statistical power estimations obtained with Plink were better

when only the marginal effect of the SNP was tested (i.e. 0.65 [0.59 − 0.70]). However, if we

compare our results with the results on marginal effect, again, BMLR method performs better

(data not shown). The proposed method is also compared with OSACC that fails to perform well.

One reason could be that OSACC maximizes the likelihood only on one side (before or after the

breakpoint).

Simulations were focused on a proximity space of dimension one, since there was only one

proxy of the latent exposure, easy to order (i.e. the bmi). When the dimension of proximity

space is higher, principal components analysis can be performed in order to sort the data.

The purpose of the article was to build a statistical test and, as a consequence, only one
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breakpoint is sufficient. However, in case of multiple breakpoints, future works can include the

extension of the proposed method. Following the same way, the proposed method could be

extended to deal with problems of detecting phenotypic heterogeneity. Although tis problem is

more difficult, it seems to feasible to develop the appropriate methodology based on BMLR.

Finally, since we deal with test statistic, an important perspective is to derive theoretical

performance, i.e., to derive the test statistic distribution under H0, in order to better adjust

the proposed method. Furthermore, one relies on a chi-square test under H0 and it should be

interesting to use more complex tests, such as Wald test or Rao test.
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Figure 1: Criterion Values according to bp position.
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Figure 3: Distribution of the observed covariate bmi
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Figure 4: Comparison between BMLR and OSACC according to β12, where β01 = β02 = −5.0 and
β11 = 3.
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