
HAL Id: hal-01795286
https://hal.science/hal-01795286

Submitted on 28 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pinning by rare defects and effective mobility for elastic
interfaces in high dimensions

Xiangyu Cao, Vincent Démery, Alberto Rosso

To cite this version:
Xiangyu Cao, Vincent Démery, Alberto Rosso. Pinning by rare defects and effective mobility for
elastic interfaces in high dimensions. Journal of Physics A: Mathematical and Theoretical, 2018, 51
(23), �10.1088/1751-8121/aac02f�. �hal-01795286�

https://hal.science/hal-01795286
https://hal.archives-ouvertes.fr


Pinning by rare defects and effective mobility for
elastic interfaces in high dimensions
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Abstract. The existence of a depinning transition for a high dimensional
interface in a weakly disordered medium is controversial. Following Larkin
arguments and a perturbative expansion, one expects a linear response with a
renormalized mobility µeff . In this paper, we compare these predictions with the
exact solution of a fully connected model, which displays a finite critical force
fc. At small disorder, we unveil an intermediary linear regime for fc < f < 1
characterized by the renormalized mobility µeff . Our results suggest that in
high dimension the critical force is always finite and determined by the effect
of rare impurities that is missed by the perturbative expansion. However, the
perturbative expansion correctly describes an intermediate regime that should be
visible at small disorder.

1. Introduction

A d-dimensional elastic interface embedded in a d+ 1 disordered medium and pulled
by an external force f is a paradigmatic model for the dynamics of many real
systems ranging from magnetic or ferroelectric domain walls [1–4] to crack ou wetting
front [5–9]. In these systems, elasticity and disorder compete: on one hand elastic
interactions try to keep the interface flat, while impurities distort the interface. The
elastic interactions can be short ranged or decay algebraically as 1/rd+α; wetting or
crack fronts have d = 1 and α = 1, domain walls have a short ranged elasticity,
corresponding to α = 2, and fully connected models correspond to α = 0.

At zero temperature, two different scenarios are expected (see figure 1): (i) a
strong pinning scenario where the interface is rough and pinned below a finite critical
force, fc, above which a depinning transition occurs with avalanche dynamics and
non linear velocity and (ii) a weak pinning scenario where distortions remain finite,
avalanches are absent and the main effect of the disorder is to renormalize the mobility
coefficient µ = v/f , where v is the average velocity of the interface, at small forces.
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Figure 1. a Illustration of an elastic line in a disordered potential with strong rare
defects. The disordered potential V (x, u) depicted here generates the stochastic
force F (x, u) = −∂uV (x, u) in the equation of motion (1). b Schematic velocity-
force characteristics of the elastic line. It displays a high velocity regime v = f
when f � 1. For f . 1 and at small disorder, one enters an intermediate regime
v = µefff with a reduced effective mobility. c At very small drive, v departs from
the linear regime and vanishes at the critical drive fc � 1.

A dimensional analysis due to Larkin [10] shows that, when d < 2α, the
interface has a finite critical force that scales as fc ∼ σ2α/(2α−d) for a small disorder
strength σ, a prediction well confirmed numerically and analytically [11–13]. Moreover
interfaces pinned by disorder should have localized soft modes, precursors of avalanche
instabilities [14,15].

For d > 2α, the same argument predicts fc = 0. However, while there is a general
consensus on the predictions in low dimension, the absence of a depinning transition
for high dimensional (long range) interface is still controversial. The related issue of
soft mode localization is also being debated [15, 16]. For instance, the exact solution
of a fully connected model with a periodic disorder, α/d = 0, shows the existence of
a weak pinning phase only for a bounded disorder, while the critical force is always
finite for a Gaussian disorder, in contrast with Larkin arguments [17–19].

In this paper, we study the full velocity-force characteristic of the fully-connected
model and reconcile the two scenarios. The strong pinning scenario occurs at very
small drive, of the order of the critical force, fc ∼ e−1/σ2

; at stronger drive, the
velocity-force characteristic is linear with an effective mobility µeff < 1 that is captured
by a perturbative calculation (figure 1). Note that in this regime, avalanches are not
expected.
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2. Perturbative expansion

The equation of motion of the line reads

∂tu(x, t) = f + fel[u(·, t)](x) + σF (x, u(x, t)), (1)

where f is the external force, F (x, u) is the stochastic force of the disorder, which is
assumed to be Gaussian with correlations,

F (r)F (r′) = ∆(r − r′), (2)

where r = (x, u) and σ is the disorder strength. Finally, fel is the elastic force, that
reads in Fourier space

f̃el[u(·, t)](kx) = −ω(kx)ũ(kx), (3)

with ω(kx) = kαx .
The external force f needed to pull the line at average velocity v can be computed

by placing the line in a parabolic potential of curvature κ moving at velocity v, and
then taking the limit κ→ 0 [12] (Appendix A). At the lowest order in σ, we obtain:

f ' v + σ2

∫
iku∆̃(k)G(k)

dk

(2π)d+1
, (4)

with the propagator

G(k) =
1

ivku + ω(kx)
. (5)

This result corresponds to the perturbative calculation at one loop.
At small velocity, the force behaves as f ∼ µ−1

eff v, where the effective mobility µeff

is formally given by

µeff =

(
1 + σ2

∫
k2
u∆̃(k)

|kx|2α
dk

(2π)d+1

)−1

. (6)

The integral over kx converges at small kx if d > 2α. Note that at large kx, the
integral is regularized a microscopic distance such as the size of the impurity or the
lattice spacing. On the contrary, if d ≤ 2α, the integral diverges and µeff = 0,
suggesting the existence of a finite critical force, which has been estimated for d = 1
and α = 1 [12].

The one loop result (6) does not depend on the distribution of the disorder and is
also valid for non-Gaussian disorder. If the disorder is Gaussian, higher orders can be
obtained using a diagrammatic expansion [20] (Appendix A). For d > 2α, they have
the same scaling as the one loop result and provide further corrections to the effective
mobility.

This perturbative calculation suggests that the disorder only renormalizes the
mobility for d > 2α. However, it is known that there is a finite critical force in the
fully connected model (α = 0) with periodic Gaussian disorder [17]. Moreover, it
can be argued that rare impurities result in a finite critical force for any positive
values of α and d [15]. One thus may ask if the finite value of µeff has a physical
meaning and is observable. In the following section, we address this question for the
mean-field model with periodic Gaussian disorder using the numerical solution of the
velocity-force characteristics.
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3. Mean-field model

We consider a fully connected model with periodic disorder [17]. The interface is
discretized, and its position is given by uj(t), j ∈ Z; its equation of motion is a
particular form of equation (1), corresponding to the case α = 0:

duj
dt

(t) = f + 〈u(t)〉 − uj(t) + σFj(uj(t)), (7)

where 〈u(t)〉 is the average of position of the interface over j and 〈u(t)〉 − uj(t) plays
the role of the elastic force in equation (1). The disorder force is defined by

Fj(u) = −hj sin(u− βj), (8)

where βj is uniformly distributed over [0, 2π] and hj > 0 is drawn independently

from the distribution ph(h) = he−h
2/2. This corresponds to a Gaussian disorder with

correlation

〈Fj(u)Fj′(u
′)〉 = δj,j′ cos(u− u′). (9)

In order to find the velocity-force characteristics, we observe that in the
thermodynamic limit 〈u(t)〉 = vt, where v is the interface velocity. So we set the
velocity v and compute the corresponding force f . For this, we first introduce a
natural shift for uj(t) by defining yj(s) = uj(s− [f − βj ]/v)− βj which satisfies

dyh

ds
(s) = vs− yh(s)− σh sin

(
yh(s)

)
(10)

for h = hj . Since yh(s) evolves in a periodic potential with period 2π, it should satisfy

yh
(
s+

2π

v

)
= yh(s) + 2π. (11)

Equations (10) and (11) concern a single particle, and we solve them numerically
(Appendix B). Then, we compute the force f by averaging the equation of motion (7)
over j, finally leading to (Appendix C):

f = π − 1

T

∫ ∞
0

∫ T

0

yh(s)ds ph(h)dh. (12)

We compare the numerical solution with the explicit result obtained from the
perturbative expansion discussed in section 2, which we apply to the mean-field model
(Appendix D):

f = v + σ2 v

1 + v2
+ σ4 v(3− 7v2 − 4v4)

(1 + v2)3(1 + 4v2)
+O(σ6). (13)

The numerical solution and the perturbative expansion are compared in figure 2 for
different disorder strength. Note that we plot v/f as a function of f .

At large force, all the curves converge to a plateau which corresponds to v = f .
At f ∼ 1, the perturbative calculation well describes the departure from the flow
regime v = f . On the contrary, the exact calculation shows that the velocity vanishes
at a finite critical force, while the perturbative expansion predicts a linear response
v/f ∼ µeff , with

µeff =
(
1 + σ2 + 3σ4 + · · ·

)−1
. (14)

Interestingly, we see that at weak disorder the velocity-force characteristics develops
a linear regime for fc . f . 1. This regime is characterized by an effective mobility,
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Figure 2. Fully connected model, numerical result (solid lines) vs. two loops
calculation (dashed lines, equation (13)) for different disorder amplitudes σ2.

which is given by the height of the plateau in figure 2 and is captured by the
perturbative expansion (equation (14)).

To further understand the results, let us remind that the critical force can be
computed exactly for the mean-field model [17] and reads

fc =

∫ ∞
1/σ

fσhc ph(h)dh, (15)

where fσhc is the critical force in the mean-field model where h is fixed and β is
uniformly distributed over [0, 2π]. Exact calculations [15, 17] show that fσhc = 0 for
σh < 1, while fσhc > 0 for σh > 1, with the asymptotic behavior fσhc ∼ (σh − 1)2

near σh → 1+. Thus, in the Gaussian model with small σ, the critical force (15) is
dominated by the rare impurities with σh ' 1+, and

fc ∼σ→0 σ
4e−

1
2σ2 . (16)

Since the Taylor series of this expression around σ = 0 is zero, the perturbative
expansion cannot capture the effect of these rare impurities and does not predict the
existence of the finite critical force.

4. Conclusion

In this article, we have computed the velocity-force characteristics of a fully connected
model (α = 0) with Gaussian disorder using two approaches: the exact solution, and a
perturbative expansion at small disorder. We have shown that the exact solution has
three main features: (i) a finite critical force fc, (ii) an intermediate linear regime with
an effective mobility µeff < 1, and (iii) a high velocity regime where v = f . While the
perturbative expansion misses the existence of the critical force, it correctly describes
the features (ii) and (iii); in particular, it provides a good estimation of µeff at small
disorder.

For α > 0, there is no exact solution for the velocity-force characteristics.
However, we dispose of the perturbative expansion and of numerical simulations. Our
results suggest the following scenario:
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• If d > 2α, the perturbative expansion predicts a linear response at small σ. We
expect that the model presents a finite critical force generated by rare impurities.
The value of the critical force is not analytical in σ as σ → 0 and depends on
the disorder distribution. On the contrary, the effective mobility predicted by the
perturbative expansion should be visible when fc . f . 1 and does not depend
on the disorder distribution at order σ2.

• If d < 2α, the critical force is always finite and at small disorder it is determined

by typical impurities, and the Larkin arguments predict fc ∼ σ
2α

2α−d . The
proportionality constant of the critical force could be evaluated analytically, either
through the perturbative expansion presented here, which has been done for
α = 1, d = 1 [12], or through a Kac-Rica approach, which has been done for
α = 2 and d = 1 [13].

Acknowledgments. The authors acknowledge support from a Simons
Investigatorship, Capital Fund Management Paris and LPTMS (X.C.), and the ANR
grant ANR-16-CE30-0023-01 THERMOLOC (A.R.). This research was supported in
part by the National Science Foundation under Grant No. NSF PHY 17-48958.

Appendix A. Perturbative calculation of the force

In order to find the force required to pull the interface at an average velocity v, we
replace the force in (1) by a moving parabolic well:

∂tu(x, t) = κ[vt− u(x, t)] + fel[u(·, t)](x) + σF (x, u(x, t)). (A.1)

We obtain the force as the average force exerted by the parabola on the interface:

f = κ
[
vt− u(x, t)

]
. (A.2)

We want to solve perturbatively the equation (A.1). Thus we expand u(x, t) as
follows:

u(x, t) =

∞∑
n=0

σnun(x, t). (A.3)

Plugging this expansion into the Taylor expansion of the random force F (x, u) around
u0(t) = v(t− κ−1) leads to

F (x, u(x, t)) =

∞∑
k=0

1

k!

( ∞∑
n=1

σnun(x, t)

)k
∂kuF (x, u0(t)) (A.4)

=

∞∑
n=0

σn
∑
λ∈Pn

∂
|λ|
u F (x, u0(t))

sλ

|λ|∏
i=1

uλi(x, t), (A.5)

where Pn is the set of partitions of the integer n, λ = (λi) ∈ Pn is a partition of n
with λ1 ≥ . . . ≥ λ|λ|, |λ| is the number of elements in this partition, and sλ is the
number of permutations that leave the partition invariant.

The equation of evolution of the order n ≥ 1 is thus given by

∂tun(x, t) = −κun(x, t) + fel[un(·, t)](x) +
∑

λ∈Pn−1

∂
|λ|
u F (x, u0(t))

sλ

|λ|∏
i=1

uλi(x, t). (A.6)
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In order to integrate easily the linear terms (all the terms except the third on the
r.h.s), we write the order n as

un(x, t) =

∫
ũn(k)ei[kx·x+kuu0(t)] dk

(2π)d+1
, (A.7)

where we recall that k = (kx, ku). Note that the integral over ku is equivalent to a
Fourier transform in time; we choose this definition because it simplifies more easily.
Inserting this expression in equation (A.6), we get

ũn(k) = G′(k)
∑

λ∈Pn−1

1

sλ

([
(iku)|λ|F̃

]
∗ ũλ1 ∗ · · · ∗ ũλ|λ|

)
(k), (A.8)

where G′(k) = [ivku + κ + ω(kx)]−1 and each convolution (denoted by ∗) involves
an integration over a moment with a factor (2π)−d−1. This expression is easier to
visualize using a diagrammatic representation.

The sum over the partitions of n − 1 in equation (A.8) can be seen as a sum
of diagrams. In the diagram associated to the partition λ, there are |λ| lower order
terms ũλi entering a vertex with moments ki and a disorder term (the term in brackets)
entering the vertex with moment k0. A propagator with weight G′(k) goes out of the

vertex, and the momentum is conserved at the vertex: k =
∑|λ|
i=0 ki. Finally, the

symmetry factor sλ is the number of permutations of the entering ũλi leaving the
diagram invariant.

The order n involves all the orders k < n. In turn, the order k < n can be
expressed with orders l < k. By recurrence, the order n is given as a function of the
order 0; and is conveniently computed using the diagrams presented above. First, the
diagrams at order n are drawn according to the following rules (figure A1):

• There are n vertices, with a single leftmost vertex.

• Each vertex has a single straight line (propagator) flowing out to the left, any
number of propagators flowing in from the right, and a single wavy line (disorder
line) flowing in.

• Each propagator has to emerge out of a vertex.

The diagrams, obtained before the average over disorder, are called the backbones;
there is 1 backbone at order 1, 1 backbone at order 2, 2 backbones at order 3, and 4
backbones at order 4. The value associated to a diagram for a momentum k flowing
out is calculated with

• Each line carries a momentum k, the propagators come with a weight G′(k) and
the disorder lines with a weight (iku)mF̃ (k), wherem is the number of propagators
flowing in the vertex.

• The momenta entering the diagram through the disorder lines are integrated over
with a weight (2π)−d−1.

• The momentum conservation is enforced at each vertex using a delta function
(2π)d+1δ(kout −

∑
i kin,i), where kout is the momentum flowing out of the vertex

and kin,i are the momenta flowing in the vertex, either through propagators or
through a disorder line.

• There is a symmetry factor given by the inverse of the number of permutations
of the propagators entering each vertex that leave the diagram invariant.
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Figure A1. Backbones for the orders 1 and 2 (first line), 3 (second line), and 4
(third and fourth lines). Their symmetry factors are, from left to right and top
to bottom: 1, 1, 1, 1/2, 1, 1/2, 1, 1/6. The momenta carried by the incoming
disorder lines are labeled for the diagram evaluated in equation (A.9).

Figure A2. One loop diagram giving the force at order σ2.

For instance, the second diagram on the third line in figure A1, has the value

G′(k)

2

∫
(iku3)2(iku4)G′(k1)G′(k2)G′(k1+k2+k3)δ

(
k −

4∑
i=1

ki

) ∏4
i=1 F̃ (ki)dki
(2π)3(d+1)

.(A.9)

The symmetry factors of the diagrams up to order 4 are given in the caption of
figure A1.

The final step is to average over disorder. The average over disorder of a backbone
is obtained by pairing the disorder lines in all the possible ways. The terms F̃ (k) of the
disorder lines are replaced by the disorder correlators ∆̃(k); note that the momenta
entering the end vertices of a disorder line carrying a momentum k are k and −k.
The symmetry factor of a diagram is still given by the number of permutations of the
propagators entering each vertex that leave the diagram invariant, but it is affected
by the pairings. There is a single diagram with one loop at order 2 (figure A2), and
seven diagrams with two loops at order 4 (figure A3). Note that two “one particle
reducible” diagrams with two loops are omitted; the reason is given below.

Due to momentum conservation, the delta function at the leftmost vertex reads
(2π)d+1δ(k), and it can be factorized. This corresponds to the fact that un(x, t) does
not depend on x or t. The propagator flowing out of this vertex to the left thus carries
a momentum k = 0, which has a contribution G′(0) = κ−1; this is the reason why
we do not represent this propagator on the diagrams. The force at order n is given
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k

k ′

Figure A3. Two loops diagrams giving the force at order σ4. The momenta
carried by the disorder correlators are labeled for the diagram evaluated in
equation (A.11).

by fn = −κūn, and the κ cancels the contribution of the outgoing propagator. In the
limit of a weak parabolic trap, κ→ 0, the internal propagators G′(k) are replaced by
G(k). If a diagram is one particle reducible, it has a propagator carrying a momentum
k = 0, with a contribution κ−1 that diverges when κ → 0. It can be shown that the
contributions of the two two-loops diagrams that are one particle reducible vanish.

To summarize, the contribution of one-loop and two-loops diagrams given in
Figs. A2 and A3 are computed with the rules:

• Each line carries a momentum k, and the momentum is conserved at the vertices.

• A straight line (propagator) with momentum k comes with a factor G(k), and
the disorder correlator with a factor ∆̃(k).

• Each vertex has a factor (iku)m, where ku is the u-component of the momentum
coming in from the disorder correlator, and m is the number of propagators
entering the vertex from the right.

• The free momenta (one per loop) are integrated over with a factor (2π)−d−1.

• There is a symmetry factor given by the number of permutations of the
propagators entering each vertex that leave the diagram invariant, and a global
minus sign.

For instance, the contribution of the one-loop diagram (figure A2) is given by

−
∫

(−iku)G(k)∆̃(k)
dk

(2π)d+1
, (A.10)
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Figure B1. Trajectories of the differential equation (10) over three periods
with σh = 3 and v = 1. Different thin curves correspond to different initial
conditions; the emanating trajectories converge to the unique solution satisfying
the periodicity condition (11) (thick curve).

which gives equation (4). The contribution of the first diagram of the second row in
figure A3 is

−1

2

∫
(−iku)(iku)2G(k)G(k′)G(−k′)∆̃(k)∆̃(k′)

dkdk′

(2π)2(d+1)
. (A.11)

Appendix B. Numerical solution of equation (10)

For a given v and σh, the numerical solution of equation (10) is obtained by a standard
fourth-order Runge-Kutta scheme. Starting from an arbitrary initial condition at time
s = 0, yh(s) quickly converges to solution satisfying the periodicity condition (11), as
shown in figure B1.

Appendix C. Derivation of equation (12)

Averaging the equation of motion (7) over j and using 〈uj(t)〉 = vt leads to

f = v + σ 〈hj sin(uj(t)− βj)〉 ; (C.1)

we note that the three terms are all time independent. Taking the average over one
period T = 2π/v gives

f = v +
σ

T

〈
hj

∫ T

0

sin(uj(t)− βj)dt
〉

(C.2)

= v +
σ

T

〈
hj

∫ T

0

sin(yhj (s))ds

〉
, (C.3)

where we used the periodicity condition yj(s+T ) = yj(s)+2π. In the thermodynamic
limit, the average over j corresponds to an average over h, leading to

f = v +
σ

T

∫ ∞
0

h

∫ T

0

sin
(
yh(s)

)
ds ph(h)dh. (C.4)
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Finally, averaging the equation (10) over a period leads to

σh

T

∫ T

0

sin
(
yh(s)

)
ds = π − v − 1

T

∫ T

0

yh(s)ds. (C.5)

Using this relation in equation (C.4), we get equation (12).

Appendix D. Application of the perturbative calculation to the
mean-field model

Here, we apply the perturbative calculation presented in Appendix A to the mean-
field model defined in Sec. 3. First, the interface is defined on Z, meaning that
kx ∈ [−π, π]. The mean-field model corresponds to α = 0, hence the propagator is
given by G(k) = (1 + ivku)−1. The disorder correlator is given by equation (9), and
its Fourier transform reads ∆̃(k) = π[δ(ku − 1) + δ(ku + 1)]. Due to this particular
form, the integration over the momentum ku going through a disorder correlator is a
sum over {−1, 1}, with a factor 1/2. Since nothing depends on the x component kx
of the wavevector, the integration over it and the division by a factor 2π gives 1.

We can now evaluate the force velocity characteristic of the mean-field model to
two loops. The one-loop contribution to the force is:

f2 = −1

2

∑
ku∈{−1,1}

(−iku)
1

1 + ivku
=

v

1 + v2
. (D.1)

The contributions of the two-loops diagrams shown in figure A3 are, from left to right
and top to bottom:

f
(1)
4 =

2v − v3

(1 + v2)2(1 + 4v2)
, (D.2)

f
(2)
4 =

3v

(1 + v2)(1 + 4v2)
, (D.3)

f
(3)
4 = − v

2(1 + v2)2
, (D.4)

f
(4)
4 = − 2v

(1 + v2)3
, (D.5)

f
(5)
4 =

v

(1 + v2)(1 + 4v2)
, (D.6)

f
(6)
4 = − 3v3

(1 + v2)2(1 + 4v2)
, (D.7)

f
(7)
4 = − v

2(1 + v2)2
. (D.8)

Summing all these contributions finally gives

f4 =
v(3− 7v2 − 4v4)

(1 + v2)3(1 + 4v2)
. (D.9)

Hence the force up to order σ4 is given in equation (13). The perturbative expansion
at order σ2 and σ4 is compared to the exact result in figure D1.
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Figure D1. One loop and two loops perturbative calculation of the velocity-force
characteristics for the fully connected model at σ2 = 0.04 (equations (D.1, D.9)).
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