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I. INTRODUCTION 

Some methods primarily devised for the optimization of domains 

are currently used also in the numerical treatment of problems, ari- 

sing from Physics or Engineering, which involve unknown boundaries. 

This requires, of course, that the location of the said boundaries 

could be characterized variationally. 

To the author's knowledge, it is in the dynamics Of inviscid 

fluids that variational statements of such a sort have been first 

proposed. In that field of applications, the unknown surfaces may 

represent the free boundary through which a liquid confines an 

~tmosphere with negligible inertia and given pressure ; they may 

also describe a jet boundary, in a possibly compressible flow, i.e. 

a discontinuity locus of the hydrodynamic field, separating two 

parts of the fluid with preserved material identity (shock waves do 

not fall into the scope of this lecture). Results in that llne have 

been known since the fifties [I] [2] In recent papers [3] ~] , 

the author has shown that, when considered from the viewpoint of 

the dynamics of the whole material in presence, the determination of 

such surfaces is a problem whose nonlinearity has the same intimate 

structure as the nonlinearity of the conventional equations of 

fluid dynamics holding in the regions of smooth flow. This is made 

clear by expressing dynamics in terms of Schwartz's distributions ; 
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in doing it, one puts forward the vector distribution divergence of 

a second order tensor measure associated with the time-space distri- 

bution of mass and velocity. For instance, the free boundary of a 

liquid appears as a surface, interior to the investigated region of 

time-space, across which the material density abruptly drops to the 

zero value corresponding to the assumedly mass-less atmosphere. 

Expressing the dynamics of the whole in terms of distributions en- 

compasses the usual equations, verified in the liquid domain, as well 

as the conditions to be satisfied on th~free surface. 

Some details on this aspect of dynamics are given in Sect. 2 

below ; for brevity only steady flows are considered. 

The next step consists in giving a variational significance to 

the divergence operator acting on second order tensor measures. When 

the traditional calculus of variation is applied, with a view to 

characterize the possible solutions to some field equations, an alte- 

ration of the investigated field is performed by adding to it a term, 

arbitrary in a certain class of functions. This additive variation has 

to be smooth enough for the familiar trick of integration by part to 

work ; such a procedure leaves invariant the location of possible 

singularities and so is unable to characterize it. For this reason, 

we have instead proposed the transport method (called in [3] and 

[4] the method of horizontal variations ; it seems preferable to 

abandon this denomination which could generate confusion with some 

other uses of the word "horizontal", in Differential Geometry). 

In this method every alteration of the investigated object is 

effeeted by transporting it along an arbitrarily chosen smooth 

vector field, say ~, with compact support in the considered region 

of ~n. This vector field may be viewed as the velocity field of 

some imagined continuous medium A , called a carrier. When the 

technique is used in a problem of continuum mechanics, one should 

keep in mind that the carrier has nothing to d O with the material in 

presence ; in particular, the real variable indexing the evolution 

of A in ~n is denoted by E , not to be confused with the time 

t of Dynamics, when the latter figures among the problem variables. 

For every position of the carrier, a certain real functional, invol- 

ving the transported object, is calculated. The result is a real 
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function of • ; expressing that its derivative vanishes at T = 0 , 

whatever is the test vector field ~ , yields the expected charac- 

terization. Such a derivation, applied to a geometric object trans- 

ported along a vector field is known in Differential Geometry as a 

Lie derivation. For the applications we have in view, it seems more 

efficient to describe the transport process in terms of the classical 

kinematics of continua, using but a little of the formalism of Diffe- 

rential Geometry. 

Section 3 provides the necessary information about the concepts 

of vector and tensor distributions on a differential manifold, with 

emphasis on the special case where distributions are actually measu- 

res. 

The transport of such objects by what we have called a carrier 

is described in Section 4. 

This yields in Section 5 the very simple formula by which the 

divergence operation, acting on a doubly contravariant tensor measu- 

re, is interpreted variationally in terms of transport. The real 

functional to be extremized is the integral of the Euclidean trace 

of the investigated tensor measure. The reader specially interested 

in Mechanics could additionally refer to [3] , where Hamilton's 

principle of the least action is connected with this formula. 

Section 6 gives some examples of applications of the preceding 

to hydrodynamical situations. 

Then comes in Section 7 the study of the second derivative of 

the considered real functional, in the course of any twice differen- 

tiable transport, if the investigated tensor measure makes the first 

derivative vanish. This provides a necessary condition for the 

functional to achieve a local minimum. The calculation results in 

some positivity property, concerning the investigated tensor measu- 

re, which tends to explain the preeminence of measures, in that 

context, over distributions of higher order. 

The final Section 8 summarizes the logical pattern of the 

transport method and sketches its application to more general situa- 

tions. 
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2. STEADY FLOW OF AN INVISCID FLUID 

In some region of a tridimensional reference frame, with ortho- 

normal Cartesian coordinates x I , x 2 , x 3 , the steady motion of 

an inviscid fluid is considered. Let u] , u 2 , u 3 denote the com- 

ponents of the velocity field ; let p and p be the pressure and 

density scalar fields. The components of the gravity field are given, 

equal to the partial derivatives U . of some real function U. 
,i 

Then, under the usual smoothness assumption for the investigated 

fields, the Euler time-independent equations of fluid dynamics write 

down as 

0 uj ui, j = - P,i + p U,i ' 

to be joined with the equation of mass conservation 

(2.1) 

(puj),j = 0 (2.2) 

By combination, this yields (6ij is the Kronecker symbol) 

(Puiu j + p 6ij),j = PU, i . (2.3) 

The left-hand side may be seen as the i-component of the vector 

field divergence of the symmetric tensor field with components in 

brackets. 

If on the contrary the involved functions are not smooth enough 

for the partial derivatives to exist in the elementary sense, it is 

generally admitted that such partial differential equations as above 

have to be understood with reference to the partial derivatives of 

distributions. This is an abuse of language ; in Schwartz's theory 

of distributions, a real function f of the x-variables cannot cons- 

titute a distribution. But, as soon as f is locally integrable 

relative to the Lebesgue measure £ , there is defined the real mea- 

sure f£ i.e. the measure admitting f as density relative to £ . 

A real measure on some region of x-space is a special sort of 

Schwartz distribution ; then (2.3) will precisely be replaced by 

(p uiuj£ + p 6ijg) j = P U , i £  (2.4) 
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In order that the tensor measure with components in brackets make 

sense, one supposes p 6 [~loc ' ui E i21oc ' p E [|loe (the components 

U • of the gravity field are essentially smooth functions). ,l 
Similarly (2.2) expresses that the vector measure, admitting 

as Cartesian components the three real measures pui£ , has zero 

divergence in the sense of distributions. 

Before showing how this formulation of hydrodynamics may encom- 

pass some free boundary situations, let us recall an elementary cal- 

culation rule for distributions. 

Assume that the considered domain ~ of the x-space is divi- 

ded by a surface S determining two subdomains ~+ and £- At 

every point of S , denote by n. the components of the normal 
I 

unit, directed toward £+ and assumed continuous on S . If a 

function f is C l in £+ and £- and possesses respective one- 

sided limits f+ and f- at every point of S , the measure f£ 

is a distribution on ~ whose partial derivative relative to x. 
l 

is easily found equal to the sum of the two following measures : 

(a) f .£ , diffuse in £ • 
,i 

(b) (f+ - f-)n.s concentrated on S . 
1 

Here s denotes the area measure of S , a nonnegative real measu- 

re on ~ , with S as support. 

Coming back to hydrodynamics, suppose that ~- contains an 
+ 

inviscid fluid, while ~ corresponds to an atmosphere with p = 0 . 

Mass conservation is expressed by (pui£)~ ,j = 0 ; through the abo- 

ve calculation rule, this is equivalent to (2.2) being satisfied 

in ~+ and ~- and to the vanishing of the measure concentrated 

on S whose density relative to the area measures equals 

[(puj) + - (pu.)-Jn.. Since p = 0 in ~+ the latter simply 
_ _  3 J 

yields p u.n. = 0 , as expected for a steady flow. After that, 
J 3 

the same calculation rule is applied to (2.4) . Considering, on 

one hand, the diffuse part, one obtains that (2.3) holds in ~- 

and £+ ; in particular this yields that p equals a constant 
+ 

throughout ~ As for the part of its left-hand member concentra- 

ted on S , equation (2.4) yields 
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-- -- ÷ + + + 

P u i u j n  j + p n i = p u i u j n  j + p n i • 

+ 
Since O = 0 and o-u?n. = 0 , 

+ ] J 
tion p = p 

this is just the pressure condi- 

3. VECTOR AND TENSOR MEASURES ON A MANIFOLD 

A possible way of constructing measure theory consists in taking 

the Riesz representation theorem as a definition. From that stand- 

point, by a real (signed) measure on a locally compact topological 

space X (one may precise : a Radon measure) is meant a real linear 

functional, meeting some continuity requirements we shall recall 

later, defined on the space D° (X) of the continuous real functions 

with compact support in X . The treatise of Bourbaki E5] is 

developed in that line, up to include the more sophisticated matter 

of measures with values in topological linear spaces. 

In particular, the considered locally compact space may be an 

n-dimensional ck-differential manifold ~ , with k ~ I . Then 

the above amounts to define measures as distributions of a special 
sort. Let £ he an integer, 0 ~ £ Z k ; denote by Q£(M) the 

linear space of the C £ real functions on M with compact support. 

For every compact subset K of ~I , denote by ~(M) the subspace 

of D£(M) consisting of the functions f with support contained 

in K . A Banach norm llflIK,£ is defined on ~(M)_ as the sup of 

the absolute values of f and of its partial derivatives up to 

order £ at all points of ~{ ; of course, this is conditioned by the 

choice of coordinates in the C k manifold M , but in view of 

£ ~ k , any admissible change of coordinates (more precisely the 

change of a covering of ~ with local charts for another one) repla- 

ces the said norm by an equivalent one. By definition, a real distri- 

bution of order £ (strictly speaking, one should say "of order ~ £") 

is is a linear functional on D£(M) whose restriction to every D K 

continuous. 

Real distributions of order £ on M make a topological linear 

space denoted by D'~M) ; real measures on M are the elements 

of D'° (M) 
In the author's view , the above duality construction serves 
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the purpose of Mechanics very well. Generally, dual linear spaces 

have been a basic ingredient of Classical Mechanics much before the 

concept was mathematically formalized. This duality is in fact 

the essence of the method of "virtual power" or "virtual work" which 

has played a central role in Mechanics since the 17 th century 

at least (some authors trace it back to Aristotle). 

Another definite advantage of this approach Of measures is that 

it readily adapts to the introduction of vector measures on the mani- 

fold M . With every point x of M is associated the dual pair 

of n-dimensional linear spac~ M' x ' the tangent space, and M'x~ the 

cotangent space. By definition a field of covectors on M (or sec- 

tion of the cotangent fiber bundle) is an assignement associating 

with every x 6 M an element, say v(x) of M '~ . Basically, the 
x 

choice of a (local) coordinate system (xl,x 2,...,x n) in M indu- 

ces respective bases in the linear spaces M' and A|'~ . Then the 
x x 

covector field v may be described by n functions vi(xl,x 2 

expressing the components of v(x) in M '~ . Since, by axiom, any 
x ck change of (local) coordinate system in M is , k ~ l , the 

concept of the continuity of v is coordinate-free, as well as that 

of the support of such a field. We shall denote by D° (M,~ '~) the 

linear space of the continuous covector fields on M with compact 

support and by DK(M,~ '~) the subspace consisting of those fields 

whose support is contained in some compact subset K of M . The 

of the absolute values of the components of v E D~(M,M'~) sup 

constitutes a Banach norm llvl[ K on this space ; changing the coor- 

dinate system (more precisely changing the covering of ~ by local 

charts) replaces this norm by an equivalent one. 

By definition, a vector measure on M is a real linear func- 

tional on D° (M,M '~) whose restriction to each ~K(M,M'~) is con- 

tinuous. More generally, such a duality procedure has been used 

by G. de Rham when constructing his theory of currents on C m 

manifolds ~] . 

Vector measures on M make a topological linear space denoted 

by D'O(M,M ') . Observe that, in contrast with the special case 

where M is an open subset of ~n , a vector measure on an arbi- 

trary C k manifold M can by no means be seen as an additive vec- 
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tor function of sets since it does not make sense to add vectors 

localized at different points of the manifold. 

When applied to a covector field v e D° (M,~ '~) , a vector 

measure m e D'° (M,M') yields, by definition, a real number denoted 

by ~v,m>> or, more expressively by f <v,dm> . A soon as m is 

fixed the meaning of this symbol may be extended to a larger class 

of covector fields than D° (M,M '~) , said integrable relative to m. 

From the Radon-Nikodym theorem one easily deduces that every 

m e D'° (~,~ ') can be (non uniquely) represented under the form 

m = m' B where ~ is a nonnegative real measure on M and m' 

is a locally ~-integrable vector field. This means that for every 

v e D%M,M '~) , one has 

f<v,dm> = f<v(x),m~(x)> d~ ; 

h e r e  < . , . >  d e n o t e s ,  a t  e v e r y  p o i n t  x o f  M , t h e  r e a l - v a l u e d  

duality pairing of the cotangent and tangent spaces. 

Incidentally, a vector measure m 6 D'° (M,M ') is said 

divergence-free if, for every ~ 6 DI(~o , one has 

f<grad ~ , dm> = 0 ; we denote by grad ~ the gradient field of 

(or differential of ~) , naturally an element of D° (M,M ) . 

In [6] this concept has been applied to classical hydrodynamics, 

yielding a generalization of the Kelvin-Helmholtz theorem on vorti- 

city which encompasses more recent results as the conservation of 

the he2icit9 of a flow. More generally, the divergence of a vector 

measure on M may be defined as a scalar distribution of order I 

The point to be stressed is that this operation makes sense in the 

simple framework of the differential manifold M , without refe- 

rence to any metric or connection ; this contrasts with the diver- 

gence of vector fields. 

A similar duality device may be generally used in defining 

tensor distributions, in particular tensor measures, on the C k 

manifold ~ . For instance, there exist four sorts of second order 

tensor fields on ~ : they are assignements associating respective- 

ly with every x 6 M an element of MiaMi , MI~M~ ~ , M~ Mi 

or M~ ~ M~ ~ . This allows for the definition of spaces ~£ , D K£ 

consisting of such fields and, through duality, the definition of 



2 4 3  

spaces of tensor distributions of order £ with specified tensorial 

type. In particular, a doubly contravariant tensor measure on ~ is 

an element of D'° (M,M'~ M ') , the dual space of D° (M,M'~ '$) ; 

the latter consists of continuous doubly covariant tensor fields 

on ~ , with compact supports. As in the case of vector measures, 

the Radon-Nikodym theorem may be used in order to prove that, for 

every T 6 D'° (~,~'~ M ') , there exist (non uniquely) a nonnegative 

real measure ~ and a doubly contravariant locally ~-integrable 

tensor field T' such that T = T' ~ . Through the use of local 

coordinates (x ~,...,x n) in X , one defines the tensor field 
• o 

x + T'(x) 6 M'~M' by its components T '13 , which are elements 
X X 

of L oc(X,~;]R); one may even choose ~ in order that they belong 

to L~oc(X,u;~) . 

4. CARRIERS AND LIE DERIVATIVES 

For all the sequel, X denotes a fixed n-dimensional C k mani- 

fold, k ~ 2 ; in usual applications, X simply reduces to an 

open subset of ~n. 

Let ~ 6 VI(X,X ') , i.e. ~ is a C ! vector field of X , 

with compact support. We are to look at it as the Eulerian velocity 

field of some continuum A in motion over X . This precisely means 

that every element, or particle, of A is a moving point in X , 

say T ~ ~(~) verifying the differential equation 

d! = ~(~(T)) . (4.1) 
d~ 

Through the use of (local) coordinates in X , the study of this 

differential equation in the manifold may be reduced to the similar 

problem in ~n , for which standard theory is available. The as- 

sumptions made about ~ secure that, for every ~o 6 X , there 

exists a unique solution • ÷ ~(T) to (4,]) , defined for T 

ranging over the whole real line, such that ~(0) - ~o " Further- 

more, standard results concerning the dependence on initial condi- 

tions of the solutions to differential equations, entail that, for 

every fixed T , the mapping ~ + ~(T) commonly denoted by 
O * 

exp T~ , is C | of X to itself. Since this mapping admits 

exp(-T)~ as inverse, it constitutes a C | diffeomorphism of X , 
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leaving invarlant every point of the subset X\support ~ . 

Let us express as T + p(T,%) the motion of a particle ~ of 

A relatively to X ; under the usual wording of the kinematics of 

continua, for every ~ , the mapping p~ : ~ ÷ p(T,%) is called 

the placement of A into X at time T . The above statements 

equivalently mean that, for every T , the placement PT : A + X 

-I  C | i s  o n e - t o - o n e  and t h a t  t h e  " t r a n s p l a c e m e n t "  p~ o Po i s  a d i f f e -  

omorphism o f  X . We s h a l l  i n  t u r n  r e f o r m u l a t e  t h i s  by s a y i n g  t h a t  

t h e  s e t  A may be  e q u i p p e d  w i t h  t h e  s t r u c t u r e  o f  a C 1 m a n i f o l d ,  

i n  such  a way t h a t ,  f o r  e v e r y  z , t h e  p l a c e m e n t  px i s  a C 1 

d i f f e o m o r p h i s m  o f  A o n t o  X . 

Commonly i n  M e c h a n i c s ,  t i m e  d e r i v a t i v e s  a r e  d e n o t e d  by a d o t .  

In  a c c o r d a n c e .  ~(~ ,X)  w i l l  r e f e r  h e r e  to  t h e  d e r i v a t i v e  o f  t h e  

mapping  z + p (~ ,X)  o f  ~ i n t o  X ; f o r  e v e r y  ~ and ~ , t h i s  

derivative is an element of the tangent space X' , x = p(z,~) . 
x 

The differential equation (4.1) , with which all began, manifests 

itself as the identity 

v z •  m , v x • A : ~ ( z , x )  =¢(pCv,X)) . (4.2) 

We shall call a carrier such moving differential manifold as 

A , elaborated from a given C | vector field ~ in X . For 

simplicity, we started with ~ independent of T , i.e. the motion 

of A over X is a steady flow. It is sometimes useful to consider 

more generally a vector field x ÷ ~(~,x) in X , depending on T, 

at least for T ranging over some open real interval I containing 

zero ; then ~ will be supposed C I in T and x jointly (equi- 

valently (T,x) + (l,~(T,x)) is a C I vector field of the product 

manifold I × X) ; in addition the support of x + ~(~,x) , for 

every T 6 I , will be assumed contained in a T-constant compact 

subset of X . Again this allows one to equip A with the struc- 

ture of a C I manifold, in such a way that every placement 

+ p(T,l) , T 6 1 , is a C I diffeomorphism of A onto X • 

With a C l manifold, as are A or X above, one may associa- 

te various linear spaces, respectively consisting of real functions, 

vector or tensor fields, distributions of order ~ l , etc. For 

every element of any of these spaces, there is a natural definition 
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of its imaye under any C l diffeomorphism of the considered manifold 

onto another one ; this image is an object of the same nature atta- 

ched to the target manifold. The spaces po , D] , p,o , P'| intro- 

duced in the preceding section generate examples of this. As another 

instance, consider the linear space cl(h,~) of the continuously 

differentiable real functions on the C l manifold A and some C l 

diffeomorphism p : A + X . For every real function K : h + ~, 

the image under p is naturally defined as the function 

k = K o p | : X ÷ ~ , which belongs to CI(x,~) iff 

K 6 CI(A,~) . Similarly may be considered a vector field on A , 

say A + a(%) 6 A~ . Its image under p is defined as x + p~(a(A)), 

' : ' ÷ X' the tangent linear mapping to with ~ = p-l(x) and p% A~ x 

p at point A . This image belongs to C° (X,X ') iff ~ 6 C° (A,A'). 

For a covector field on A , the image is analogously defined, only 
I using instead of Pl its inverse transpose. 

Let us come back to the kinematical setting ; then p , T 6 1 
T 

is the T-depending C 1 diffeomorphism of A onto X , generated 

by the given velocity field ~ . Let a be any of the objects we 

associated above with the C l differential structure of A . Assu- 

me a independent of T ; then its image under PT ' say a T , 

is a T-dependent object of the same nature related to X . General- 

ly a T-varying object of X derived ~n that way from a T-constant 

object of A is said convected by the moving continuum, or carrier, 

A • This belongs to the vocabulary of usual physics : a function a 

which assigns to every particle of the moving continuum a time- 

independent real value is commonly called a convected quantity. When 

observed from the "reference manifold" X , such a function ~ : 

A ÷ • is reflected as aT : X + ~ ; in the familiar case of C ] 

real functions, one elementarily characterizes convection by the 

transport equation 8aT/ST + <~,grad aT> = 0 . 

Symmetrically, l e t  us consider now a z-constant object, say a , 

related to X • Its image under p-| is a T-dependent object of 
T 

the same nature, related to A, say a T . Recall that the various 

classes of objects we agreed to consider constitutes each a linear 

spaces ; there is usually no difficulty in endowing those respective 

linear spaces with topologies and, due to the assumptions made 
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at the start about the vector field ~ , to show that the derivative 

d~T/dT , at T = 0 , exists, an element of the same linear space. 

In turn, this derivative admits an image under the placement Po ; 
k 

this is an object, related to the C -structure of X , of the same 

nature as a . Traditionnally this object is denoted by L~a and 

called the Lie derivative of a along ~ . 

We finish this section by recalling an example of Lie derivative 

which plays an essential rule in the classical kinematics of continua. 

As a T-constant object of the geometry of X , let us take a second 

order doubly covariant symmetric tensor field g assumed to be C I 

at least. Practically, this will be the tensor field involved in the 

definition of a Riemannian metric on X (or a pseudo-Riemannian 

metric, in Relativity theory) through the writing ds 2 = gijdxidxJ . 

For every placement PT of the moving continuum A , the image of 
-I 

g under PT is a doubly eovariant symmetric tensor field on A 

~jd~d~] that we shall denote by ~ Through the writing do 2 = y , 

there is defined a metric on A , actually the metric induced on A 

by its placement at time T in the Riemann space X . Saying that 

d~ 2 depends on ~ means that the continuum A is not expected 

to move "rigidly". For every particle I e A , y~(%) is a ~- 

dependent element of the symmetrized tensor product A'~ ~s A~ ~ 

Under the smoothness assumptions previously made, one easily finds 

that the z-derivative ~T exists at ~ = 0 ; thereby is defined 

Y° e C° (A'A'~ ~s A'~) The image of ~o under the placement Po : 
C °  A + X constitutes the Lie derivative L~ g , a doubly cova- 

riant symmetric tensor field on X . 

The calculation of L~ g is performed, under diverse notations, 

in any textbook on the Mechanics of Continua ; we shall come back to 

this in Section 7 . Most books are restricted to the usual case 

where X equals an open subset of a Euclidean space ; then some 
l orthonormal Cartesian coordinates are used as x . If the (possibly 

T-dependent) velocity field ~ is described by its components 

~i(xl,...,x n) relative to this Cartesian frame, the components of 

the tensor __ Lg are found equal to ~i/~x j + ~j/~x i . In this 

setting of orthonormal Cartesian coordinates, it is usual to define 

the differential operator def , acting on differentiable vector 
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fields, by writing e = def ~ for eij = (~i,j + ~j,i )/2 " Then 

L%0g = 2 def ~ . (4.3) 

Due to coordinates being orthonormal, in our Euclidean space, no 

distinction has to be made here between covariance and contravariance. 

In the elementary kinematics of continua, e is usually called the 

spatial strain rate tensor associated with the Eulerian velocity 

field ~ . In fact, knowing 2e = L~ g enables one to calculate 

what we have denoted above by yY ; thereby may be computed the 

time-rate of change of the length of any "infinitesimal material 

curve element", as soon as is known the image of this element in X 

under the placement p~ 

Actually an expression of L~ g formally as simple as (4.3) 

may be written in the general case where g defines a regular 

pseudo-Riemannian metric on X ; one finds (ef. [7]) 

t-- ~,~g, ij = ~ilj + ~jli 

9i(xl,...,x n) are the covariant components of the possibly where 

z-dependent velocity field ~ and where lj refers to the covariant 

derivative in the j direction, relative to the pseudo-Riemannian 

connection. 

5. THE METRIC TRACE INTEGRAL OF A TENSOR MEASURE 
C k As before, X denotes a manifold, k ~ 2 . A doubly co- 

variant symmetric C I tensor field g is supposed given in X ; 

it is intended to define a Riemannian metric on X but, at the 

present stage, we do not need it to satisfy any positivity condition. 

One considers a doubly contravariant symmetric tensor measure 

T in X such that the integral 

J =~g'T>>= f gij dTIJ 

makes sense, i.e. the real measure 

number J 

ve to g . 

(5 .1)  

gijdT 13 is  bounded. The r ea l  
will be called the metric trace integral of T , relati- 

This name is suggested by the special case where X 
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equals an open subset of some Euclidean space and g the tensor 
l n 

associated with the Euclidean metric ; then, if x ,...,x are 

orthonormal Cartesian coordinates, one has gij = I for i = j and 

zero otherwise, therefore 

J = f gij dTij = f dTii = i trace aT . 

In this special situation, no distinction has to be made between 

upper and lower indices ; T ii is a scalar measure, easily proved 

invariant under any orthogonal change of coordinates. The integr~ J 

is meaningful provided this measure is bounded. 

Let us define a carrier A by its velocity field ~ E DI(X,X'), 

possibly depending on T E I , an open real interval containing 

zero, in a C l way. 

Incidentally, the possible lack of boundedness of the real 

measure gijT zj comes from g not having a compact support. The 

essential of the calculations we shall perform below may be adapted 

to such a situation by restricting the integral to a compact subset 

of X containing, for every T E I , the support of ~ . 

Denote by T ~ the z-dependent doubly contravariant symmetric 

tensor measure on X , equal to T for T = 0 and convected by 

the carrier. According to the system of definitions developed in 

Section 4 , this means that a doubly contravariant z-constant 

tensor measure 0 on the manifold A is introduced as the image 
-l 

of T under Pc ; by definition, T T equals for every T the 

image of @ under PT " We are to calculate the z-derivative, 

at T = 0 , of the function T + J(T) , the metric trace integral 

of T z 
T -] 

As in Section 4 , y denotes the image of g under p~ 

The definitions of images of fields and measures or distributions 

are precisely devised in order to preserve the various duality 

pairings ; in particular, for every T 6 1 , one has 

~g,TT>> = ~yT,8>> We have seen that, under the smoothness assump- 

tions made, concerning the carrier motion, the x-derivative ~T 

exists, a continuous doubly covariant symmetric tensor field in A 

with compact support. Then a standard argument of derivation under 

the integral symbol (see e.g. ~3) yields 
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a formula to be applied at time 
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T = 0 • 

(5.2) 

In the case where X equals some open subset of an Euclidean 

space, with orthonormal Cartesian coordinates, no distinction is 

made between upper and lower indices and, in view of the symmetry 

of T , one has 

• °  

2~def ~,TT>>= ~i, j + ~j,i ' TZJ>> 

= 2~. . , T 13>>. 
l,J 

Now the definition of partial derivatives in the theory of distribu- 

tions, yields 

~. . T 13>> T I] .>> . (5.3) 
1,3 ' = -<~i ' ,3 

Therefore the linear functional ~ + -~. . , TI]>> is a vector dis- l,] 
tribution of order one, whose Cartesian component of rank i equals 

T l] . . This vector distribution will naturally be called the diver- 
,3 

gence of the tensor measure T , by analogy with the divergence of 

a tensor field, commonly used in the Mechanics of Continua. In the 

latter case, s iJ " denote the components of some C | (symmetric) 

tensor field, relative to some orthonormal Cartesian frame ; partial 

derivation is understood in the traditional sense, so that the diver- 

ij is a C °  vector field. Here is the connection between g e n c e  S ,j 

the two concepts : let £ denote the Lehesgue measure in our (local- 

ly) Euclidean space X ; one easily checks that slJg are the 

components of a tensor measure whose divergence, in distribution 

sense, equals the vector measure with components s zj .£ . 
,J 

As a result of the above calculations, we may formulate the 

following: 

PROPOSITION 5.1 A bounded symmetric tensor measure T in the lo- 

cally Euclidean manifold X has zero divergence if and only if, for 

every carrier, as defined in Section 4 , the real function 

T ÷ f trace dT T has zero derivative at T = 0 ; here T T denotes 
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the doublg contravariant symmetric tensor measure convected by the 

carrier, equal to T for T = 0 . 

More generally, (5.2) with (5.3) gives a variational meaning 

to the divergence operator, acting on symmetric tensor measures. This 

may be applied in characterizing variationally the solutions to some 

field equations which assert that such a divergence equals some vec- 

tor distribution of adequate form. An example of this sort will be 

presented in the next Section. 

Of course, it is not necessary to restrict oneself to locally 

Euclidean manifolds ; if X is pseudo-Riemannian everythings works 

the same way, provided we define the operator 

div : D'° (X'X' ~s X') ÷ D'I(x,x '~) 

as the negative transpose of 

def : D](X,X ') + D° (X,X '~ ~ X '~) ; 
s 

recall that def denotes the operator ~ + (L g)/2 . 
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6. HYDRODYNAMICAL EXAMPLE 

This Section is to show the ability of the transport method to 

provide a variational treatment of equations in which the divergence 

of a tensor measure appears jointly with other terms. The setting is 

that of Section 2 ; we write again equation (2.4) under the form 

(PUiUj~),j + (P£),i - PU, i£ = 0 . (6.1) 

The tensor measure with components pu.u.£ has a peculiar 13 
structure ; relatively to the nonnegative real measure m = p£ , 

it admits as density the tensor field with components u.u. , name- 
13 

ly the tensor product of the vector u by itself. In order that 

such a tensor measure he transported by the carrier A in the way 

described in the preceding Section, i.e. that it equal for every T 

the image under pm of some T-constant doubly contravariant tensor 

measure on A , it is enough : firstly to have the measure m con- 

vected by A , secondly to have the vector field u convected. The 

former means that a r-dependent real measure m r on the space X 

of the x-coordinates, reducing to m for T = 0 , equals the ima- 

ge under PT of some T-constant real measure ~ on A . This is 

the same as the familiar situation of the Mechanics of Continua : 

then ~ denotes the mass measure, defined independently of time on 
T 

a material continuum ; the image m of this real measure under 

the placement mapping pm : A + X admits a density, say pm , re- 

latively to the Lebesgue measure ~ . Elementarily, the law of trans- 

port for pT consists in the following : the value of p corres- 

ponding to any determined particle X of A verifies p~J~ = const, 

where jr denotes the Jacobian determinant of pT at point 

(relative to an arbitrarily chosen coordinate system in A) . 

The metric trace integral of the above tensor measure equals 

= uiuiP d£ ; that is, formally, twice the kinetic energy of 

the investigated portion of fluid. As a result of Section 5 , by 

calculating the T-derivative at m = 0 of this expression one 

obtains 

21 d~dl ~(Puiuj~), j ,~i~ , (6.2) 
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where ~ • pI(x,x') denotes the velocity field of the carrier A . 

The transport method also gives a variational meaning to the 
T last term in (6.1) . Assuming as above that the measure m = pT£ 

is convected by the carrier, one considers the integral 

C(T) = f UpTd£ • In order to calculate its T-derivative, one uses 

the fact that m T equals the image of a T-constant measure 

on A • When U is evaluated by following up the motion of a 

particle A • A in the reference manifold X , one finds 

d ~i 
d-? U ( p ~ ( ~ ) )  = U . ; , 1  

t h e r e f o r e ,  a t  T = 0 , 

d G  
d--{ = ~ U~(pT(~))d~ = ~ U,i~ZPd£ . (6.3) 

There finally remains to treat the middle term in (6.1) . 

Mechanically, the dynamical equation of inviscid flows have to be 

exploited in conjunctions with the knowledge of some compressibility 

law for the investigated fluid. We shall make here the traditional 

assumption of a barotropic flow, i.e. for every fluid particle, a 

certain relation between the density p and the pressure p is 

asserted, without explicit recourse to temperature. This holds in 

particular in the very usual situation where the fluid may be 

admitted to evolve isentropically. Let us write down this relation 

as 

p = p(~,o) (6.4) 

-I 
with ~ = p denoting the volume of unit mass. Here K is a 

variable of arbitrary mathematical nature, assumed to be a constant 

for every fluid particle ; this may refer as suggested above to 

the entropy of the particle, but, since our main motivation lies 

in the treatment of sharp inhomogeneities, one has also to be prepa- 

red to make K account for the chemical nature, possibly different 

in various parts of the flow. Traditionally, there is introduced a 

primitive of o ÷ p(K,o) , say P(<,o) 

We shall apply the transport method to the integral 

f P(K,o)~d£ , supposing as before that the measure m = p£ is 

convected, i.e. m T = pr£ with pTjT = const, for every ~ 6 A . 
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On the other hand we agree to effect the transport with K kept 

independent of • for every % and, naturally, with o related 

to p by r = (OT)-I Under these assumptions one calculates 

the r-derivative of f P(K,~r)0rd£ . By applying to the carrier 

A the dilatation formula, classical in the Kinematics of Continua, 

one has, if o r is evaluated for a x-constant element of A , 

do r = oT ~i . . 
dr ,I 

Then, keeping in mind that ptd£ equals the image under PT 

the T-constant measure d~ on A , one finds, for T = 0 , 

d d--? ~P(K~'~T)Prd£ = f 8P da T dv 
^ 3o dT 

= ~X P(K'O)~t'iOTDTd£ 

since ~ has compact support• 

Adding up the various terms, one obtains (cf. 

tion 10.3): 

= -  fx P'i%° id£ 

of 

9] , Proposi- 

PROPOSITION 6.1 A vector field u , and three functions p,p,K 

{with 0 -- p-l) make a solution of (6.1) and (6.4) if and 

only if, for every carrier with velocity field in ~I(X,X') , the 

T-derivative of the following functional vanishes at T = 0 

] T T B(r) = f (~ uiu i + p(KT,Ù "c) + U)O~d£ ; 

T T T T 
here it is assumed that u , K , o , O , reducing to the above 

for T = 0 , are transported by the carrier in the way defined in 

the preceding. 

Let us finish by stressing that the condition (puj£),j of 

mass conservation is not involved in the above variational charac- 

terization. In that respect, one has to recall the observation made 

in Section 3 : the concept of a divergence-free vector measure 

belongs to the geometry of C l manifolds ; hence it is preserved 

under any C l diffeomorphism such as the placement p of the 
T 

carrier A into X . Consequently, for a vector measure convected 
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by a carrier, the vanishing of divergence is a ~-invariant proper- 

ty. Now the law of transport defined in the preceding implies that 

the vector measure with components pu.~ is convected. It will 
3 

be pointed out in the sequel that the essence of the transport 

method consists in characterizing some investigated object as a 

critical point for some real functional in an infinite dimensional 

manifold. The elements of this manifold result from each other 

through the transport by carriers. In the present case all of them 

are divergence-free vector measures ; hence the vanishing of diver- 

gence does not constitute a constraint regarding the variational 

procedures. 

An analogous remark applies to the fact that, since the inves- 

tigated flow is supposed steady, the variable K must assume a 

constant value along each streamline. This property is evidently 
T T preserved when u and K are transported by any carrier in the 

imposed way. 
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7. THE SECOND VARIATION RATE 

Let us come back to the setting of Proposition 5.1 . Some symme- 

tric doubly contravariant tensor measure T on the locally Euclidean 

manifold X is supposed to have zero divergence ; equivalently, 

in view of the proposition, the trace integral J(T) of T T has 

zero time-derivative at t = 0 , whatever is the carrier A , with 

velocity field ~ 6 ~I(X,X') . 

Incidentally, since the distribution T ij is by assumption a 

measure, the vanishing of the left-hand member of (5.3) for every 

6 DI(x,X ') is secured, in view of a density argument, as soon as 

the same holds for ~ ranging over the subset D=(X,X ') , the 

C ~ vector fields with compact support in X . 

We are now to investigate the second derivative of the function 

T + J(T) This of course requires some additional assumption con- 

cerning the carrier motion ; we shall suppose that ~ is twice dif- 

ferentiahle in T and x , i.e. the vector field (|,~) of the 

product manifold I × X is C 2 . 
T 

As before, y denotes the image of the tensor field g under 
-I 

Pr For every ~ 6 A , some element ~T(~) of A ~ s  A~ ~ 

constitutes the derivative of T + yT(I) if and only if, for every 
! pair e,B of z-constant elements of A l , one has 

d • (x)  i B j )  ' ~  " 
d-~ (Yij = Yij aIBj " (7.1) 

The respective images a(T) , b(T) of ~ and 8 under p~(X) 

(the tangent linear mapping to PT at point %) are moving vectors 

in X , associated with the moving point T ÷ pT(A) . Since X 

is locally Euclidean, we shall make use in it of Cartesian coordi- 
i 

nares x , nonneeessarily orthonormal. By the definition of y , 

one has, for every T E I , 

+ . 

T 

Y i j ( ~ ) ~ x ~ J  = gk£ak(T)b£(T) . ( 7 . 2 )  

In the terminology of Section 4 , the moving vectors a(T) 

b(T) are convected by the carrier ; this is known to be and 

expressed by 

d ak(T) = %0k,i(T,x)ai(T ) 
dT (7°3) 



256 

with x = pz(l) , and the similar law for b(z) (such a law is 

nothing hut the classical formula concerning the derivation, rela- 

tive to initial data, for the solutions to the differential equa- 

tion (4.1)) . Since x i are Cartesian coordinates in X , g is 

a constant, hence the right-hand side of (7.2) possesses the 

following T-derivative 

gk£ ~k aib £ ak£ bj 
,i + gk£ ,j 

aib£ akbJ + ~k £ )akb£ 
= q£,i + qk,j = (~£,k , ' 

(7.4) 

where ~|''"" ~n denote the covariant components of the velocity 
.y 

field ~. This proves the existence of y , namely the image, 
-I under the tangent mapping to p , of the element 2e of 

Xx~ ~s X'~x with components ~£,k + @k,£ " What we have done 

here is only establishing that the tensor field 2e equals the Lie 

derivative L g , the classical fact from which Proposition 5.1 

was deduced. We shall now apply the same technique in calculating 

the T-derivative of the expression (7.4) . For fixed k E A, 

d ek£(T,pz(~)) + d m 
d-~ = ek£,z ek£,m ~ PT (%) 

m 
= ek£,z + ek£,m~ . 

Recall that the components of e , as well as the components of 
I n , essentially are functions of T,x ,...,x ; the notation 

,t refers to the partial derivatives of such functions with res- 

pect to T , evaluated at point x = pT(k) . Then, using (7.3) , 

one calculates the derivative of T ÷ ek£(T,pr(X))ak(T)b£(T) as 

follows 

+ e m.k.£ aib £ ak £jb j) (ek£,z k£,m ~ )a o + ek£(~k,i + 

i.e., after renaming some indices of summation, 

~ (ek£akb £) = hk£ a~ £ (7.5) 

wi th 

= %0 m + + . hk£ ek£,T + ek£,m em£~m,k e k % Om m +£ 
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Since (7.5) holds whatever is the couple s,fi  of elements of A~ 

one starts with, this proves the existence of the second derivative 
"'T y of the function T + yT(A) ; it equals the image of the tensor 

-! 
2h (~,pz(l)) under the tangent mapping to PT 

We shall use this to establish : 

PROPOSITION 7.1 Let T , a bounded sgmmetric tensor measure in 

the locally Euclidean manifold X, have zero divergence. Let T T 

denote the doubly contravariant tensor measure convected by the 

carrier A , equal to T for T = 0 Then the real function 

T + J(~) = / trace dT T , whose first derivative vanishes at T = 0 

in view of Proposition 5.1 , admits, as soon as the carrier velocitg 

is C 2, a second derivative at T = 0 equal to 

J(0) = 2 fgij ~i,k~J, £dT k£ • (7.61 

° ° T °  
Proof. In view of the preceding• y Is a continuous doubly covariant 

tensor field of A , with compact support ; T T equals the image 

in X of a z-constant doubly contravariant tensor measure 0 in A. 

Therefore the standard procedure of derivation under the integral 

symbol yields 

. . . .  T °  °  
J(T) = f Yij dO1j = 2 f hk£dTk£ . 

Due to T k£ = T £k the expression hk£ symmetric in k and £ J • , 

may be replaced by 

m m m 

~k,gz +~k,£m ~ +~k,m ~ ,£+~m,k ~ ,£ 

m m 

= ~k,z +~k,m 9 ),~ +~m,k ~ ,£ " 

Since T has zero divergence 

; ~k,z + ~k,m %° m),£ dTk£ = 0 ; 

furthermore ~m,k = gmi ~1'k ' so (7.6) is proved. [] 

One may contemplate as follows the use of Proposition 7.1 . 

Suppose that a doubly eontravariant symmetric tensor measure, with 

bounded trace, is given in X . The totality of the tensor measures 
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which can be obtained from this one through the transport by car- 

riers with D l velocity fields constitutes, roughly speaking, an 

infinite-dimensional manifold, say M. Proposition 5.] states that, 

in this manifold, the elements with zero divergence are the criti- 

cal points of the trace integral, a real function. Exploring the 

vicinity of such a critical point through the transport by carriers 

with D 2 velocity fields is the object of Proposition 7.1 . In 

particular, the nonnegativity of J is a necessary condition for 

the functional to achieve a local minimum at the considered point. 

The following Proposition allows one to discuss this condition. 

PROPOSITION 7.2 As before, X denotes a locally Euclidean mani- 

fold. The expression (7.6) is nonnegative for every ~ 6 ~|(X,X') 

(equivalently for every ~ e D~(X,X')) if and only if one these 

equivalent conditions is satisfied : 

(a) For every ~ e D° (X,X ') (equivalently for every ~6D (X,X)) 

one has 

• • 

~i#j dT lj .> 0 . 

(b) There exist (non uniquely) a nonnegative scalar measure ~ and 

functions T' ij 6 i~ = T' oc(X,~) such that T 13 13~ and that for 
• • 

~-almost every x 6 X the quadratic form ~ -> ~i~jTl lj (x) is non- 

negative in ~n. 

Proof. It is understood that ~. denote the covariant components 
1 • °  

of the vector field @ , while the components T IJ of the tensor 

measure are contravariant. Thus, the properties (a) and (b) are 

invariant under any change of coordinates. Let us take profit of 

this by assuming that orthonormal Cartesian coordinates are used 
t i i k£ in X ; then the expression (7.6) reduces to 2 J~ ,k ~ ,£dT 

Suppose this expression is nonnegative for every ~ E ~ (X,X'); 

in particular, one may fix i 6 {l,...,n} and assume 
i ~ o i 

= 8 6 ~ (X,~) for i = i °  and = 0 otherwise• Then the qua- 

dratic functional defined on D~(X,X ') as ~ + f $k$£ dTk£ is non- 

negative for every vector field $ which equals the gradient of 
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some 8 6 D (X,~) . Through the use of standard test functions 

(see e.g. [8]) this may be proved to imply that the quadratic 
f functional is nonnegative for every ~ 6 ~ (X,X) and therefore, 

by density, for every ~ E 0° (X,X') ; this is property (a) 

Conversely, the special form that expression (7.6) takes on in 

orthonormal coordinates makes this expression visibly nonnegative 

as soon as (a) holds. 

Trivially (b) implies (a) . Conversely, we have observed in 

Section 3 that a representation of the form T ij = T'iJ~ , with 

T 'ij 6 Lloo(X,p ) exists for every tensor measure. Suppose that (a) 

holds ; take ~i = ~i ~- , with 8 6 D° (X,~ +) and 

= (~|,...,~n) E ~n ; then 

S O ~i~j T 'ij~ d~ ~ 0 . 

This shows that ~i~j T~iJ(x) ~ 0 for every x 6 X 

ble exception of a ~-negligible subset N(~) . If 

a countable dense subset E of ~n , the union of 

~-negligible. Hence, for ~-almost every x 

form ~ + ~i~; T~XJ(x) in nonnegative on 

negative on the whole of ~n. [] 
J 

REMARK]. We have defined in the foregoing some infinite-dimensional 

manifold M as the totality of the doubly contravariant tensor 

measures in X which result from one of them through the transport 

by carriers with D ! velocity fields. Clearly properties (a) and 

(b) are possessed by every element of M as soon as this is true 

for one of them. Such is the ease for the tensor measure considered 
,o • • 

in Section 6 , namely T lj = uluJ~ , with ~ a nonnegative real 

measure. 

REMARK 2. We restricted ourselves in the preceding to the transport 

of tensor measures. Actually, supposing again for simplicity that 

the manifold X is locally Euclidean, one may take as T 13 the 

components of a symmetric tensor distribution of order m . if 

the velocity field of a carrier A belongs to Dm+|(X,X ') , the 

transport of the tensor distribution T makes sense, generating 

wlth the possi- 

ranges over 

N(O, ~e ~, is 

in X , the quadratic 

E ; by density it is non- 
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a moving tensor distribution T ~ in X . Suppose, on the other 

hand, the real expression J = ~gij,T13>> meaningful ; this is true 

in particular if T has compact support. Thereby a real function 

+ J(T) is defined for T in a neighborhood of zero. The deriva- 

tive J of this function may be calculated as in Section 5 ; again 

it turns out that J(O) vanishes iff Tij,j = 0 . When this holds, 

one may come to the calculation of the second derivative ; like in 

Proposition 7.1 one finds 

i " 
J(0) = 2 ~gij~,k~],A 'Tk£>> 

a meaningful expression since ~ e Dm+I(x,x ') Similarly to Pro- 

position 7.2 , this expression is found nonnegative iff, for every 

e D~(X,X ') , one has ~i#j,TIJ>> ~ 0 . Now this property implies 

that the tensor distribution T is actually a measure. The proof 

~] is easily based on the classical fact that any nonnegative 

real distribution equals a measure• 

In the applications of the transport method, the nonnegativity 

of J(0) appears as a natural "stability" requirement. For this 

reason the presentation of the method may practically be restricted 

to the case of tensor measures. 

8. CONCLUSION 

The logical pattern of the foregoing may be summarized as 

follows. 

In a reference manifold X (this equals in practical instan- 

ces an open subset of Euclidean ]R n) some investigated object U 

is required to satisfy a certain system of partial differential 

equations. Nonsmooth solutions are expected, i.e. the unknown 

object U is an element of some space J of distributions with 

prescribed tensorial type and distributional order. 

Here are the essentials of the transport method. 

A reference field r is specified in X . The preceding 

sections have been restricted to the case where r equals the 

doubly covariant tensor field g defining in X some Riemannian 
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metric (and for simplicity most calculations have been performed with 

a Euclidean metric). Generally r may be a field whose tensoriel type 

and order of differentiability match the tensorial type and distri- 

butional order of U ; in other words, for every U in J , the 

real valued linear functional U ~ ~r,U>> makes sense. 

A carrier A is defined in X by its velocity field, say 

E Dk(x,x ') , with k large enough for the transport of elements 

of J to be defined. For instance, k = l allows for the transport 

of tensor measures ; generally the transport of tensorial objects 

with distributional order k-l is meaningful. As indicated in 

Section 4, ~ may also depend on the formal time T 6 1 (I is an 

open real interval containing zero) with continuous differentiability 

up to order k in I x X ; in that case it is assumed that the sup- 

port of x ÷ ~(T,x) is contained in a z-constant compact subset 

of X . 

Since ~ belongs to D k , the carrier A may be endowed with 

the structure of a Ck-manifold, in such a way that, for every 

6 I , the placement mapping PT : A ~ X is a C k diffeomorphism. 

Assume that the tensor field r is C k-| in X ; then its image 

under p-] is a C k-] tensor field in A , say pT For every 

E A , the value pT(A) constitutes a z-depending element of the 

tensorial product of some copies of the tangent and/or cotangent 

space to A at point ~ . The smoothness assumptions made imply 

that the Z-derivative PT(~) exists and that ~ ÷ PT(I) is a 

-I field on A , of the same tensorial type as P , with com- 
.T 

pact support. Taking, for T = 0 , the image of p under p 

yields a ~-I tensor field on X , with compact support ; this 

is, by definition, the Lie derivative L r . 

The reference field r has been assumed to belong to 

~(X,~ , where T denotes a certain tensorial type, possibly as- 

trained to some conditions of symmetry or skew-symmetry. Therefore, 

,.÷ L~r is a continuous linear mapping, say D , of ~(X,X') to 

~-I(x, 7) . In the preceding sections, restricted to the case 

r = g , D equalled twice the operator def ; the divergence ope- 

rator, acting on symmetric tensor measures, emerged as the negative 

transpose of def. Generally, the transpose of D is a linear opera- 
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tor acting on distributions, say D ~ : D'k-I(x,T ~) ÷ D'k(x,x '~) ; 

here T ~ refers to the tensorial type dual of T . The transport 

method provides a variational characterization of the solutions U 

to D~U = 0 , or more generally to D~U = f , provided the right- 

hand member f has an adequate form. 

For more comments on the prospect of this method, let us again 

restrict ourselves to the special case r = g , with X equal to 

an open subset of a Euclidean space. Using orthonormal Cartesian 

coordinates in this space, one looks for a symmetric tensor measure 

T ij with zero divergence, i.e. T ij . = 0 in X . We have inter- 
,] 

preted Proposition 5.1 by saying that T verifies this equation 

iff it constitutes a critical point of the real functional J on 

some infinite-dimensional manifold M . This manifold consists of 

the tensor measures obtained by transporting T along carriers 

with velocity fields in VI(x,x ') . The computational use of this 

remark may be contemplated by discretizing the carrier as a moving 

finite element mesh. The approximate representation of a tensor 

measure relatively to such a mesh, and of its transport when the 

mesh deforms, are easily imagined. Starting with a chosen tensor 

measure T , the mesh will be deformed stepwise. If T and 
o o 

therefore all the tensor measures obtained by transporting it 

possess the nonnegativity property involved in Proposition 7.2 , 

each step of mesh displacement will be devised so as to generate 

a walk toward a minimal point of J . 

The convergence of the process is naturally related to the 

boundary conditions one intends to satisfy. All the preceding has 

been developed with a carrier A whose velocity field has compact 

support in X . The mechanical analog is a continuous medium whose 

boundary particles are fixed. Determining a placement p : A + X 

which minimizes the real functional J under such a boundary cons- 

traint may then be seen as a special problem of hyperelastic equi- 

librium. With the notations of Sections 4 and 5, the corresponding 

elastic energy is expressed as & Yij deij ; here recall that 8 

is a doubly contravariant tensor measure, constant on the manifold 

A • The doubly covariant tensor field y , i.e. the image of g 
-! 

under p , depends quadratically on the tangent mapping ~p/~% ; 
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in fact, if pk(Al,...,~n) denote the components of p(X) relati- 

ve to some orthonormal Cartesian frame of X , one has 

YiJ (A) = Bpk ~pk 
a~ i ~J 

This makes the determination of the equilibrium placement p a boun- 

dary value problem concerning a linear system of partial differential 

equations in the Ai variables, with a priori nonsmooth coefficients. 

Of course, the existence of solutions can only be expected in a weak 

sense, involving placements which are no more C I mappings of A 

onto X but only elements of some Soholev spaces. The numerical 

treatment of this system of partial differential equations requires 

a mesh in the manifold A : this is the same as the moving mesh 

considered in the preceding. 

This throws some light on the structure of the set of the 

solutions to the equations of Hydrodynamics, as investigated in 

Section 6. These equations do no actually reduce to the simple form 

T 13 . = 0 , but the analogy with a problem of hyperelastic equili- ,J 
brium is not destroyed by the additional terms ; the gravity term 

PU,i£ in (6.1) only plays the part of a loading (a "dead loading" 

in the usual case of constant gravity) while the pressure term 

modifies the density of elastic energy by adding a function of the 

Jacobian determinant of the placement. The essential nonlinearity 

of the equations of Hydrodynamics lies in the algebraic structure of 

the tensor measure T lj : its density, relative to the scalar measu- 

re p£ , equals the tensor product of the vector field u by ~tself. 

Provided that the approximation process is initiated with a tenta- 

tive solution T which meets such a requirement, the transport 
O 

method handles this condition automatically ; the nonnegativity 

property of Proposition 7.2 is also secured by itself. Observe that, 

if the hyperelastic analogy is brought about in numerical procedures, 

the constraint imposed to the fictitious elastic medium A may be 

relaxed : instead of assuming each boundary particle fixed, oue 

may permit the medium to slide along some part S of the boundary 

of the region X . If the approximation process is initiated with 

a fluid velocity field u tangential to S - a usual circumstance 
O 

in hydrodynamical problems-the transport by A will preserve this 

condition. 
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