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ABSTRACT
We study the satisfiability problem for XPath with data
equality tests. XPath is a node selecting language for XML
documents whose satisfiability problem is known to be unde-
cidable, even for very simple fragments. However, we show
that the satisfiability for XPath with the rightward, leftward
and downward reflexive-transitive axes (namely following-
sibling-or-self, preceding-sibling-or-self, descendant-or-self) is
decidable. Our algorithm yields a complexity of 3ExpSpace,
and we also identify an expressive-equivalent normal form
for the logic for which the satisfiability problem is in 2Exp-
Space. These results are in contrast with the undecidabil-
ity of the satisfiability problem as soon as we replace the
reflexive-transitive axes with just transitive (non-reflexive)
ones.

Categories and Subject Descriptors
I.7.2 [Document Preparation]: Markup Languages; H.2.3
[Database Management]: Languages; H.2.3 [Languages]:
Query Languages

General Terms
Algorithms, Languages

Keywords
XML, XPath, unranked unordered tree, reflexive transitive
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1. INTRODUCTION
The simplest way of abstracting an XML document is by

seeing it as a tree over a finite alphabet of tags or labels.
However, this abstraction ignores all actual data stored in
the document attributes. This is why there has been an
increasing interest in data trees: trees that also carry data
from an infinite domain. Here, we consider an XML mod-
eled as an unranked ordered finite tree whose every node
contains a label, and a vector of data values, one for each
attribute. Labels belong to some finite alphabet, and data
values to some infinite domain. We call these models multi-
attribute data trees (see Figure 1). We study logics on these
models, that can express data properties, namely equality
of attributes’ data values.

Here, we show decidability of the satisfiability problem
for XPath where navigation can be done going downwards,
rightwards or leftwards in the XML document, that is, where
navigation is done using the reflexive-transitive XPath axes
descendant-or-self, following-sibling-or-self, and preceding-si-
bling-or-self.

Formalisms for trees with data values
Several formalisms have been studied lately in relation to
static analysis on trees with data values.

First-order logic.
One such formalisms is FO2(<h, succh, <v, succv,∼), first

order logic with two variables, and binary relations to nav-
igate the tree: the descendant <v, child succv, next sibling
succh and following sibling <h (i.e., the transitive closure
of succh); and an equivalence relation ∼ to express that
two nodes of the trees have the same data value. Although
the decidability status for the satisfiability problem of this
logic is unknown, it is known to be as hard as the reachabil-
ity problem for BVASS (Branching Vector Addition System
with States) [4]. If the signature has only the child and
next sibling relation—FO2(succh, succv,∼)—the logic is de-
cidable in 3NExpTime as shown in [4].

Automata.
There have also been works on automata models for trees

with data. Tree automata with registers to store and com-
pare data values were studied in [20] as an extension to a
similar model on words [19, 22]. A decidable alternating ver-
sion of these automata called ATRA was studied in [18], and
it was extended in [9, 12] to show decidability of the satisfia-
bility problem for forward-XPath. The work [3] introduces a
simple yet powerful automata model called Class Automata



on data trees that can capture FO2(<h, succh, <v, succv,∼),
XPath, ATRA, and other models. Although its emptiness
problem is undecidable, classes of data trees for which it is
decidable are studied in [1]. Other formalisms include tree
automata with set and linear constraints on cardinalities of
sets of data values [6, 23].

XPath.
Here we concentrate on XPath, which is incomparable in

terms of expressiveness with all the previously mentioned
formalisms (except for Class Automata).

XPath is arguably the most widely used XML query lan-
guage. It is implemented in XSLT and XQuery and it is
used as a constituent part of several specification and up-
date languages. XPath is fundamentally a general purpose
language for addressing, searching, and matching pieces of
an XML document. It is an open standard and constitutes a
World Wide Web Consortium (W3C) Recommendation [5].

Query containment and query equivalence are important
static analysis problems, which are useful to, for example,
query optimization tasks. In logics closed under boolean
operators—as the one treated here—, these problems reduce
to checking for satisfiability : Is there a document on which
a given query has a non-empty result? By answering this
question we can decide at compile time whether the query
contains a contradiction and thus the computation of the
query (or subquery) on the document can be avoided. Or,
by answering the query equivalence problem, one can test if
a query can be safely replaced by another one which is more
optimized in some sense (e.g., in the use of some resource).
Moreover, the satisfiability problem is crucial for applica-
tions on security [7], type checking transformations [21], and
consistency of XML specifications.

Core-XPath (term coined in [17]) is the fragment of XPath
1.0 that captures all the navigational behavior of XPath. It
has been well studied and its satisfiability problem is known
to be decidable even in the presence of DTDs. The extension
of this language with the possibility to make equality and
inequality tests between attributes of elements in the XML
document is named Core-Data-XPath in [4].

In an nutshell, the important formulas of Core-Data-XPath
(henceforth XPath) are of the form

〈α@i = β@j〉,

where α, β are path expressions, that navigate the tree using
axes: descendant, child, ancestor, next-sibling, etc. and can
make tests in intermediary nodes. Such a formula is true
at a node x of a multi-attribute data tree if there are two
nodes y, z in the tree that can be reached with the relations
denoted by α, β respectively, so that the ith attribute of y
carries the same datum as the jth attribute of z.

Unfortunately, the satisfiability problem for XPath is un-
decidable [16]. How can we regain decidability for satisfiabil-
ity of XPath then? We can restrict the models, or restrict
the logic. The first possibility is to restrict the classes of
documents in which one is interested, which is the approach
taken in [1]. Another, more studied, approach is to restrict
the syntax, which is the one taken here. One way to re-
gain decidability is to syntactically restrict the amount of
nodes that the XPath properties can talk about. In this
vein, there have been studies on fragments without negation
or without transitive axes [2, 16]. These fragments enjoy
a small model property and are decidable. However, they

cannot state global properties, involving all the nodes in an
XML document. Ideally, we seek fragments with the follow-
ing desirable features

• closed under boolean operators,

• having as much freedom as possible to navigate the
tree in many directions: up, down, left, right,

• having the possibility to reach any node of the tree,
with transitive axes, like descendant, following sibling
(the transitive closure of the next sibling axis), etc.

However, decidability results are scarce, and most fragments
with the characteristics just described are undecidable. There
are, however, some exceptions ([10]).

• The downward fragment of XPath, containing the child
and descendant axes, is decidable, ExpTime-complete
[8, 13].

• The forward fragment of XPath, extending the down-
ward fragment with the next sibling and the following
sibling axes, is decidable with non-primitive recursive
complexity [9, 12].

• The vertical fragment of XPath, extending the down-
ward fragment with the parent and ancestor axes, is
decidable with non-primitive recursive complexity [15].

• A last example is the present work: XPath with the re-
flexive transitive closure of the child, next-sibling and
previous-sibling relations is decidable.

All the non-primitive recursive (NPR) upper bounds of the
forward and vertical fragments are also matched with NPR
lower bounds. That is, there is no primitive recursive func-
tion that bounds the time or space needed by any algorithm
that computes the satisfiability for any of these two logics.
Moreover, it is known that any fragment of XPath contain-
ing a transitive rightward, leftward or upward axis has a
satisfiability problem which is either undecidable or decid-
able with a NPR lower bound [14].1 Further, as soon as we
have both the rightward and leftward transitive axes, the
satisfiability becomes undecidable [14]. (Indeed, the down-
ward fragment of XPath seemed to be the only one with
elementary complexity up to now.)

The aforementioned hardness results make use of non-
reflexive transitive relations. Surprisingly, the reductions
do not seem to work when the relations are also reflexive.
What is then the decidability status of the fragments of
XPath with reflexive-transitive relations? This was a ques-
tion raised in [14].

A partial answer to this question was given in [11]. There,
it was shown that XPath restricted to data words is decid-
able even when we have both a reflexive-transitive future
and past relations. (One can think of data words as XML
documents of height 1, with only one attribute per node.)
This result may seem surprising taking into account that if
one of these relations is non-reflexive it is no longer decid-
able; and if we have only one non-reflexive transitive relation
it is decidable with non-primitive recursive complexity. In
[11] it was shown that the satisfiability problem is in 2Exp-
Space (or ExpSpace if we adopt a certain normal form of

1These are the axes that are called preceding-sibling, following-
sibling and ancestor in the XPath jargon.



the formulas). This was a first step in our study of the com-
putational behavior of XPath with reflexive-transitive axes.
The present work corresponds to the second part, in which
we study XPath on XML documents (i.e., trees) instead of
words.

Contribution
We show decidability of the satisfiability for XPath with
data equality tests between attributes, where navigation can
be done going downwards, rightwards or leftwards in the
XML document. The navigation can only be done by reflexive-
transitive relations. These correspond to the XPath axes:
preceding-sibling-or-self, following-sibling-or-self, and descend-
ant-or-self axes.2 Here we denote these axes with ∗←, →∗
and ↓∗ respectively. As already mentioned, the fact that the
relations are reflexive-transitive (as opposed to just transi-
tive) is an essential feature to achieve decidability. Given the
known complexity results on XPath, this fragment seems to
be in balance between navigation and complexity. This work
then argues in favor of studying XPath-like logics for trees
with data with reflexive-transitive relations, since they may
behave computationally much better than the non-reflexive
counterpart, as evidenced here.

The extension of the prior work [11] on data words to
work with trees with a descendant axis is highly non-trivial,
requiring an altogether different formalism and algorithm
strategy. Whereas in [11] the main object of study is a tran-
sition system—which comes naturally when working with
words—this does not adapt well to working with trees. In-
stead, here we work with an algebra operating on abstrac-
tions of forests of multi-attribute data trees. Over this al-
gebra, we prove some monotonicity properties, which are
necessarily more involved than those used in [11] to account
for the interplay between horizontal and vertical navigation
of the logic.

Our algorithm yields a 3ExpSpace upper bound for the
satisfiability problem of this XPath fragment. We also show
that this can be lowered to 2ExpSpace if we work with
an expressive-equivalent normal form, called direct normal
form. Since XPath with just one reflexive-transitive relation
is already ExpSpace-hard (even when the formula is in di-
rect normal form) by [11], we cannot aim for much better
complexities.

Due to space limitations, all the proofs are included in
the Appendix, although the main intuitions, general strat-
egy, and decomposition of the proof in simpler problems are
presented in the body of the paper.

2. PRELIMINARIES

Basic notation.
Let N0

def
= {0, 1, 2, . . . }, N def

= {1, 2, 3, . . . }, and let [n]
def
=

{1, . . . , n} for any n ∈ N. We fix once and for all D to be any
infinite domain of data values; for simplicity in our examples
we will consider D = N0. In general we use the symbols A,
B for finite alphabets, and the symbols E and F for any kind
of alphabet. By E∗ we denote the set of finite sequences
over E, by E+ the set of finite sequences with at least one
element over E. We write ‘ε’ for the empty sequence and

2Strictly speaking, these axes do not exist in XPath [5]. They
must be interpreted as the reflexive version of the preceding-
sibling, following-sibling and descendant axes respectively.
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Figure 1: A multi-attribute data tree, where A =
{a, b, c} and k = 2.

‘·’ as the concatenation operator between sequences. By |S|
we denote the length of S (if S is a finite sequence), or its
cardinality (if S is a set). We use (ai)i∈{j,...,j+n} as short
for ajaj+1 · · · aj+n.

Unranked finite trees with data.
By Trees(E) we denote the set of finite ordered and un-

ranked trees over an alphabet E. We view each position in
a tree as an element of N∗. Formally, we define POS ⊆ 2N

∗

as the set of sets of finite tree positions, such that: X ∈ POS
iff (a) X ⊆ N∗, |X| < ∞; (b) X is prefix-closed; and (c) if
n·(i + 1) ∈ X for i ∈ N, then n·i ∈ X. A tree is then a
mapping from a set of positions to labels of the alphabet

Trees(E)
def
= {t : P → E | P ∈ POS}. The root’s position is

the empty string ε. The position of any other node in the
tree is the concatenation of the position of its parent and
the node’s index in the ordered list of siblings.

Given a tree t ∈ Trees(E), pos(t) denotes the domain of
t, which consists of the set of positions of the tree, and
alph(t) = E denotes the alphabet of the tree. From now on,
we informally refer by ‘node’ to a position x together with
the value t(x).

Given two trees t1 ∈ Trees(E), t2 ∈ Trees(F) such that
pos(t1) = pos(t2) = P , we define t1 ⊗ t2 : P → (E×F) as

(t1 ⊗ t2)(x)
def
= (t1(x), t2(x)).

The set of multi-attribute data trees over a finite
alphabet A of labels, k different attributes, and an infi-
nite domain D is defined as Trees(A×Dk). Note that every
tree t ∈ Trees(A×Dk) can be decomposed into two trees
a ∈ Trees(A) and d ∈ Trees(Dk) such that t = a ⊗ d. Fig-
ure 1 shows an example of a multi-attribute data tree. The
notation for the set of data values used in a data tree is
data(a ⊗ d)

def
= {d(x)(i) | x ∈ pos(d), i ∈ [k]}. With an

abuse of notation we write data(X) to denote all the ele-
ments of D contained in X, for whatever object X may be.

A forest is a sequence of trees, and the set of multi-
attribute data forests over A and k is (Trees(A×Dk))∗.
We will normally use the symbol t̄ for a forest of multi-
attribute data trees. That is, t̄ ∈ (Trees(A×Dk))∗. (Note
that in particular t̄ can be an empty forest.) For any (a, d̄) ∈
A×Dk, let us write (a, d̄)t̄ for the multi-attribute data tree
that results from adding (a, d̄) as a root of t̄. We call this
operation rooting. We will usually write t (resp. t̄) to de-
note multi-attribute data trees (resp. forests) and t (resp. t̄)
to denote trees (resp. forests) over a finite alphabet.



XPath.
Next we define transitive XPath, the fragment of XPath

where all axes are reflexive and transitive.
Transitive XPath is a two-sorted language, with path ex-

pressions (that we write α, β, γ, δ) and node expressions (that
we write ϕ,ψ, η). Path expressions denote binary relations,
resulting from composing the descendant, ancestor, preced-
ing sibling and following sibling relations (which are denoted
respectively by ↓∗, ↑∗, ∗←, →∗ respectively), and node ex-
pressions. Node expressions are boolean formulas that test
a property of a node like, for example, that is has a cer-
tain label, or that it has a descendant labeled a with the
same data value in attribute i as the attribute j of an an-
cestor labeled b, which is expressed by 〈↓∗[a]@i = ↑∗[b]@j〉.
We write XPath(↓∗, ↑∗,→∗, ∗←,=) to denote this logic, and
we write XPath(O,=) for some O ⊆ {↓∗, ↑∗,→∗, ∗←}, to
denote the logic containing only the axes in O. A for-
mula of XPath(↓∗, ↑∗,→∗, ∗←,=) is either a node expression
or a path expression of the logic. Its syntax and seman-
tics are defined in Figure 2. As another example, we can
select the nodes that have a sibling labeled a to the left
whose first attribute is the same as the second attribute
of some descendant of a right sibling by the formula ϕ =
〈∗←[a]@1 = →∗↓∗@2〉. Given a tree t as in Figure 1, we
have [[ϕ]]t = {ε, 2, 3, 4, 5, 311}.

We write t, x |= ϕ (resp. t, (x, y) |= α) for x ∈ pos(t) (resp.
x, y ∈ pos(t)) as short for x ∈ [[ϕ]]t (resp. (x, y) ∈ [[α]]t). We
write t |= ϕ as short for ε ∈ [[ϕ]]t.

In the case of XPath(∗←, ↓∗,→∗,=), we also extend the
evaluation to multi-attribute data forests. Let (a, d̄) be an
arbitrary fix element of A×Dk. Given a forest t̄ and x, y ∈
pos((a, d̄)t̄), x, y 6= ε, we define the satisfaction relation |=,
as t̄, x |= ϕ (resp. t̄, (x, y) |= α) if (a, d̄)t̄, x |= ϕ (resp.
(a, d̄)t̄, (x, y) |= α). (Note that since XPath(∗←, ↓∗,→∗,=)
has no ascending axes, whether t̄, x |= ϕ or not does not
depend on (a, d̄), we use it as a simple way of defining its
semantics.)

The satisfiability problem for XPath(O,=) (henceforth
noted SAT-XPath(O,=)) is the problem of, given a formula
ϕ of XPath(O,=), wether there exists a multi-attribute data
tree t such that t |= ϕ.

3. PROOF SKETCH
The main contribution of this paper is the following.

Theorem 3.1. SAT-XPath(∗←, ↓∗,→∗,=) is decidable in
3ExpSpace.

We reduce the problem of whether a formula ϕ of our
logic XPath(∗←, ↓∗,→∗,=) is satisfiable, to the problem of
whether one can obtain an element with a certain prop-
erty by repeated applications of operations in some algebra,
starting from a basic set of elements. We call it the deriva-
tion problem. First we introduce the algebra (Section 4), we
then solve the derivation problem (Section 5) and finally we
show the reduction from the logic into the derivation prob-
lem (Section 6).

We first introduce forest profiles in Section 4, which con-
stitute the algebra domain. A forest profile is an abstraction
of a multi-attribute data forest inside a context, where the
context consists of the two (possibly empty) forests that are

to the left and to the right. Figure 3 depicts one such possi-
ble forest, together with the left and right context forests. A
forest profile contains, for each data value d and each path
expression, the information of whether d can be reached by
the path expression, and where it can be reached, either

• inside the main forest, starting from the leftmost root
(the node x

↓i in Figure 3),

• inside the main forest but starting with the rightmost
root (the node x

↓ i in Figure 3),

• in the left context forest (starting from the node x
↓e in

Figure 3), or

• in the right context forest (starting from the node x
↓e

in Figure 3).

In this setting, path expressions are called patterns and their
navigation is greatly simplified. Patterns can go first to the
left, and then down, or first to the right and then down,
or only down. They correspond to path expressions like,
for example, →∗[a]→∗[b]↓∗[c]↓∗[a ∨ b]@1, or ∗←[¬a]↓∗[a]@2.
Further, node expressions contained in patterns are simple
boolean combinations of tests for labels.

A forest profile also keeps track of a set of important data
values called the rigid values. These are data values that
play a determined function in the forest containing the ab-
stracted forest (i.e., in the concatenation of the left, main
and right forests). Intuitively, a data value is rigid in a for-
est if it can be pinpointed by a path expression, in the sense
that it is the only data value that can be reached with some
path expression α@i. At this level of detail, we just mention
that some special care must be taken for these rigid data
values.

We equip the set of forest profiles with two operations,
one that corresponds to concatenating two of the forests
being abstracted, and another operation that corresponds
to adding a root to the forest, converting it into a tree.
This algebra is introduced in Section 4.2. In particular, the
root operation is restricted to work only with forest profiles
that are from certain set of consistent profiles. Consistent
profiles will play an important role in the reduction from
the logic to the algebra. The idea is that they are those
profiles that are not in contradiction with the formula ϕ to
test for satisfiability, that is, that could abstract subforests
of a model of ϕ.

A root profile, is a profile that comes from the applica-
tion of the root operation with a certain label of a certain
alphabet Aroot of root labels. An empty profile is the profile
corresponding to the empty forest with an empty context.
In Section 5 we define the derivation problem for forest pro-
files as the problem of whether there is a way of obtaining a
root profile from the empty profile by repeated applications
of the algebra operations.

We show that the derivation problem is decidable in 2Exp-
Space in Section 5. We first define a partial ordering on pro-
files in Section 5.2, this ordering will be of chief importance
in our decidability result. We show a series of monotonic-
ity properties that show that the set of derivable profiles
is upward-closed. The purpose of the partial ordering is to
reduce the derivation problem on the infinite set of forest
profiles into a problem on a finite set of minimal profiles.
The fact that the derivable profiles is upward-closed is in-
deed a key ingredient for this reduction to work.



α, β ::= o | α[ϕ] | [ϕ]α | αβ o ∈ {ε, ↓∗, ↑∗,→∗, ∗←} ,
ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α@i = β@j〉 | 〈α@i 6= β@j〉 a ∈ A, i, j ∈ [k] .

[[↓∗]]t = {(x, x·i) | x·i ∈ pos(t)}∗ [[↑∗]]t = {(x·i, x) | x·i ∈ pos(t)}∗

[[→∗]]t = {(x·i, x·(i+ 1)) | x·i, x·(i+ 1) ∈ pos(t)}∗ [[∗←]]t = {(x·(i+ 1), x·i) | x·i, x·(i+ 1) ∈ pos(t)}∗

[[ε]]t = {(x, x) | x ∈ pos(t)} [[αβ]]t = {(x, z) | there exists y such that

[[[ϕ]]]t = {(x, x) ∈| x ∈ pos(t), x ∈ [[ϕ]]t} (x, y) ∈ [[α]]t, (y, z) ∈ [[β]]t}
[[a]]t = {x ∈ pos(t) | a(x) = a} [[〈α〉]]t = {x ∈ pos(t) | ∃y.(x, y) ∈ [[α]]t}

[[¬ϕ]]t = pos(t) \ [[ϕ]]t [[ϕ ∧ ψ]]t = [[ϕ]]t ∩ [[ψ]]t

[[〈α@i=β@j〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t, [[〈α@i 6=β@j〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t,

(x, z) ∈ [[β]]t,d(y)(i) = d(z)(j)} (x, z) ∈ [[β]]t,d(y)(i) 6= d(z)(j)}

Figure 2: The syntax of transitive XPath; and its semantics for a multi-attribute data tree t = a⊗ d.
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1. INTRO
We are interested in reasoning on XML documents. Where

XML document is considered not just a mere squeleton of
the node types, but with the actual data. We study hier-
archically structured data. It is a tree whose every node
contains: a letter from a finite alphabet, and a data value
from an infinite domain for each attribute.

2. TRANSITIVE XPATH

Theorem 1. Full transitive XPath is non primitive re-
cursive.

Proof. We prove this by using the results of [FS09].
There, it is shown that XPath with one non-reflexive func-
tional transitive axis is enough to prove non-primitive recur-
siveness. Here, however, we feature reflexive-transitive axes
instead of only transitive. Therefore, in principle we cannot
use this result. However, note that we can code ↑+ with
→∗[a]↑∗[¬a].

Theorem 2. Non-ascending transitive XPath is decidable
in 2NEXPSPACE.

Theorem 3. Non-ascending direct transitive XPath is de-
cidable in NEXPSPACE.

3. FOREST PROFILES
x
↓ i x

↓e x
↓i x

↓e
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Figure 3: A multi-attribute data forest, with its left
and right forests.

However, one problem we need to face is that the order-
ing has infinite antichains: every two profiles with different
set of rigid values are incomparable. We tackle this in Sec-
tion 5.4, where we show that we can bound the set of rigid
values, obtaining an equivalent derivation problem on pro-
files with a small set of rigid values. Once we obtain this
bound, the set of minimal profiles becomes finite, doubly
exponential. Next, in Section 5.5 we show that, thanks to
the monotonicity properties enjoyed by the algebra, we can
work only with minimal elements. Finally, in Section 5.6 we
give the concrete saturation-style algorithm that solves the
derivation problem using doubly exponential space.

In Section 6 we show that the satisfiability problem for
XPath(∗←, ↓∗,→∗,=) can be reduced to the derivation prob-
lem in ExpSpace. In Section 6.1 we show a normal form,
called direct unnested normal form, where direct unnested
path expressions correspond, precisely, to the pattern ex-
pressions used in the forest profiles (basically all path ex-
pressions are of the form already described). We then show
in Section 6.2 that one can reduce, in ExpSpace, the sat-
isfiability problem for formulas in this normal form into
the derivation problem, obtaining a 3ExpSpace decidabil-
ity procedure for SAT-XPath(∗←, ↓∗,→∗,=), obtaining The-
orem 3.1.

4. FOREST PROFILES
We define abstractions of forests of multi-attribute data

trees. These are called forest profiles. They are the main
construct in our solution. One must think of a forest profile

as the description, for every data value d ∈ D, of all the pos-
sible ways of reaching the data value d via path expressions
of XPath(∗←, ↓∗,→∗,=). Some ways of reaching the data
value may lie inside the forest being abstracted, and some
outside the forest. Take for instance the forest in the mid-
dle of Figure 3. For every forest there we identify 4 nodes:
the leftmost root, the rightmost root, the node to the left of
the leftmost root (if any), and the node to the right of the
rightmost root (if any). These are the nodes identified by
x
↓ i, x

↓i, x
↓e, x

↓e respectively in the figure. The profile of this
forest is represented by all the paths that can reach the data
value 4, all those that can reach 2, etc. Take as an example
the data value 5; this data value can be reached by

(i) →∗[a]@1 from x
↓e,

(ii) ∗←[b]↓∗[a]@1 from x
↓ i,

(iii) →∗[a]→∗[b]↓∗[c]@1 from x
↓i, etc.

Remember that expressions are evaluated in a forest and, for
example, an expression starting with →∗ denotes the possi-
bility to move forward in the sequence of tree roots of the
forest. The idea is that we limit ourselves that whenever
there are paths departing from x

↓i or x
↓ i they must be inter-

nal to the forest (i.e., internal to the gray forest in Figure 3),
whenever there are paths from x

↓e or x
↓e they must be ex-

ternal to the forest (i.e., either in the forest depicted to the
left or to the right of the gray forest in Figure 3).

Let A be a finite alphabet of labels, let Aroot ⊆ A be
the set of root labels, and let D be an infinite domain of
data values. The set B(A) is the boolean closure of tests
for labels from A. For any a ∈ A and ψ ∈ B(A), we write
a |= ψ if the interpretation assigning true to a, and false to
every other b ∈ A, satisfies ψ. Let k ∈ N be a fixed natural
number, corresponding to the number of attributes at each
node. We say that i ∈ [k] is an attribute index. We define
the set of patterns, as any finite, subword-closed, subset
of (B(A))∗, and we denote it by P. We generally use the
symbols α, β, γ, δ ∈ P to denote patterns. For every label
a ∈ A we define the following set of patterns σa ⊆ P

σa
def
= {ψ1 · · ·ψk ∈ P | a |= ψ1 ∧ · · · ∧ ψk}.

Note that ε ∈ σa. The set of composed patterns is

Π
def
= (P \ {ε})× P × [k].



The intended meaning is that the first component operates
on the siblings, the second on a downward path, and the
third retrieves a data value from an attribute index. We
will sometimes use the symbol ᾱ to represent elements from
Π, or (α, β, i) if we need to explicit the components of the
composed pattern.

A forest profile f is a tuple

f = (χ
↓e, χ

↓i, χ
↓ i, χ

↓e, R)

where R ⊆ D, and we call it the set of rigid values of
f, and χ

↓e, χ
↓i, χ

↓ i, χ
↓e ⊆ D × Π, and we call them the set

of left/right external/internal descriptions respectively. In
the example before, one shall interpret (i) as (5, a, ε, 1) ∈ χ

↓e,
(ii) as (5, b, a, 1) ∈ χ

↓ i and (iii) as (5, a·b, c, 1) ∈ χ
↓i. We use

χ to denote a subset of D×Π; and we write χ̄ (resp. χ̄i) to
denote the 4-uple (χ

↓e, χ
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↓ i, χ
↓e) (resp. (χ

↓e
i , χ

↓i
i , χ

↓ i
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↓e
i )).

Likewise, we use f (resp. fi) to denote (χ̄, R) (resp. (χ̄i, Ri)).
We define, for every χ ⊆ D×Π,

χ(d)
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= {(α, β, i) ∈ Π | (d, α, β, i) ∈ χ},

χ(α, β, i)
def
= {d ∈ D | (d, α, β, i) ∈ χ}, and

χ̄(d)
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= (χ
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↓ i(d), χ
↓e(d)).

We define data(f)
def
= R ∪ {d ∈ D | χ̄(d) 6= (∅, ∅, ∅, ∅)}. We

call data(f) \ R the set of flexible values of f. We use the
symbol π̄ to denote (π

↓e, π
↓i, π

↓ i, π
↓e) where π

↓e, π
↓i, π

↓ i, π
↓e ⊆

Π. We further say that π̄ is the description of d ∈ D in f
if χ̄(d) = π̄.

4.1 Rigid and flexible values
In a forest satisfying some XPath formula, different data

values have different roles. We distinguish here two cate-
gories of data values: rigid and flexible. Rigid data values
are important for the satisfaction of the formula and special
care is needed to treat these, whereas flexible values are not
crucial, and they can be sometimes removed from the tree.
Let us give some more precise intuition. We use the logic
XPath to make this intuition clear, but we will then state
the definitions in terms of forest profiles.

Given a multi-attribute data forest t̄ where t̄, i |= ϕ, sup-
pose there is a data value d such that: there is some position
1 ≤ j ≤ |t̄| and some path expression α of ϕ of the form
α =→∗ β@k or α = ∗←β@k so that d is the only data value
that can be reached through α from j. When there is such a
d we call it a rigid value for j, since the logic can identify
it and pinpoint it from the rest of the data values. If d is
rigid for at least one position j ∈ {1, . . . , |t̄|} we say that d is
rigid for t̄. All the remaining data values of t̄ (which are the
flexible values) play the role of assuring that “there are at
least two data values reachable through α from position j”
for some α and j. As such, its importance is only relative.
In particular, if t̄ is a forest satisfying ϕ and containing d
as a flexible value, consider t̄′ as the result of replacing, for
some fresh data value d′, every tree t′′ of t̄ with the forest
t′′·(t′′[d 7→ d′]), where t′′[d 7→ d′] is the result of replacing
the data value d with d′ in t′′, and leaving all the structures
and labels as they were. Indeed, t̄′ will continue to satisfy
ϕ; but this is not necessarily true if d was a rigid value. The
same notions hold for our algebra on forest profiles. This is
a key property that we need to exploit and hence the need
to make explicit the set of rigid values of any given profile.

We formalize this by defining an ordering on profiles corre-
sponding to the operation just described, so that the forest
profile abstracting t̄′ is bigger than the profile abstracting
t̄. We make explicit (in Lemma 5.1) the aforementioned
argument as a monotonicity property of the algebra.

We say that a forest profile f = (χ̄, R) is valid if every
d ∈ D so that χ

↓e(α, β, i) = {d} or χ
↓e(α, β, i) = {d} for

some (α, β, i) ∈ Π, is in R. We define F as the set of all
valid profiles.

4.2 Algebra
We equip F with two operations. The idea is that these

operations correspond to the concatenation of two forests,
and to the addition of a root to a forest (called rooting),
turning it into a tree.

Preliminaries
The set of root patterns of a forest profile f, denoted by
[f]→, →[f] ⊆ P is defined as follows

[f]→ def
= {α | (d, α, β, i) ∈ χ

↓i for some d, β, i},
→[f]
def
= {α | (d, α, β, i) ∈ χ

↓ i for some d, β, i}.
Given P ⊆ P and χ ⊆ D×Π, we define the extension of

χ by P , denoted by P ·χ, as the set

P ·χ def
= χ ∪ {(d, α′ · α, β, i) ∈ D×Π | (d, α, β, i) ∈ χ,

α′ ∈ P}.
It is easy to see that the extension operation distributes
over union (i.e., P ·(χ ∪ χ′) = P ·χ ∪ P ·χ′ and (P ∪ P ′)·χ =
P ·χ ∪ P ′·χ).

Fingerprints
We now define the fingerprint of a forest profile. It contains
a summary information, sufficient to decide whether the tree
abstracted by the profile satisfies a formula of XPath—as we
show in Section 6.

Let A = { ◦↓ , ◦↓, ◦↓, ◦}. Given a profile f ∈ F and a ∈ A,
we define the set f.χa as

• χ
↓ i ∪ →[f]·χ↓e if a = ◦↓ ,

• χ
↓i ∪ [f]→·χ↓e if a = ◦↓,

• {(d, α′, β, i) ∈ D × Π | ∃α.(d, α, β, i) ∈ χ
↓ i ∪ χ

↓i} if
a = ◦↓, or

• {(d, α, β, i) ∈ χ
↓i ∪ χ↓ i | β = ε} if a = ◦.

Note that f.χa(α, β, i) is independent of α when a = ◦↓,
but it takes an element of Π as argument for the sake of
uniformity of notation. The fingerprint of a profile f, noted
ξ(f), is an element of

F def
= Π×A → {0, 1, 2+} ∪

Π×A×Π×A → {0, 1+},
where for ᾱ, ᾱ′ ∈ Π, a, a′ ∈ A, we define ξ(f)(ᾱ, a, ᾱ′, a′) as
0 or 1+ depending on whether |f.χa(ᾱ) ∩ f.χa′(ᾱ

′)| = 0 or
not; and we define ξ(f)(ᾱ, a) as 0, 1, or 2+ depending on
|f.χa(ᾱ)| being 0, 1 or greater than 1 respectively.

We fix the set of consistent fingerprints, as a set of fin-
gerprints Γ ⊆ F . The usefulness of this set will become ap-
parent in the reduction from XPath to the derivation prob-
lem of forest profiles in Section 6.2, but we can anticipate



that this set will represent all the profiles abstracting multi-
attribute data trees that do not contradict the formula we
are trying to satisfy. For the moment, however, the reader
may simply consider Γ as a given arbitrary set of finger-
prints.

Concatenation
For every two f1, f2 ∈ F so that

(a) R1 = R2,

(b) χ
↓e
1 = χ

↓i
2 ∪ [f2]→·χ↓e2 , and

(c) χ
↓e
2 = χ

↓ i
1 ∪ →[f1]·χ↓e1 ;

we define the concatenation of f1 and f2, denoted as f1 + f2
as f3, where

R3 = R1 = R2 (+1)

χ
↓e
3 = χ

↓e
2 (+2)

χ
↓e
3 = χ

↓e
1 (+3)

χ
↓i
3 = χ

↓i
1 ∪ [f1]→·χ↓i2 (+4)

χ
↓ i
3 = χ

↓i
2 ∪ →[f2]·χ↓ i1. (+5)

Notice that

• the concatenation is associative ((f1 + f2) + f3 = f1 +
(f2 + f3)),

• the extension operation · distributes over the concate-
nation operation + ([f1 + f2]→·χ = [f1]→·([f2]→·χ)),

• if f1 + f2 = f3 and f1, f2 ∈ F, then f3 ∈ F.

Rooting
Given a ∈ A, and d̄ ∈ Dk, we define (a, d̄)f1 ⊆ F, where
f2 ∈ (a, d̄)f1 if

(a) ξ(f2) ∈ Γ,

(b) χ
↓e
1 = χ

↓e
1 = ∅,

(c) χ
↓i
2 = χ

↓ i
2 = {(d, α, β·γ, i) ∈ D × Π | ∃α′.(d, α′, γ, i) ∈

χ
↓i
1∪ χ

↓ i
1, α, β ∈ σa}∪

⋃
i∈[k]({d̄(i)}×(σa\{ε})×σa×{i})

We say that f2 is a rooting of f1 with (a, d̄).
Notice that since the root pattern of any pair of profiles

f1, f2 ∈ (a, d̄)f3 is the same, it is idempotent and absorbing
([f1]→·[f2]→·χ = [f1]→·χ = [f2]→·χ, [f1]→·χ↓i1 = χ

↓i
1).

4.3 The derivation problem
We define the empty profile as f∅

def
= (∅, ∅, ∅, ∅, ∅). Note

that f∅ ∈ F. The set of profiles that can be obtained from
empty profiles by applying the rooting and concatenation
operations is called the set of derivable profiles, and noted
D. We say that f is a derivable root profile if χ

↓e = χ
↓e =

∅ and f ∈ (a, d̄)f′ for some f′ ∈ D, a ∈ Aroot and d̄ ∈ Dk.
Let a derivation tree for f be a tree t whose every node
is labeled by a forest profile and an element from A × Dk,
except the leaves that are labeled only by the forest profile
f∅ and

• the root is labeled with f,

• every internal node x of t labeled with a forest profile
f′ and (a, d̄) is so that f′ ∈ (a, d̄)(f1 + · · · + fn), where
f1, . . . , fn are the labels of the children of x.

Similarly, a derivation forest t̄ for f is a forest of derivation
trees t̄ = t1 · · · tn for some profiles f1, . . . , fn so that f =
f1 + · · · + fn. Therefore, a profile f is derivable if, and only
if, there is a derivation forest for f.

We can now state the derivation problem, that is, whether
there exists a derivable root profile, given A, Aroot, P and Γ.

Problem: The derivation problem
Input: A finite alphabet A, Aroot ⊆ A,

a set of patterns P,
a set of fingerprints Γ ⊆ F .

Question: Is there a derivable root profile?

In the next section we show that this problem is decidable.
Later, in Section 6, we show that this problem is reducible
from SAT-XPath(∗←, ↓∗,→∗,=).

5. COMPUTING DERIVABLE PROFILES
In this section we solve the derivation problem, showing

that it is decidable in 2ExpSpace. To show this problem
we work with some partial ordering on forest profiles (Sec-
tion 5.2) that has some good monotonicity closure properties
with our forest profile algebra (Section 5.3). This allows us
to reduce the problem to a restricted derivation problem
in which solutions can be found by only inspecting profiles
with a bounded number of rigid values (Section 5.4), that
are minimal elements of the ordering (Section 5.5). These
are bounded and computable, allowing us to produce an al-
gorithm solving the problem (Section 5.6).

5.1 Preliminaries
Given f1, f2 ∈ F we define that f1 and f2 are equivalent,

and we note it f1 ∼ f2, if there is some bijection g : D → D
so that f2 is the result of replacing d by g(d) in f1; in this
case we write g(f1) = f2. For a set C ⊆ F, we write f ∈∼ C if
there is f′ ∼ f so that f′ ∈ C. Given a forest profile f and two
data values d ∈ data(f), d′ 6∈ data(f), we define f[d 7→ d′] as
the result of replacing d by d′ in f. Note that f[d 7→ d′] ∼ f.
Given two data values d, d′ we write f[d 7→ d, d′] to denote
f′ where R′ = R, χ̄′(d′) = χ̄(d) and χ̄′(e) = χ̄(e) for every
other e 6= d′. Note that if d ∈ data(f) \ R and d′ 6∈ data(f),
we have that if f ∈ F then f[d 7→ d, d′] ∈ F.

We say that a data value d ∈ D is an external data value
of f if χ

↓e(d)∪ χ↓e(d) 6= ∅. If further χ
↓i(d)∩ χ↓ i(d) = ∅, we say

that d is a strict external data value of f. If d ∈ data(f) is
not a strict external data value, it is then an internal data
value, and if it is not en external data value, it is then a
strict internal data value.

5.2 Ordering on profiles
We define a partial order � on forest profiles, that follows

from our discussion of Section 4 on the role of flexible and
rigid data values. It is the order in which we can make
a profile bigger by adding a fresh data value to it, with
the same description as that of a flexible data value already
contained in it.

Given f1, f2 ∈ F, we define f1 � f2 if either f1 = f2, or
there is a flexible datum d of f1 so that f1[d 7→ d, d′] � f2 for
some d′ 6∈ data(f1). Note that � is recursive, reflexive and
transitive, and it is hence a partial order.

Note that if f1 � f2 then →[f1] = →[f2] and [f1]→ = [f2]→. Note
also that if f � f′ then ξ(f) = ξ(f′).

We write f - f′ if f � f′′ for some f′′ ∼ f′. We say that a set
of forest profiles G ⊆ F is upward closed (resp. downward
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ed
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∈
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�∈
↑
C

,
th

en
a
d
d

f1
+
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ep
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t
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.

N
o
te

th
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ly

b
e
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en
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t
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b
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⊆
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b
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et
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D
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h
en
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ere
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st

b
e
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rest
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o
f
d
eriva

tio
n
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r
p
ro

fi
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∈

D
b
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th
a
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f
=
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W
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.
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>
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S
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b
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n
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D
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et
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b
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o
f
im

m
ed
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t,

let
m

=
|t̄ �|.
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r

ev
ery

1
≤

i≤
m

,
let
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e
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ro
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b
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o
t
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et
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t
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f ��∈
C
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t
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e
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av

e
th
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t

f �1
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···
+
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C

b
y
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u
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e
h
y
p
o
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···

+
f �m
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f �∈∼
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.
F
u
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er,
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t

f �
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�
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a
l
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n
g

th
e

p
ro

fi
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L
et

f �i
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so

th
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d
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em
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b
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p
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p
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b
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.
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p
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p
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∈
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b
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∈
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∈
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ere

w
ere

tw
o

d
a
ta

va
lu

es
d
,d
�

th
en

th
ere

w
o
u
ld

b
e

tw
o

fj ,fk
w

ith
j�=

k
so

th
a
t
χ ↓
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b
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∈
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∈
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{
d}

.
T

h
e

sa
m

e

h
a
p
p
en

s
b
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Π
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j∈
[n

]}

R
rχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈
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Π
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∪
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=
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+
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p
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p
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p
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p
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∈
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p
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p
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p
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p
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p
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b
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rest
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r
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ro
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∈
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so
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=
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.
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>
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b
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et
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b
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f ��∈
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f �m
∈
↑
C

b
y

in
d
u
ctiv

e
h
y
p
o
th

esis,
let

f ��
f �1

+
···

+
f �m
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f �∈∼
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f �
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Figure 4: Statement of Lemma 5.1.
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Figure 5: Statement of Lemma 5.3.

closed) with respect to -, if for every f ∈ G and f′ % f (resp.
f % f′), we have f′ ∈ G. We write

↑G def
= {f ∈ F | f % f′ for some f′ ∈ G}

↓G def
= {f ∈ F | f′ % f for some f′ ∈ G}

for the upward and downward closure of G with respect to
-. We say that G is ↑↓-closed, if it is both upward and
downward closed, that is, G = ↑↓G.

5.3 Monotonicity properties
In order to devise an algorithm that tests the existence

of a derivable root profile, we will need some monotonicity
lemmas evidencing the relationship between � and the root-
ing and concatenation operations on profiles. The ultimate
goal of these lemmas is to restrict the derivation problem to
profiles that are minimal with respect to -.

The next Lemma 5.1 states that for any two profiles f1 �
f2, f1 can be seen as a concatenation of profiles that share
the same descriptions of internal values as f1, under certain
restrictions, as it is shown next. This is a crucial property
that follows from our discussion in Section 4.1.

Lemma 5.1 (Figure 4). For every f1 � f2 ∈ (a, d̄)f3,
there is n ∈ N, and f′i ∈∼ (a, d̄)f3 for every i ∈ [n] so that

f1 = f′1 + · · ·+ f′n.

The lemma above implies that the set of derivable profiles
is upward closed. (Details in the Appendix.)

Lemma 5.2. D = ↑D.

We finally state two other monotonicity properties that
will be required to reduce the derivation problem into a
similar problem that works only with minimal profiles in
Section 5.5.

We say that a profile f′ is a bounded extension of a
profile f if f � f′ and |data(f′)| ≤ |data(f)| + 3|Π|4. The
following lemma tells us that for any G ⊆ F and any profiles
f1, f2 ∈ ↑G, there are bounded extensions f′′1 , f

′′
2 of profiles of

G so that f′′1 + f′′2 - f1 + f2, as in Figure 5.
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Figure 6: Statement of Lemma 5.4.

Lemma 5.3 (Figure 5). If f1 + f2 = f3 and f′1 � f1,
f′2 � f2, then f′′1 + f′′2 � f3, for some f′′1 , f

′′
2 ∈ F so that f′′i is a

bounded extension of f′i, for all i ∈ {1, 2}.

A similar lemma holds for the rooting operation.

Lemma 5.4 (Figure 6). For every f1 ∈ (a, d̄)f2 and
f2 � f5, there is f4 � f5 and f3 ∈∼ (a, d̄)f4 so that |data(f4)| ≤
|data(f5)|+ |Π|4 + |R1| and f3 � f1, f4 � f2.

5.4 Bounding the rigid values
In this section we show that we can reduce the derivation

problem into a similar problem where all the profiles have
boundedly many rigid values. This will be combined with
the result of the next sections, stating that the derivation
problem restricted to profiles with boundedly many rigid
values is decidable in 2ExpSpace, to solve the derivation
problem.

Lemma 5.5. If there is a derivable root profile, then there
is a derivation tree for a root profile so that all the profiles
in the forest have no more than 2|Π| rigid values.

Let Fb be the set of all f ∈ F that have no more than 2|Π|
rigid values. Let Db be the set of derivable profiles restricted
to Fb.

Remark 5.6. By Lemma 5.5 and in light of the defini-
tion of bounded extension, it follows that Lemma 5.4, when
applied to profiles of Fb, yields a profile f4 that is a bounded
extension of f5.

By the Lemma just shown, we have the following

Lemma 5.7. There is a derivable root profile in D if and
only if there is a derivable root profile in Db.

We have then reduced the derivation problem into a sim-
pler problem, the bounded derivation problem: testing
whether there is a derivable root profile in Db.

Remark 5.8. We have that Db is upward closed since D
is upward closed. That is, Db = ↑Db.

Note that Fb has boundedly many --minimal elements.
In the next section we show how to restrict the problem to
a problem that uses only these --minimal profiles. We will
show how this yields a 2ExpSpace algorithm in Section 5.6.

5.5 Restricting to minimal elements
Thanks to the result from the previous section stating that

Db is upward closed, we can now show that we can work only
with the minimal elements of Fb. The main necessary prop-
erty concerns all those profiles f′ ∈ Fb that are ‘--related’
to a profile f′′ ∈ Db, in the sense that f′ % f - f′′ ∈ Db for



some f. (Note that this set of profiles is precisely ↑↓Db.) The
property states that the forest profiles algebra preserves the
--relatedness.

Given G ⊆ Fb, let

R(a,d̄)
up (G)

def
= {f ∈ Fb | f ∈ (a, d̄)f′, f′ ∈ G}

for (a, d̄) ∈ A× Dk,

Rup(G)
def
=

⋃

(a,d̄)∈A×Dk

R(a,d̄)
up (G),

R+(G)
def
= {f ∈ Fb | f = f1 + f2 where f1, f2 ∈ G},

R(G)
def
= Rup(G) ∪R+(G).

Lemma 5.9. R(↑↓Db) ⊆ ↓Db.

5.6 The algorithm
In this section we show how to compute, in 2ExpSpace,

whether there exists a derivable root profile in Db, solving
thus the derivation problem.

For G ⊆ Fb, we define G∼
def
= {f | f ∼ f′ for some f′ ∈

G}. We define G/∼ as the set containing one representative
profile of G for each ∼-equivalence class. We define min(G)
as the set of --minimal elements of G,

min(G)
def
= {f ∈ G | for all f′ ∈ G so that f′ - f

we have f ∼ f′}.

For any f ∈ F, we write |f|—the size of f—, as the size
needed to write f. Note that for all f ∈ min(Fb), |f| is at
most exponential in |P|. For any G ⊆ F, we write |G| to
denote

∑
f∈G |f|.

Let us define C i for every i ∈ N0 as

C 0
def
= {f∅},

C i+1
def
= C i ∪ min

(
↓R(↑↓C i)

)
/∼.

Let k0 ∈ N0 be the first index so that C∼k0
= C∼k0+1.

Remark 5.10. For every i ∈ N0, Ci ⊆ min(Fb).

As a consequence of the property of the preceding section,
we have that this algorithm computes min(↓Db).

Lemma 5.11. C∼k0
= min(↓Db).

We further have that this computation is in 2ExpSpace
since |min(Fb)/∼| is doubly exponential in |P|, hence we
obtain the following. (Details in the Appendix.)

Proposition 5.12. The derivation problem is decidable
in 2ExpSpace.

6. FROM XPATH TO FOREST PROFILES
In this section we reduce the satisfiability problem for

XPath(∗←, ↓∗,→∗,=) into the derivation problem for forest
profiles.

In Section 6.1 we define a normal form for XPath(∗←, ↓∗,
→∗,=), called direct unnested normal form, and in Section
6.2 we show the reduction from the satisfiability problem
of direct unnested XPath(∗←, ↓∗,→∗,=) formulas into the
derivation problem for forest profiles.

6.1 Normal forms
We will assume a certain normal form of the formula

ϕ ∈ XPath(∗←, ↓∗,→∗,=) to test for satisfiability. This will
simplify the reduction into the derivation problem for forest
profiles.

The normal form has two main properties. Firstly, it con-
tains only path expressions that are direct, in the sense that
the navigation consists in going left and then down, or go-
ing right and then down. And secondly, path expressions do
not contain data tests as node expressions, in other words
the formula is unnested. Next, we explain in detail these
properties.

Preliminaries
Let α = a1 · · · an with n > 0 be a XPath(∗←, ↓∗,→∗,=)
path expression, where for every i, ai = [ψ] for some node
expression ψ, or ai ∈ {ε, ∗←, ↓∗,→∗}. We say that α is in
alternating path normal form if either α = ε, or n is
even and for all 1 ≤ i ≤ n

• if i is even, ai = [ψ] for some node expression ψ,

• if i is odd, ai ∈ {∗←, ↓∗,→∗}.

In other words, the path alternates between axes and tests
for node expressions. We say that a formula is in alternating
path normal form if all its path expressions are in alternating
path normal form. Note that one can turn any formula
ϕ ∈ XPath(∗←, ↓∗,→∗,=) into an equivalent formula ϕ′ in
alternating path normal form in polynomial time, using the
equivalences

〈[ψ]α@i � β@j〉 ≡ ψ ∧ 〈α@i � β@j〉 for � ∈ {=, 6=},
〈α@i � [ψ]β@j〉 ≡ ψ ∧ 〈α@i � β@j〉 for � ∈ {=, 6=},

α[ψ1][ψ2]β ≡ α[ψ1 ∧ ψ2]β, and,

if αβ 6= ε, αβ ≡ α[>]β and αεβ ≡ αβ.

(4)

For simplicity and without any loss of generality we can
further assume that all our formulas do not contain formulas
of the type 〈α〉, since it is equivalent to 〈α@1 = α@1〉. We
will henceforth assume that all the formulas we work with
are in this form.

We say that a path expression in alternating path normal
form is a rightward path expression, if it starts with
→∗ and all the axes in it are →∗ (similarly with leftward,
downward and ∗←, ↓∗). Notice that, for example, a left-
ward expression may contain node tests using rightward or
downward axes. For example, ∗←[〈↓∗[a]〉]∗←[b] is a leftward
expression while ∗←[a]↓∗[〈∗←[a]〉] is not.

Direct normal form
The object of the direct normal form is to avoid having un-
necessary mixed directions in path formulas, that use per-
haps →∗ and ∗← in the same expression, or that contain a
∗← (or →∗) axis after a ↓∗ axis. That is, we avoid having
formulas like

〈 →∗[a]∗←@1 = ↓∗[b]→∗@2 〉

in favor of equivalent formulas with a more direct navigation,
like

〈 →∗[〈→∗[a]〉]@1 = ↓∗[〈∗←[b]〉]@2 〉 ∨
〈 [〈→∗[a]〉]∗←@1 = ↓∗[〈∗←[b]〉]@2 〉.

(‡)



In the formula above we factor the loops that may be in
the navigation of the path expression to obtain a simple
navigation that goes in only one horizontal direction.

We say that a formula ϕ ∈ XPath(∗←, ↓∗,→∗,=) is in di-
rect normal form, if every path expression is ε, or of the
form α·β, where α·β 6= ε (i.e., it is not the empty string),
α is leftward, rightward or empty, and β is downward or
empty. Note that, strictly speaking, the formula (‡) is not
in direct normal form since its second disjunct is not in al-
ternating path normal form, but the equivalent alternating
path expression—using (4)—is in direct normal form.

Lemma 6.1 (Direct normal form). There exists an
exponential time translation that for every node expression
ϕ ∈ XPath(∗←, ↓∗,→∗,=) returns an equivalent node expres-
sion ψ in direct normal form.

Unnested normal form
The second normal form consists in having formulas without
nesting of data tests. That is, we avoid treating formulas
like, for example

〈 ↓∗[〈 ∗←[a]@1 =→∗[b]@1 〉︸ ︷︷ ︸
nested data test

]@1 = →∗[c]@2 〉 .

If a formula is such that all its path expressions α contain
only (boolean combinations of) tests for labels we call it a
non-recursive formula.

We say that ϕ is in unnested normal form if ϕ = ϕ1 ∧ ϕ2

where ϕ1 ∈ B(A) and ϕ2 is a conjunction of tests of the
form “if a node has some of the labels {a1, . . . , an} then
it satisfies ψ” for some non-recursive formula ψ and labels
a1, . . . , an ∈ A. Formally, ϕ2 contains a conjunction of tests
of the form

¬〈 ↓∗[τ ∧ ¬ψ] 〉
for τ a disjunction of labels and ψ a non-recursive formula.
Given ϕ = ϕ1 ∧ϕ2 in unnested normal form, we write γϕ(a)
for a ∈ A to denote the function where γϕ(a) is the conjunc-
tion of all the formulas ψ such that ϕ2 contains ¬〈→∗[τ∧¬ψ]〉
as a subformula, for some disjunctive formula τ containing
the label a.

Then, we obtain the following.

Lemma 6.2 (Unnested normal form). There exists
an exponential time translation that for every formula η ∈
XPath(∗←, ↓∗,→∗,=) returns a formula ϕ in unnested nor-
mal form such that η is satisfiable iff ϕ is satisfiable. Fur-
ther, the translation of a formula in direct normal form is
in direct normal form.

Corollary 6.3. About the translation of Lemma 6.2:

1. The set of path subformulas resulting from the translation
has cardinality polynomial in η.

2. Every path subformula resulting from the translation can
be written using polynomial space.

6.2 Reduction to the derivation problem
In this section we show how we can reduce the satisfiability

problem of direct unnested XPath(∗←, ↓∗,→∗,=) formulas
into the derivation problem for forest profiles.

Let us fix φ = φ1 ∧ φ2 in direct unnested normal form,
where A as the finite alphabet, k as the number of attributes,

D as any infinite domain, and Aroot is the set of all a ∈ A
that make φ1 true.

Given a pattern α = ψ1 · · ·ψk ∈ P, and an axis o ∈
{∗←, ↓∗,→∗}, we can convert α into a path expression as
follows:

Po(ε)
def
= ε if k = 0,

Po(ψ1 · · ·ψk)
def
= o[ψ1] o · · · o[ψk] if k > 0.

Note that Po is injective.
Let us define Pφ as the set of patterns consisting of

• the constant > and the empty string ε,

• ψ, for every ψ ∈ B(A) that is a subformula of φ,

• every α ∈ (B(A))∗ so that P→∗(α), P∗←(α), or P↓∗(α)
is a substring of φ.

It follows that Pφ is finite and subword-closed.
For any direct non-recursive formula ψ that is a boole-

an combination of subformulas of φ and forest profile f, we
define f ` ψ as follows. If ψ ∈ A, then f ` ψ if and only if
there is some d ∈ D and i ∈ [k] so that (ψ, ε, i) ∈ χ

↓i(d). For
all the boolean cases ` is homomorphic. Suppose now that
ψ = 〈α·β@i 6= γ·δ@j〉 where α is leftward, ε or empty, γ is
rightward, ε or empty, and β, δ are downward or empty. We
define f ` ψ if there are some d, d′ ∈ D so that d 6= d′ and

• if α = ε or α = ε, (>,P−1
↓∗ (β), i) ∈ χ

↓ i(d),

• if α 6= ε, α 6= ε, (P−1
∗←(α),P−1

↓∗ (β), i) ∈ ( →[f]·χ↓e∪ χ↓ i)(d),

• if γ = ε or γ = ε, (>,P−1
↓∗ (δ), j) ∈ χ

↓i(d′),

• if γ 6= ε, γ 6= ε, (P−1
→∗(γ),P−1

↓∗ (δ), j) ∈ ([f]→·χ↓e∪ χ↓i)(d′).

Note that if α = ε then β = ε (resp. with γ and δ). If
both α and γ are rightwards or leftwards it is defined in
an analogous way. The case for = is also analogous, where
d = d′. The idea is that f ` ψ makes only sense when the
derivation forest for f is a tree, and the multi-attribute data
tree t associated to the derivation tree is so that t |= ψ.

For example, testing ψ is the same as testing if there is
some pattern (ψ, , ) in χ

↓ i or χ
↓i. In a similar way, checking

a formula like

〈→∗[a]↓∗[b]@1 = ↓∗[c]@2〉
reduces to checking if there is a data value d ∈ D that can
be reached with (>, c, 2) in the main forest (i.e., in χ

↓ i or
χ
↓i), and either

• d can be reached by (a, b, 1) in the main forest, that
is, (a, b, 1) ∈ χ

↓i (or equivalently χ
↓ i), or

• d can be reached in the right forest by (a, b, 1), where
a could be tested in the main forest (i.e., a ∈ [f]→), that
is, (a, b, 1) ∈ [f]→·χ↓e.

Note that checking f ` ψ takes polynomial time in the size
of f and ψ. Also, whether f ` ∧a∈A(a⇒ γϕ(a)) holds or not
depends only on ξ(f).

Lemma 6.4. Given a direct non-recursive formula ψ that
is a boolean combination of subformulas of φ, and two forest
profiles f, f′ ∈ F so that ξ(f) = ξ(f′) then f ` ψ if, and only
if, f′ ` ψ.



We can then write ξ |= ψ for ξ ∈ F instead of f |= ψ
for any f so that ξ(f) = ξ. We define the set of consistent
profiles Γφ as all ξ ∈ F so that ξ ` ∧a∈A(a ⇒ γϕ(a)). The
following lemma follows straight from the above definition
of `.

Lemma 6.5. f ` ∧a∈A(a⇒ γϕ(a)) iff ξ(f) ∈ Γφ.

Abstractions.
Given multi-attribute data forests t̄l, t̄, t̄r, we define

abs(t̄l, t̄, t̄r)

as the forest profile that abstracts the forest t̄ in the con-
text of the forests t̄l to the left and t̄r to the right. We
have already discussed the idea of this abstraction in Sec-
tion 4. For example, for the forest of Figure 3, assuming
P = {>, b·c, b, c, ε}, we would obtain an abstraction where

χ
↓e = {(5, b, b, 1), (5, b, ε, 1), (3, b, ε, 2), (2, b, c, 1), . . . }.

We have that abs is basically an algebra morphism be-
tween multi-attribute data forests with rooting and concate-
nation and forest profiles with profile rooting and profile
concatenation. Further, the profile abs(ε, t, ε) is a derivable
root profile whenever t |= φ; and every derivable root profile
is the abstraction of some tree t so that t |= φ. (The formal
definition of abs and the properties are described in the Ap-
pendix.) As a corollary from these properties, we have the
following.

Corollary 6.6. There is a derivable root forest profile
if, and only if, φ is satisfiable.

By the above Corollary 6.6 and Proposition 5.12, we can
check in 2ExpSpace if there is a derivable root profile. This
is 2ExpSpace in the size of Pφ. Although bringing a formula
ϕ into direct unnested normal form may result in a doubly
exponential formula, by Corollary 6.3 it can be stored in
exponential space, and Pφ is then singly exponential. Hence,
the procedure is 3ExpSpace in the original formula ϕ. Thus,
the decision procedure is in 3ExpSpace and Theorem 3.1
follows.

Note that if the input formula is in direct normal form
then we save one exponential in the reduction and we hence
obtain a 2ExpSpace decision procedure.

Theorem 6.7. The satisfiability problem for formulas of
XPath(∗←, ↓∗,→∗,=) in direct normal form is decidable in
2ExpSpace.

7. DISCUSSION
We have shown that XPath with downward, rightward and

leftward reflexive-transitive axes is decidable. To show this,
we devised an algebra with good monotonicity properties.
This seems to be the right kind of approach to work with
transitive relations, and it generalizes and simplifies, in some
aspects, the work of [11].

Upward axes
One natural question that stems from the result presented
here is whether it can be extended to work with an upward
axis as well. However, we claim (without a proof) that al-
ready SAT-XPath(↑∗,→∗,=) has a non-primitive recursive

lower bound. Indeed, this can be proved by reusing the re-
sults on lower bounds of [14]. The cited work shows that
XPath with one non-reflexive transitive axis is enough to
prove non-primitive recursiveness provided that the axis is
functional (i.e., the transitive closure of an axis like→,←, ↑
but unlike ↓). Here, however, we feature reflexive-transitive
axes instead of only transitive. Therefore, in principle we
cannot use this result. However, one can somehow code ↑+
with →∗[a]↑∗[¬a] for some label a. We leave the proof of
this claim for the journal version of the present work.

By the previous claim, although it could be that full tran-
sitive XPath is decidable, it would have a non-primitive
recursive lower bound. We can then answer negatively to
the conjecture proposed in [11, Conjecture 2], stating that
XPath(∗←, ↓∗, ↑∗,→∗,=) be decidable in elementary time.

Future work
• The present work can be seen as a step forward in

answering [11, Conjecture 1], suggesting that the ex-
tension of XPath(∗←, ↓∗,→∗,=) with the child axis is
decidable with elementary complexity. Our approach
may perhaps be extended to handle the child relation.

• We suspect that XPath(∗←, ↓∗,→∗,=) is in fact hard
for 2ExpSpace, even when the formulas are in direct
normal form, and hence that SAT-direct-XPath(∗←,
↓∗,→∗,=) is 2ExpSpace-complete.

• We would also like to investigate further the approach
taken in this paper to attempt to generalize it to work
with the class of reflexive-transitive closures of regular
languages.
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APPENDIX
We organize this appendix with the missing proofs, grouped by sections on the main body. In each case
we repeat the statements for the reader’s convenience.

A. APPENDIX TO SECTION 4
Lemma A.1 (distributivity of (·,∪)). For every P, P ′ ⊆ P and χ, χ′ ⊆ D×Π

1. P ·(χ ∪ χ′) = P ·χ ∪ P ·χ′,
2. (P ∪ P ′)·χ = P ·χ ∪ P ′·χ.

Proof. We have that

P ·(χ ∪ χ′)
= χ ∪ χ′ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ ∪ χ′, α′ ∈ P} (by definition of ‘·’)
= χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ P}∪
χ′ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ′, α′ ∈ P}

= P ·χ ∪ P ·χ′. (by definition of ‘·’)
which proves the first statement.

On the other hand,

(P ∪ P ′)·χ
= χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ P ∪ P ′}
= χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ P} ∪
χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ P ′}

= P ·χ ∪ P ′·χ
which proves the second statement.

Lemma A.2. If f1 + f2 = f3 and f1, f2 ∈ F, then f3 ∈ F.

Proof. If χ
↓e
3 (α, β, i) = {d}, then χ

↓e
1 (α, β, i) = {d}, and hence d ∈ R1 and therefore d ∈ R3 = R1.

A symmetrical argument applies for χ
↓e
3 and χ

↓e
2 .

Lemma A.3 (distributivity of (·,+)). For every f1, f2 ∈ F and χ ⊆ D×Π

• [f1 + f2]→·χ = [f1]→·([f2]→·χ),

• →[f1 + f2]·χ = →[f2]·( →[f1]·χ).

Proof. Let f+ = f1 + f2.

[f1 + f2]→·χ
= {α | (d, α, β, i) ∈ χ

↓i
+}·χ (by definition of [ ]→)

= {α | (d, α, β, i) ∈ χ
↓i
1 ∪ [f1]→·χ↓i2}·χ (by definition of f1 + f2)

=
(
{α | (d, α, β, i) ∈ χ

↓i
1} ∪ {α | (d, α, β, i) ∈ [f1]→·χ↓i2}

)
·χ

=
(
[f1]→ ∪ {α | (d, α, β, i) ∈ [f1]→·χ↓i2}

)
·χ (by (·,∪) distributivity)

= [f1]→·{α | (d, α, β, i) ∈ [f1]→·χ↓i2}·χ
= [f1]→·{(d, α′·α, β, i) | (d, α, β, i) ∈ χ,
α′ ∈ {α | (d, α, β, i) ∈ [f1]→·χ↓i2}}

= [f1]→·χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ,
α′ ∈ {α | (d, α, β, i) ∈ {α | (d, α, β, i) ∈ χ

↓i
1}·χ

↓i
2}}

= [f1]→·χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ,
α′ ∈ {α·α′ | (d, α, β, i) ∈ χ

↓i
1∧

((d′, α′, β′, i′) ∈ χ
↓i
2 ∨ α′ = ε)}}

= [f1]→·χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ,
α′ ∈ {α·α′ | α ∈ [f1]→, α′ ∈ [f2]→ ∪ {ε}}}

= [f1]→·χ ∪ {(d, α′·α′′·α, β, i) | (d, α, β, i) ∈ χ,
α′ ∈ [f1]→, α′′ ∈ [f2]→ ∪ {ε}}

= [f1]→·χ∪



{(d, α′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ [f1]→}∪
{(d, α′·α′′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ [f1]→, α′′ ∈ [f2]→}

= [f1]→·χ ∪ [f1]→·χ∪
{(d, α′·α′′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ [f1]→, α′′ ∈ [f2]→}

= [f1]→·χ∪
[f1]→·{(d, α′′·α, β, i) | (d, α, β, i) ∈ χ, α′′ ∈ [f2]→}

= [f1]→·χ ∪ [f1]→·([f2]→·χ)

= [f1]→·([f2]→·χ)

An identical reasoning can be used to prove that →[f1 + f2]·χ = →[f2]·( →[f1]·χ).

Lemma A.4 (+ associativity). For every f1, f2, f3 ∈ F, (f1 + f2) + f3 = f1 + (f2 + f3).

Proof. Let f12 = f1 + f2, f23 = f2 + f3.
We first show that if (f1 + f2) + f3 can be applied, then f1 + (f2 + f3) can also be applied. Condition

(a) is immediate, since R1 = R2 = R3. Now we show that conditions (b) and (c) hold for f2 + f3. Since
χ
↓e
2 = χ

↓e
12 and since the conditions between f12 + f3 hold, we have that χ

↓e
2 = χ

↓i
3 ∪ [f3]→·χ↓e3 and hence

that condition (b) holds for f2 + f3.
To show that condition (c) holds, note that

χ
↓e
3 = χ

↓ i
12 ∪ →[f12]·χ↓e12 (by condition (c) of f12 + f3)

= χ
↓ i
2 ∪ →[f2]·χ↓ i1 ∪ →[f12]·χ↓e1 (by definition of f1 + f2)

= χ
↓ i
2 ∪ →[f2]·χ↓ i1 ∪ →[f2]·( →[f1]·χ↓e1 ) (by (·,+) distributivity)

= χ
↓ i
2 ∪ →[f2]·(χ↓ i1 ∪ →[f1]·χ↓e1 ) (by (·,∪) distributivity)

= χ
↓ i
2 ∪ →[f2]·χ↓e2 . (by condition (c) of f1 + f2)

Hence, we obtain that χ
↓e
3 = χ

↓ i
2 ∪ →[f2]·χ↓e2 , and thus condition (c) holds for f2 + f3.

On the other hand, assuming that f1 +(f2 + f3), we can show that the conditions to apply (f1 + f2)+ f3
hold, in the same way as before, since all the definitions are symmetrical, where χ

↓e
1 = χ

↓i
2 ∪ [f2]→·χ↓e2

and χ
↓e
2 = χ

↓ i
1 ∪ →[f1]·χ↓e1 .

We now show that (f1 + f2) + f3 = f1 + (f2 + f3). Let f1(23) = f1 + (f2 + f3) and f(12)3 = (f1 + f2) + f3.

We have that χ
↓e
1(23) = χ

↓e
23 = χ

↓e
3 = χ

↓e
(12)3 by item condition (+2) of +. In a similar way, by

condition (+3) we have that χ
↓e
1(23) = χ

↓e
(12)3. On the other hand, we have

χ
↓i
1(23) = χ

↓i
1 ∪ [f1]→·χ↓i23 (by condition (+4))

= χ
↓i
1 ∪ [f1]→·(χ↓i2 ∪ [f2]→·χ↓i3) (by condition (+4))

= χ
↓i
1 ∪ [f1]→·χ↓i2 ∪ [f1]→·([f2]→·χ↓i3) (by (·,∪) distributivity)

= χ
↓i
1 ∪ [f1]→·χ↓i2 ∪ [f12]→·χ↓i3 (by (·,+) distributivity)

= χ
↓i
12 ∪ [f12]→·χ↓i3 (by condition (+4))

= χ
↓i
(12)3 (by condition (+4))

and by a similar reasoning using condition (+5) we obtain that χ
↓ i
1(23) = χ

↓ i
(12)3. Hence, (f1 + f2) + f3 =

f1 + (f2 + f3).

Lemma A.5. For every f1, f2 ∈ (a, d̄)f3 and every χ ⊆ D×Π,

[f1]→·[f2]→·χ = [f1]→·χ = [f2]→·χ =

→[f1]· →[f2]·χ = →[f1]·χ = →[f2]·χ.
Proof. By condition (c) of rooting and definition of [ ]→, →[ ], we have that →[f1] = [f1]→ = →[f2] =

[f2]→ = σa. By definition of σa, it is immediate that σa·σa·χ = σa·χ. Hence, the statement follows.

Lemma A.6. For every f1 ∈ (a, d̄)f2,

χ
↓i
1 = [f1]→·χ↓i1 χ

↓ i
1 = [f1]→·χ↓ i1.

Proof. By condition (c) of rooting, [f1]→ = σa and since χ
↓i
1 = {(d, α, β·γ, i) | ∃α′.(d, α′, γ, i) ∈

χ
↓i
2 ∪ χ

↓ i
2, α, β ∈ σa} ∪

⋃
i∈[k]({d(i)} × (σa \ {ε})× σa × {i}) it follows that σa·χ

↓i
1 = χ

↓i
1, obtaining that

χ
↓i
1 = [f1]→·χ↓i1. Since χ

↓ i
1 = χ

↓i
1 by condition (c), we also obtain that χ

↓ i
1 = [f1]→·χ↓ i1.

B. APPENDIX TO SECTION 5
Lemma B.1. � and - are partial orders over F.



Proof. If f � f′ � f′′, suppose f′ = f[d1 7→ d1, d
′
1] · · · f[dn 7→ dn, d

′
n] and f′′ = f′[e1 7→ e1, e

′
1] · · · f[em 7→

en, e
′
m]. Therefore, f′′ = f[d1 7→ d1, d

′
1] · · · f[dn 7→ dn, d

′
n][e1 7→ e1, e

′
1] · · · f[em 7→ en, e

′
m] and hence f � f′′.

On the other hand, it is plain that ∼ preserves transitivity and reflexivity, and that f � f.

Lemma B.2. If f1 � f2 then →[f1] = →[f2] and [f1]→ = [f2]→.

Proof. This is immediate from the definition of →[ ], [ ]→, and �. Note that, since f1 � f2 we have
{(α, β, i) | ∃d ∈ D.(d, α, β, i) ∈ f1} = {(α, β, i) | ∃d ∈ D.(d, α, β, i) ∈ f2}. Hence, we obtain that α ∈ [f1]→
if and only if there is some (d, α, β, i) ∈ χ

↓i
1 if and only if there is some (d′, α, β, i) ∈ χ

↓i
2 if and only if

α ∈ [f2]→. A similar argument shows that →[f1] = →[f2].

Lemma B.3. If f � f′ then ξ(f) = ξ(f′).

Proof. Suppose, without any loss of generality, that f′ = f[d 7→ d, d′], where d ∈ data(f) \ R
and d′ 6∈ data(f). Since d′ behaves just as d, we have that, for any ᾱ, ᾱ′ ∈ Π, a, a′ ∈ { ◦↓ , ◦↓, ◦↓, ◦},
d′ ∈ f′.χa(ᾱ)∩χa′(ᾱ′) iff d ∈ f.χa(ᾱ)∩f.χa′(ᾱ′). Hence, f′.χa(ᾱ)∩f′.χa′(ᾱ′) 6= ∅ iff f.χa(ᾱ)∩f.χa′(ᾱ′) 6= ∅.

Further, since d 6∈ R we have that if d ∈ χa(ᾱ) in f′ (or in f) then |χa(ᾱ)| > 1. Hence ξ(f)(ᾱ, a) =
ξ(f′)(ᾱ, a) = 2+ whenever d ∈ f.χa(ᾱ). Further, since f′ preserves all the data values of f with their
descriptions, ξ(f)(ᾱ, a) = ξ(f′)(ᾱ, a) whenever d 6∈ f.χa(ᾱ) ∩ f.χa′(ᾱ

′).

Lemma B.4. If d ∈ data(f) \R and d′ 6∈ data(f), we have that if f ∈ F then f[d 7→ d, d′] ∈ F.

Proof. This is immediate from the definition of validity. Since d′ 6∈ data(f), then f′ = f[d 7→ d, d′] is
the result of adding some fresh data value d′ 6∈ R with the same description as d′. Since f′ 6∈ F, there

is some {d′′} = χ
↓e′(ᾱ) for ᾱ ∈ Π and d′′ 6∈ R. By definition of f′, this means that d′′ 6= d and d′′ 6= d,

and hence that {d′′} = χ
↓e(ᾱ), and thus f 6∈ F, which is a contradiction. A symmetric argument can

also be applied to χ
↓e.

Appendix to Section 5.3
Lemma 5.1 (Figure 4). For every f1 � f2 ∈ (a, d̄)f3, there is n ∈ N, and f′i ∈∼ (a, d̄)f3 for every i ∈ [n]
so that

f1 = f′1 + · · ·+ f′n.

Proof of Lemma 5.1. Since f1 � f2, suppose

f1 = f2[d1 7→ d1, d
′
1] · · · [dt 7→ dt, d

′
t] (†)

where {d1, . . . , dt} ⊆ data(f2) \ R2; {d′1, . . . , d′t} ∩ data(f2) = ∅; and d′i 6= d′j for all i 6= j. We define
n = t+ 2.

The idea is that we will define f′0, f
′
1, . . . , f

′
t+1 so that f′i is, modulo some renaming of data values,

the same as f2 for all strictly internal values, and with the same descriptions. However, f′i has more
external data values than f2—namely d′1, . . . , d

′
t—that have basically the same descriptions as d1, . . . , dt

in f2. Although technically we could make use of less profiles, we prefer to define t+ 1 different profiles,
to preserve some symmetries in the definitions, and thus to simplify proofs. We define f′0, . . . , f

′
t+1 in

Figure ??.
We shall now show that for every f′i there is some f′′i so that f′i ∼ f′′i ∈ (a, d̄)f3.

Claim B.4.1. For every i ∈ [n], f′i ∈∼ (a, d̄)f3.

Proof. First note that f′0, f
′
t+1 ∈ (a, d̄)f3, since all the internal descriptions of the internal data

values are preserved, and ξ(f′0) = ξ(f′t+1) = ξ(f2). The fact that they all have the same fingerprints is
because:

• For every a ∈ A, ᾱ ∈ Π, and every data value e ∈ data(f2), we have that e ∈ χa(ᾱ) in f2
iff e ∈ χa(ᾱ) in f′0 iff e ∈ χa(ᾱ) in f′t+1. This is because, since χ

↓ i
t+1
′
(e) = χ

↓ i
0
′
(e) = χ

↓ i
2(e),

χ
↓i
t+1
′
(e) = χ

↓i
0
′
(e) = χ

↓i
2(e), χ

↓e
0
′
(e) = χ

↓e
2 (e), χ

↓e
t+1
′
(e) = χ

↓e
2 (e), we have that: for all a ∈ {◦, ◦↓, ◦↓},

χa(e) in f′0 is equal to χa(e) in f2; and for all a ∈ {◦, ◦↓, ◦↓}, χa(e) in f′t+1 is equal to χa(e) in f2.
And further,

– if a = ◦↓,

f′0.χa(e) = χ
↓i
0

′
(e) ∪ [f′0]→·χ↓e0 ′(e)

= χ
↓i
2(e) ∪ [f2]→·(χ↓i2(e) ∪ [f2]→·χ↓e2 (e))

= χ
↓i
2(e) ∪ [f2]→·χ↓e2 (e) (by Lemmas ?? and ??)

= f2.χa(e)

– if a = ◦↓ ,

f′t+1.χa(e) = χ
↓ i
0

′
(e) ∪ →[f′t+1]·χ↓et+1

′
(e)



f′0 :



R′0 = R2,

χ̄′0(e) = (χ
↓e
2 (e), χ

↓i
2(e), χ

↓ i
2(e), χ

↓i
2(e) ∪ [f2]→·χ↓e2 (e))

for every e ∈ data(f2),

χ̄′0(d′j) = (χ
↓e
2 (dj), ∅, ∅, χ

↓i
2(dj) ∪ [f2]→·χ↓e2 (dj))

for every j ∈ [t].

For every i ∈ {1, . . . , t} we define f′i as

f′i :



R′i = R2,

χ̄′i(e) = (χ
↓ i
2(e) ∪ →[f2]·χ↓e2 (e), χ

↓i
2(e),

χ
↓ i
2(e), χ

↓i
2(e) ∪ [f2]→·χ↓e2 (e))

for every e ∈ data(f2) \ {di},
χ̄′i(di) = (χ

↓ i
2(di) ∪ →[f2]·χ↓e2 (di), ∅,
∅, χ↓i2(di) ∪ [f2]→·χ↓e2 (di)),

χ̄′i(d
′
i) = ( →[f2]·χ↓e2 (di), χ

↓i
2(di), χ

↓ i
2(di), [f2]→·χ↓e2 (di)),

χ̄′i(d
′
j) = (χ

↓ i
2(dj) ∪ →[f2]·χ↓e2 (dj), ∅, ∅, [f2]→·χ↓e2 (dj))

for every j < i,

χ̄′i(d
′
j) = ( →[f2]·χ↓e2 (dj), ∅, ∅, χ

↓i
2(dj) ∪ [f2]→·χ↓e2 (dj))

for every j > i.

f′t+1 :



R′t+1 = R2,

χ̄′t+1(e) = (χ
↓ i
2(e) ∪ →[f2]·χ↓e2 (e), χ

↓i
2(e), χ

↓ i
2(e), χ

↓e
2 (e))

for every e ∈ data(f2),

χ̄′t+1(d′j) = (χ
↓ i
2(dj) ∪ →[f2]·χ↓e2 (dj), ∅, ∅, χ

↓e
2 (dj))

for every j ∈ [t].

Figure 7: Definition of f′0, f′t+1 and f′i for all i ∈ [t].

= χ
↓ i
2(e) ∪ →[f2]·(χ↓ i2(e) ∪ →[f2]·χ↓e2 (e))

= χ
↓ i
2(e) ∪ →[f2]·χ↓e2 (e) (by Lemmas ?? and ??)

= f2.χa(e).

• The data values d′j do not change the fingerprint ξ(f2), because d′j is added to all those χa(ᾱ) where
dj ∈ f2.χa(ᾱ), and f2.χa(ᾱ) has already two data values (otherwise dj would be rigid).
Therefore, for any a ∈ A, ᾱ ∈ Π, if some d′j ∈ f′0.χa(ᾱ), then |f2.χa(ᾱ)| ≥ 2, and f2.χa(ᾱ) ⊆ f′0.χa(ᾱ)
(thus, |f′0.χa(ᾱ)| ≥ 2). Otherwise, if d′j 6∈ f′0.χa(ᾱ) for every j ∈ [t], then f′0.χa(ᾱ) = f2.χa(ᾱ).
Moreover, for any a, a′ ∈ A, ᾱ, ᾱ′ ∈ Π, if d′j is in some f′0.χa(ᾱ) ∩ f′0.χa′(ᾱ

′) it means that dj ∈
f2.χa(ᾱ) ∩ f2.χa′(ᾱ

′). Hence, |f′0.χa(ᾱ) ∩ f′0.χa′(ᾱ
′)| ≥ 1 iff |f2.χa(ᾱ) ∩ f2.χa′(ᾱ

′)| ≥ 1.
As a result the fingerprint of f2 and f′0 are equal, and hence ξ(f′0) = ξ(f2) ∈ Γ. The same reasoning
applies to f′t+1.

Thus, f′0, f
′
t+1 ∈∼ (a, d̄)f3.

We now show that for every i ∈ [t], there is f′′i so that f′i ∼ f′′i ∈ (a, d̄)f3. We define f′′i as f′i[di 7→ d′i]
for every i ∈ [t]. Observe that f′′i ∼ f′i for every i ∈ [t]. Since every di is not rigid, f′i ∈ F and hence
f′′i ∈ F. Further, note that f′′i and f2 share the same set of internal data values, and that the internal
descriptions of these internal data values are the same in f′′i and f2. Also in this case we have that
ξ(f′′i ) = ξ(f2) for the same reason as before:

• For all e ∈ data(f2), a ∈ A and ᾱ ∈ Π we have that e ∈ χa(ᾱ) in f2 iff e ∈ χa(ᾱ) in f′′i .

• The fresh data values d′j only add data values to sets χa(ᾱ) that already have at least 2 data values.
And d′j ∈ f′i.χa(ᾱ) ∩ f′i.χa′(ᾱ

′) iff dj ∈ f2.χa(ᾱ) ∩ f2.χa′(ᾱ
′).

This shows that ξ(f′i) = ξ(f2) ∈ Γ.
Thus, f′′i ∈ (a, d̄)f3 since f2 ∈ (a, d̄)f3.

We now check that f1 = f′0 + · · ·+ f′t+1.
Claim B.4.2. f1 = f′0 + · · ·+ f′t+1.

Proof. For each data value d, we are going to show that conditions (b) and (c) of concatenation
hold, and that χ̄1(d) equals to the profile of d in f′1,+ · · ·+ f′n.
• Let us take any data value d ∈ data(f2) \ {d1, . . . , dt}. We first check that condition (b) holds for

d, in other words, that for every i ∈ {0, . . . , t},

χ
↓i
i+1(d) ∪ [fi+1]→·χ↓ei+1(d) = χ

↓e
i (d).



We have

χ
↓i
i+1(d) ∪ [fi+1]→·χ↓ei+1(d)

= χ
↓i
i+1(d) ∪ [f2]→·χ↓ei+1(d) (by Lemma ??)

= χ
↓i
2(d) ∪ [f2]→·χ↓ei+1(d) (by definition)

=





χ
↓i
2(d) ∪ [f2]→·χ↓e2 (d) if i = t, or

χ
↓i
2(d) ∪ [f2]→·(χ↓i2(d) ∪ [f2]→·χ↓e2 (d))

otherwise.

If i = t, we further have that χ
↓i
2(d) ∪ [f2]→·χ↓e2 (d) = χ

↓e
i (d), verifying (b). Otherwise, if i 6= t,

χ
↓i
i+1(d) ∪ [fi+1]→·χ↓ei+1(d) = · · · =

= χ
↓i
2(d) ∪ [f2]→·(χ↓i2(d) ∪ [f2]→·χ↓e2 (d))

= χ
↓i
2(d) ∪ [f2]→·χ↓i2(d) ∪ [f2]→·[f2]→·χ↓e2 (d) (by (·,∪) distributivity)

= χ
↓i
2(d) ∪ [f2]→·χ↓i2(d) ∪ [f2]→·χ↓e2 (d) (by Lemma ??)

= [f2]→·χ↓i2(d) ∪ [f2]→·χ↓e2 (d) (since χ
↓i
2(d) ⊆ [f2]→·χ↓i2(d))

= χ
↓i
2(d) ∪ [f2]→·χ↓e2 (d) (by Lemma ??)

= χ
↓e
i (d). (by definition)

In any case, condition (b) holds between f′i and f′i+1 for the data value d. Note that since all definitions
are symmetrical, it also follows that condition (c) holds for d.

We now check that, if we call f+ to f′1 + · · · + f′n, then χ̄+(d) = χ̄1(d). Here we only deal with χ
↓e
+

and χ
↓i
+ because the cases for χ

↓e
+ and χ

↓ i
+ are symmetrical. By definition of +, we have that

χ
↓e
+(d) = χ
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2 (d) (by (+2))

= χ
↓e
1 (d), (by (??), since d ∈ data(f2))

χ
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(
χ
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2 ∪ [f2]→·χ↓i2 ∪ [f2]→·[f2]→·χ↓i2 ∪ · · · ∪

[f2]→ · · · [f2]→︸ ︷︷ ︸
n− 1 times

·χ↓i2
)
(d) (by (+4))

= ([f2]→·χ↓i2)(d) (by Lemma ??)

= χ
↓i
2(d) (by Lemma ??)

= χ
↓i
1(d). (by (??), since d ∈ data(f2))

• Suppose now that we have d = dj for some j ∈ [t]. We check that condition (b) holds for d, in
other words that for every i ∈ {0, . . . , t},

χ
↓i
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i (d).

We have

χ
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If i 6= t and j = i+ 1,

χ
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= [f2]→·χ↓i2(d) ∪ [f2]→·χ↓e2 (d) (by Lemma ??)

= χ
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If i 6= t and j 6= i+ 1,

χ
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i+1(d) ∪ [f2]→·χ↓ei+1(d) = χ

↓i
2(d) ∪ [f2]→·(χ↓i2 ∪ [f2]→·χ↓e2 )(d) (by definition)



= χ
↓i
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2(d) ∪ [f2]→·χ↓i2(d) ∪ [f2]→·χ↓e2 (d) (by Lemma ??)

= χ
↓i
2(d) ∪ χ↓i2(d) ∪ [f2]→·χ↓e2 (d) (by Lemma ??)
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Condition (c) follows by symmetry.
We check that χ
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↓e
1 (d) and χ

↓i
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1(d). By definition of +, we have that

χ
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2 (d) (by (+2))
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1 (d), (by (??), since d ∈ data(f2))
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1(d). (by (??), since d ∈ data(f2))

• Finally, suppose d = d′j for some j ∈ [t]. We check that condition (b) holds for d, in other words
that for every i ∈ {0, . . . , t},
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If i = t,
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= χ
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= χ
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Condition (c) follows by symmetry.
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↓i
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↓i
1(d′j). By definition of +, we have that
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↓e
+(d′j) = χ

↓e
2 (dj) (by (+2))

= χ
↓e
1 (d′j), (since χ̄1(d′j) = χ̄2(dj) by (??))
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d
∈

D
so

th
a
t

th
ere

is
so

m
e

j
∈

[n
]

w
ith

χ ↓

ej
(α

,β
,i)

=
{
d}

.
B

y
m

ea
n
s

o
f
co

n
tra

d
ictio

n
,
if

th
ere

w
ere

tw
o

d
a
ta

va
lu

es
d
,d
�

th
en

th
ere

w
o
u
ld

b
e

tw
o

fj ,fk
w

ith
j�=

k
so

th
a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

a
n
d
χ ↓

ek
(α

,β
,i)

=
{
d
�}

.
S
u
p
-

p
o
se

w
ith

o
u
t

a
n
y

lo
ss

o
f

g
en

era
lity

th
a
t

j
<

k
.

T
h
en

,
b
y

d
efi

n
itio

n
o
f

+
,

w
e

m
u
st

h
av

e
th

a
t

—
sin

ce
d
∈
χ ↓

ej
(α

,β
,i)

a
n
d

fj
+

···+
fk

is
d
efi

n
ed

—
d
∈
χ ↓

ek
(α

,β
,i).

T
h
is

is
in

co
n
-

tra
d
ictio

n
w

ith
th

e
fa

ct
th

a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

.
T

h
e

sa
m

e

h
a
p
p
en

s
b
y

sy
m

m
etry

w
ith

χ ↓
e.

L
et

u
s

d
efi

n
e

R
lχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
rχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
χ̄
1
,...,χ̄

n

d
e
f

=
R

lχ̄
1
,...,χ̄

n
∪

R
rχ̄
1
,...,χ̄

n
.

B
y

th
e

a
b
ov

e
d
iscu

ssio
n

it
fo

llow
s

th
a
t

|R
χ̄
1
,...,χ̄

n |≤
2|Π|.

C
o
n
sid

er
f �,f �1 ,...,f �n

b
e

a
s

f,f1 ,...,fn
b
u
t

w
ith

R
χ̄
1
,...,χ̄

n
a
s

th
e

set
o
f
rig

id
va

lu
es.

B
y

co
n
stru

ctio
n

o
f
R
χ̄
1
,...,χ̄

n
w

e
h
av

e
th

a
t

f �
=

f �1
+

···+
f �n

.
In

o
th

er
w

o
rd

s
w

e
h
av

e
th

e
fo

llow
in

g
.

C
l
a
im

5
.1

2
.1

.
F
o
r

every
(R

,χ̄
)

=
(R

,χ̄
1 )

+
···+

(R
,χ̄

n
)

w
e

h
a
ve

th
a
t

(R
χ̄
1
,...,χ̄

n
,χ̄

)
=

(R
χ̄
1
,...,χ̄

n
,χ̄

1 )
+

···
+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
).

L
et

t
b
e

a
d
eriva

tio
n

tree
fo

r
a

ro
o
t

p
ro

fi
le

(R
,f).

L
et

t �

b
e

th
e

resu
lt

o
f
rep

la
cin

g
ev

ery
m

a
x
im

a
l
seq

u
en

ce
o
f
sib

lin
g
s

(R
,χ̄

1 ),...,(R
,χ̄

n
)
w

ith
(R

χ̄
1
,...,χ̄

n
,χ̄

1 )+
···+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
)

in
t.

It
th

en
fo

llow
s

th
a
t

t �
is

a
d
eriva

tio
n

tree
fo

r
(R

χ̄
,f).

(N
o
te

th
a
t
th

is
is

tru
e

b
eca

u
se

in
th

e
ro

o
tin

g
o
p
era

tio
n

th
ere

is
n
o

restrictio
n

o
n

w
h
ich

sh
o
u
ld

b
e

th
e

set
o
f
rig

id
va

lu
es

o
f

th
e

p
a
ren

t
p
ro

fi
le.)

It
is

im
m

ed
ia

te
th

a
t

(R
,f)

is
a

ro
o
t

p
ro

-
fi
le

if
a
n
d

o
n
ly

if
(R

χ̄
,f)

is
a

ro
o
t

p
ro

fi
le.

T
h
u
s,

th
e

lem
m

a
fo

llow
s.

L
et

F
b

b
e

th
e

set
o
f

a
ll

f∈
F

th
a
t

h
av

e
n
o

m
o
re

th
a
n

2|Π|
rig

id
va

lu
es.

L
et

D
b

b
e

th
e

set
o
f
d
eriva

b
le

p
ro

fi
les

restricted
to

F
b .

B
y

th
e

L
em

m
a

a
b
ov

e,
th

ere
is

a
ro

o
t

d
eriva

b
le

p
ro

fi
le

in
D

if
a
n
d

o
n
ly

if
th

ere
is

a
ro

o
t
d
eriva

b
le

p
ro

fi
le

in
D

b .
A

lso
,

n
o
te

th
a
t

D
b

is
u
p
w

a
rd

clo
sed

sin
ce

D
is

u
p
w

a
rd

clo
sed

.

R
e
m
a
r
k

5
.1

3
.

D
b

=
↑
D

b .

In
th

e
n
ex

t
sectio

n
w

e
sh

ow
th

a
t

D
b

is
eff

ectiv
e.

(a
,d̄

)

∈

�
(a

,d̄
)

∈

(a
,d̄

)

∈

�
�

�

(bounded)

f

f �1
+

···
+

f �m
f̂

f �

f ��

C ∈

f �C ∈

f �1
+

···
+

f �m

C ∈

f

Lem
m

a 5.11

by construction
by construction

F
ig

u
re

8
:

R
e
p
re

se
n
ta

tio
n

o
f

th
e

p
ro

fi
le

s
a
n
d

re
la

-
tio

n
s

u
se

d
in

th
e

p
ro

o
f
o
f
L
e
m

m
a

5
.1

5
.

5.3
T

he
algorithm

W
e

sh
ow

a
n

a
lg

o
rith

m
to

co
m

p
u
te

a
fi
n
ite

set
C

so
th

a
t

D
b

=
↑
C

.
W

h
en

w
e

w
rite

C
∼

w
e

m
ea

n
{
f|

f∼
f �∈

C
}

a
n
d

b
y
↑
C

=
{
f∈

F
b |

f�
f �,f �∈

C
}
.

1
.

L
et

C
=

{
f∅ }

.

2
.

T
a
k
e

a
n
y
�

-m
in

im
a
l
f∈

C
∼

a
n
d

a
�

-m
in

im
a
l
f1 ∈

(a
,d̄

)f
so

th
a
t

f1 �∈
↑
C

,
a
n
d

a
d
d

f1
to

C
.

If
th

ere
isn

’t
a
n
y,

g
o

to
n
ex

t
step

.

3
.

F
o
r
ev

ery
�

e
x
t -m

in
im

a
l
f∈

C
,
a
d
d

a
ll

b
o
u
n
d
ed

ex
ten

sio
n
s

to
C

.

4
.

If
th

ere
a
re

tw
o

f1 ,f2
∈

C
∼

th
a
t

a
re

b
o
u
n
d
ed

ex
ten

sio
n
s

o
f�

e
x
t -m

in
im

a
l
p
ro

fi
les

o
f

C
so

th
a
t

f1
+

f2
�∈
↑
C

,
th

en
a
d
d

f1
+

f2
to

C
.

R
ep

ea
t.

G
o

to
step

2
.

5
.

O
u
tp

u
t

C
.

N
o
te

th
a
t

step
2

ca
n

o
n
ly

b
e

rep
ea

ted
a
s

m
a
n
y

tim
es

a
s

th
ere

a
re

m
in

im
a
l
elem

en
ts

in
F

b ,
w

h
ich

is
ex

p
o
n
en

tia
l.

Id
em

w
ith

3
a
n
d

4
.

S
o

it
is

ea
sy

to
ch

eck
th

a
t

th
is

a
lg

o
rith

m
u
ses

ex
p
o
n
en

tia
l

sp
a
ce.

N
ow

w
e

p
rov

e
th

a
t

it
is

co
rrect,

a
s

a
co

n
seq

u
en

ce
o
f
th

e
lem

m
a
s

p
resen

ted
b
efo

re.

L
e
m
m
a

5
.1

4
.

T
h
e

a
lgo

rith
m

u
ses

a
t
m

o
st

expo
n
en

tia
l
spa

ce.

L
e
m
m
a

5
.1

5
.
↑
C

=
D

b .

P
r
o
o
f
.

[⊆
]
T

h
is

is
im

m
ed

ia
te,

sin
ce

b
y

co
n
stru

ctio
n

C
⊆

D
b

a
n
d

b
y

R
em

a
rk

5
.1

3
D

b
is

u
p
w

a
rd

clo
sed

.
[⊇

]
L
et

f∈
D

b .
T

h
en

,
th

ere
m

u
st

b
e

a
fo

rest
t̄
o
f
d
eriva

tio
n

trees
fo

r
p
ro

fi
les

f1 ,...,fn
∈

D
b
so

th
a
t
f
=

f1 +
···+

fn
,
w

h
ere

n
≥

1
.

W
e

p
ro

ceed
b
y

in
d
u
ctio

n
o
n

th
e

size
o
f
t̄.

•
If

t̄
h
a
s

o
n
ly

o
n
e

n
o
d
e,

th
en

it
is

triv
ia

l.
T

B
C

.
•

If
t̄

=
t

is
a

tree
w

ith
h
eig

h
t

n
>

0
.

S
u
p
p
o
se

th
a
t

th
e

ro
o
t

is
la

b
eled

w
ith

f
a
n
d

w
ith

so
m

e
(a

,d̄
)
∈

A
×

D
k
.

L
et

t̄ �
b
e

th
e

fo
rest

o
f
im

m
ed

ia
te

su
b
trees

o
f
t,

let
m

=
|t̄ �|.

F
o
r

ev
ery

1
≤

i≤
m

,
let

f �i
b
e

th
e

p
ro

fi
le

la
b
el

o
f
th

e
ro

o
t

o
f
t̄ �(i)

fo
r

ev
ery

i∈
[m

].
L
et

u
s

sh
ow

th
a
t

th
ere

is
so

m
e

f ��∈
C

so
th

a
t

f ���
f.

W
e

h
av

e
th

a
t

f �1
+

···
+

f �m
∈
↑
C

b
y

in
d
u
ctiv

e
h
y
p
o
th

esis,
let

f ��
f �1

+
···

+
f �m

fo
r

f �∈∼
C

.
F
u
rth

er,
let

u
s

a
ssu

m
e

th
a
t

f �

is
�

-m
in

im
a
l
a
m

o
n
g

th
e

p
ro

fi
les

o
f
C

.
L
et

f �i
∈∼

C
so

th
a
t

f �i
�

fi .
If

m
=

1
it

is
triv

ia
l.

If
m

>
1
,
th

ere
m

u
st

b
e

so
m

e
f �2

�
f2

+
···

+
fm

b
y

in
d
u
ctiv

e
h
y
p
o
th

esis.
•

If
t̄
=

t̄
1 ·t̄

2
w

ith
t̄
1 ,t̄

2 �=
ε...

X
X

X
X

X
F
ig

u
re

9
d
ep

icts
th

e
g
en

era
l
id

ea
o
f
th

e
a
rg

u
m

en
t.

D
×

Π
|∃
α
�.(d

,α
�,γ

,i)∈
χ ↓

i4 ∪
χ ↓

i4 ,α
,β
∈
σ

a }∪ �
i∈

[k
] ({

d
[i]}×

σ
a ×

σ
a ×

{
i}

)
a
s

d
esired

.
H

en
ce,

co
n
d
itio

n
(c)

h
o
ld

s,
a
n
d

w
e

h
av

e
th

a
t

f3 ∈
(a

,d̄
)f4 .

N
ow

w
e

a
p
p
ly

L
em

m
a

5
.6

,
o
b
ta

in
in

g
th

a
t

th
ere

is
n
∈

N
a
n
d

f �i ∈∼
(a

,d̄
)f4

fo
r

ev
ery

i∈
[n

]
so

th
a
t

f �1
+

···
+

f �n
=

f1 .
T

h
is

co
n
clu

d
es

th
e

p
ro

o
f.

5.2
B

ounding
the

rigid
values

In
th

is
sectio

n
w

e
sh

ow
th

a
t

w
e

ca
n

w
o
rk

w
ith

p
ro

fi
les

th
a
t

h
av

e
b
o
u
n
d
ed

ly
m

a
n
y

rig
id

va
lu

es.

L
e
m
m
a

5
.1

2
.

If
th

ere
is

a
d
eriva

ble
roo

t
p
ro

fi
le,

th
ere

is
o
n
e

su
ch

th
a
t

a
ll

th
e

p
ro

fi
les

in
its

d
eriva

tio
n

tree
h
a
ve

n
o

m
o
re

th
a
n

2|Π|
d
a
ta

va
lu

es.

P
r
o
o
f
.

S
u
p
p
o
se

w
e

h
av

e
f

=
f1

+
···

+
fn

.
L
et

u
s

fi
rst

sh
ow

th
a
t

fo
r

ev
ery

(α
,β

,i)
∈

Π
th

ere
ca

n
b
e

a
t

m
o
st

o
n
e

d
a
ta

va
lu

e
d
∈

D
so

th
a
t

th
ere

is
so

m
e

j
∈

[n
]

w
ith

χ ↓

ej
(α

,β
,i)

=
{
d}

.
B

y
m

ea
n
s

o
f
co

n
tra

d
ictio

n
,
if

th
ere

w
ere

tw
o

d
a
ta

va
lu

es
d
,d
�

th
en

th
ere

w
o
u
ld

b
e

tw
o

fj ,fk
w

ith
j�=

k
so

th
a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

a
n
d
χ ↓

ek
(α

,β
,i)

=
{
d
�}

.
S
u
p
-

p
o
se

w
ith

o
u
t

a
n
y

lo
ss

o
f

g
en

era
lity

th
a
t

j
<

k
.

T
h
en

,
b
y

d
efi

n
itio

n
o
f

+
,

w
e

m
u
st

h
av

e
th

a
t

—
sin

ce
d
∈
χ ↓

ej
(α

,β
,i)

a
n
d

fj
+

···+
fk

is
d
efi

n
ed

—
d
∈
χ ↓

ek
(α

,β
,i).

T
h
is

is
in

co
n
-

tra
d
ictio

n
w

ith
th

e
fa

ct
th

a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

.
T

h
e

sa
m

e

h
a
p
p
en

s
b
y

sy
m

m
etry

w
ith

χ ↓
e.

L
et

u
s

d
efi

n
e

R
lχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
rχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
χ̄
1
,...,χ̄

n

d
e
f

=
R

lχ̄
1
,...,χ̄

n
∪

R
rχ̄
1
,...,χ̄

n
.

B
y

th
e

a
b
ov

e
d
iscu

ssio
n

it
fo

llow
s

th
a
t

|R
χ̄
1
,...,χ̄

n |≤
2|Π|.

C
o
n
sid

er
f �,f �1 ,...,f �n

b
e

a
s

f,f1 ,...,fn
b
u
t

w
ith

R
χ̄
1
,...,χ̄

n
a
s

th
e

set
o
f
rig

id
va

lu
es.

B
y

co
n
stru

ctio
n

o
f
R
χ̄
1
,...,χ̄

n
w

e
h
av

e
th

a
t

f �
=

f �1
+

···+
f �n

.
In

o
th

er
w

o
rd

s
w

e
h
av

e
th

e
fo

llow
in

g
.

C
l
a
im

5
.1

2
.1

.
F
o
r

every
(R

,χ̄
)

=
(R

,χ̄
1 )

+
···+

(R
,χ̄

n
)

w
e

h
a
ve

th
a
t

(R
χ̄
1
,...,χ̄

n
,χ̄

)
=

(R
χ̄
1
,...,χ̄

n
,χ̄

1 )
+

···
+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
).

L
et

t
b
e

a
d
eriva

tio
n

tree
fo

r
a

ro
o
t

p
ro

fi
le

(R
,f).

L
et

t �

b
e

th
e

resu
lt

o
f
rep

la
cin

g
ev

ery
m

a
x
im

a
l
seq

u
en

ce
o
f
sib

lin
g
s

(R
,χ̄

1 ),...,(R
,χ̄

n
)
w

ith
(R

χ̄
1
,...,χ̄

n
,χ̄

1 )+
···+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
)

in
t.

It
th

en
fo

llow
s

th
a
t

t �
is

a
d
eriva

tio
n

tree
fo

r
(R

χ̄
,f).

(N
o
te

th
a
t
th
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Figure 8: Statement of Lemma ??.

χ
↓i
+(d′j) =

(
∅ ∪ [f2]→·∅ ∪ · · · ∪ [f2]→ · · · [f2]→︸ ︷︷ ︸

j times

·∅ ∪

[f2]→ · · · [f2]→︸ ︷︷ ︸
j + 1 times

·χ↓i2 ∪

[f2]→ · · · [f2]→︸ ︷︷ ︸
j + 2 times

·∅ ∪ · · · ∪ [f2]→ · · · [f2]→︸ ︷︷ ︸
n− 1 times

·∅
)
(dj) (by (+4))

= ([f2]→·χ↓i2)(dj) (by Lemma ??)

= χ
↓i
2(dj) (by Lemma ??)

= χ
↓i
1(d′j). (since χ̄1(d′j) = χ̄2(dj) by (??))

Therefore, we have that condition (a) as well as conditions (b) and (c) hold true for every data value,
and that f′0 + · · ·+ f′t+1 and f1 coincide. Thus, the Claim follows.

This concludes our proof.

As a corollary of the previous lemma, we obtain the following.

Lemma B.5 (Figure ??). For every f � f1 + · · ·+ ft with fi ∈ (ai, d̄i)f3,i, there are f′i,j ∈∼ (ai, d̄i)f3,i
for every i ∈ [t], j ∈ [ni] so that

f = f′1,1 + · · ·+ f′1,n1
+ · · ·+ f′t,1 + · · ·+ f′t,nt .

Proof of Lemma ??. This is a direct consequence of Lemma 5.1. Since f � f1 + · · ·+ ft, then

f = (f1 + · · ·+ ft)[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n]

for some d1, . . . , dn, d
′
1, . . . , d

′
n ∈ D so that {d1, . . . , dn}∩R = ∅ and {d′1, . . . , d′n}∩data(f1 + · · ·+ft) = ∅.

It follows that

f = (f1 + · · ·+ ft)[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n]

= f1[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n] + · · ·+

ft[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n].

Note that fi[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n] � fi ∈ (ai, d̄i)f3,i for every i ∈ [t]. We can hence apply

Lemma 5.1, and we obtain, for some ni ∈ N, f′i,1, . . . , f
′
i,ni
∈∼ (ai, d̄i)f3,i so that f′i,1 + · · ·+ f′i,ni = fi[d1 7→

d1, d
′
1] · · · [dn 7→ dn, d

′
n]. Therefore,

f = f1[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n] + · · ·+

ft[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n]

= f′1,1 + · · ·+ f′1,n1
+ · · ·+ f′t,1 + · · ·+ f′t,nt ,

which concludes the proof.

Lemma 5.2. D = ↑D.

Proof of Lemma 5.2. This is a direct consequence of Lemma ??.

Lemma 5.3 (Figure 5). If f1 + f2 = f3 and f′1 � f1, f′2 � f2, then f′′1 + f′′2 � f3, for some f′′1 , f
′′
2 ∈ F

so that f′′i is a bounded extension of f′i, for all i ∈ {1, 2}.
Proof of Lemma 5.3. For every description π̄ so that χ̄3(π̄) \ R3 6= ∅, let dπ̄ ∈ D be a data value

so that dπ̄ ∈ χ̄3(π̄) \R3. Let D be the set of all these data values. Note that |D| ≤ |Π|4.
We define f′′i = (R3, χ̄

′′
i ), where

χ̄′′i (d) =

{
χ̄′i(d) if d 6∈ D
χ̄i(d) if d ∈ D.



Note that data(f′′i ) ≤ data(f′i) + |D| ≤ data(f′i) + |Π|4.
Claim B.5.1. f′i � f′′i � fi for all i ∈ {1, 2}.
Proof. By definition of �, for every d ∈ D there is some d′ ∈ data(f′i) \ Ri so that χ̄i(d) = χ̄′i(d

′).
Therefore, f′′i = f′i[d

′
1 7→ d′1, d1] · · · [d′1 7→ d′n, dn] where {d1, . . . , dn} = D \ data(f′i) and for every j ∈ [n],

d′j 6∈ Ri, dj 6∈ data(f′i), and χ̄′i(d
′
j) = χ̄i(dj). In other words, we have that f′i � f′′i � fi for all

i ∈ {1, 2}.
Therefore, f′′i is a bounded extension of f′i for i ∈ {1, 2}.

Claim B.5.2. f′′1 + f′′2 � f3.

Proof. First, we have that f′′1 , f
′′
2 ∈ F because otherwise f1 or f2 would not be in F.

Since f′′i � fi, by Lemma ?? it follows that

→[f′′i ] = →[fi], [f′′i ]→ = [fi]→. (†)

This means that, since f′′i is the result of adding data values d with profile χ̄i(d), if conditions (a), (b),
(c) hold for f1 + f2 they must also hold for f′′1 + f′′2 . Therefore, all the preconditions to apply f′′1 + f′′2
hold. Let f′′3 = f′′1 + f′′2 .

Note that all the profiles in question share the same set of rigid values, R′′3 = R′′1 = R′′2 = R1 = R2 =
R3 by definition of � and +. Every data value d ∈ data(f′′3 ) is so that χ̄′′i (d) = χ̄i(d), and with (??) this
means that χ̄3(d) = χ̄′′3 (d), by definition of f′′1 + f′′2 . For every other data value d ∈ data(f3) \ data(f′′3 ),

it must be that d 6∈ R3 and there must be some d̂ ∈ D so that χ̄3(d̂) = χ̄3(d) by definition of D. Then,
if data(f3) \ data(f′′3 ) = {d1, . . . , dn} we have that

f3 = f′′3 [d̂1 7→ d̂1, d1] · · · [d̂n 7→ d̂n, dn],

and hence, f′′3 � f3.

By Claims ?? and ??, and since data(f′′i ) ≤ data(f′i) + |Π|4, the lemma follows.

Lemma 5.4 (Figure 6). For every f1 ∈ (a, d̄)f2 and f2 � f5, there is f4 � f5 and f3 ∈∼ (a, d̄)f4 so
that |data(f4)| ≤ |data(f5)|+ |Π|4 + |R1| and f3 � f1, f4 � f2.

Proof of Lemma 5.4. We are given f1, f2, f5 and (a, d̄). We show that there must be some f3 and
f4 so that f1 � f3 ∈ (a, d̄)f4 with f4 � f5. Figure 6 contains a graphical representation of the profiles we
work with in the proof.

We first define f4. For every internal description π̄ so that π
↓i
1∪ π

↓ i
1 6= ∅ and χ̄1(π̄)\R1 6= ∅, let dπ̄ ∈ D

be a data value of χ̄1(π̄) \R1. Let D be the set of all such data values. Note that |D| ≤ |Π|4.

f4 :





R4 = R5

for every d ∈ D ∪R1, χ̄4(d) = χ̄2(d)

for every d 6∈ D ∪R1, χ̄4(d) = χ̄5(d)

Note that |data(f4)| ≤ |data(f5)|+ |Π|4 + |R1|. Since f5 � f2, we have that f5 � f4 � f2.
Claim B.5.3. f5 � f4 � f2.

Proof. • We first show that f5 � f4.
First notice that R5 = R2 since f5 � f2, and that R4 = R5 by definition of R4. We then have that

for every d ∈ R5 = R4, χ̄4(d) = χ̄2(d) = χ̄5(d).
We show that for every d ∈ data(f5), χ̄4(d) = χ̄5(d). If d ∈ data(f5) \ (D ∪ R1), we have that

χ̄4(d) = χ̄5(d). If on the other hand d ∈ D ∪R1, we have χ̄4(d) = χ̄2(d). Then d ∈ data(f2), and since
f5 � f2 we have that either d 6∈ data(f5) or χ̄2(d) = χ̄5(d). Hence, for every d ∈ data(f5), χ̄4(d) = χ̄5(d).

We finish the proof of f4 � f5 by showing that for every d ∈ data(f4)\R4 there is some d′ ∈ data(f5)\R4

so that χ̄4(d) = χ̄5(d′). If d 6∈ D ∪ R1, then of course we can take d′ = d and χ̄4(d) = χ̄5(d′). If
d ∈ D∪R1, we have that χ̄4(d) = χ̄2(d) by definition. Since f5 � f2, there must be some d′ ∈ data(f5)\R5

so that χ̄5(d′) = χ̄2(d) = χ̄5(d), and we are done. This finishes the proof that f5 � f4.

• We now show that f4 � f2.
Again, notice that R4 = R2 = R5, and since for every d ∈ D, χ̄4(d) is either χ̄2(d) or χ̄5(d), it follows

that for every d ∈ R4 = R5, χ̄4(d) = χ̄2(d).
We show that for every d ∈ data(f4), χ̄4(d) = χ̄2(d). If d ∈ D ∪ R1, then χ̄4(d) = χ̄2(d) by

definition. If d ∈ R4, then χ̄4(d) = χ̄2(d) as shown before. If d 6∈ D ∪ R1 ∪ R4, χ̄4(d) = χ̄5(d).
Notice that χ̄5(d) 6= (∅, ∅, ∅, ∅), since otherwise d 6∈ data(f4). Then, d ∈ data(f5) and since f5 � f2,
χ̄5(d) = χ̄2(d) = χ̄4(d).

We finish the proof of f4 � f2 by showing that for every d ∈ data(f2)\R2 there is some d′ ∈ data(f4)\R2

so that χ̄2(d) = χ̄4(d′). If d ∈ D ∪ R1, then we can just simply take d′ = d and χ̄2(d) = χ̄4(d′). If
d 6∈ D ∪ R1, then χ̄4(d) = χ̄5(d), notice that χ̄5(d) 6= (∅, ∅, ∅, ∅) because otherwise d 6∈ data(f4) (since
d 6∈ R4). Hence, d ∈ data(f5) and since f5 � f2, we have that χ̄2(d) = χ̄5(d), hence χ̄2(d) = χ̄4(d). We
just showed that f4 � f2.



We define f3 as follows

f3 :





R3 = R1

for every d ∈ R1, χ̄3(d) = χ̄1(d)

for every d ∈ data(f4), χ̄3(d) = χ̄1(d)

for every d ∈ d̄, χ̄3(d) = χ̄1(d)

for every strict external value d of f1, χ̄3(d) = χ̄1(d).

Claim B.5.4. f3 � f1.

Proof. By definition we have that R1 = R3, and that χ̄3(d) = χ̄1(d) for all d ∈ R1. Also by
definition, for every d ∈ data(f3) we have χ̄3(d) = χ̄1(d).

We must show that for every d ∈ data(f1) \ (R1 ∪ data(f3)) there is some d′ ∈ data(f3) \ R1 so that
χ̄1(d) = χ̄3(d′). Take any such d. Note that d must be necessarily an internal data value, since f3
contains any strict external data value of f1. Hence, let π̄ = χ̄1(d), where π

↓i
1 ∪ π

↓ i
1 6= ∅. By definition of

D, there must be some dπ̄ ∈ D so that χ̄1(dπ̄) = π̄ and dπ̄ 6∈ R1. Since π̄ is internal and f1 ∈ (a, d̄)f2,
dπ̄ ∈ d̄ ∪ data(f2). If dπ̄ ∈ d̄, we have, by definition of f3, that χ̄3(dπ̄) = χ̄1(dπ̄) = π̄ = χ̄1(d). Hence,
there is such d′ ∈ data(f3)\R1 so that χ̄1(d) = χ̄3(d′). Otherwise, suppose dπ̄ ∈ data(f2), which means,
since π

↓i
1 ∪ π

↓ i
1 6= ∅, that χ̄2(dπ̄) 6= (∅, ∅, ∅, ∅). By definition of f4, χ̄4(dπ̄) = χ̄2(dπ̄) 6= (∅, ∅, ∅, ∅), thus

dπ̄ ∈ data(f4). Then, by definition of f3 we have that χ̄3(dπ̄) = χ̄1(dπ̄) = π̄ = χ̄1(d). Hence, in this case
we also have that there is such d′ ∈ data(f3) \R1 so that χ̄1(d) = χ̄3(d′).

Claim B.5.5. f3 ∈ (a, d̄)f4.

Proof. Since f4 � f2 and f1 ∈ (a, d̄)f2, we have that

• ξ(f4) ∈ Γ since ξ(f2) ∈ Γ, by Lemma ??, and

• χ
↓e
4 = χ

↓e
4 = ∅ since χ

↓e
2 = χ

↓e
2 = ∅.

Therefore, conditions (a) and (b) hold for f4. We must show condition (c), that is, χ
↓i
3 = χ

↓ i
3 =

{(d, α, βγ, i) ∈ D×Π | ∃α′.(d, α′, γ, i) ∈ χ
↓i
4 ∪ χ

↓ i
4, α, β ∈ σa} ∪

⋃
i∈[k]({d̄(i)} × (σa \ {ε})× σa × {i})

Take any data value of d ∈ d̄ ∪ data(f4). We have that χ
↓i
3(d) = χ

↓i
1(d) by definition. We also have

that χ
↓ i
1(d) = χ

↓i
1(d) = {(α, βγ, i) ∈ Π | ∃α′.(d, α′, γ, i) ∈ χ

↓i
2 ∪ χ

↓ i
2, α, β ∈ σa} ∪

⋃
d=d̄(i),i∈[k]((σa \ {ε})×

σa × {i}). Since f2 and f4 coincide in d, we also have that the set above is equal to {(α, βγ, i) ∈ Π |
∃α′.(d, α′, γ, i) ∈ χ

↓i
4 ∪ χ

↓ i
4, α, β ∈ σa} ∪

⋃
d=d̄(i),i∈[k]((σa \ {ε}) × σa × {i}). This, together with the

fact that all internal values of f3 are in data(f4) ∪ d̄, implies that χ
↓i
3 = χ

↓ i
3 = {(d, α, βγ, i) ∈ D × Π |

∃α′.(d, α′, γ, i) ∈ χ
↓i
4∪ χ

↓ i
4, α, β ∈ σa}∪

⋃
i∈[k]({d̄(i)}× (σa \{ε})×σa×{i}) as desired. Hence, condition

(c) holds, and we have that f3 ∈ (a, d̄)f4.

This concludes the proof.

Appendix to Section 5.4
Lemma 5.5. If there is a derivable root profile, then there is a derivation tree for a root profile so that
all the profiles in the forest have no more than 2|Π| rigid values.

Proof of Lemma 5.5. Suppose we have f = f1+· · ·+fn. Let us first show that for every (α, β, i) ∈ Π
there can be at most one data value d ∈ D so that there is some j ∈ [n] with χ

↓e
j (α, β, i) = {d}. By

means of contradiction, if there were two distinct data values d, d′ then there would be two fj , fk with
j 6= k so that χ

↓e
j (α, β, i) = {d} and χ

↓e
k(α, β, i) = {d′}. Suppose without any loss of generality that

j < k. Then, by definition of +, we must have that—since d ∈ χ
↓e
j (α, β, i) and fj + · · ·+ fk is defined—

d ∈ χ
↓e
k(α, β, i). This is in contradiction with the fact that χ

↓e
k(α, β, i) = {d′}. The same happens by

symmetry with χ
↓e.

Let us define

Rlχ̄1,...,χ̄n

def
= {d ∈ D | χ↓ej (α, β, i) = {d}

for some (α, β, i) ∈ Π and j ∈ [n]},
Rrχ̄1,...,χ̄n

def
= {d ∈ D | χ↓ej (α, β, i) = {d}

for some (α, β, i) ∈ Π and j ∈ [n]},
Rχ̄1,...,χ̄n

def
= Rlχ̄1,...,χ̄n ∪R

r
χ̄1,...,χ̄n .

By the discussion before, it follows that |Rχ̄1,...,χ̄n | ≤ 2|Π|. Consider the profiles f′, f′1, . . . , f
′
n to be as

f, f1, . . . , fn but with Rχ̄1,...,χ̄n as the set of rigid values. By construction of Rχ̄1,...,χ̄n we have that
f′ = f′1 + · · ·+ f′n. In other words we have the following.

Claim B.5.6. For every (R, χ̄) = (R, χ̄1) + · · ·+ (R, χ̄n) we have that

(Rχ̄1,...,χ̄n , χ̄) = (Rχ̄1,...,χ̄n , χ̄1) + · · ·+ (Rχ̄1,...,χ̄n , χ̄n).
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Figure 9: Statement of Lemma ??.

Using the above statement we can now prove the lemma. Let t be a derivation tree for a root profile
(R, f). Let t′ be the derivation tree that results from replacing in t the profile labels (R, χ̄1), . . . , (R, χ̄n)
of any maximal sequence of siblings with the labels

(Rχ̄1,...,χ̄n , χ̄1), . . . , (Rχ̄1,...,χ̄n , χ̄n).

By the claim above, t′ is a derivation tree for (Rχ̄, f). (Note that this is true because in the rooting
operation there is no restriction on which should be the set of rigid values of the parent profile.) It is
immediate that (R, f) is a root profile if and only if (Rχ̄, f) is a root profile. Thus, the lemma follows.

Appendix to Section 5.5
Lemma 5.9 is the consequence of the following properties.

Lemma B.6 (Figure ??). For every f, f′, f′′, f′1 ∈ Fb and (a, d̄) ∈ A× Dk so that f - f′′, f - f′ and
f′1 ∈ (a, d̄)f′, there are f′′′, f′′1 ∈ Fb so that f′′ - f′′′, f′ - f′′′, f′′1 ∈ (a, d̄)f′′′ and f′1 - f′′1 .

Proof of Lemma ??. Without any loss of generality, let us assume that f � f′ and f � f′′ so that
data(f′′) ∩ data(f′) = data(f′′) ∩ data(f′1) = data(f). We define f′′′ so that R′′′ = R and

χ̄′′′(d) =

{
χ̄′(d) if d ∈ data(f′),

χ̄′′(d) else, if d ∈ data(f′′).

The following statement follows straight from this definition.
Claim B.6.1. f′′ � f′′′, f′ � f′′′.

Proof. By definition of f � f′′ and f � f′ for every data value d ∈ data(f′)∪ data(f′′) there is a data
value f(d) ∈ data(f) so that χ̄(d) = χ̄′(d) = χ̄′′(d) and d ∈ R iff f(d) ∈ R. Then,

• f′′′ = f′[f(d1) 7→ f(d1), d1] · · · [f(dn) 7→ f(dn), dn] for {d1, . . . , dn} = data(f′′) \ data(f′), and

• f′′′ = f′′[f(d1) 7→ f(d1), d1] · · · [f(dn) 7→ f(dn), dn] for {d1, . . . , dn} = data(f′) \ data(f′′).

Thus, f′′ � f′′′, f′ � f′′′.

Remember that by definition of f′ � f′′′, for every data value d ∈ data(f′′′) there must be some data
value f(d) ∈ data(f′) so that χ̄′′′(d) = χ̄′(d). We can further assume that for every d ∈ data(f′′′),
d ∈ R′1 iff f(d) ∈ R′1 (i.e., we can simply define f(d) = d for all d ∈ R′1 ∩ data(f′′′)). We define f′′1 as
R′′1 = R′1 and

χ̄′′1 (d) =

{
χ̄′1(d) if d ∈ data(f′1)

χ̄′1(f(d)) else, if d ∈ data(f′′′).

Claim B.6.2. f′′1 ∈ (a, d̄)f′′′.

Proof. For every data value of d ∈ data(f′1) we have that χ̄′′1 (d) and χ̄′′′(d) are equal to χ̄′1(d) and
χ̄′(d), and it therefore verifies the conditions imposed by the rooting operation. Further, any other data
value of data(f′′1 ) (namely any data value from data(f′′′) \ data(f′1)) behaves as some data value f(d)
in f′1. That is χ̄′′1 (d) and χ̄′′′(d) are equal to χ̄′1(f(d)) and χ̄′(f(d)). It then follows that that the data
value must verify the conditions imposed by the rooting operation. Finally, by Lemma ??, ξ(f′1) ∈ Γ
and f′1 - f′′1 , we have that ξ(f′′1 ) ∈ Γ. Hence, f′′1 ∈ (a, d̄)f′′′.

By definition of f′′1 , it also follows that f′1 � f′′1 .
Claim B.6.3. f′1 � f′′1 .

Proof. It is immediate from the definition that

f′′1 = f′1[f(d̂1) 7→ f(d̂1), d̂1, . . . , f(d̂s) 7→ f(d̂s), d̂s],

where {d̂1, . . . , d̂s} = data(f′′′)\data(f′1). By definition of f , f(d̂1), . . . , f(d̂s) ∈ data(f′)\R′1, and hence
f′1 � f′′1 .
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Figure 10: Statement of Lemma ??.

This concludes the proof.

Lemma B.7. Rup(↑↓Db) ⊆ ↓Db.

Proof of Lemma ??. Let f′1 ∈ Rup(↑↓Db). This means that there is some f′′ ∈ Db and f so that
f - f′′, f - f′, and f′1 ∈ (a, d̄)f′ for some (a, d̄) ∈ A× Dk. We can then apply Lemma ??, obtaining that
there is some f′′′ and f′′1 so that f′′ - f′′′, f′ - f′′′, f′1 - f′′1 , and f′′1 ∈ (a, d̄)f′′′. Since Db is upward-closed
by Remark 5.8, f′′′ ∈ Db, and therefore f′′1 ∈ Db as well since f′′1 ∈ (a, d̄)f′′′. Thus, as f′1 - f′′1 , we obtain
f′1 ∈ ↓Db.

Lemma B.8 (Figure ??). For every i ∈ {1, 2} and fi, f
′
if
′′
i ∈ Fb so that fi - f′i, fi - f′′i and f′1 + f′2

is defined, there are f′′′1 , f
′′′
2 ∈ Fb so that f′1 + f′2 - f′′′1 + f′′′2 and f′′i - f′′′i , f′i - f′′′i for every i ∈ {1, 2}.

Proof of Lemma ??. Without any loss of generality, assume that fi � f′i, fi � f′′i and data(f′′i ) ∩
data(f′i) = data(fi) for every i ∈ {1, 2}. Remember that by definition of fi � f′′i , for every data value
d ∈ data(f′′i ) there must be some data value f(d) ∈ data(fi) so that χ̄i(d) = χ̄′′i (d) = χ̄′i(d). We then
define f′′′i for every i ∈ {1, 2} so that R′′′i = Ri and

χ̄′′′i (d) =





χ̄′i(d) if d ∈ data(f′i),

χ̄′′i (d) else, if d ∈ data(f′′i ),

χ̄′i(f(d)) else, if d ∈ data(f′′3−i),

(∅, ∅, ∅, ∅) otherwise.

In the definition above, notice that for every d ∈ data(f′′3−i) we have that f(d) ∈ data(f3−i) and hence
f(d) ∈ data(f′3−i) which, by definition of f′1 + f′2, means that f(d) ∈ data(f′i).

The following claim follows straight from the definition just given.
Claim B.8.1. f′i � f′′′i , f′′i � f′′′i for all i ∈ {1, 2}.
Proof. Since fi � f′′i and fi � f′i, there is some f̂ so that for every d ∈ data(f′i), f̂(d) ∈ data(fi) so

that χ̄′′i (d) = χ̄i(f̂(d)) = χ̄′′i (f̂(d)) and d ∈ Ri iff f̂(d) ∈ Ri.
For every i ∈ {1, 2}, it is immediate from the definition of f′′′i that

f′′′i = f′i[f(d̂1) 7→ f(d̂1), d̂1] · · · [f(d̂n) 7→ f(d̂n), d̂n] [f(d1) 7→ f(d1), d1] · · · [f(dm) 7→ f(dm), dm]

where {d1, . . . , dm} = data(f′′3−i) and {d̂1, . . . , d̂n} = data(f′′i ) \ data(f′i).

Since fi � f′′i and fi � f′i, there is some f̂ so that for every d ∈ data(f′i), f̂(d) ∈ data(fi) so that

χ̄′i(d) = χ̄i(f̂(d)) = χ̄′i(f̂(d)) = χ̄′′i (f̂(d)) and d ∈ Ri iff f̂(d) ∈ Ri. For every i ∈ {1, 2}, it is immediate
from the definition of f′′′i that

f′′′i = f′′i [f̂(d̂1) 7→ f̂(d̂1), d1] · · · [f̂(d̂n) 7→ f̂(d̂n), dn] [f(d1) 7→ f(d1), d1] · · · [f(dm) 7→ f(dm), dm]

where each di and d̂i is so that {d1, . . . , dm} = data(f′′3−i) and {d̂1, . . . , d̂n} = data(f′i).

We are then left with the following easy claim.
Claim B.8.2. f′1 + f′2 � f′′′1 + f′′′2 .

Proof. For every data value d ∈ data(f′1)∪data(f′2) it is easy to see that the conditions of + apply for
f′′′1 and f′′′2 since they have the same description for d. For any other data value d ∈ data(f′′1 )∪ data(f′′2 )
we have that f′′′1 and f′′′2 behave just as f′1 and f′2 for the data value f(d). Therefore, the conditions of
+ hold, and f′′′1 + f′′′2 is well defined. Moreover, f′1 + f′2 � f′′′1 + f′′′2 since, by definition of f′′′1 , f

′′′
2 we have

f′′′1 + f′′′2 = (f′1 + f′2)[f(d1) 7→ f(d1), d1] · · · [f(dn) 7→ f(dn), dn]

for {d1, . . . , dn} = data(f′′′1 + f′′′2 ) \ data(f′1 + f′2).

This concludes the proof of the lemma.

Lemma B.9. R+(↑↓Db) ⊆ ↓Db.



Proof of Lemma ??. Let f′3 ∈ R+(↑↓Db). Then, there must be some f′1, f
′
2 ∈ Fb so that f′1 + f′2 = f′3

so that there exist f1, f2, f
′′
1 , f
′′
2 where f′′i ∈ Db, fi - f′i, fi - f′′i for all i ∈ {1, 2}. Therefore, by Lemma ??,

there must be some f′′′1 , f
′′′
2 ∈ Fb so that f′3 = f′1 + f′2 - f′′′1 + f′′′2 and f′′i - f′′′i , f′i - f′′′i for all i ∈ {1, 2}.

Since f′′1 , f
′′
2 ∈ Db, and since Db is upward-closed by Remark 5.8, we have that f′′′1 , f

′′′
2 ∈ Db and hence

f′′′1 + f′′′2 ∈ Db. Hence, since f′3 - f′′′1 + f′′′2 it follows that f′2 ∈ ↓Db.

Proof of Lemma 5.9. Immediate from Lemmas ?? and ??.

Appendix to Section 5.6
Thanks to the property R(↑↓Db) ⊆ ↓Db one can show that C ∼k0

= min(↓Db) and that C i+1 can be
computed from C i in 2ExpSpace in |C i| and |P|. It is possible to test from the set min(↓Db) whether
there is a root derivable profile in Db, hence obtaining that the derivation problem is decidable.

Lemma 5.11. C∼k0
= min(↓Db).

Proof of Lemma 5.11. By Lemma 5.9 we know that R(↑↓Db) ⊆ ↓Db. Therefore, since C 0 ⊆
min(↓Db), we have that for every i, C i ⊆ min(↓Db). We then need to show that min(↓Db) ⊆ C∼k0

.
Suppose, by means of contradiction, that there is some f ∈ Fb so that f ∈ min(↓Db) but f 6∈ C∼k0

. Then,
since {f∅} = C 0 ⊆ C k0 there must be one such f so that f - f′ for some f′ ∈ Db where f′ = f1 + f2 for
f1, f2 ∈ C∼k0

, or f′ ∈ (a, d̄)f′′ for f′′ ∈ C∼k0
, (a, d̄) ∈ A× Dk.

• If f′ = f′1 + f′2 where f′1, f
′
2 ∈ C∼k0

, then f′ ∈ R+(↑↓C k0), and hence f ∈ min(R+(↑↓C k0)) ⊆ C∼k0+1 =
C∼k0

, which is an absurd.

• If f′ ∈ (a, d̄)f′′ where f′′ ∈ C∼k0
, then f′ ∈ R

(a,d̄)
up (↑↓C k0), and hence f ∈ min(R

(a,d̄)
up ) ⊆ C∼k0+1 = C∼k0

,
which is also an absurd.

Therefore, min(↓Db) ⊆ C∼k0
and thus C∼k0

= min(↓Db).
We further have that this computation is in 2ExpSpace. Since |min(Fb)/∼| is doubly exponential in
|P|, we have the following.

Lemma B.10. k0 is bounded by a doubly exponential function on |P|.
Proof of Lemma ??. Remember that Fb is the set of profiles that have less than 2|Π| rigid values.

Then,
(
2Π × 2Π × 2Π × 2Π)2|Π|

represent all the possible profiles of the rigid values. We must also remember which profiles have either
0, or 1 or more flexible values, and this information can be represented with an element of

22Π×2Π×2Π×2Π

.

Therefore, there are doubly exponentially many elements in min(Fb)/∼, and hence k0 is bounded by a
doubly exponential function in |Π|. Since |Π| is polynomial in |P|, the statement follows.

Lemma B.11. Given G ⊆ Fb and f ∈ Fb, testing f ∈ min(↓R(↑↓G)) is computable in 2ExpSpace in
|G| and |P|.

Proof of Lemma ??. First we check that f ∈ min(↓Fb).
To check f ∈ min(↓R+(↑↓G)), we verify if f - f1 + f2 in 2ExpSpace, where f1, f2 is a pair of the

(doubly exponentially many) bounded extensions of elements of min(↓G). By Lemma 5.3, there are
such f1, f2 if, and only if, f ∈ min(↓R+(↑↓G)).

Finally, to check f ∈ min(↓Rup(↑↓G)), we verify that f - f3 ∈ min((a, d̄)f4) in 2ExpSpace, where f4 is
a bounded extension of a profile of min(↓G). If the condition holds of course f ∈ min(↓Rup(↑↓G)). On
the other hand, by Lemma 5.4 cum Remark 5.6, if f ∈ (a, d̄)f2 with f2 % f5, then f % f3 ∈ min((a, d̄)f4)
for some bounded extension f4 of f5, and hence the condition holds.

By the lemma above, we immediately obtain the following.
Lemma B.12. Ci+1 can be computed from Ci in 2ExpSpace in |Ci| and |P|.
Proof of Lemma ??. For each f ∈ min(Fb)/∼ we can check, in 2ExpSpace, wether f ∈ min(↓R(↑↓C i))

thanks to Lemma ??. We can therefore compute min(↓R(↑↓C i))/∼ in 2ExpSpace, and thus we can
also compute C i+1 in 2ExpSpace.

Proposition 5.12. The derivation problem is decidable in 2ExpSpace.

Proof of Proposition 5.12. We can compute all

C 0, . . . ,C k0

in 2ExpSpace by Lemmas ?? and ??. Since C∼k0
= min(↓Db) by Lemma 5.11, it follows that min(↓Db)

is hence computable in 2ExpSpace.
In order to test if there is a derivable profile in Db we choose some f ∈ min({f ∈ Fb | ξ(f) ∈ Γ}) with

no external values (i.e., so that χ
↓e = χ

↓e = ∅), f′ ∈ min(↓Db) and (a, d̄) ∈ Aroot × Dk, and test, in

2ExpSpace (Lemma ??), whether f ∈ min(↓R(a,d̄)
up (↑↓{f′})).

Claim B.12.1. The following statements are equivalent.



1. There is some f ∈ min({f ∈ F | ξ(f) ∈ Γ}) with no external values so that

• f ∈ min(↓R(a,d̄)
up (↑↓{f′})),

• (a, d̄) ∈ Aroot × Dk and

• f′ ∈ min(↓Db).

2. There is a derivable root profile in Db.

Proof. [??⇒??] Assume first that condition ?? holds. We change the names for the profiles to

make the explanation clear. Suppose that there is some f′1 ∈ min(↓R(a,d̄)
up (↑↓{f})) with no external data

values, for some (a, d̄) ∈ Aroot × Dk, f′1 ∈ min({f ∈ Fb | ξ(f) ∈ Γ}), and f ∈ min(↓Db). This means
that there must be some f′′ ∈ Db so that f - f′′ and some f′ so that f - f′ and f′1 ∈ (a, d̄)f′. We can
then apply Lemma ?? obtaining that there is some f′′′ and f′′1 so that f′′ - f′′′, f′ - f′′′, f′1 - f′′1 , and
f′′1 ∈ (a, d̄)f′′′. Since Db is upward closed (Remark 5.8), f′′′ ∈ Db and hence f′′1 ∈ Db. By definition of -,
it follows that, since f′1 has no external data values, f′′1 has no external data values either. Thus, there
is a derivable root profile, namely f′′1 .

[??⇐??] Suppose, on the other hand, that condition ?? holds. If there is a derivable root profile
in Db, then there are f, f′ ∈ Db and (a, d̄) ∈ Aroot × Dk so that χ

↓e = χ
↓e = ∅ and f ∈ (a, d̄)f′. Let

f′1 ∈ min(↓{f′})/∼, that is, f′1 is a minimal element corresponding to f′. Also, let f1 ∈ min(↓{f})/∼,

that is, f1 is a minimal element corresponding to f. Of course, it follows that f1 ∈ min(↓R(a,d̄)
up (↑↓{f′1})).

Note that f1 ∈ min({f ∈ Fb | ξ(f) ∈ Γ}), and that f1 has no external values since f has no external
values. Hence condition ?? holds.

Since there is a derivable root profile in Db if and only if there is a derivable root profile in D by
Lemma 5.7, the proposition follows.

C. APPENDIX TO SECTION 6

Appendix to Section 6.1
Lemma 6.1 (Direct normal form). There exists an exponential time translation that for every node
expression ϕ ∈ XPath(∗←, ↓∗,→∗,=) returns an equivalent node expression ψ in direct normal form.

Proof of Lemma 6.1. The idea is that every data test expression 〈α@i = β@j〉 is translated into
a big disjunction of expressions in direct normal form, where loops in the tree navigation of α, β are
factored as node expressions, as done in (‡).

For any finite alphabet B, we define tree order morphisms between forests over a powerset alphabet
2B. Given two forests t̄, t̄′ over 2B, a tree order morphism from t̄ to t̄′ is a function f from the nodes of
t̄ to the nodes of t̄′ so that

• for every node x of t̄, the label of x in t̄ is a subset of the label of f(x) in t̄′, and

• for every two nodes x, y of t̄, if (x, y) is in the reflexive-transitive closure of the next-sibling relation
(resp. of the child relation) in t̄, then (f(x), f(y)) is also in the reflexive-transitive closure of the
next-sibling relation (resp. of the child relation) in t̄′.

We say that t̄′, (x′, y′) is a contraction of t̄, (x, y) if there is a tree order morphism f from t̄ to t̄′ so
that f(x) = x′ and f(y) = y′. We also say that t̄, (x, y) is an expansion of t̄′, (x′, y′). Notice that
the function need not be surjective, and hence the fact that one forest is a contraction of another does
not have any implication on the sizes of the forests: a forest may have less or more nodes than its
contraction. For example, both the tree of Figure ??-b and the forest of Figure ??-d are contractions
of the forest of Figure ??-c.

Let α be a path expression, and let ne(α) be the set of all node expressions of α. Consider t̂α the

tree over the alphabet 2ne(α), where every node is labeled by those ψ ∈ ne(α) that are true at the node.
For example, for the multi-attribute data tree t defined in Figure ??-a and α as defined in Figure ??-e,
the tree t̂α is the one of Figure ??-b.

Let t̄ be any forest over 2ne(α), and let x, y be two nodes of t̄, so that x is a root. For such a forest
and nodes, one can build a direct path expression µαt̄,x,y that tests if there is a path between x and y
satisfying the relative order of nodes satisfying the labels as in the tree. For example, for the forest t̄ of
Figure ??-c and the nodes x, y depicted, the corresponding expression µ̂αt̄,x,y would be the one appearing
in Figure ??-e.

Claim C.0.1. A a direct path expression µαt̄,x,y can be built from t̄ in polynomial time, such that for

every multi-attribute data tree t we have that t, (x′, y′) |= µαt̄,x,y if and only if t̂α, (x′, y′) is a contraction
of t̄, (x, y).

Proof. Given a forest t̄ and nodes x, y so that x is a root, one can build µαt̄,x,y iteratively. We first
build a path expression that starts in x and and ends in y and checks all the labels between x and y
in the unique path between x and y that corresponds to a direct navigation. For example if t̄, x, y are
as in Figure ??-a, we build a path as in Figure ??-b that tests all the node expressions of the nodes in
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Figure 11: Example for the proof of Lemma 6.1.

α = ∗←[ψ6]→∗[ψ3]
∗←[ψ7]→∗[ψ1]↓∗[ψ4]

∗←[�]↓∗[ψ2]

µαt̄,x,y = [ψ6 ∧ ψ7]→∗[ψ1 ∧ �→∗[ψ3]�]↓∗[� ∧ �→∗[ψ4]�]↓∗[ψ2]

where ψ1 = a ψ3 = c ψ5 = ¬a

ψ2 = �↓∗[a]� ψ4 = b ψ6 = ¬�∗←[a]�

form α·β, where α·β �= � (i.e., it is not the empty string),
α is leftward, rightward or empty, and β is downward or
empty.

Lemma 6.1 (Direct normal form). There exists an
exponential time translation that for every node expression
ϕ ∈ XPath(∗←, ↓∗,→∗, =) returns an equivalent node expres-
sion ψ in direct normal form.

Proof. The idea is that every data test expression �α@i =
β@j� is translated into a big disjunction of expressions in di-
rect normal form, where possible loops in the tree navigation
of α,β are factored away as node expressions.

We define a order homomorphisms between forests as
follows. Given two forests t̄, t̄�, a reflexive homomorphisms
between t̄ and t̄� is a function f from the nodes of t̄ into the
nodes of t̄� so that for every two nodes x, y of t̄, if (x, y) are
in the reflexive-transitive closure of the next-sibling relation
(resp. the child relation), then (f(x), f(y) are also in the
reflexive-transitive closure of the next-sibling relation (resp.
the child relation).

Consider a forest t̄ labeled with sets of node expressions
of XPath(∗←, ↓∗,→∗, =), and let x, y be two nodes of t̄, so
that x is a root. For such a forest and nodes, one can build
a direct path expression µαt̄,x,y that tests if there is a path
between x and y satisfying the relative appearance of nodes
satisfying the labels as in the tree. For example, for the
forest t̄ of Figure 11-b and the nodes x, y depicted, the cor-
responding expression µαt̄,x,y would be the one appearing in
Figure 11-c.

Let α be a path expresion, and let ne(α) be the set of all
node expressions of α.

WHAT IS WITNESS FOREST? Given a multi-attribute
data tree t so that t, (x, y) |= α, we call a witness forest

of α for t, (x, y) to a forest t̄ over the alphabet 2ne(α) and
nodes x, y, where t̄ are the nodes involved in the satisfaction
of α, and they are labeled with the node expressions that
they must verify. For example, given the multi-attribute
data tree of Figure 11-a, and α as defined in Figure 11-c, a
possible witness forest is depicted in Figure 11-b. Note that
all witness forests of α for t, (x, y) are bounded by p(|α|) for
some polynomial p( ).

xxx
We define a contraction of a forest over the alphabet 2ne(α)

as the transitive clausure of the following operation. Take
two successive nodes (horizontally or vertically) and replace
them by only one, whose tag is the union of the two nodes
being contracted.

xxx
Given a path expression α, consider α̂ as the path expres-

sion over the alphabet 2ne(α), where every node expressions
ψ is replaced by

�
S⊆ne(α),ψ∈S S, that is, it is treated as a

test for a letters from the alphabet. For every forest t̄ over
the alphabet 2ne(α) and nodes x, y so that t̄, (x, y) |= α̂, we
say that µαt̄,x,y is a direct normal form linearization of α. It

follows that t, (x, y) |= µαt̄,x�,y� if, and only if, either t̄, (x�, y�)
—or a contraction of t̄, (x�, y�)— is a witness forest of α for
t, (x, y). Note that if t̄�, x��, y�� is a contraction of t̄, x�, y�,
then: If t, (x, y) |= µαt̄�,x��,y�� then t, (x, y) |= µαt̄,x�,y� .

Therefore, the following follows.

Claim 6.1.1. If t, (x, y) |= α if, and only if, t, (x, y) |=
µαt̄,x�,y� for some forest t̄, x�, y� over 2ne(α) of size less than
p(|α|).

FINISH THE PROOF HERE????

Proof. From left to right: If t, (x, y) |= α, then THE
witness forest of α for t, (x, y), call it t̄, x�, y�, is so that
t̄, x�, y� |= µ̂αt̄,x�,y� , and therefore t, (x, y) |= µαt̄,x�,y� .

From right to left: If there is some forest t̄, x�, y� so that
t, (x, y) |= µαt̄,x�,y� , then t̄, x�, y� |= µ̂αt̄,x�,y� . Further, since

t, (x, y) |= µαt̄,x�,y� , we have that t̄, x�, y� is a possible wit-
ness forest of µαt̄,x�,y� for t, (x, y). Then, it is also a possible
witness forest of α, and hence t, (x, y) |= α.

Claim 6.1.2. For every multi-attribute data tree t, we
have that t, (x, y) |= α if, and only if, t, (x, y) |= µαt̄,x,y for
some direct normal form linearization µαt̄,x,y of α.xxx

Proof. [⇒] Given a multi-attribute data tree t so that
t, (x, y) |= α, if we consider t̄ as the forest that results when
we restrict t to only the nodes that witness α, replacing the
label of every node by the node expression that witnesses,
we then have that t, (x, y) |= µαt̄,x,y.

[⇐] Since µαt̄,x,y is a direct normal form linearization of
α, we have that t̄, (x, y) |= α̂. This means that the relative
order of the nodes of t̄ are compatible with the navigation
of α. If further t, (x, y) |= µαt̄,x,y,

WHAT IS WITNESS?
WHAT IS APPEARANCE OF WITNESS?
t, (x, y) |= α if, and only if, t̄, (x�, y�) |= α̂ for some witness

forest t̄, x�, y� of t, (x, y) |= α.
USE FIGURE, IMPROVE

There are exponentially many trees, and thus there are expo-
nentially many direct normal form linearizations of a given
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Figure 12: Idea of construction of µ̂αt̄,x,y.

the path. We then build a more complex path expression nesting expressions that test the existence of
paths as depicted in Figure ??-c. We iterate until we have covered the whole tree t̄, at each iteration,
we add tests for paths that are at a deeper nesting degree in the resulting direct path expression. For
example, the paths of Figure ??-c are at depth 1, the paths of Figure ??-d at depth 2, and the path
of Figure ??-e at depth 3. Note that if we apply this construction to the forest of Figure ??-c and the
path α of Figure ??-e, we obtain the expression µαt̄,x,y of Figure ??-e.

Given a multi-attribute data tree t so that t, (x, y) |= α, we call a witness forest of α for t, (x, y)

to a forest t̄ over the alphabet 2ne(α) together with some nodes x, y, so that t̄ contains only the nodes
involved in the satisfaction of α, and they are labeled with the node expressions that they must verify.
For example, given the multi-attribute data tree t of Figure ??-a, and α as defined in Figure ??-e,
a possible witness forest of α for t, (x, y) is depicted in Figure ??-c. Of course, there may be several
witness forests of α for a given t, (x, y). Let ||α|| be the size of α, computed as the number of axes in α,
irrespective of the size of node expressions. For example the path expression α defined in Figure ??-e
is so that ||α|| = 7. Notice that the number of nodes of any witness forest of α for t, (x, y) is bounded
by p(||α||) for some polynomial p( ).

Given a path expression α, let α̂ be the path expression over the alphabet 2ne(α), where every node
expressions ψ is replaced by

∨
S⊆ne(α),ψ∈S S, that is, it is treated as a disjunction of tests for labels

from the alphabet. Notice that any witness forest t̄, (x′, y′) of α for t, (x, y) is an expansion of t̂α, (x, y),
and we have t̄, (x′, y′) |= α̂. We then have the following.



Claim C.0.2. t, (x, y) |= α if, and only if, t̄, (x′, y′) |= α̂, for some expansion t̄, (x′, y′) of t̂α, (x, y).
For every contraction t̄, (x, y) of t̄′, (x′, y′), if t̄′, (x′, y′) |= α̂ then t̄′, (x′, y′) |= α̂. This observation,

together with the previous claim and the fact that every witness forest t̄, (x′, y′) of α for t, (x, y) is
bounded by p(||α||) yields the following.

Claim C.0.3. There is an expansion t̄, (x′, y′) of t̂α, (x, y) of size at most p(||α||) so that t̄, (x′, y′) |=
α̂ if, and only if, t, (x, y) |= α.

For every forest t̄ over 2ne(α) of size ≤ p(||α||) and nodes x, y so that t̄, (x, y) |= α̂, we say that µαt̄,x,y
is a direct normal form linearization of α. It follows that t, (x, y) |= µαt̄,x′,y′ if, and only if, a contraction

of t̄, (x′, y′) is a witness forest of α for t, (x, y). Thus, the following claim follows.
Claim C.0.4. t, (x, y) |= α if, and only if, t, (x, y) |= µαt̄,x′,y′ for some direct normal form lineariza-

tion µαt̄,x′,y′ of α.

Proof. If t, (x, y) |= α, then by Claim ?? there is a forest t̄, (x′, y′) over 2ne(α) (the witness forest)
of size ≤ p(||α||) so that t̄, (x′, y′) |= α̂. Hence, µαt̄,x′,y′ is a direct normal form linearization of α. Since

t̄, (x′, y′) is an expansion of t̂α, (x, y) and t̄, (x′, y′) |= α̂, then t, (x, y) |= µαt̄,x′,y′ .

Suppose now that t, (x, y) |= µαt̄,x′,y′ for some t̄, (x′, y′) over 2ne(α) of size ≤ p(||α||) so that t̄, (x′, y′) |=
α̂. Then, t̄, (x′, y′) must be an expansion of t̂α, (x, y) by Claim ??. Since t̄, (x′, y′) |= α̂, we then have
that t, (x, y) |= α by Claim ??.

Note that there are exponentially many trees in ||α|| over ne(α) of size ≤ p(||α||). Hence, all the
direct normal form linearizations of a given path expression α are computable in exponential time
||α||. Hence, given ϕ ∈ XPath(∗←, ↓∗,→∗,=), consider ϕ′ as the result of replacing every appearance of

〈α@i = β@j〉 (resp. 6=) by a disjunction of 〈µαt̄,x,y@i = µβt̄′,x′,y′@j〉 (resp. 6=) for every direct normal form

linearization µαt̄,x,y of α and µβ
t̄′,x′,y′ of β. Since these are all the possible linearizations, the translated

formula is satisfied in the same multi-attribute data trees and nodes as the original formula. Further,
ϕ′ is in direct normal form. Since every replacement is exponential in ||α||, and since ||α|| does not
depend on the size of sub-node expressions, it follows that |ϕ′| in time exponential in |ϕ|. Thus, the
lemma follows.

Lemma 6.2 (Unnested normal form). There exists an exponential time translation that for every
formula η ∈ XPath(∗←, ↓∗,→∗,=) returns a formula ϕ in unnested normal form such that η is satisfiable
iff ϕ is satisfiable. Further, the translation of a formula in direct normal form is in direct normal form.

Proof of Lemma 6.2. Given a formula η we define the alphabet Aϕ of the translation ϕ as all the
locally consistent sets of subformulas of η. That is, the sets S such that for every subformula ψ of η: (1)
if ψ = ¬ψ′ then {ψ′,¬ψ′} 6⊆ S; (2) if ψ = ψ′ ∧ ψ′′ then ψ ∈ S iff {ψ′, ψ′′} ⊆ S; and (3) if ψ = ψ′ ∨ ψ′′
then ψ ∈ S iff ψ′ ∈ S or ψ′′ ∈ S.

Given a formula ψ, tr(ψ) denotes the result of replacing

• every instance of a path expression o1[ψ1]o2 · · · on[ψn] in ψ (where o1, . . . , on ∈ {∗←, ↓∗,→∗}) which
does not appear nested inside another path expression, with the expression

o1[ζψ1 ]o2 · · · on[ζψn ],

and

• every test for label a which does not appear inside a path expression by ζa,

where ζψ
def
=
∨
S∈Aϕ,ψ∈S S.

To build the formula ϕ = ϕ1∧ϕ2 in normal form, we define ϕ1 = ζη, and we build ϕ2 as a conjunction
of formulas

¬〈↓∗[ζψ ∧ ¬tr(ψ)]〉
for all subformulas ψ of η. It is easy to see that this translation preserves satisfiability.

Corollary 6.3. About the translation of Lemma 6.2:

1. The set of path subformulas resulting from the translation has cardinality polynomial in η.

2. Every path subformula resulting from the translation can be written using polynomial space.

Proof of Corollary 6.3. The blowup in the exponential translation comes only from the formulas
ζψ. In fact, ϕ can be symbolically written in polynomial space just as we did, using a symbol ζψ instead
of a big exponential disjunction. Remark that testing whether a label S ∈ Aϕ satisfies ζψ reduces to
testing ψ ∈ S.

Appendix to Section 6.2
Lemma 6.4. Given a direct non-recursive formula ψ that is a boolean combination of subformulas of φ,
and two forest profiles f, f′ ∈ F so that ξ(f) = ξ(f′) then f ` ψ if, and only if, f′ ` ψ.

Proof. If ψ ∈ B(A), then it is immediate that f ` ψ iff ξ(f)((ψ, ε, i), ◦) 6= 0 for some i ∈ [k].
Suppose now that ψ = 〈α·β@i 6= γ·δ@j〉 where α is leftward, ε or empty and γ is rightward, ε or

empty, and β, δ are downward or empty. We show that whether f ` ψ depends only on ξ(f). We show



one of the possible cases in the definition of `, while the remaining ones are analogous or simpler.
Suppose, for example, that α 6= ε, α 6= ε, γ = ε. We then have that f ` ψ iff

• there is at least one data value reachable with αβ@i, that is, ξ(f)(ᾱ, ◦↓ ) 6= 0, with ᾱ = (P−1
∗←(α),P−1

↓∗ (β), i),
and

• there is at least one data value reachable with γδ@j , that is, ξ(f)(β̄, ◦↓) 6= 0, with β̄ = (>,P−1
↓∗ (δ), j)

and either

– there are two data values reachable with αβ@i, that is, ξ(f)(ᾱ, ◦↓ ) = 2+, or

– there are two data values reachable with γδ@j , that is, ξ(f)(β̄, ◦↓) = 2+, or

– there is one data value reachable with αβ@i and only one data value reachable with γδ@j , but
they are different, that is, ξ(f)(ᾱ, ◦↓ ) = 1, ξ(f)(β̄, ◦↓) = 1, and ξ(f)(ᾱ, ◦↓ , β̄, ◦↓) = 0.

These are indeed the necessary and sufficient conditions for the existence of two data values d 6= d′ so
that d ∈ χa(ᾱ) and d′ ∈ χa′(β̄), where a = ◦↓, a′ = ◦↓. Hence, these are the necessary and sufficient
conditions to verify f ` ψ.

The remaining cases are analogous or easier.

Lemma 6.5. f ` ∧a∈A(a⇒ γϕ(a)) if, and only if, ξ(f) ∈ Γφ.

Proof of Lemma 6.5. This is a direct consequence of Lemma 6.4 and the definition of Γφ.

Abstractions.
We now define abs(t̄l, t̄, t̄r) for any forests t̄l, t̄, t̄r. Let tl = al⊗dl, t = a⊗d, tr = ar⊗dr be the

multi-attributes data trees (a, d̄)t̄l, (a, d̄)t̄, and (a, d̄)t̄r respectively, for some fixed arbitrary (a, d̄). We
then define abs(t̄l, t̄, t̄r) = χ̄ where

χ
↓i = {(d(y)(i), α, β, i) | (1, y) ∈ [[P→∗(α)·P↓∗(β)]]t,

for (α, β, i) ∈ Π and y ∈ pos(t)}
χ
↓ i = {(d(y)(i), α, β, i) | (n, y) ∈ [[P∗←(α)·P↓∗(β)]]t,

for n = |t̄|, (α, β, i) ∈ Π and y ∈ pos(t)}
χ
↓e = {(dr(y)(i), α, β, i) | (1, y) ∈ [[P→∗(α)·P↓∗(β)]]tr ,

for (α, β, i) ∈ Π and y ∈ pos(tr)}
χ
↓e = {(dl(y)(i), α, β, i) | (n, y) ∈ [[P∗←(α)·P↓∗(β)]]tl ,

for n = |t̄l|, (α, β, i) ∈ Π and y ∈ pos(tl)}.

For any R ⊆ D we define absR(t̄l, t̄, t̄r)
def
= (abs(t̄l, t̄, t̄r), R).

Remark C.1. Note that abs∅(ε, ε, ε) = f∅.
We show that abs is basically an algebra morphism between multi-attribute data forests with rooting

and concatenation and forest profiles with profile rooting and profile concatenation. This is necessary
to show our reduction from SAT-XPath(∗←, ↓∗,→∗,=) into the derivation problem for forest profiles.

Lemma C.2. Given R ⊆ D, and multi-attribute data forests t̄, t̄l, t̄r, t̄1, t̄2,

1. provided that absR(t̄l, t̄1, t̄2·t̄r), absR(t̄l·t̄1, t̄2, t̄r), absR(t̄l, t̄1·t̄2, t̄r) ∈ F,

absR(t̄l, t̄1, t̄2·t̄r) + absR(t̄l·t̄1, t̄2, t̄r)=absR(t̄l, t̄1·t̄2, t̄r).

2. Given (a, d̄) ∈ A×Dk, R′ ⊆ D so that absR′(ε, t̄, ε) ∈ F, absR(t̄l, (a, d̄)t̄, t̄r) ∈ F, and ξ(absR(t̄l, (a, d̄)t̄, t̄r)) ∈
Γφ, we have

absR(t̄l, (a, d̄)t̄, t̄r) ∈ (a, d̄) absR′(ε, t̄, ε).

Proof of Lemma ??.
??. Condition (a) is obvious because we have the same set R of rigid values in all profiles. Conditions

(b) and (c) follow straight from the semantics of XPath and the definition of abs. By definition of abs,
the set χ

↓e
1 where f1 = absR(t̄l·t̄1, t̄2, t̄r) is composed by all the paths that can reach data values in

t̄2·t̄r, which is precisely χ
↓i
2 ∪ [f]→·χ↓e2 where f2 = absR(t̄l·t̄1, t̄2, t̄r). In the same way, χ

↓e
2 is composed

by all the paths that can reach data values in t̄l·t̄1, which is precisely χ
↓ i
1 ∪ →[f1]·χ↓e1 . Finally, conditions

(+2)–(+5) follow from the definition of abs.

??. Since ξ(absR(t̄l, (a, d̄)t̄, t̄r)) ∈ Γφ, we only need to show that absR(t̄l, (a, d̄)t̄, t̄r) is so that the
rooting conditions (b) and (c) hold. Condition (b) is immediate since by definition of abs we have that
absR′(ε, t̄, ε) has empty external descriptions. Condition (c) holds by definition of abs and the semantics
of XPath.

For any derivation forest t̄ (as defined in Section 4.3) we associate a multi-attribute data forest t̄t
which is the result of removing all leaf nodes from t and projecting the tree onto A× Dk.

Lemma C.3. For every boolean combination ψ of non-recursive subformulas of φ, we have that
absR(t̄l, t, t̄r) ` ψ if, and only if, t̄l·t·t̄r, i0 |= ψ, for i0 = |t̄l|+ 1 and R = data(t̄l·t·t̄r).



Proof of Lemma ??. Let f = absR(t̄l, t, t̄r).
• Suppose first that ψ = b with b ∈ A. Since b ∈ Pφ, we have that f ` b iff (b, ε, i) ∈ χ

↓i(d) for some
d, i iff (1, y) ∈ [[→∗[b]@i]](a,d̄)t for some y by definition of abs iff (1, 1) ∈ [[→∗[b]@i]](a,d̄)t iff t |= b iff
t̄l·t·t̄r, i0 |= b, since b ∈ A.
• If ψ = ψ1 ∧ ψ2 or ψ = ¬ψ′, we proceed by induction.
• Now suppose ψ = 〈α·β@i = γ·δ@j〉, where α is leftward or empty, γ is rightward or empty, and

β, δ are downward or empty. Let t′ = a′ ⊗ d′ = (a, d̄)(t̄l·t·t̄r).
[⇒] If f ` ψ there must be some data value d ∈ D that witnesses this fact, as required by the definition

of `. Suppose first that α 6= ε, α 6= ε. Hence, there must be some d ∈ D so that (P−1
∗←(α),P−1

↓∗ (β), i) ∈
( →[f]·χ↓e ∪ χ↓ i)(d).

1. If (P−1
∗←(α),P−1

↓∗ (β), i) ∈ χ
↓ i(d), by definition of abs we have that χ

↓ i is the set of all (d(y)(k), α1, α2, k)

so that (1, y) ∈ [[P→∗(α1)P↓∗(α2)@k]](a,d̄)t. It then follows that there must be some y′ so that

(i0, y
′) ∈ [[α·β@i]](a,d̄)(t̄l·t·t̄r) with d′(y′)(i) = d.

2. If on the other hand (P−1
∗←(α),P−1

↓∗ (β), i) ∈ →[f]·χ↓e(d), either (P−1
∗←(α),P−1

↓∗ (β), i) ∈ χ
↓e(d), or there

must be some α′1, α
′
2 so that α′1 ∈ →[f] and (α′2,P

−1
↓∗ (β), i) ∈ χ

↓e(d) and α′1·α′2 = P−1
∗←(α). Suppose

that the latter occurs (the former being only easier). Since by definition of abs we have that χ
↓e is

the set of all (dl(y)(k), α1, β1, k) so that (n, y) ∈ [[P∗←(α1)P↓∗(β1)@k]](a,d̄)t̄l for n = |t̄l| = i0 − 1

there is some y′ so that (i0− 1, y′) ∈ [[α2·β]](a,d̄)(t̄l·t·t̄r) with d′(y′)(i) = d and α2 = P∗←(α′2). Also,

since α′1 ∈ →[f], we have (i0, i0 − 1) ∈ [[α1]](a,d̄)(t̄l·t·t̄r) where α1 = P∗←(α′1). Then, there is some y′

so that (i0, y
′) ∈ [[α·β]](a,d̄)(t̄l·t·t̄r) with d′(y′)(i) = d.

The case where α = ε, or α = ε, γ = ε is only easier (it is basically as in the item 1). In any case we
obtain that there is some y′ so that (i0, y

′) ∈ [[α·β]](a,d̄)(t̄l·t·t̄r) with d′(y′)(i) = d.

By similar arguments, we have that there must be some z′ ∈ pos((a, d̄)(t̄l·t·t̄r)), z′ 6= ε with (i0, z
′) ∈

[[α·β]](a,d̄)(t̄l·t·t̄r) and d′(z′)(j) = d. Hence, t̄l·t·t̄r, i0 |= 〈α·β@i = γ·δ@j〉.
[⇐] Suppose that t̄l·t·t̄r, i0 |= 〈α·β@i = γ·δ@j〉. In other words, there are y, z ∈ pos(t′), y 6= ε, z 6= ε,

so that (i0, y) ∈ [[α·β]]t′ , (i0, z) ∈ [[γ·δ]]t′ , and d = d′(z)(i) = d′(y)(j) for some d ∈ D. Let α′ = > if
α = ε or α = ε and α′ = P−1

∗←(α) otherwise.

1. If y is inside the subtree t of t′, then (α′,P−1
↓∗ (β), i) ∈ χ

↓ i(d), by definition of abs.

2. If y is inside the subforest t̄l of t′, then we have that either (α′,P−1
↓∗ (β), j) ∈ χ

↓e(d), or there

must be some α1, α2 so that α1·α2 = α, α′1 ∈ →[f] and (α′2,P
−1
↓∗ (β), j) ∈ χ

↓e(d), where α′1 =

P−1
∗←(α1), α′2 = P−1

∗←(α2). If the latter case holds (the former being only easier), we have that
(α′1·α′2,P−1

↓∗ (β), j) ∈ ( →[f]·χ↓e)(d), which implies that (α′,P−1
↓∗ (β), j) ∈ ( →[f]·χ↓e)(d).

By similar arguments, we obtain some (γ′,P−1
↓∗ (δ), j) ∈ (χ

↓i∪ [f]→·χ↓e)(d), where γ′ = > if γ = ε or γ = ε

and γ′ = P−1
→∗(γ) otherwise. Hence, f ` 〈α·β@i = γ·δ@j〉.

• The cases of 〈α·β@i = γ·δ@j〉 where both α and γ are rightwards or leftwards is similar. The same
applies to the inequality formulas 〈α·β@i 6= γ·δ@j〉.

The next lemma basically shows that every derivable root profile is the abstraction of some tree
satisfying φ.

Lemma C.4. Let froot ∈ D be a root profile, and let t be its derivation tree. Let t̄ be a maximal
subforest of t, where t̄ is the multi-attribute data forest associated with t̄, and f1, . . . , fn are the profile
labels of the roots of t̄. Let R be the rigid set for f1, . . . , fn. Then,

• absR(ε, t̄, ε) = f1 + · · ·+ fn, and

• t̄, i |= φ2 for every 1 ≤ i ≤ |t̄|.
Proof of Lemma ??. We will make use of the following easy fact.

Claim C.4.1. Given f1, . . . , fn ∈ F, so that f+ = f1 + · · · + fn where χ
↓e
+ = χ

↓e
+ = ∅, then the sets

{χ↓ii , χ
↓ i
i | i ∈ [n]} determine the sets {χ↓ei , χ

↓e
i | i ∈ [n]}.

Proof. This is by conditions (b) and (c) of profile concatenation:

• χ
↓ i
i and χ

↓e
i determine χ

↓e
i+1. Hence, {χ↓ei | i ∈ [n]} are determined by χ

↓e
1 and {χ↓ ii | i ∈ [n]}.

• χ
↓i
i+1 and χ

↓e
i+1 determine χ

↓e
i . Hence, {χ↓ei | i ∈ [n]} are determined by χ

↓e
n and {χ↓ii | i ∈ [n]}.

Once we fix χ
↓e
n = χ

↓e
1 = ∅, then {χ↓ii , χ

↓ i
i | i ∈ [n]} determine {χ↓ei , χ

↓e
i | i ∈ [n]}.

We now prove the main statement by generalized induction on the height of t̄. Suppose that t̄ has
height m ≥ 1. Then there must be forests t̄1, . . . , t̄n so that

t̄ = (a1d̄1)t̄1 · · · (an, d̄n)t̄n

and each t̄i has height less than m. Let

f̂i = absR
(

((aj , d̄j)t̄j)j<i, (ai, di)t̄i, ((aj , d̄j)t̄j)j>i
)

for every i. We then have the following.



Claim C.4.2. For every i ∈ [n], fi = f̂i.

Proof. For every t̄i 6= ε, we have that f′1 + · · · + f′l = absRi(ε, t̄i, ε) by inductive hypothesis, where
f′1, . . . , f

′
l are the profile labels of the children of the root of the ith tree of t̄. Then, since fi ∈ (ai, d̄i)(f

′
1 +

· · · + f′l) by definition of derivation tree, we have that fi ∈ (ai, d̄i)absRi(ε, t̄i, ε). If t̄i = ε, then, since
abs∅(ε, ε, ε) = f∅ and fi ∈ (ai, d̄i)f∅, we also have that fi ∈ (ai, d̄i)absRi(ε, t̄i, ε). Hence, for all i ∈ [n],
fi ∈ (ai, d̄i)absRi(ε, t̄i, ε).

Now, since

• all the internal descriptions of any forest profile inside (ai, d̄i)abs∅(ε, t̄i, ε) is completely determined

by (ai, d̄i) and abs∅(ε, t̄i, ε), and hence fi and f̂i have the same internal descriptions,

• the external descriptions of f1 + · · ·+ fn are ∅,
• absR(ε, (a1, d̄1)t̄1 · · · (an, d̄n)t̄n, ε) = f̂1 + · · ·+ f̂n by Lemma ??-??, and the external descriptions of

f̂1 + · · ·+ f̂n are ∅
we can apply Claim ??, concluding that fi = f̂i for every i.

Therefore, since absR(ε, (a1, d̄1)t̄1 · · · (an, d̄n)t̄n, ε) = f̂1 + · · ·+ f̂n by Lemma ??-??, we have that

absR(ε, (a1, d̄1)t̄1 · · · (an, d̄n)t̄n, ε) = f1 + · · ·+ fn.

On the other hand, since ξ(f1), . . . , ξ(fn) ∈ Γφ by condition (a) of rooting, we have f̂i = fi `∧
a∈Aφ(a⇒ γφ(a)) for every i. Hence, by Lemma ??, (a1, d̄1)t̄1 · · · (an, d̄n)t̄n, i |=

∧
a∈A(a⇒ γϕ(a)) for

every i. Also, by inductive hypothesis, for all t̄i 6= ε we have that t̄i, j |= φ2 for all 1 ≤ j ≤ |t̄i|. Then,
by definition of φ2, it follows that

(a1, d̄1)t̄1 · · · (an, d̄n)t̄n, i |= φ2

for every i.

We now show that if φ is satisfiable, then there must be a derivable root profile.
Lemma C.5. Let tφ be a tree so that tφ |= φ. For every maximal subforest t̄l·t̄·t̄r of tφ so that t̄ 6= ε,

there is a derivable forest profile f ∈ D so that f = absR(t̄l, t̄, t̄r), where R = data(t̄l·t̄·t̄r). Further, if
t̄ is a tree, f is so that f ∈ (a, d̄)f′, with f′ ∈ D.

Proof of Lemma ??. We proceed by induction on the size of t̄, defined as its number of nodes.
Suppose first that t̄ consists in one tree with just one node (a, d̄). We show that absR(t̄l, (a, d̄), t̄r) ∈
(a, d̄)f∅.

Since t̄l·(a, d̄)·t̄r, j |= φ2, for j = |t̄l| + 1, we have that absR(t̄l, t, t̄r) ` γφ(a) by Lemma ??. In
other words, we have ξ(absR(t̄l, t, t̄r)) ∈ Γφ. Then, by Lemma ??-?? we have absR(t̄l, (a, d̄), t̄r) ∈
(a, d̄)abs∅(ε, ε, ε). Since f∅ = abs∅(ε, ε, ε) (Remark ??), we have that (a, d̄)abs∅(ε, ε, ε) = (a, d̄)f∅. There-
fore, absR(t̄l, t̄, t̄r) ∈ D.

Suppose now that t̄ consists in one tree (a, d̄)t̄′ where t̄′ 6= ε. By inductive hypothesis there is some
f′ ∈ D so that f′ = absR′(ε, t̄

′, ε) for some R′. By Lemma ?? since t̄l·(a, d̄)t̄′·t̄r, j |= φ2 for j = |t̄l|+ 1,
we have that ξ(absR(t̄l, (a, d̄)t̄′, t̄r)) ∈ Γφ. We then have that

absR(t̄l, (a, d̄)t̄′, t̄r) ∈ (a, d̄)f′ = (a, d̄)absR′(ε, t̄
′, ε)

again by Lemma ??-??. Therefore, absR(t̄l, t̄, t̄r) ∈ D.
Suppose now that t̄ consists in more than one tree, let t̄1 and t̄2 be non-empty forests so that t̄ = t̄1·t̄2.

By applying twice the inductive hypothesis there must be f1, f2 ∈ D so that f1 = absR(t̄l, t̄1, t̄2·t̄r) and
f2 = absR(t̄l·t̄1, t̄2, t̄r). As absR(t̄l, t̄1·t̄2, t̄r) = absR(t̄l, t̄1, t̄2·t̄r) + absR(t̄l·t̄1, t̄2, t̄r) by Lemma ??-??,
it follows that absR(t̄l, t̄1·t̄2, t̄r) = f1 + f2 ∈ D since f1, f2 ∈ D.

Corollary 6.6. There is a derivable root forest profile if, and only if, φ is satisfiable.

Proof of Corollary 6.6. [⇒] Let f be a derivable root forest profile. Then, there must be a
derivation tree t for f = (R, χ̄). Let t be the multi-attribute data tree associated to t. By Lemma ??,
we have that absR(ε, t, ε) = f and that t |= φ2. Since f is a root profile, the root of t must have a label
(a, d̄) with a ∈ Aroot, and hence t |= φ1 as well. Therefore, φ is satisfiable.

[⇐] Let t be so that t |= φ. Then by Lemma ?? we have that f = absdata(t)(ε, t, ε) ∈ D. Further,
since t is a tree, we have that in fact f = (a, d̄)f′ for some f′ ∈ D. Further, since t |= φ1, a ∈ Aroot.
Hence, f is a derivable root profile.
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