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Recently, the frustrated XY model for spins-1/2 on the honeycomb lattice has attracted a lot of attention in
relation with the possibility to realize a chiral spin liquid state. This model is relevant to the physics of some
quantum magnets. Using the flexibility of ultra-cold atoms setups, we propose an alternative way to realize this
model through the Mott regime of the bosonic Kane-Mele-Hubbard model. The phase diagram of this model is
derived using the bosonic dynamical mean-field theory. Focussing on the Mott phase, we investigate its magnetic
properties as a function of frustration. We do find an emergent chiral spin state in the intermediate frustration
regime. Using exact diagonalization we study more closely the physics of the effective frustrated XY model
and the properties of the chiral spin state. This gapped phase displays a chiral order, breaking time-reversal and
parity symmetry, but is not topologically ordered (the Chern number is zero).

The last few decades have seen a growing interest in the
quest for exotic spin states and quantum spin liquids1. Sig-
nificant progress has been made both from the theoretical and
experimental sides2–4. The best candidates for spin liquids are
found in two-dimensional systems. Disordered phases are ex-
pected to occur in complex geometries, such as the Kagome
lattice5–7, or in frustrated bipartite lattices, such as the square
lattice with second-neighbor couplings8,9. Among basic lat-
tices, the honeycomb one hosts free Majorana fermions due to
Kitaev anisotropic interactions10, and raises questions when
starting from the Hubbard model11–13. In such context and
motivated by quantum magnets14, frustrated Heisenberg mod-
els on the honeycomb lattice have been recently explored15–28.
In parallel, the XY version of this model was also tested for
the possibility to realize a chiral spin liquid state, but with
seemingly contradictory results29–36. As suggested in Ref. 37,
in the intermediate frustration regime the ground-state physics
could be mapped to a fermionic Haldane model38 with topo-
logical Bloch bands at a mean-field level, as a result of Chern-
Simons (ChS) gauge fields39–43. However, the topological na-
ture of this spin state is still elusive.

Our objectives are two-fold in this Letter. Motivated by cold
atoms experiments44,45, we first show that the Mott regime
of the bosonic Kane-Mele-Hubbard (BKMH) model allows
for a tunable realization of the frustrated XY model on the
honeycomb lattice. Second, we study its phase diagram and
in particular its magnetic properties, using bosonic dynami-
cal mean-field theory (B-DMFT)46–51, exact diagonalization
(ED) and theoretical arguments. The Kane-Mele model52 is
the standard model with spin-orbit coupling that displays Z2

topology. Still, it has not yet been studied for interacting
bosons. Importantly, we recall that, for interacting fermions
and at the Mott transition, the Kane-Mele model becomes
magnetically ordered in the xy-plane, with quantum fluctu-
ations stabilizing the Néel ordering53–55.

We start our analysis with the bosonic version of the Kane-
Mele model52 on the honeycomb lattice (Fig. 1(a)), which

contains two species of bosons labelled by σ =↑, ↓. In
the presence of Bose-Hubbard interactions, the Hamiltonian
reads:

H =− t1
∑
σ,〈ij〉

[b†σ,ri
bσ,rj

+ h.c.] + it2
∑

σ,〈〈ik〉〉

νσik[b†σ,ri
bσ,rk

− h.c.]

+
U

2

∑
σ,i

nσ,ri(nσ,ri − 1) + U↑↓
∑
i

n↑,rin↓,ri . (1)

Here, b†σ,ri
(bσ,ri

) are creation (annihilation) operators at site i
of the honeycomb lattice, and nσ,ri

= b†σ,ri
bσ,ri

is the density
operator. t1 (resp. t2) is the amplitude of hopping to the first
(resp. second) neighbors and ν↑ik = −ν↓ik = 1 (resp. − 1)
for hoppings corresponding to a left-turn (resp. right-turn)
on the honeycomb lattice. We assume a filling of one bo-
son per site 〈n↑,ri

+ n↓,ri
〉 = 1. The Haldane model38 for

spinless fermions has been realized through Floquet engi-
neering in cold atoms56. Similarly, spin-orbit models have
been proposed in optical lattices setups57–59 and experimen-
tally achieved with photons60–63. All the ingredients required
for a successful implementation of (1) are thus available.

I. B-DMFT on BKMH model. The ground-state phase di-
agram of the BKMH model obtained from B-DMFT46–50

is shown in Fig. 1(b). In order to address unusual
states that break translational symmetry, we use real-space
B-DMFT51,64–66. Local effective problems represented
by the Anderson impurity model are solved using exact
diagonalization51. As found for the bosonic Haldane model
with same filling67, three phases are competing: a uni-
form superfluid (SF), a chiral superfluid (CSF) and a Mott
insulator (MI) (they are sorted out from the behaviors of
the order parameter 〈bσ,ri〉 and the local currents Jσij =

Im 〈b†σ,ri
bσ,rj
〉51).

We now focus on the MI phase. As shown in Fig. 1(b),
the system enters the Mott phase when intra-species (U ) and
inter-species (U↑↓) interactions become strong enough. Ap-
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FIG. 1. (a) Honeycomb lattice with ui – vectors between first neigh-
bor sites and the first Brillouin zone with explicitly shown Γ, K and
M points. (b) Phase diagram of the BKMH model obtained using B-
DMFT containing Mott insulator (MI), uniform superfluid (SF) and
chiral superfluid (CSF) phases with different regimes of the MI phase
marked in italic. The central gray region corresponds to the states
with no coplanar order. Parameters U↑↓/U = 0.5, µ/U↑↓ = 0.5,
lattice of 96 sites. ”Pentagons” mark parameter values that we further
explore in Fig. 2(a-d).

plying standard perturbation theory68, one rewrites the Hamil-
tonian (1) in terms of pseudo spin-1/2 operators S+

ri
=

Sxri
+ iSyri

= b†↑,ri
b↓,ri

, S−ri
= Sxri

− iSyri
= b†↓,ri

b↑,ri
and

Szri
= (n↑,ri − n↓,ri)/2 as follows:

H =−
∑
〈ij〉

[
J1

(
S+
ri
S−rj

+ h.c.
)
−K1S

z
ri
Szrj

]
+
∑
〈〈ik〉〉

[
J2
(
S+
ri
S−rk

+ h.c.
)

+K2S
z
ri
Szrk

]
, (2)

where Ji = t2i /U↑↓ and Ki = t2i (1/U↑↓ − 2/U). We ob-
serve that the spin-1/2 frustrated XY model is realized when
U = 2U↑↓ (for which Ki = 0). Frustration is associated with
the positive sign of the J2-term, which combines the sign of
the bosonic exchange and the phase of π accumulated in the
hoppings between second neighbors. The fermionic Kane-
Mele model does not include such frustrating terms53,69. The
properties of this effective XY model depend only on the
ratio J2/J1 = (t2/t1)

2. In the classical limit, a coplanar
ansatz15,51,70 provides the following phase diagram: the fer-
romagnetic phase is stable for J2/J1 ≤ 1/6, above which de-
generate incommensurate spiral waves become energetically
favoured. Their wave-vectors leave on closed contours in the
Brillouin zone. In the case of the Heisenberg model, quantum
fluctuations were predicted to lift this degeneracy via an order
by disorder mechanism17.

Deviations from this classical picture are already captured
by B-DMFT in the BKMH model. In Fig. 2(a-d), we study
the local coplanar spin ordering (arrows), in the presence of
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FIG. 2. Results of the B-DMFT for different values of (t2/t1)2 =
J2/J1 for hz/U = 10−3, U↑↓/U = 0.5, t1/U = 0.025 on a lattice
of 24 sites. (a-d) Different spin configurations. The color palette
gives 〈Sz

ri
〉, while arrows depict ordering in the xy-plane. (a) Uni-

form state with FM ordering; (b) CSS (chiral spin state) with no
coplanar order; (c) A configuration of spiral states, in which each
pseudo spin is aligned with only one of its three first neighbors and
anti-aligned with two of its six second neighbors; (d) A 120◦ con-
figuration. (e) Absolute value of

∣∣〈Sz
ri
〉
∣∣. For each ratio (t2/t1)

2 we
plot the result for all 24 sites and compare it to the classical solution.
”Pentagons” mark results presented in (a-d). Note that for finite val-
ues of hz the border between the 120◦ Mott state and CSF is slightly
shifted in favour of the Mott state.

an external staggered magnetic field hz , breaking the parity
P symmetry (reflection which maps the sublattice A to the
sublattice B):

Hz = hz

(∑
i∈A

Szri
−
∑
j∈B

Szrj

)
. (3)

It corresponds to a staggered chemical potential in the boson
language and we will understand its role hereafter. We directly
infer some of the ordered phases: at low J2/J1, all spins are
aligned in a ferromagnetic (FM) order, while at large J2/J1,
we recover a 120◦ spiral order. For U↑↓/U = 0.5, t1/U =
0.025 in the range 0.36 . J2/J1 . 1.23 we observe a dif-
ferent configuration of spiral waves (Fig. 2(c)). In addition,
we find an exotic intermediate regime when 0.25 . J2/J1 .
0.36 (we notice that positions of phase boundaries are affected
by hz), characterized by a chiral spin state (CSS) (this defini-
tion will be justified later) with no coplanar magnetic order
(Fig. 2(b)). This is reminiscent of the debated intermediate
phase found in numerical studies on the XY spin model29–36.
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On one hand, density matrix renormalization group31,32 and
coupled cluster method33 results evidenced an antiferromag-
netic Ising ordering along the z-axis, breaking P while pre-
serving translational invariance. On the other hand, this ob-
servation was not reported in ED29,30 nor variational Monte-
Carlo34–36 analyses, raising questions about the exact nature
of this intermediate phase.

Mapping the model onto a fermionic one and performing a
mean-field analysis37,51, it was proposed that an intermediate
frustration stabilizes a phase with spontaneously broken par-
ity P and time-reversal T symmetries. This phase is charac-
terized by antiferromagnetic correlations and ChS fluxes stag-
gered within the unit cell as in the celebrated Haldane model38

and the authors suggested that it realizes the chiral spin liquid
state of Kalmeyer-Laughlin71,72. In this context, we plot in
Fig. 2(e), the response for the magnetization 〈Szri

〉 with re-
spect to the field hz . All phases except the CSS are character-
ized by a trivial response to the perturbation: 〈Szri

〉 ∼ hz ,
whereas 〈Szri

〉 is strongly fluctuating in the CSS (however
we do not observe spontaneous symmetry breaking with B-
DMFT). These results cannot be explained in the context of a
simple coplanar ansatz, but could be related to a breaking of
the degeneracy between two mean-field solutions in the ChS
field theory description51.

II. ED on frustrated XY model. We complete the study of the
effective frustrated XY model using ED and previously un-
addressed probes such as the responses to P and T breaking
perturbations and the topological description of the ground-
state. We consider lattices of 24 − 32 sites, with periodic
boundary conditions, and fixed total magnetization SzTot = 0
if not stated otherwise. First, we determine the phase bound-
aries using the fidelity metric51,73–75 g. The phase diagram of
the XY model deduced from the ED calculations is given in
Fig. 3(a). In agreement with the B-DMFT analysis and pre-
vious numerical studies, we observe three phase transitions at
J2/J1 ≈ 0.21, 0.36 and 1.32. Small deviations from the B-
DMFT results could be due to a finite size of ED clusters or
non-perturbative interaction effects (XY model does not de-
scribe correctly the physics of the Mott phase when ti/U are
not small enough). The nature of the phases detected with the
ED is verified by looking at the coplanar static structure factor

SSpiral (q) = 2
∑
i,j∈A

eiq·(ri−rj) 〈Sxri
Sxrj
〉 . (4)

Spiral waves display a maximum of SSpiral(q) at some wave-
vector(s) q in the first Brillouin zone. In the bosonic language,
this is interpreted as a macroscopic occupation of the corre-
sponding momentum state(s). We observe51 that the phase in
the region J2/J1 . 0.21 corresponds to the FM order since
SSpiral (q) has a peak at q = Γ. The phase at 0.36 . J2/J1 .
1.32 corresponds to a spiral wave with collinear order (struc-
ture factor has maxima at three M points) as expected from
the order by disorder mechanism. At 1.32 . J2/J1 the
ground-state is the 120◦ order spiral wave (structure factor
has a peak at two Dirac points K). In the intermediate frus-
tration regime (0.21 . J2/J1 . 0.36) the coplanar static
structure factor is flat in the reciprocal space and we expect
the ground-state to be disordered in the xy-plane. Notice that
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FIG. 3. (a) Phase diagram of the frustrated XY model from ED. (b-d)
Variation of the observables with the dimensionless parameter J2/J1
for different values of hz , with J ′2 = 0.01J1, on a lattice of 6 × 2
unit cells. (b) Difference of the average Ising magnetization on two
sublattices m. (c) Scalar spin chirality χ. (d) Pseudo-spin density
wave structure factor SPSDW(Γ). (e) Schematic representation of the
perturbation term HJ′2

.

the ground-state in all phases is located in the same sector of
the total momentum at point Γ. Based on the ChS field theory
predictions, the order by disorder arguments and numerical
observations, the CSS – collinear order and collinear order –
120◦ order phase transitions are expected to be of the first or-
der, whereas the FM – CSS phase transition – of the second
order.

As for the B-DMFT study, we analyze the linear response to
external perturbations breaking P and T symmetries. We are
interested in the relative magnetization between the two sub-
lattices m = 〈mri

〉 =
〈
Szri
− Szri+u3

〉
, as well as the scalar

spin chirality χ = 〈Sri
· (Sri+u1

× Sri+u2
)〉. Here we sup-

pose that i ∈ A and ui are vectors between first neighbor
sites defined in Fig. 1(a). When calculating the chirality χ,
we add a perturbation corresponding to the second-neighbor
hopping of the Haldane model, of amplitude J ′2 and phase π/2
(as shown in Fig. 3(e)):

HJ′2
= J ′2

∑
〈〈ik〉〉

(
e±iπ/2S+

ri
S−rk

+ h.c.
)
. (5)

We are interested in the limit hz, J ′2 � J1. Results of the ED
calculations are presented in Figs. 3(b-c). The CSS reveals
itself by sharp responses to such external fields. Moreover,
the renormalized quantities m/hz and χ/(hzJ ′2) tend to di-
verge in weak-coupling limit, giving a strong indication for
spontaneous symmetry breaking. This justifies our definition
of the CSS, which properties can be observed experimentally
by tracking on-site populations of bosons nσ,ri

and currents
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FIG. 4. ED calculations of the low energy spectra as a function of
J2/J1 (a) on a lattice of 4 × 3 unit cells for various Sz

Tot; (b) on
a lattice of 4 × 4 unit cells in the Sz

Tot = 0 sector only. (c) Low
energy spectrum as a function of the twist angle θ1 for J2/J1 = 0.3
and θ2 = 0 on a lattice of 4 × 3 unit cells. (d) Berry curvature
calculated using the non-abelian formalism resulting in a vanishing
Chern number shown for J2/J1 = 0.3, hz/J1 = J ′2/J1 = 0.02 on
a lattice of 4× 3 unit cells.

Jσij = Im
〈
b†σ,ri

bσ,rj

〉
76. One can probe the antiferromag-

netic ordering without breaking P and T by calculating the
pseudo-spin density wave (PSDW) structure factor29,30:

SPSDW(q) =
∑
i,j

eiq·(ri−rj)
〈
mri

mrj

〉
.

We observe in Fig. 3(d) that SPSDW(q) has a peak at q = Γ
in the intermediate frustration regime. These features are
hardly affected by moderate Ising interactions Ki/J1 ∼ 0.1
in Eq. (2)77.

The observed spin configuration of the CSS could describe
the chiral spin liquid of Kalmeyer and Laughlin71,72. Yet, we
know that chiral spin liquids are characterized by a topological
degeneracy in the thermodynamic limit on a compact space
with genus G78–80. This property can be checked using ED
in a system with periodic boundaries: as G = 1 for a torus,
one should have a four-fold degenerate ground-state with two
topological degeneracies per chirality sector. Still, because of
finite size effects, one only expects an approximate degener-
acy in simulations.

In Fig. 4(a-b), we show the low-energy spectrum as a func-
tion of J2/J1, resolved in different sectors of total momentum
Q. As mentioned previously, the ground-state always belongs
to the sector Q = Γ. In the intermediate frustration regime,
we clearly observe the onset of a doubly-degenerate ground-
state manifold, well separated from higher energy states. The
first excited state has the same momentum Q = Γ, but lies in
the opposite sector of spin-inversion symmetry Szri

→ −Szri

or reflection symmetry (that coincides with P) for some par-
ticular lattices. Low-lying excited state also moves away in
energy when the perturbations Hz and HJ′2

are switched on.
We probe the robustness of the low energy quasi-degenerate

state sector by performing the Laughlin’s gedanken experi-

ment and pumping a quantum of magnetic flux through one
of the non-trivial loops of the torus81–83. Numerically, this
is achieved using twisted boundary conditions in a transla-
tional symmetry preserving manner. The results are given
in Fig. 4(c). We observe that the same states in the sector
Q = Γ are non-trivially gapped for all twists. For a pump-
ing of a single flux quantum we could not observe a crossing
of states in the ground-state manifold, that however does not
imply that the manifold is topologically trivial84–86. The topo-
logical nature of the ground-state manifold is unambiguously
determined by calculating the Chern number87–90:

C =
1

2π

2π∫
0

2π∫
0

B(θ1, θ2)dθ1dθ2 . (6)

Here θ1 and θ2 are two angles of twisted boundary conditions
and B(θ1, θ2) is the Berry curvature91. We notice that two
phases θi (i = 1, 2) introduced in the spin language would
correspond to four phases θσi in the language of bosons of the
BKMH model, for which the spin component θ↑i − θ

↓
i = θi

is fixed and the U(1) component θ↑i + θ↓i is free92. Since
the two quasi degenerate ground-states lie in the same sym-
metry sector and cannot be separated unless twists are trivial
(reflection and spin-inversion symmetry can not be used with
twisted boundary conditions), we evaluate the Berry curva-
ture using the gauge-invariant non-abelian formulation93–95:
B(θ1, θ2)δθ1δθ2 = Im lnDet (M(θ1, θ2)), where elements
of the matrixM are obtained as follows:

Mij(θ1, θ2) = 〈φi(θ1, θ2) |φµ1
(θ1 + δθ1, θ2)〉

× 〈φµ1
(θ1 + δθ1, θ2) |φµ2

(θ1 + δθ1, θ2 + δθ2)〉
× 〈φµ2

(θ1 + δθ1, θ2 + δθ2) |φµ3
(θ1, θ2 + δθ2)〉

× 〈φµ3
(θ1, θ2 + δθ2) |φj(θ1, θ2)〉 . (7)

Here δθ1 and δθ2 refer to the numerical mesh along the θ1
and θ2. i, j, µi = 1, 2 are indices of states |φ1〉 and |φ2〉 in
the ground-state manifold and the summation over µi is im-
plicit. In Fig. 4(d), we show a typical shape of the Berry curva-
ture. We find that the Chern number is zero in the intermediate
frustration regime. This result suggests that the intermediate
phase in the frustrated XY model is most likely to be a CSS
with no topological order, as suggested in Refs. 31–33 and not
the Kalmeyer-Laughlin state, with gauge fluctuations beyond
the mean-field solution making the phase topologically trivial
as in the fermionic Kane-Mele model case53–55.

To conclude, we studied the phase diagram of the bosonic
Kane-Mele-Hubbard model on the honeycomb lattice. We
have shown that an effective frustrated XY model appears in
the Mott insulator phase. This model possesses an interme-
diate frustration regime with a non-trivial chiral spin state,
which breaks both P and T symmetries. It displays a finite
scalar spin chirality order and an antiferromagnetic ordering
between first-neighbor sites, while remaining translationally
invariant. Measuring the Chern number associated with this
state reveals its non-topological nature.
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Supplemental Material: Emergent Chiral Spin State in the Mott Phase of a Bosonic
Kane-Mele-Hubbard Model

I. B-DMFT DETAILS

For completeness, in this Section we briefly describe the B-DMFT method along the lines of references49,50,64,96. In particular,
in order to be able to address exotic states that break translational invariance, we implement real-space B-DMFT64–66,96. The
essence of DMFT is mapping of the full lattice model onto a set of local models whose parameters are determined through a
self-consistency condition. The self-consistency is imposed on the level of single–particle Green’s functions that can be written
in the Nambu notation as

Gij(τ, η) ≡ Gij(τ − η) = −Tτ,η

〈
b↑,ri

(τ)b†↑,rj
(η) b↑,ri

(τ)b↑,rj
(η) b↑,ri

(τ)b†↓,rj
(η) b↑,ri

(τ)b↓,rj
(η)

b†↑,ri
(τ)b†↑,rj

(η) b†↑,ri
(τ)b↑,rj

(η) b†↑,ri
(τ)b†↓,rj

(η) b†↑,ri
(τ)b↓,rj (η)

b↓,ri(τ)b†↑,rj
(η) b↓,ri(τ)b↑,rj (η) b↓,ri(τ)b†↓,rj

(η) b↓,ri(τ)b↓,rj (η)

b†↓,ri
(τ)b†↑,rj

(η) b†↓,ri
(τ)b↑,rj

(η) b†↓,ri
(τ)b†↓,rj

(η) b†↓,ri
(τ)b↓,rj

(η)


〉
. (8)

In the following we express the Green’s functions in terms of Matsubara frequencies ωn = 2πn/β, where β is the inverse
temperature (in the zero temperature limit β →∞) and Gij(iωn) =

∫
dτ exp(iωnτ)Gij(τ).

In real-space B-DMFT we decompose the full lattice problem into a set of local single-site effective problems. The approxi-
mation is such that local correlations are fully taken into account, while non-local correlations are treated at the mean-field level.
At each site i, we attach a bath described by orbital degrees of freedom. The effective local Hamiltonian is given by a bosonic
Anderson impurity (AI) model96

HAI
i =

L∑
l=0

[
εla
†
l al +

∑
σ

(
Vl,σa

†
l bσ,ri + V ∗l,σalb

†
σ,ri

+Wl,σalbσ,ri +W ∗l,σa
†
l b
†
σ,ri

)]

+
∑
σ

(
−ψAI∗

σ,ri
bσ,ri

− ψAI
σ,ri

b†σ,ri
+
U

2
nσ,ri(nσ,ri − 1)− µσnσ,ri

)
+ U↑↓n↑,rin↓,ri , (9)

where the index l labels the Anderson orbitals with energies εl and we allow for complex values of the Anderson parameters
Vl,σ and Wl,σ that couple orbital degrees of freedom with impurity atoms. We use L = 4; we check that results are the same for
L = 5 and 6. Local interaction terms proportional to U and U↑↓ come directly from the initial lattice model and, as we work
in the grand canonical ensemble, we introduce chemical potentials µσ ≡ µ. We define hybridization functions of the Anderson
impurity model as

∆νµ
11 (iωn) =

∑
l

(
V ∗l,νVl,µ

εl − iωn
+
W ∗l,νWl,µ

εl + iωn

)
, (10)

∆νµ
22 (iωn) =

∑
l

(
W ∗l,µWl,ν

εl − iωn
+
V ∗l,µVl,ν

εl + iωn

)
, (11)

∆νµ
12 (iωn) =

∑
l

(
V ∗l,νW

∗
l,µ

εl − iωn
+
V ∗l,µW

∗
l,ν

εl + iωn

)
, (12)

∆νµ
21 (iωn) =

∑
l

(
Vl,µWl,ν

εl − iωn
+
Vl,νWl,µ

εl + iωn

)
, (13)

and introduce a 4× 4 matrix ∆(iωn) as

∆(iωn) ≡


∆↑↑11 ∆↑↑12 ∆↑↓11 ∆↑↓12
∆↑↑21 ∆↑↑22 ∆↑↓21 ∆↑↓22
∆↓↑11 ∆↓↑12 ∆↓↓11 ∆↓↓12
∆↓↑21 ∆↓↑22 ∆↓↓21 ∆↓↓22

 . (14)

The following relations for the hybridization functions hold true:

∆↑↑22(iωn) = ∆↑↑∗11 (iωn), ∆↑↑21(iωn) = ∆↑↑∗12 (iωn), ∆↓↓22(iωn) = ∆↓↓∗11 (iωn), ∆↓↓21(iωn) = ∆↓↓∗12 (iωn),

∆↑↓22(iωn) = ∆↑↓∗11 (iωn), ∆↑↓21(iωn) = ∆↑↓∗12 (iωn), ∆↓↑22(iωn) = ∆↓↑∗11 (iωn), ∆↓↑21(iωn) = ∆↓↑∗12 (iωn). (15)
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The terms ψAI
σ,ri

used in Eq. (9) incorporate a correction with respect to the mean–field result and they read96:

ψAI
↑,ri

=
∑
j

t↑,ijφ↑,rj
− φ∗↑,ri

∆↑↑21(0)− φ∗↓,ri
∆↓↑21(0)− φ↑,ri

∆↑↑11(0)− φ↓,ri
∆↓↑11(0), (16)

ψAI
↓,ri

=
∑
j

t↓,ijφ↓,rj − φ∗↑,ri
∆↑↓21(0)− φ∗↓,ri

∆↓↓21(0)− φ↑,ri∆
↑↓
11(0)− φ↓,ri∆

↓↓
11(0), (17)

where the condensate order parameters are defined as

φσ,ri
= 〈bσ,ri

〉, (18)

and tσ,ij are hopping amplitudes of the two species defined in the initial lattice model.
By exact diagonalization of the local model (9) we obtain the values of the local Green’s functions. From here, the local

self–energy is obtained from the local Dyson equation

(GAI)−1ii (iωn) =

 iωn + µ
−iωn + µ

iωn + µ
−iωn + µ

+ ∆(iωn)− ΣAI
i . (19)

The approximate real-space Dyson equation takes the following form:

G−1ij,latt(iωn) =


(iωn + µ) δij + t↑,ij

(−iωn + µ) δij + t∗↑,ij
(iωn+µ) δij + t↓,ij

(−iωn+µ) δij + t∗↓,ij

− δijΣAI
i , (20)

where we approximate the self–energy by a local contribution from Eq. (19). The last step represents the main approximation
of DMFT. Finally, we need a criterion to set the values of the parameters εl, Vl,σ and Wl,σ in Eq. (9). To this end, a condition
is imposed on the hybridization functions (13). These functions should be optimized such that the two Dyson equations, (19)
and (20), yield the same values of the local Green’s functions. In practice, we iterate a self–consistency loop to fulfill this
condition, starting from arbitrary initial values. At the same time we impose a simple self consistency on the local condensate
order parameters φσ,ri .

Once that the self-consistency is achieved and values of Anderson parameters εl, Vl,σ and Wl,σ are fixed, by solving the local
model (9) we obtain results for local condensate order parameters (18) and the expectation values of the pseudo spin operators

〈Sxri〉 = 〈b†↑,ri
b↓,ri

+ b†↓,ri
b↑,ri
〉/2, (21)

〈Syri〉 = i〈b†↑,ri
b↓,ri

− b†↓,ri
b↑,ri
〉/2, (22)

〈Szri〉 = 〈b†↑,ri
b↑,ri − b

†
↓,ri

b↓,ri〉/2. (23)

We work with a finite lattice consisting of 96 sites and periodic boundary conditions that provide a proper sampling of the
Brillouin zone that includes its corners75. The values of the chemical potential terms in Eq. (9) are fixed to µσ = U↑↓/2.

Finite values of condensate order parameters (18) mark a superfluid phase, while vanishing values correspond to a Mott
insulator state (MI). We further distinguish a uniform superfluid (SF), where the order parameters of the two species on both
sublattices are aligned, Fig. 5(a), and a chiral superfluid (CSF) with 2π/3 winding of the order parameters, Fig. 5(b). For the
parameters studied in the paper, we find that the absolute values of the order parameters are the same for the two species on all
lattice sites, yet for CSF state winding directions are opposite for the two species on the two sublattices, Fig. 5(b). Moreover,
in CSF phase condensate order parameters on the two sublattices and for the two species are determined up to a relative phase,
Fig. 5(b). We also expect that similarly to the case of the bosonic Haldane model67 the SF – CSF phase transition is of the first
order, whereas the SF (CSF) – MI phase transition is of the second order.

In Fig. 5(c) we plot absolute values of the order parameters (18) (which are uniform throughout the lattice) as functions of t2/U
for several values of t1/U . For the case of t1/U = 0, we find a transition from the Mott state into the chiral superfluid state at
t2/U ≈ 0.027. At t1/U = 0.03, the transition sets in at a slightly higher value t2/U ≈ 0.0285. The most interesting behavior
is found for t1/U = 0.056, where for small values of t2 we find a uniform superfluid. With an increase in t2, at t2/U ≈ 0.0265
the Mott insulator state is reached due to competing effects of t1 and t2, and finally at t2/U ≈ 0.0315 the system becomes a
chiral superfluid. These results are summarized in the phase diagram of BKMH model (Fig. 1(b) of the main text).

Different magnetic orderings within the Mott domain, as discussed in Fig. 1, are distinguished based on the order parameters
defined in Eqs. (21) and (22). In Fig. 2 we show the results of a calculation on a 24-site lattice. We monitor magnetic ordering
in z-direction marked by finite values of order parameter (23) that are introduced by a finite value of hz as defined in equation
(3). We have checked that a four-fold increase in lattice size (96 vs. 24 lattice sites) introduces a shift in the position of the
”intermediate region” borders of the order of ∆t2/U ∼ 2× 10−4 or less than 2% in relative units.
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FIG. 5. Color maps: Real-space distribution of condensate order parameters of the two bosonic species in (a) uniform superfluid (SF) (t1/U =
0.056, t2/U = 0.005, U↑↓/U = 0.5, µ/U↑↓ = 0.5), and (b) chiral superfluid (CSF) (t1/U = 0.018, t2/U = 0.032, U↑↓/U = 0.5, µ/U↑↓ =
0.5). Local condensate order parameters are aligned in the SF. In contrast, they exhibit 2π/3 winding in the CSF. The ”winding direction” is
opposite for the two species and for the two sublattices, implying that for each sublattice the two species condense in the two different Dirac
points. The choice of the Dirac points is opposite for the two sublattices. (c) The condensate order parameters as a function of t2/U for several
values of t1/U .

II. CLASSICAL SOLUTION

We consider an ansatz for the classical (S →∞) solution of the spin problem defined as follows:

Sri = S

sin (θµ) cos (φµ,i)
sin (θµ) sin (φµ,i)

cos (θµ)

 . (24)

Here µ ∈ [A,B] is the sublattice index and a free parameter θµ characterizes the orientation of the spin on the sublattice µ with
respect to the z-axis. It verifies 0 ≤ θµ ≤ π (sin θµ is always positive). Similarly to the Refs. 17 and 70, we define phases
φA,i = q · Ri and φB,i = q · Ri + η, where q is the spiral wave vector and η describes the relative orientation of spins on
sublattices A and B at the same unit cell. The (anti-) ferromagnetic ordering between first-neighbor sites in the XY -plane is
thus described by q = 0, η = 0(π) and θµ = π/2. The Ising antiferromagnetic ordering is defined by θA = 0, θB = π and its
Z2 symmetric solution θA = π, θB = 0.

A. Zero external magnetic field hz

We write the energy per spin in terms of parameters of the Hamiltonian H in Eq. (2) for Ki = 0:

ε =− J1S2 sin θA sin θB [cos η + cos (η −Q1) + cos (η +Q2)]

+ J2S
2
(
sin2 θA + sin2 θB

)
[cosQ1 + cosQ2 + cos (Q1 +Q2)] . (25)

Here for simplicity we defined Qi = q ·vi with vi – 3 second-neighbor vectors. By minimizing the energy per spin with respect
to all the parameters that we introduced, we obtain that only coplanar solutions with θµ = π/2 will survive. In this case we
recover17,70

cos η =
2J2
J1

(1 + cosQ1 + cosQ2) ,

sin η =
2J2
J1

(sinQ1 − sinQ2) ,

cosQ1 + cosQ2 + cos (Q1 +Q2) =
1

2

(
J2
1

4J2
2

− 3

)
. (26)

The uniform solution at q = Γ and η = 0 is valid until J2/J1 ≤ 1/6. Spiral waves solution is valid in the regime J2/J1 > 1/6
for J1 6= 0. When two sublattices are decoupled (J1 = 0), the solution corresponds to the 120◦ order. The energy per
spin of the uniform solution is εcl = −3S2 (J1 − 2J2), whereas the energy corresponding to the spiral wave state is εsp =

−S2J1

(
J1
4J2

+ 3J2
J1

)
.
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B. Effect of the external magnetic field hz

Now we are interested in the effect of the external magnetic field hz on the stabilization of the out-of plane (PSDW) solution.
We calculate the energy per spin when the perturbation term Hz of Eq. (3) is added to the Hamiltonian:

ε =− J1S2 sin θA sin θB [cos η + cos (η −Q1) + cos (η +Q2)]

+ J2S
2
(
sin2 θA + sin2 θB

)
[cosQ1 + cosQ2 + cos (Q1 +Q2)]− hzS

2
(cos θA − cos θB) . (27)

We suppose that the angle θµ is close to π/2 (the solution is almost coplanar) for small values of hz and we perform the expansion
in powers of θ̃µ = π/2−θµ. At the first order in the expansion we observe that the coplanar degree of freedom and the degree of
freedom along the z-axis become decoupled. Values of η, Q1 and Q2 correspond to the spiral wave solution (26) and parameters
θ̃A and θ̃B are deduced using the following relation:

θ̃A + θ̃B = 0 ,

θ̃A − θ̃B =
hz

J1 [cos η + cos (η −Q1) + cos (η +Q2)]− 2J2 [cosQ1 + cosQ2 + cos (Q1 +Q2)]
. (28)

In the regime J2/J1 ≤ 1/6 we obtain

θ̃A = −θ̃B =
hz

6 (J1 − 2J2)
, (29)

and in the regime J2/J1 > 1/6

θ̃A = −θ̃B =
2hzJ2

(J2
1 + 12J2

2 )
. (30)

We see thus that for the classical ansatz (24) the linear response of the spin to the applied magnetic field hz is supposed to be
small and of the order of hz .

III. MEAN-FIELD SOLUTION AND THE CHS FIELD THEORY DESCRIPTION

According to the Ref. 37 one can preform a mapping of the spin problem (2) onto the problem of spinless fermions coupled to
ChS gauge fields39–43. At the mean-field level, the system is stabilized in the chiral spin state by forming the anti-ferromagnetic
order and staggered ChS fluxes within the unit cell identical to the fluxes of the Haldane model38. This allowed authors of the
Ref. 37 to suggest that the resulting solution (that breaks spontaneously P and T symmetries) could be a chiral spin liquid state
of Kalmeyer-Laughlin and deduce the phase boundaries, that were in good agreement with the numerical data29–36. Below, we
represent analytical arguments that lead to this suggestion.

A. Zero external magnetic field hz

The problem of the Eq. (2) can be rewritten in the fermionic language using the following transformation:

S+
rj

= c†rj
eiαrj , αrj

=
∑
k 6=j

Bjknrk
, nrk

= c†rk
crk

= Szrk
+ 1/2 . (31)

Here c†rj
and crj

are fermionic creation and annihilation operators and

Bjk = arg (τk − τj) = Im ln (τk − τj) , (32)

with the complex number τj = xj + iyj associated to each point on the lattice defined by the vector rj = xjex + yjey . Bjk
could be interpreted as the angle that the vector rk − rj forms with the x-axis. The Hamiltonian (2) can now be rewritten as

H =

−J1∑
〈ij〉

c†ri
ei(αri

−αrj )crj
+ J2

∑
〈〈ik〉〉

c†ri
ei(αri

−αrk)crk
+ h.c.

 . (33)
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We introduce a vector field A (rk) defined as

〈
αrj − αri

〉
=

rj∫
ri

drk ·A (rk) , (34)

and a ChS magnetic field B (ri) = B (ri) ez such that

B (ri) = curlA (ri) = 2π 〈nri〉 = 2πn(ri) . (35)

We remove exponential string operators by introducing the δ-function imposing a constraint on the ChS magnetic field through
the Lagrange multiplier A0(ri):

2πδ (B(ri)/(2π)− n(ri)) =

∫
dA0(ri) exp

{
iA0(ri) [B(ri)/(2π)− n(ri)]

}
. (36)

We write down the resulting action

S =

∫
dt

[∑
i

ψ̄(ri)
(
i∂t −A0(ri)

)
ψ(ri) +

1

2π

∑
i

A0(ri)B(ri)

−J1
∑
〈ij〉

ψ̄(ri)ψ(rj)e
i〈αri

−αrj 〉 + J2
∑
〈〈ik〉〉

ψ̄(ri)ψ(rk)ei〈αri
−αrk〉 + h.c.

 . (37)

The functional integration with respect to the ChS magnetic field B(ri), the Lagrange multiplier A0(ri) playing the role of
the scalar potential and Grassman variables ψ̄(ri) and ψ(ri) associated to fermionic creation and annihilation operators is
considered. One can integrate out Grassmann variables. At the mean-field level we express the fermionic free energy functional
W ({A0(ri), B(ri)}) as a sum over eigenvalues of the single-particle problem up to the Fermi energy in such a way that the total
filling of fermions equals 1/2:

W ({A0(ri), B(ri)}) =
∑
k

Ek({A0(ri), B(ri)})Θ(Ek − EF ) ,

Nc =
∑
k

Θ(Ek − EF ) . (38)

Here Nc is the total number of unit cells in the lattice, Θ is the Heaviside function and EF is the Fermi energy, that is calculated
self-consistently. We suppose that the solution is translation invariant. In particular, n(ri) = nA or nB . We allow however the
breaking of the symmetry between two sublattices: nA 6= nB . The condition of being at total filling 1/2 implies nA + nB = 1.
The first-neighbor hopping terms are sensitive only to the total flux through the unit cell ΦTot = 2π (each unit cell containing
precisely 1 site of the sublattice A and 1 site of the sublattice B), that is gauge equivalent to zero. Second-neighbor hoppings
exhibit Haldane modulations of the flux through big triangles formed by second-neighbor links. In order to see this more
clearly, we separate a symmetric (+) and an antisymmetric (−) components of the scalar potential and the magnetic field:
B± = BA±BB , A0

± = A0
A±A0

B . The flux configuration due to the symmetric component is also gauge equivalent to zero for
second-neighbor links, whereas the antisymmetric component leads to ΦA = −ΦB = B−. Here ΦA and ΦB are fluxes through
the smallest triangles formed by second-neighbor sites of the sublattice A or B. For consistency with the notation of the Ref. 37,
we also define φ = B−/3. The resulting effective Lagrangian for the ChS magnetic field and the scalar potential is

Leff(A
0
−, φ) = W (A0

−, φ) +
3Nc
2π

A0
−φ . (39)

The effective mean-field model for free fermions is the Haldane model38. We use the saddle-point approximation to find the
values of A0

− and φ:

δA0
−
Seff = 0, δφSeff = 0 . (40)

Solutions of these equations correspond to the extrema of the functional Leff, as shown in Fig. 6. By calculating this functional
for different values of J2/J1, we deduce three different regimes in the phase diagram. In the region J2/J1 . 0.21 the functional
Leff has only one point where both equations are verified, that is the saddle point at A0

− = 0, φ = 0. In the region 0.21 .
J2/J1 . 0.36 there are three solutions of the equations for the minimization. The solution at A0

− = 0, φ = 0 corresponds to a
local maximum of the functional Leff, whereas two symmetric solutions not located at zero become new saddle point solutions.
These solutions moves continuously with J2/J1, starting from zero, that corresponds to a second order phase transition. In the
region 0.36 . J2/J1 again only the local minimum of Leff remains as a solution at A0

− = 0, φ = 0, that corresponds to a first
order phase transition.
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FIG. 6. (a-d) The functional Leff(φ,A
0
−) of Eq. (39) plotted in units of J1 for different values of J2/J1, hz = 0. (e-h) The effect of the P

breaking term Hz on the functional L(φ,A0
−) for a fixed value J2/J1 = 0.3. We can see that one of the non-trivial minima shifts in energy

with respect to another one, explicitly breaking the symmetry between two degenerate solution from the hz = 0 case.
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FIG. 7. ED calculation of the fidelity metric g on a lattice of 4× 3 unit cells for hard-core bosons at filling 1/2 (Sz
Tot = 0).

B. Effect of the external magnetic field hz

We consider the effect of adding an external magnetic field hz to the mean-field solution. In the expression of the fermionic
single-particle spectrum this term appears as a Semenoff mass term97. By doing the numerical minimization, we see that the
effect of this perturbation consists in breaking the symmetry between two non-trivial solutions in the regime 0.2 . J2/J1 . 0.36.
This effect is presented in Fig. 6.

IV. EXACT DIAGONALIZATION: CLASSICAL PHASES OF THE FRUSTRATED SPIN-1/2 XY MODEL

In order to determine the phase boundaries of the frustrated spin-1/2 XY model, we calculate the fidelity metric g73–75. The
result of this calculation on the lattice of 4 × 3 unit cells is shown in Fig. 7. Classical phases are studied by looking at the
correlation functions

〈
Sµri

Sνrj

〉
and the related coplanar structure factor

SSpiral (q) = 2
∑
i,j∈A

eiq·(ri−rj) 〈Sxri
Sxrj
〉 . (41)

The result of such analysis is presented in Fig. 8.
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(a) (b) (c) (d)

FIG. 8. ED calculation of the static structure factor SSpiral (q) at 4 typical points in 4 phases (different rows) on various lattices (different
lines) for hard-core bosons at filling 1/2 (Sz

Tot = 0). Vectors q1 and q2 are defined as in Fig. 1(a). (a) In the FM phase (J2/J1 = 0.1
row) the structure factor is piked at q = Γ. (b) The systems seems to be disordered in the xy plane in the intermediate frustration regime
(J2/J1 = 0.25 row). (c) We observe a formation of the collinear order for J2/J1 = 0.6. We notice however the significant difference of the
result on the lattice 4 × 3. This is explained by the fact that this lattice does not contain all the M points in the reciprocal space. (d) In the
case J2/J1 = 1.5 the system forms a 120◦ order. We notice that similarly to the previous case the lattice 4× 4 does not contain Dirac points
K in the reciprocal space, that results in the impossibility to recover correctly the 120◦ phase: two rightmost figures in the bottom line do not
differ almost at all.
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