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Abstract

The paper describes a joint refinement model of the spin resolved one-electron-reduced density

matrix using simultaneously magnetic structure factors and magnetic directional Compton profiles.

The model is guided by two strategies: (i) variation of basis functions and (ii) variation of the spin

population matrix. Our implementation for a finite system is based on an expansion of the natural

orbitals on basis sets. To show the potential benefits brought by the joint refinement model, we

also present the refinement results using magnetic structure factors only. The joint refinement

model provides very satisfactory results reproducing the pseudo data. In particular, magnetic

Compton profiles have a strong effect not only on the off-diagonal elements of the spin resolved

one-electron-reduced density matrix but also on its diagonal elements.
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I. INTRODUCTION

Reduced density matrix is an alternative way of describing a system of N interacting

particles compared with the N -electron wavefunction1,2. The one-electron-reduced density

matrix (1-RDM )3–6 is widely accepted as playing a central role in the description of electronic

properties7. In addition, considerable work is in progress on the properties of the density

matrix of N -particles systems2,8–17. The refinement of the 1-RDM relative to the pseudo

experimental data have yielded many useful and very interesting results providing excellent

information about chemical bonding, electrostatic potential, and orbital occupations7,18,19.

To reconstruct the entire 1-RDM, several experiments need to be combined, because

each one can only give partial information. To our best knowledge, no single experimental

setup exists to directly determine the total density matrices7. X-ray and polarized neutron

scattering make it possible to describe charge and spin densities in the position space,

respectively, which represent the diagonal elements of the 1-RDM 20–22. The magnetic and

non-magnetic Compton scattering describe the electron densities in the momentum space,

which are mostly related to the off-diagonal elements of the 1-RDM 22,23. The off-diagonal

elements of the 1-RDM bring information which complement the position space electron

density giving by the diagonal elements. They directly provide the ground-state expectation

value of the total electron kinetic energy per unit cell. The off-diagonal elements, which

are connected to the electron cloud polarization and to the relative phases of the atomic

orbitals participating in the most delocalized molecular wave functions. Up to now, several

models have been proposed to refine only the diagonal elements of the 1-RDM using the

structure factors and/or magnetic structure factors data9,14,15,18,19,24,25. A limited number

of works have made use of Compton scattering data; one to refine the wavefunction14 and

others to reconstruct the momentum densities 7,13. In 2007, one of us 15 proposed a strategy

for refining a 1-RDM model from X-ray diffraction and deep inelastic scattering data. The

model was adapted from the Hansen-Coppens pseudo-atomic description9 of electron density.

A significant drawback of this approach was that no prior constraint was applied to the

model to ensure that the 1-RDM is N-representable or even idempotent. In this paper,

we will limit ourselves to the use of only two experimental techniques: polarized neutron

scattering and magnetic Compton scattering. These two techniques provide information to

reconstruct the entire spin resolved 1-RDM (1-SRDM ). To our knowledge, a refinement
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of the 1-SRDM simultaneously using the data of magnetic structure factors (MSFs) and

magnetic Compton profiles (MCPs) has not yet been studied. The aim of the present

work is therefore to: (1) evaluate the quality of a combination of MCPs and MSFs data to

reconstruct all the elements of the 1-SRDM, and (2) illustrate the changes made by MCPs

not only to the off-diagonal elements of the 1-SRDM but also to its diagonal elements. The

main stages of this model are: first, modelling a cluster using molecular ab-initio packages,

and from the resulting ab initio data, the MSFs and the MCPs are computed. Secondly, the

basis functions are rescaled by modifying the exponent coefficients for each atomic orbital.

Finally, the spin population matrix is adjusted by varying the molecular orbitals occupation

numbers. Optimization of the exponent coefficients and the occupation number parameters

is carried out by minimizing the χ2 function (Eqs. 26 and 27) with respect to the pseudo

experimental data using the Minuit code (developed at CERN)26. As a first test of our

model, a simple molecular system, magnetic, with a small unit cell for rapid convergence,

and with possibility to present an invariance of symmetry, need to be considered. A possible

candidate is the urea molecule (CO(NH2)2)
27–29, which is planar (see Fig. 1), strongly

anisotropic, and presents two mirror symmetries. The urea molecule is magnetic only by

construction, the total spin is fixed to 1. The molecular crystal of urea is an artificial

system used to evaluate the performance of the process. Urea was chosen because it has

been thoroughly investigated both theoretically and by different experimental techniques,

among which X-ray diffraction and Compton scattering. In addition, the urea molecule

contains different types of bonding, simple and double covalent bonds and, in its crystalline

phase, hydrogen bonds. It is this diversity of bonds, together with the compactness of the

molecule, which has guided our choice. However, the urea molecule is non-magnetic and,

for our purpose it had to be modified to a total spin of 1. Additionally, since the influence

of the crystalline environment effect needs to be unambiguously estimated, the unit cell was

changed to bear a single molecule. The aim of the present work is to assess the versatility

of the model and validate the refinement strategy, not to study the properties of a true

urea crystal. The first results of our algorithm are presented focusing on the calculation of

1-SRDM, spin density, and MCPs. It is shown that the joint refinement model gives very

satisfactory results to those obtained from periodic calculation of urea.

This paper is organized as follows: In Sec. II, we report the key equations for a density

matrix and its relationship with various physical quantities. In Sec. III, we describe the
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generation of pseudo experimental data from periodic calculations of different molecular

crystals. Then, in Sec. IV, we explain the different stages of the joint refinement model.

Finally, in Sec. V, we present and discuss, the first results of our model and compare them

to the periodic references. Conclusions are given in Sec. VI.

II. GENERAL FRAMEWORK

We have learned from quantum mechanics that a many-body system is completely char-

acterized by its wavefunction. The N -electron wavefunction depends on 3N variables. But,

by increasing the system size, the N -electron wavefunction rapidly becomes too complicated

to provide a simple physical picture of the system. Mostly (in particular for this work), the

complete wavefunction is of no interest and the expectation values of physical observables

are more significant. However, a N -particle system can be described by means of the N -

electron density matrix, which bears a simpler and more direct physical meaning than the

wavefunction itself. The N -electron density matrix is defined in terms of the N -electron

wavefunction Ψ(x1, . . . ,xN):

ΓN (x1, . . . ,xN ; x′1, . . . ,x
′
N ) = Ψ∗(x′1, . . . ,x

′
N )Ψ(x1, . . . ,xN ), (1)

where xi = (ri, si) represents the spin and position coordinates. In order to compute the

expectation value of one-electron operator, we introduce the 1-RDM :

Γ(1)(x1; x
′
1) = N

∫
dx2 . . . dxNΨ∗(x′1,x2, . . . ,xN )Ψ(x1,x2, . . . ,xN ). (2)

In the position space, the diagonal elements of the 1-SRDM correspond to the spin density:

ρ(r1) =

∫ [
δ(s1 − s↑)− δ(s1 − s↓)

]
Γ(1)(x1; x

′
1)x1=x′

1
ds1. (3)

The Fourier transform of the spin density gives the MSFs:

FM (Q) =

∫ [
δ(s1 − s↑)− δ(s1 − s↓)

]
Γ(1)(x1; x

′
1)x1=x′

1
eiQ·rdr, (4)

where Q is the scattering vector.

On the other hand, it is well-known that Compton scattering gives access to the electron

density in the momentum space. In turn, the spin-resolved electron density in momentum

space represents the off-diagonal elements of the 1-SRDM. The MCPs and the 1-SRDM are

related, following this expression:

J(u, q) = 1
2π~ ×

∫ [
δ(s1 − s↑)− δ(s1 − s↓)

]
Γ(1)(x1; x

′
1)x1=x′

1
eiqu·r

′
drdr′, (5)
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FIG. 1: Periodic array of urea with an intermolecular distance of 5 Å (a) and 3 Å (b).

Their lattice parameters are, respectively, {a = 5 Å, b = 10 Å, c = 10 Å,

α = β = γ = 90◦} and {a = 3 Å, b = 10 Å, c = 10 Å, α = β = γ = 90◦}.

where u is a unit vector collinear to the inelastic scattering vector. The MCPs for momentum

q gives the spin density n(p) in the momentum space projected onto the direction u:

J(u, q) =

∫
n(p)δ(q − p · u)dp. (6)

Therefore, to reconstruct the entire 1-SRDM, we need: (i) the MSFs, which describe the

representation space, and (ii) the MCPs, which describe the momentum space. It’s clear,

that the two experimental techniques are highly complementary and give a complete physical

picture of the spin density matrix.

III. GENERATION OF PSEUDO EXPERIMENTAL DATA

In order to test the performance of our model, we refined the 1-SRDM relative to the-

oretical data obtained from periodic calculations. Once this procedure is validated, the

model can safely be applied to genuine experimental data (and will be reported in a follow-

ing paper). Because the calculation of the MSFs and the MCPs are standard features of

its output, our periodic calculations are performed by the CRYSTAL14 packages30–32 using

the Hartree-Fock approximation. Denoted by pob-TZVP33, consistent basis sets of triple-
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zeta valence (TZV ) with polarization quality for main group elements and transition metals

from row one to three have been used for periodic calculations. Two sets of calculations are

considered for the periodic array of urea: the first set neglects the interaction between the

molecules, separated by 5 Å along the X-axis direction (see Fig. 1:a). In the second, the

interaction between molecules are included by reducing to 3 Å the inter-molecular distance

along the X-axis direction (see Fig. 1:b). Note that the intermolecular interactions in the

artificial crystal of urea are quite different from the true one. In the actual urea crystal,

molecules interact in a perpendicular conformation, while in the artificial one they interact

in a parallel conformation. The urea molecule is composed of 8 atoms; the central carbon

atom makes a strong covalent bond with the oxygen atom. It has two symmetrical groups

of NH2 around the central axis O=C. As a reminder, in this work, the urea molecule is

magnetic only by construction; the total spin on the molecule is considered in its triplet

state.

In the present work, the refinement was performed with respect to 12 directions of MCPs

and 500 MSFs generated from these periodic calculations. To be consistent with usual ex-

perimental data, a statistical noise generated from normal Gaussian distribution is added

to the computed periodic data. The amplitude of this noise is determined from that consid-

ered in usual experimental measurements. For the MSFs data, the error bar of each point

corresponds to 10% of its corresponding MSF amplitude. For the MCPs data, the error bar

of each point corresponds to the square root of its corresponding MCP amplitude.

IV. A JOINT REFINEMENT MODEL

The different stages of the joint refinement model are explained in this section, and, in

particular, an illustration of the self-consistent procedure of the code will be reported. Our

model combines both the MSFs and the MCPs to refine the 1-SRDM. The joint refinement

model is based on four main stages: (1) modelling a cluster using molecular ab-initio pack-

ages, (2) computation of the MSFs and the MCPs, (3) variation of the basis functions, and

(4) variation of occupation numbers.
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A. Ab initio calculation: Modeling a molecule/cluster

The molecular calculation conducted in this work is performed using the GAUSSIAN

09 packages34 by means of the Hartree-Fock approximation. The main objective of this

model is to reconstruct the spin density matrices of a periodic array using the corresponding

experimental data from a simple molecular or cluster model and with a limited basis set.

Therefore, 3-21+G∗ was used, i.e. 3-21G basis set35–40 with polarization functions41 (d) on

second row atoms only, supplemented by diffuse functions42. Very different basis sets are

considered for both molecular and periodic calculations in order to emphasize how the initial

molecular basis set (as minimal as possible) can be improved and can adapt to a particular

crystalline configuration using the pseudo-experimental information (derived from the large

basis set computation). Obviously, once the model and the refinement strategy are validated,

we intend to apply this method to genuine experimental data and it will be legitimate (and

desirable) to use much better and flexible basis sets for the model. In the following, we

present the output of the GAUSSIAN code34 that serves as an input of our algorithm. In

this context, the molecular orbitals are constructed by a linear combination of the basis

functions as

Φi(r) =
∑
j=1

Ci,jχj(r), (7)

where Ci,j are the molecular orbital coefficients, χj(r) are functions in the minimal basis

sets. In the GAUSSIAN framework, the basis functions are defined as a linear combination

of gaussian functions

χj(r) =
∑
k=1

dj,kN(αk)(x−Axk)ak(y −Ayk)bk(z −Azk)cke−αk(r−Rk)
2
, (8)

where ak, bk and ck control the angular moments L, where L = ak + bk + ck, dj,k are the

contraction coefficients of the j th orbital and their corresponding kth gaussian function.

Once the expansion of the molecular orbitals is obtained, the 1-SRDM can be expressed as

a functional of natural molecular orbitals Φi(r) and their respective occupation numbers ni,

which represent the eigenfunctions and eigenvalues, respectively, as

Γ(1)(r, r′) =
∑
i

niΦi(r)Φi(r
′). (9)
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Using Eqs. 7 and 9, the 1-SRDM can be expressed as

Γ(1)(r, r′) = Γ
(1)
↑ (r, r′)− Γ

(1)
↓ (r, r′) =

∑
j,k

Pj,kχj(r)χk(r
′), (10)

where the spin population matrix is defined as a function of the occupation numbers and

the molecular coefficients for each spin state:

Pj,k =
∑
i=1

n↑iC
↑
i,jC

↑
i,k −

∑
i=1

n↓iC
↓
i,jC

↓
i,k. (11)

The 1-SRDM is thus expressed in terms of the spin population matrix Pj,k and the product

of two basis functions. The variation of these quantities will be discussed in the next sections.

B. Computation of the magnetic structure factors and the magnetic Compton

profiles

Once the 1-SRDM of the system is known, all one-electron observables of the system

can be expressed as a function of the spin population matrix and the product of two basis

functions. We start by considering the MSFs FM(Q), which are defined as Fourier transforms

of the diagonal elements of the 1-SRDM. Using Eqs. 4 and 10, the expansion of the MSFs

is written as:

FM (Q) =
∑
j,k

Pj,k

∫
χj(r)χk(r)eiQ·rdr. (12)

The MSFs are defined as a sum of the product of the spin population matrix and the Fourier

transform of the product of two basis functions.

By inserting Eq. 10 into Eqs. 5 and 6, the MCPs can be expressed as follows

J(u, q) =
1

2π

∑
j,k

Pj,k

∫ ∫ [∫
Sj,k(r)e−ip·rdr

]
eip·utdpe−iqtdt, (13)

where

Sj,k(r) =

∫
χj(r

′)χk(r
′ + r)dr′. (14)

The MSFs as well as the MCPs are functionals of 1-SRDM and therefore are a functional

of the spin population matrix and the product of two basis functions.

C. Variation of the basis functions

In order to obtain accurate 1-SRDM, we first modified the radial extension of each atomic

orbital. This makes it possible to take into account the diffuse effect. To do this, the
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basis functions are rescaled by varying the exponent coefficients of each atomic orbital j

({α} =⇒ {α0} × ζj) as

χj(ζj , r) =
∑

k=1 dj,kN(ζjα0,k)×

(x−Axk)ak(y −Ayk)bk(z −Azk)cke−ζkα0,k(r−Rk)
2
.

(15)

In such a minimization, the variation of atomic orbitals is performed under the following

conditions:  0.8 . ζj . 1.2 ,∫
drΦj(r)Φk(r) = δj,k.

(16)

The first condition controls the extension of the atomic orbitals. The second condition

provides a molecular orbital orthonormal set, generated by the ab-initio packages after each

variation of the ζ coefficients. The variation of the basis functions can clearly be observed

in the expansions of the MSFs

FM (Q) =
∑
j,k

Pj,k

∫
χj(ζj , r)χk(ζk, r)eiQ·rdr, (17)

and the MCPs

J(u, q) =
1

2π

∑
j,k

Pj,k

∫ ∫ [∫
Sj,k({ζ}, r)e−ip·rdr

]
eip·utdpe−iqtdt, (18)

where

Sj,k({ζ}, r) =

∫
χj(ζj , r

′)χj(ζk, r
′ + r)dr′. (19)

D. Variation of the spin population matrix

After finding the best basis functions, a variation of the spin population matrix is per-

formed by varying the occupation numbers for a selection of states and for each spin con-

figuration:

nσi = nσi,0 + δnσi , (20)

where nσi,0 is the initial occupation number of the ith state, and σ = [↑, ↓] represents their

spin state. Changes in the occupation number concerns only a few states in the vicinity

of the Fermi level. The variations of the occupation numbers are performed under the

N-representability conditions for 1-SRDM :
0 ≤ nσi ≤ 1 ,∑

i=1

(
n↑i + n↓i

)
= Nelectron,∑

i=1

(
n↑i − n

↓
i

)
= Nspin.

(21)
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The first reflects the Pauli principle, while the second and the third conditions represent elec-

tron number conservation and spin number conservation, respectively. The second condition

is enforced by minimizing the following quantity

C
(
χ2 ({n})

)
=
∑

j log(χ2
j ({n}))− µ1

(∑
i=1 n

↑
i −N

↑
electron

)
− µ2

(∑
i=1 n

↓
i −N

↓
electron

)
,

(22)

where j stands for a given experiment (polarized neutron scattering, magnetic Compton

scattering), and µ1, µ2 are Lagrange multipliers. The first term of Eq. 22 performs the

pseudo experimental data and the resulting data from the model (explained in the next

part). However, the second and the third part of the Eq. 22 ensure the electron number

conservation for each spin state. A dramatic consequence of the last two parts of Eq. 22

is that it satisfies the third condition of Eq. 21: it imposes the spin number conservation.

Changes in the occupation numbers lead to a variation of the spin population matrix as

follows:

Pj,k = P 0
j,k + δPj,k, (23)

with  P 0
j,k =

∑
i=1 n

↑
i,0C

↑
i,jC

↑
i,k −

∑
i=1 n

↓
i,0C

↓
i,jC

↓
i,k,

δPj,k =
∑

i=1 δn
↑
iC
↑
i,jC

↑
i,k −

∑
i=1 δn

↓
iC
↓
i,jC

↓
i,k.

(24)

The first term represents the initial spin population matrix obtained from the ab initio

calculation for the finite system, using the GAUSSIAN code34, expressed in terms of the

initial occupation numbers and the molecular coefficients for each spin state. The second

term represents the variation of the spin population matrix defined as a function of the

variation of the occupation numbers and the molecular coefficients for both spin states.

E. Illustration of SCF procedure of the joint refinement code

The model depends on a set of parameters {x}. In other words, we wish to find the set

{x} that minimizes the following quantity C (χ2) =
∑

Y log(χ2
Y ). The so-called χ2 is defined

as follows:

χ2
Y ({x}) =

∑
i

|Y m
i ({x})− Y c

i ({x})|2

σ2i
, (25)

where i runs over all the measured/calculated MSFs (Y m/Y c = Fm/F c) or MCPs (Y m/Y c =

Jm/J c) with σi, the estimated standard deviation associated with Y m
i . The minimization
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FIG. 2: Illustration of SCF procedure of our code.

of function C with respect to the parameters {x} was performed by the MINUIT code26. In

our algorithm, this minimization is performed twice separately, first for the basis function

rescaling optimization via {ζ} and then for the variation of the spin population matrix via

{n}.

For the variation of the basis function (Dzêta refinement), the minimizing function C is

defined as follows:

C
(
χ2 ({ζ})

)
= log

(
χ2
J ({ζ})

)
+ log

(
χ2
F ({ζ})

)
, (26)

where F and J are, respectively, the MSFs and the MCPs. However, the expression of the

C function to vary the spin population matrix (Pop refinement) is given by:

C
(
χ2 ({n})

)
= log

(
χ2
J ({n})

)
+ log

(
χ2
F ({n})

)
. (27)

At this point, it is useful to briefly recapitulate the different steps of our joint refinement

model (see Fig. 2). It consists of the following steps:

1. Perform an ab-initio calculation using local atomic orbitals as a basis set. An atomic

orbital is defined as a linear combination of gaussian functions. Here, we use the
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GAUSSIAN 09 packages34, but other codes like the GAMESS code43 could also be

used.

2. Compute the MSFs and the MCPs.

3. Rescale the basis functions by varying the exponent coefficients. In other words,

we minimize the C function Eq. 26 with respect to the parameters {ζ} (exponent

coefficients). The variation of the exponent coefficients is followed by a molecular

calculation. Then the new MSFs and the MCPs are computed and this procedure is

continued until convergence.

4. Find the most probable values for the parameters {n} that minimize the C function Eq.

27. After each variation of the occupation numbers, we calculate the new MSFs and

the MCPs and we continue the procedure in a self-consistent way until convergence.

Results obtained with the above algorithm are now discussed in sec. V.

V. RESULTS AND DISCUSSIONS

In this work, to check the robustness of the joint refinement model, we have studied

two possibilities of a urea molecular crystal. We first consider a periodic array of isolated

molecules, where the corresponding lattice parameters are set to: a = 5 Å, b = 10 Å and

c = 10 Å. Then, to evaluate how such a simple model can account for the changes in the

properties induced by intermolecular interactions, the a value is changed to 3 Å. Remember

that the parallel intermolecular interactions in this case are quite different from the true

one. For both configurations, the total spin on each molecule is fixed to 1. In the present

study we have chosen to also show the results obtained from a refinement on MSFs only, to

illustrate in contrast the potential benefits brought by a joint refinement. In addition, we

present intermediate results obtained from Dzêta refinements. This will highlight the effect

provided by each set of parameters. The final results being presented are obtained from

a refinement of the spin population matrix following the Dzêta refinement, called Dzêta +

Pop refinement.
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A. Periodic array of isolated urea molecules

In this section, we consider an isolated molecule of urea for both molecular and periodic

calculations. The periodic calculations are performed at the Hartree-Fock approximation

level using one of the best basis sets available in CRYSTAL 14 packages30–32, the pop-TZVP

basis sets33. We aim to reproduce the properties of crystalline urea, using a molecular

calculation within a simple basis set (3-21+G∗)35–42 as a starting point of our model. The

calculated spin densities in the plane of the urea molecule are displayed in Fig. 3 for

comparison with the results of the refinement model on periodic pseudo data. By comparing

the molecular and the periodic spin density maps, the differences are mostly seen on the

oxygen atom. For the periodic calculation, the corresponding spin density exhibits a negative

spin distribution around the oxygen nucleus in the form of two lobes directed along the

O=C direction. However, the molecular calculation shows in addition a small positive spin

population between the two lobes. The negative lobes are slightly larger in the molecular

calculation than in the periodic one. Moreover, the negative spin distribution (red contours)

along the C-N bonds are also different. Thus results from the polarization functions. These

mismatch are due to the difference in the basis functions used in both calculations. The

molecular and the periodic spin distributions of the remaining atoms of the molecule compare

extremely well.

Our results show that the spin densities obtained from Dzêta refinement on MSFs only

are slightly affected: the positive spin distribution in the vicinity of the oxygen nucleus

disappears. This is in agreement with the crystal results. However, the negative contours

between the nitrogen and the carbon atoms are unchanged compared to the molecular calcu-

lation and it remains at variance with the periodic results. By combining the MCPs with the

MSFs, the negative distribution along the C-N bonds and the negative distribution around

the oxygen atom obtained from Dzêta refinement are consistent with the corresponding spin

distribution obtained from the periodic calculation. However, the resulting spin densities

obtained from both Dzêta + Pop refinement relative to MSFs only and MSFs + MCPs

are at variance with the periodic spin density. This is because the basis sets are different.

Therefore, only the variation of the basis functions are required in this case. Fig. 4 shows

the computed 1-SRDM maps from molecular (a) and periodic (b) calculations (upper panel)

for comparison with the results of the refinement model on periodic pseudo data: the middle

13



FIG. 3: (V A) Spin density maps in the plane of the urea molecule (YZ). Upper panel:

Computed spin resolved electron densities for molecular (a) and periodic calculations (b).

Second panel: Maps of the Dzêta (c) and Dzêta + Pop (d) refined spin density with

respect to the MSFs only. Lower panel: The same as the second panel but obtained by

means of the joint refinement strategy (MSFs + MCPs). Contours at intervals of

±0.01× 2nµBÅ
−3 (n = 0-12): positive and negative contours are, respectively, blue solid

lines and red dashed lines, and neutral contours are green dashed lines.
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FIG. 4: (V A) 1-SRDM Γ(1)(r, r′) of the urea molecule is plotted along the O=C-N-H

path (in the plan of the molecule). The upper panel shows the molecular (a) and periodic

(b) computation of the 1-SRDM. The second panel shows the 1-SRDM after a Dzêta (c)

and Dzêta + Pop (d) refinement relative to the MSFs only. The lower panel is the same as

the second panel, but by means the joint refinement (MSFs and MCPs). Contours at

intervals of ±0.01× 2nµBÅ
−3 (n = 0-20): positive and negative contours are, respectively,

blue solid lines and red dashed lines, and neutral contours are green dashed lines.
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panel shows the resulting 1-SRDM from refinement on MSFs only, while the lower panel

shows the resulting 1-SRDM from joint refinement model. The 1-SRDM maps Γ(1)(r, r′) are

plotted as a function of r and r’, where both follow the O=C-N-H path. By comparing the

molecular and the periodic calculations of density matrices (see upper panel of Fig. 4), the

differences appear on the diagonal parts (as discussed above on the spin densities) and on

the off-diagonal parts, mainly in the vicinity of Γ(1)(r = 1.6, r′ = 3.9), Γ(1)(r = 2.8, r′ = 3.9)

points. The resulting 1-SRDM from a joint refinement model confirms that the MCPs in-

formation improves the diagonal elements corrected by the MSFs. The spin distributions

on the diagonal parts compare very well with the periodic calculation. A weak influence

of the MCPs is observed on the off-diagonal elements of the 1-SRDM, mainly around the

Γ(1)(r = 3.9, r′ = 2.8) point. The comparison of the 1-SRDM maps obtained from Dzêta and

Dzêta + Pop refinements relative to MSFs and MSFs + MCPs confirms that the corrections

made to the 1-SRDM are due to the variation of the basis functions. In this section, al-

though the effect of MCPs information in this system is small, we have shown that the joint

refinement gives more accurate results than the refinement on MSFs only. We confirmed

that the MSFs improve the diagonal elements of the 1-SRDM. Moreover, we have shown

that the MCPs affect the diagonal and off-diagonal elements of the 1-SRDM. The MSFs and

the MCPs are highly complementary and give very satisfactory results in agreement with the

periodic pseudo data. Because the urea molecule is isolated in both calculations, the MCPs

are slightly different, as can be seen in Fig. 5. In this work, 12 profiles were considered

in the three planes XY, XZ and YZ. MCPs, for [1 0 0], [1 1 0] and [0 1 0] directions, ob-

tained from molecular calculations, refinements or periodic computation as reported in Fig.

5. Our results show that the molecular and the periodic calculations give in general very

similar MCPs except for specific directions such as [1 1 0]. For [1 0 0] and [0 1 0] directions,

the resulting MCPs from joint refinement are slightly changed from those of the molecular

calculation and, of course, in agreement with the periodic MCPs. For the [1 1 0] direction,

the difference between the molecular and the periodic calculation is slightly reduced, mainly

due to the variation of the basis functions. The remaining discrepancy can be attributed to

the limitation of degrees of freedom in this case: the molecular model is very similar to the

periodic system, it is mainly a difference of basis sets.
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FIG. 5: (V A) MCPs computed on the following directions [1 0 0], [1 1 0] and [0 1 0] as a

function of the momentum q. For each direction, the resulting MCPs from periodic

calculation (CRYS 14, red solid lines) is compared to resulting MCPs from, molecular

calculation (G09, black solid lines), Dzêta refinement (Dzeta Ref, green solid lines) and

Dzêta + Pop refinement (Dzeta+Pop Ref, blue dashed lines).

B. Periodic array of interacting urea molecules

To show the potential benefits brought by the MCPs, an array with interacting urea

molecules is now considered (see Fig. 1, right panel). The interactions between molecules

do not exist in the molecular calculation. Therefore, the computed MCPs obtained from

molecular and periodic calculations are necessarily different, as shown later by means of

the Compton profiles analysis. The difference is also expected to show up on the spin

density performed from molecular and periodic computations. Fig. 6 reports the computed

spin densities in the plane of the urea molecule compared with the resulting spin densities

from the refinement model on periodic pseudo data. By comparing the molecular and
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FIG. 6: (V B) Spin density maps in the plane of the urea molecule (YZ). Upper panel:

Computed spin resolved electron densities for molecular (a) and periodic calculations (b).

Second panel: Maps of the Dzêta (c) and Dzêta + Pop (d) refined spin density with

respect to the MSFs only. Lower panel: The same as the second panel but obtained by

means of the joint refinement strategy (MSFs + MCPs). Contours at intervals of

±0.01× 2nµBÅ
−3 (n = 0-12): positive and negative contours are, respectively, blue solid

lines and red dashed lines, and neutral contours are green dashed lines.
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the periodic spin density maps (see upper panel of Fig. 6), differences are clearly visible

around the oxygen and the carbon atoms. In addition, positive contours appear close to the

hydrogen atoms due to the effect of the second molecule. For the periodic calculation, the

negative spin distribution on the oxygen atom is spherical. For the molecular calculation,

the corresponding spin density shows two negative lobes with small positive contours in the

vicinity of the nucleus. The spin density around the oxygen and carbon atoms are strongly

affected upon interaction with neighboring molecules. Our results show that the MSFs

slightly affect the spin density in the plane of the molecule; the positive contours around

the oxygen nucleus have disappeared and the negative contours along the C-N bonds are

barely changed. The refined spin densities relative to the MSFs only are at variance with

the periodic results. It’s also clear that the resulting spin densities from joint refinement

do not reproduce with the periodic results, but small corrections made by the model are

observed, such as the broadening of negative contours located along the C-N bonds. In

addition, the positive contours on the carbon atom are consistent with those obtained by

the periodic calculation. The strong effect of the nearest molecules on the carbon and the

oxygen atoms prevents our model reproducing the spin distribution of these atoms with

good accuracy. To show the efficiency of this model, we studied the π electron distribution

by computing the spin electron distribution in the plane perpendicular to the molecule along

the X-axis direction through each bond. Fig. 7 shows the spin density maps through the

O=C bonding obtained from, molecular and periodic calculations, refinement on MSFs only

and joint refinement. The periodic spin electron distribution around this bond is clearly

different from the molecular one. As previously shown (see Fig. 6), the spin density around

the two atoms is strongly affected by the nearest molecules. The spin electron distribution

in the vicinity of the oxygen atom becomes completely negative. For the carbon atom, we

found that the positive contours are broadened and spread along both directions of the X-

axis. Our results show that the corresponding spin density is improved by the MSFs only,

but it remains in disagreement with the periodic results. By combining the MCPs with the

MSFs, the resulting spin densities are in good agreement with periodic calculations: the

refined spin densities on the oxygen atom are negative and consistent with the periodic one.

However, to compare the resulting spin densities around the carbon and nitrogen atoms from

molecular calculation or model refinements with the corresponding spin densities obtained
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FIG. 7: (V B) Spin density maps in the perpendicular plane to the urea molecule along

the X-axis direction. U is a vector collinear to the O=C bond. Upper panel: Computed

spin resolved electron densities for molecular (a) and periodic calculations (b). Second

panel: Resulting spin density from Dzêta (c) and Dzêta + Pop (d) refinement from the

MSFs only. Lower panel: The same as the second panel but from the joint refinement

strategy (MSFs + MCPs). Contours at intervals of ±0.01× 2nµBÅ
−3 (n = 0-12): positive

and negative contours are, respectively, blue solid lines and red dashed lines, and neutral

contours are green dashed lines.
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FIG. 8: (V B) Spin density maps in the perpendicular plane to the urea molecule along

the X-axis direction. U is a vector collinear to the C-N bond. Upper panel: Computed

spin resolved electron densities for molecular (a) and periodic calculations (b). Second

panel: Resulting spin density from Dzêta (c) and Dzêta + Pop (d) refinement with respect

to the MSFs only. Lower panel: The same as the second panel but obtained by means of

the joint refinement strategy (MSFs + MCPs). Contours at intervals of ±0.01× 2nµBÅ
−3

(n = 0-12): positive and negative contours are, respectively, blue solid lines and red dashed

lines, and neutral contours are green dashed lines.
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from periodic calculations, the additional contributions of nearest neighbors are included as

follows:

ρ(r) = ρ(r−R) + ρ(r) + ρ(r + R), (28)

where R = RuX , R = 3Å, the intermolecular distance between the urea molecules in the

periodic array along the X-axis. Fig. 8 shows the computed spin densities (upper panel)

along the C-N bonds obtained from Eq. 28 for comparison with the resulting spin densities

from refinement on MSFs only (middle panel) and from joint refinement (lower panel). The

molecular spin density around the C-N bonds is changed by means of the MSFs, but still

different from the periodic one. However, by combining the MCPs and the MSFs, the

resulting spin density compares very well to the periodic spin density. We deduce therefore

that the MCPs have a strong effect on the refinement of the spin density (as can clearly be

seen on the diagonal regions of the 1-SRDM in Fig. 9).

Fig. 9 shows the 1-SRDM maps following the O=C-N-H path obtained from molecular

and periodic calculations, Dzêta and Dzêta + Pop refinement on MSFs only and from joint

refinement. The differences between the molecular and the periodic calculations are also

clearly seen on the off-diagonal regions of the 1-SRDM. The 1-SRDM are strongly affected

by the neighboring molecules. It’s surprising, that the refinement on MSFs only made a

slight change on the off-diagonal regions of the molecular 1-SRDM (precisely in the vicinity

of the Γ(1)(r = 1.6, r′ = 3.9) point). However, as expected, the off-diagonal regions of the

1-SRDM are strongly affected by the MCPs (see lower panel of Fig. 9). The changes made

by MCPs appear in the regions that describe the interactions between oxygen and carbon,

oxygen and nitrogen, and carbon and nitrogen atoms. The 1-SRDM obtained from the

proposed joint refinement strategy provides a very satisfactory qualitative agreement with

the periodic calculation. The potential benefits brought by the joint refinement compared

with the MSFs refinement are clearly illustrated in Fig. 10.

Fig. 10 shows a comparison of the computed (upper panel) 1-SRDM with the result from

refinement on MSFs only (middle panel) and MSFs+MCPs (lower panel) for the same path

of Fig. 9 at 0.5Å from the molecular plane along the X-axis direction, respectively. The

calculation shows that the periodic 1-SRDM is strongly affected by the nearest neighbors. It

can be seen that the refinement on MSFs only and periodic calculations yield very different

results. However, by combining MCPs with MSFs, the resulting 1-SRDM are in good
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FIG. 9: (V B) 1-SRDM Γ(1)(r, r′) of the urea molecule is plotted along the O=C-N-H

direction (in the plan of the molecule). The upper panel shows the molecular (a) and

periodic (b) computation of the 1-SRDM. The second panel shows the 1-SRDM after a

Dzêta (c) and Dzêta + Pop (d) refinement relative to the MSFs only. The lower panel is

the same as the second panel, but by means the joint refinement (MSFs + MCPs).

Contours at intervals of ±0.01× 2nµBÅ
−3 (n = 0-20): positive and negative contours are,

respectively, blue solid lines and red dashed lines, and neutral contours are green dashed

lines.
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FIG. 10: (V B) 1-SRDM Γ(1)(r, r′) of the urea molecule is plotted along the O=C-N-H

direction (above the plane of the molecule by 0.5 Å). The upper panel shows the molecular

(a) and periodic (b) computation of the 1-SRDM. The second panel shows the 1-SRDM

after a Dzêta (c) and Dzêta + Pop (d) refinement relative to the MSFs only. The lower

panel is the same as the second panel, but by means the joint refinement (MSFs and

magnetic Compton profile). Contours at intervals of ±0.01× 2nµBÅ
−3 (n = 0-20): positive

and negative contours are, respectively, blue solid lines and red dashed lines, and neutral

contours are green dashed lines.
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FIG. 11: (V B) Computed MCPs for the following directions [1 0 0], [1 1 0] and [0 1 0] as

a function of the momentum q. For each direction, the resulting MCPs from periodic

calculation (CRYS 14, red solid lines) is compared to resulting MCPs from, molecular

calculation (G09, black solid lines), Dzêta refinement (Dzeta Ref, green solid lines) and

Dzêta + Pop refinement (Dzeta+Pop Ref, blue dashed lines).

agreement with the periodic calculation. This emphasizes the essential role of the MCPs in

the reconstruction the spin resolved density matrices.

We deduce that the joint refinement has a stronger effect on the π electron distributions

than on the σ one. This is due to the fact that in our model we only adjust the occupation

numbers of selected states close to the Fermi level, i.e. delocalized states. To obtain more

accurate results for the σ electron distribution, we should modify the occupation numbers

for very localized states (much lower eigenvalues), which is not considered in this model.

Fig. 11 shows a comparison of the resulting MCPs from molecular calculation, Dzêta

refinement and Dzêta + Pop refinement with the resulting MCPs from periodic calculation.

As can be clearly seen, the molecular and the periodic calculations (see upper panel of Fig.11)
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are very different for all directions. This is due to the fact that the urea molecules are in

interaction in the crystal phase, while isolated in the molecular gas phase. Our results show

that the variation of the basis functions improves the MCPs, but it remains inconsistent

with the periodic one. However, the variation of the spin population matrix together with

the variation of the basis functions finally give very satisfactory results. The convergent

MCPs from periodic calculation and joint refinement are shown to be consistent.

VI. CONCLUSIONS

The paper describes our joint refinement model of the 1-SRDM for a molecular array using

simultaneously different pseudo data sets (MSFs and MCPs). This model is implemented

as post processing of the GAUSSIAN packages. To validate our model, we have performed

two sets of calculations for a periodic array of urea with and without interaction between

molecules using the CRYSTAL14 packages. These served as two sets of pseudo data for

the refinement. For both molecular and periodic calculations, we have used local atomic

orbitals as a basis set. To obtain 1-SRDM with good accuracy, we have modified (i) the

basis functions by varying the atomic radial extensions and (ii) the spin population matrix

by varying the occupation numbers for a selection of eigenstates, with respect to MSFs only

and to both MSFs and MCPs. As expected, our results show that the MSFs improve the

diagonal regions of the 1-SRDM, but do not make it possible to describe very fine details

of the spin distributions for all regions. We have shown that the joint refinement model

gives more accurate results than the refinement on MSFs only. The joint refinement model

gives very satisfactory results compared with those obtained from periodic calculations of

the periodic array of urea. We found that the MCPs play a central role in the refinement of

the 1-SRDM, because it has a strong effect not only on the off-diagonal elements but also

on its diagonal elements.
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3 P. O. Löwdin, Phys. Rev. 97, 1474 (1955).

4 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).

5 R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).

6 E. R. Davidson, Reduced Density Matrices in Quantum Chemistry (1976).

7 J. M. Gillet and P. J. Becker, J. Phy. Chem. solids 65, 2017 (2004).

8 W. L. Luken, Int. J. Quant. Chem. 22, 889 (1982).

9 N. K. Hansen and P. Coppens, Acta Cryst., Sect. A 34, 909 (1978).

10 D. Jayatilaka and D. J. Grimwood, Acta Cryst., Sect. A 57, 76 (2001).

11 G. P. Barnett and H. Shull, Phys. Rev. 153, 61 (1967).
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