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A REMARK ON WHITEHEAD’S LEMMA

MICHAEL HEUSENER AND RICHARD WEIDMANN

Abstract. We observe that Whitehead’s lemma is an immediate consequence of Stallings

folds.

Introduction

Whitehead’s lemma [4] states that the Whitehead graph of a primitive element of the
free group is either not connected or has a cut vertex. This result was generalized by
Stallings to separable subsets of free groups [3]. In this note we observe that this is an
essentially trivial consequence of Stallings folds. To do so we relate the connectivity prop-
erties of the Whitehead graph of a set of conjugacy classes of elements to the readability
of cyclically reduced representatives of these classes in a class of labeled graphs that we
call almost-roses.

1. Free groups and graphs

In the following we denote the free group in X = {x1, . . . , xn} by Fn. Throughout
this note n ≥ 2 and X are fixed. As usual we represent elements of Fn by words in
X̃ := X ∪X−1. For any g ∈ Fn we denote the conjugacy class of g by [g] and for S ⊂ Fn

we set [S] := {[s] | s ∈ S}. We say that g ∈ Fn is primitive if g in contained in a basis
of Fn. We further call a set S ⊂ Fn separable if there exists a non-trivial decomposition
Fn = F 1 ∗ F 2 such that any w ∈ S is conjugate into F 1 or F 2, see [3]. Clearly {g} is
separable for any primitive element g ∈ Fn.

An X̃-labeled graph Γ is a directed graph (with inverse edges) with a labeling map
ℓ : EΓ → X̃ such that ℓ(e−1) = ℓ(e)−1 for any edge e ∈ EΓ. Multiple edges and loops
are permitted. The label of a path γ = e1 · · · ek in Γ is the word ℓ(γ) = ℓ(e1) · · · ℓ(ek).

In the following Rn is the X̃-labeled graph whose underlying graph has vertex set
V = {v0} and edge set {e±1

1 , . . . , e±1
n } such that ℓ(eεi ) = xε

i for all ε ∈ {−1, 1} and

1 ≤ i ≤ n. As usual we identify Fn with π1(Rn, v0) in the obvious way. For any X̃-
labeled graph Γ there is a unique label preserving morphism f : Γ → Rn.

We say that a word w is readable in Γ if there exists a closed path in Γ with label w.
We will say that an element g ∈ Fn is readable in Γ if the corresponding reduced word
is readable in Γ. We will further say that a conjugacy class [g] is readable in Γ if some
(and therefore all) cyclically reduced word representating [g] is readable in Γ.

We will be mostly interested in connected X̃-labeled graphs Γ such that associated
map f∗ : π1(Γ) → π1(Rn) = Fn is surjective. In this case the morphism f can be written
as a product of Stallings folds, see [2].

Recall that a graph Γ is called a core graph if it contains no proper subgraph such
that the inclusion is a homotopy equivalence; for a finite graph this just means that Γ
has no vertex of valence 1. We also call a pair (Γ, v0) a core pair if Γ contains no proper
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