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Stuttering blocks of Ariki-Koike algebras

Salim Rostam

Abstract

We study a shift action defined on multipartitions and on residue multisets of their Young
diagrams. We prove that the minimal orbit cardinality among all multipartitions associated
to a given multiset depends only on the orbit cardinality of the multiset. Using abaci, this
problem reduces to a convex optimisation problem over the integers with linear constraints.
We solve it by proving an existence theorem for binary matrices with prescribed row, column
and block sums. Finally, we give some applications to the representation theory of the Hecke
algebra of the complex reflection group G(r,p,n).

1 Introduction

It is known since Frobenius that the irreducible representations {D*}y of the symmetric group
on n letters &,, over a field of characteristic 0 are parametrised by the partitions of n, that
is, sequences A = (Ag > -+ > A\p,_1 > 0) of positive integers with |A| == Ao+ -+ 4+ Ap—1 = n.
When the ground field is of prime characteristic p, the irreducible representations {D*}, are
now indexed by the p-regular partitions of n. However, in this case some representations may
not be written as a direct sum of irreducible ones. Hence, we are also interested in the blocks
of the group algebra, that is, indecomposable two-sided ideals. Blocks also partition both sets
of irreducible and indecomposable representations. Brauer and Robinson proved that these
blocks are parametrised by the partitions of n that are p-cores (see §2.1), proving the so-called
“Nakayama’s Conjecture”. We refer to | | for more details about the representation theory
of the symmetric group.

More generally, we can consider a Hecke algebra of the complex reflection group G(r,1,n) ~
(Z/rZ) 1 S,,. Let F be a field and let ¢ € F'\ {0,1} be of finite order e € N>o, the “quantum
characteristic”. Let r € N* and k = (ko,...,kr—1) € (Z/eZ)". The Ariki-Koike algebra HLE,
or cyclotomic Hecke algebra of G(r,1,n), is the unitary associative F-algebra defined by the
generators S, T1,...,T,_1 and the relations

r—1
[1(s=qa*) =0,
k=0
STlSTl = TlSTlS,
ST, =1T,8S, foralla € {2,...,n — 1},
(To, + 1)(T, — q) =0, forallae {1,...,n—1},
T,T, = Ty T,, for all a,b € {1,...,n — 1} with |a — b| > 1,
T To1T, = Toi1ToToin, foralla e {1,...,n—2}
(see | , ). The algebra H is a natural deformation of the group algebra of G(r,1,n)

and their representation theories are deeply linked. If r = 1, we recover the Hecke algebra H,,
of G(1,1,n) ~ &,, also known as Hecke algebra of type A,,_1. In this case, the situation similar
to the one of the symmetric group: if H, is semi-simple then its irreducible representations



{D*}, are parametrised by the partitions of n, otherwise they are parametrised by the e-regular
partitions of n while the blocks of #,, are parametrised by the e-cores of n. In general, if H
is semi-simple then its irreducible representations are parametrised by the r-partitions of n,
that is, by the r-tuples A = (A©) ..., X"=1) of partitions with |A| := |AO)] 4 ... + ]XO=D| =
n. If H% is not semi-simple, its irreducible representations {D*} can be indexed by a non-
trivial generalisation of e-regular partitions, known as Kleshchev r-partitions (see | , 1)-
Similarly, the naive generalisation of e-cores to r-partition, the e-multicores, do not parametrise
in general the blocks of H. In fact, Lyle and Mathas | ] proved that the blocks of H are
parametrised by the multisets of x-residues modulo e of the r-partitions of n (see §2.4). We can
identify this parametrising set with a subset Qf of Q1 := NZ/¢Z and we denote by ‘HE the block
corresponding to a € Q. Moreover, to each r-partition A of n we can associate an element
ax(AX) € QF. The blocks of H} partition the set of r-partitions of n via the map A — ay, ().
We say that the block indexed by a € QF contains the r-partition X if a,(A) = a.

Now let p € N* dividing both r and e, let d :== % and 7 = 1% and assume that x is compatible
with (d,n,p) (cf. (2.20)). The algebra H;; has a natural subalgebra #; ,, that is a Hecke algebra
of the complex reflection group G(r,p,n) (see [ , | and also [RRo], where we emphasise
the connection between these two papers). The subalgebra H;,, C Hy; is the subalgebra of fixed
points of the automorphism o of order p defined on the generators of H by

o(S)=(8S,
(5)=¢ (L1)
o(Ty) =Ty, forallae{l,...,n—1},

where ¢ € F* has order p. The representation theory of Hj , can be studied using Clifford
theory, see for instance | , , , |]. Let A be a Kleshchev r-partition and

Hy
let D* be the irreducible H%-module indexed by A. The restriction D’\L{K is isomorphic to a

sum of irreducible H; ,, modules. The number of irreducible H’gm—modulesp‘élllat appear depends
on the cardinality of the orbit [A] of XA = ()\(0), cees )\(7"_1)) under the shift action defined by

X = (ACD  ACD A0 \rmd= )y

A natural question is to determine the extreme cardinalities of the orbits under this action, and
thus the extremal number of irreducible Hj ,-module that appear during the restriction process.
The answer is an easy exercise when considering all r-partitions of n.

Proposition 1.2. Let C := {#[A] : X is an r-partition of n} C N*. We have maxC = p and

3 — p
min€ = eapm-

Already with this Proposition 1.2, we can give some results about the representation theory
of Hj ,,, such as the number of “Specht modules” that appear in the restriction of Specht modules
of H;, to Hy . (as defined in | ]). We can also prove that a natural basis of Hy; ,, is not
“adapted” cellular (cf. §5.2.5). In order to give block-analogue answers, we introduce a shift
action on Q7. More precisely, for any a € Q' we define o - a by shifting coordinates by 7
and we write [a] for the orbit of a. The subalgebra H{,) = Bpela)Hj of Hy, is stable under
o: HF — HI, and we denote by H” pl] the subalgebra of fixed points. The two shift actions

that we have defined are compatlble in the following way: if A is an r-partition then
ax(PA) =0 - ag(A)

(see Lemma 2.29). Hence, if o = ay(A) we always have #[A] > #[a]. It is easy to see on
small examples that we may have a strict inequality. However, the main results of this paper,



Theorem 2.31 and Corollary 2.34, prove that equality holds if we allow us to choose among all
r-partitions p with a,(p) = a,(X). It leads to a more precise version of the “min part” of
Proposition 1.2.

Theorem 1.3. Let X be an r-partition and let o == ag(X). There exists an r-partition p with

ax(p) = a and #[p] = #[o].

Wada [Wa] proved a more precise version of the “max part” of Proposition 1.2. In order to
classify the blocks of H ,,, Wada proved that there (almost) always exists an r-partition p with
ax(p) = a and #[p] = p. His proof uses the classification result of | | and is very short.
In contrast, the proof of Theorem 1.3 that we present here is quite long and we did not find a
way to use | ]. At least, as in [ | we use the abacus representation of partitions.

Theorem 1.3 allows us to give the block-analogues of the results for Hy, that we deduced
from Proposition 1.2, that is, the same results but for ’H’i (o] instead of Hj ,,. We can also deduce
from Theorem 1.3 some consequences about the blocks of H. We say that an r-partition A
(resp. an element o € Q™) is stuttering if #[\] < p (resp. #[a] < p). By Theorem 1.3, we know
that the block indexed by a stuttering oo € Q) always contains a stuttering r-partition.

The paper is organised as follows. Section 2 is devoted to combinatorics. More specifically,
in §2.1 we define partitions of integers and to each partition A we associate an element a(\) €
Qt = NZ/eZ 1y §2.2 we recall the abacus representation of partitions. In §2.3, to an e-core A
we associate the e-abacus variable x = (zg,...,x.—1) € Z°. The main fact of this subsection is
the equality

1 e—1
a(A)o = 2 x;
=0
(cf. Theorem 2.13). We deduce this equality from [ ], and we show how to obtain it using

abacus manipulations. In §2.4 we extend the previous definitions to multipartitions, so we can
in §2.5 define the two shifts maps A — X and a +— o - a involved in the statement of our main
results, Theorem 2.31 and Corollary 2.34. Theorem 2.31 is the case #[a] = 1 of Theorem 1.3
and Corollary 2.34 is the general case.

Section 3 is devoted to technical tools that we need to prove Theorem 2.31. The reader who
wants to focus on the proof of Theorem 2.31 may, in the first instance, skip this section. In §3.1,
we study the existence of a chain of interchanges ({9) <> () in a family of binary matrices
(Corollary 3.8). In §3.2, we recall a special case of a general theorem of Gale [Ga] and Ryser [Ry]
about the existence of a binary matrix with prescribed row and column sums. We apply the
results of §3.1 to impose extra conditions on block sums (Proposition 3.14). Finally, we gathered
in §3.3 some inequalities. In particular, Lemma 3.25 is a special case of a Jensen’s inequality
for strongly convex functions and Lemma 3.27 is an application to an inequality involving the
fractional part map.

In Section 4, we prove the main result, Theorem 2.31. After a preliminary step in §4.1, we
give in §4.2 a key lemma (Lemma 4.5), which reduces the proof of Theorem 2.31 to a (strongly)
convex optimisation problem over the integers with linear constraints. We find in §4.3 a partial
solution, in §4.4 we use Proposition 3.14 to find a solution and eventually in §4.5 we prove
Theorem 2.31.

Finally, we give in Section 5 two applications of Corollary 2.34. The general idea is that we
will have more precise results with Corollary 2.34 than with Proposition 1.2. We quickly recall
in §5.1 the theory of cellular algebras of Graham and Lehrer | |, the Ariki-Koike algebra H/
and its blocks being particular cases. In §5.2 we use the map p = Z?;é o7 to construct a family
of bases for Hp ., = pu(Hf,;) (Proposition 5.17). We deduce in §5.2.4 that 17, is a cellular

p;[e]
algebra if #[a] = p, and HE

pn is cellular if p and n are coprime. Then, using Corollary 2.34,



we show that if #[a] < p and p is odd then the bases that we constructed for ’H; [o] Ar€ not
adapted cellular (see §5.2.5). Finally, in §5.3, we study the maximal number of “Specht modules
of Hp 1oy (see | |) that appear when restricting the Specht modules of Hipy to Hy -

2 Combinatorics

In this section, we recall standard definitions of combinatorics such as (multi)partitions and
their associated abaci. We also introduce two shift actions and then state our main result,
Theorem 2.31.

Let e > 2 be an integer. We identify Z/eZ with the set {0,...,e — 1}.

2.1 Partitions

A partition of n is a non-increasing sequence of positive integers A = (Ao, ..., Ap_1) of sum n.
We will write |A| := n and h()) := h. If X is a partition, we denote by V() its Young diagram,
defined by:

V(N = {(a,b) 6N2:Ogagh()\)—landogbg)\a—l}.

Ezample 2.1. We represent the Young diagram associated with the partition (4,3,3,1) by
.

We refer to the elements of Y(A) as nodes. A node v € Y(\) is removable (respectively
addable) if Y(A) \ {7} (resp. Y(A) U {y}) is the Young diagram of a partition. A rim hook of A
is a subset of () of the following form:

rf‘mb) ={(d,b) e YN :d >a,t/ >band (' +1,b' +1) ¢ Y(N)},

where (a,b) € Y(X\). We say that T()\a7b) is an h-rim hook if it has cardinality h. Note that 1-rim
hooks are exactly removable nodes. The hand of a rim hook r()\a,b) is the node (a,V’) € r()\a,b)
with maximal b'. The set V() \Tf\a,b) is the Young diagram of a certain partition jx, obtained
by unwrapping or removing the rim hook T()\a,b) from \. Conversely, we say that A is obtained
from p by wrapping on or adding the rim hook ’I“(Aa,b). We say that a partition A is an e-core if A
has no e-rim hook.

Ezample 2.2. We consider the partition A := (3,2,2,1). An example of a 3-rim hook is

A _
"(2,0) = .,
X | X
RS
and a 4-rim hook is for instance
=
(1,0) 7 1
X | X
RS

We can check that A has no 5-rim hook so it is a 5-core. We will see in §2.3 how to use abaci
to easily know whether a partition is an e-core.



Let X\ be a partition. The residue of a node v = (a,b) € Y(A) is res(y) = b — a (mod e).
For any i € Z/eZ, an i-node is a node with residue i. We denote by n’(\) the multiplicity of i
in the multiset of residues of all elements of Y(\). Note that >-¢25 ni(\) = |A|.

Let @ be a free Z-module of rank e and let {c;};icz/cz be a basis. We have Q = @f;&Zai
and we define Q1 = @f:_&Nai. For any « € @), we denote by || € Z the sum of its coordinates
in the basis {i}icz/ez- If A is a partition we define

e—1

Oé()\) = Z ares(fy) = an()\)()éz S QJr.
~eY(N) i=0

Note that |a(A)| = |A]. More generally, if I' is any finite subset of N? we will write a(I") =

2 yer Cres(y)-

Remark 2.3. If r* is an h-rim hook then a(r?) = Z?;(]l Q44 for some ig € Z/eZ. In particular,

if 7 is an e-rim hook then a(r) = Y91 a;.

Finally, if for o € QT there exists a partition A such that a = a()\), we say that a € Q7 is
associated with X. For an arbitrary o € QT, there can exist two different partitions A\ # u such
that @ = a(\) = a(p). However, if we restrict to e-cores then the map A — a()\) is one-to-one
(see | , 2.7.41 Theorem)] or | ]). Hence, the following subset of Q:

QF = {a € Q1 : o is associated with some e—core} )

is in bijection with the set of e-cores. The aim of §2.3 is to explicit a bijection between Q* and
VAES

2.2 Abaci

The abacus representation of a partition has been first introduced by James | |; we follow
the construction of | |. To a partition A = (Ag,...,Ap_1) we associate the S-number B(\)
defined as the strictly decreasing sequence (A,—1 — a)g>1, where Aq—; = 0 for any a > h.
Note that S(\), = —a if @ > h. This construction can be reverted: if § = (f4)q>1 is a
strictly decreasing sequence of integers with 5, = —a for any a > h then § = [(\) where
A= (Ao,-.-,Ap_1) is the partition given by A\, := 8411 +a+ 1 for all a € {0,...,h — 1}. The
following result is well-known (see for instance | , 2.7.13 Lemmal).

Lemma 2.4. Let h € N*. A partition A has an h-rim hook if and only if there is an element
b € B(A) such thatb—h ¢ B(N). In that case, if p is the partition that we obtain by removing this
h-rim hook, then 5(u) is obtained by replacing b by b— h in () and then sorting in decreasing
order.

In particular, if p is a partition and if b € B(u) and h € N* are such that b+ h ¢ S(u),
then replacing b by b+ h in () and sorting in decreasing order is equivalent to adding an
h-rim hook to p. Indeed, the sequence that we obtain from S(u) is strictly decreasing thus is
the S-number of a certain partition A. By Lemma 2.4, the partition p is obtained from A by
unwrapping an h-rim hook, that is, the partition A is obtained from p by wrapping on an h-rim
hook (see also [Ma, Lemma 5.26]).

Lemma 2.4 ensures that for any partition \, there is a unique e-core X that can be obtained
by successively removing e-rim hooks. We say that X is the e-core of \. We now consider an
abacus with e-runners, each runner being a horizontal copy of Z and disposed in the following
way: the Oth runner is on top and the origins of each copy of Z are aligned with respect to a



vertical line. We dispose the elements of 5(\) on this abacus according to the following rule:
there is a bead at position j € Z on the runner i € {0,...,e— 1} if and only if there exists a > 1
such that S(\), =i+ je. We say that this abacus is the e-abacus associated with .

Ezample 2.5. We consider the partition A = (3,2,2,1) from Example 2.2. Its S-number is
B(N) =(2,0,—1,—-3,—5,...). The associated 3-abacus is

the associated 4-abacus is

and the associated 5-abacus is

. —e—e

Recall that counting the number of gaps up each bead (continuing counting on the left starting
from the (e — 1)th runner when reaching the Oth one) recovers the underlying partition.

Let A be a partition and let us consider its associated e-abacus. We give the abacus inter-
pretation of Lemma 2.4 in the two particular cases h =1 and h =e.

Corollary 2.6. e We can move a bead on position j € 7 on runner i € {0,...,e—1} to the
previously free position j on runner i — 1 (to the previously free position j — 1 on runner
e—1i4fi=0) if and only if X has a removable i-node.

o We can move a bead on position j on runner i to the previously free position j on runner
i+ 1 (to the previously free position j + 1 on runner 0 if i = e — 1) if and only if X has
an addable (i + 1)-node.

Corollary 2.7. o We can slide a bead on position j on runner i to the previously free
position j — 1 on the same runner if and only if X has an e-rim hook of hand residue 1.
Hence, the partition X\ is an e-core if and only if its associated e-abacus has no gap, that
s, no bead has a gap on its left.

o We can slide a bead on position j on runner i to the previously free position j + 1 on the
same runner if and only if X has an addable e-rim hook of hand residue i. Hence, we can
always add an e-rim hook of hand residue i to .



Ezample 2.8. We consider the partition A = (3,2,2,1) of Example 2.2. Recall that we gave in
Example 2.5 the e-abaci for e € {3,4,5}. The 3-abacus of A has only one gap thus 7“()‘270) is the
only 3-rim hook that we can remove. The 4-abacus of A\ has two gaps, corresponding to the two
lonely beads on runners 0 and 2. Sliding left the bead on runner 2 (respectively 0) corresponds
to removing the 4-rim hook Tf\o,l) =[P (resp. 7“5‘170) =T ). The hand residue, in blue (resp.

X

X

red), matches since the multiset of residues is given by 2]. The 5-abacus of A has no gap thus

Lol o] =] [x]x]

ERRE

A is a 5-core, as we saw in Example 2.2.

2.3 Parametrisation of Q*

In this subsection, we will parametrise by Z¢~! the set Q* of all & € Q1 that are associated
with e-cores. Given an e-abacus associated to an e-core A and i € {0,...,e — 1}, let us write
x;(A\) € Z for the position of the first gap on the runner i. We say that zo(A),...,z.—1()\) are
the parameters of the e-abacus, or the e-abacus variables of A. We will also use the notation
CE()\) = (xo()\), ce ,xefl()\)) € 7Z°.

Ezample 2.9. We use ¢ to denote the position of each x;(A). The 3-abacus associated with the
empty partition (which is a 3-core indeed), of associated f-number (—1,—2,...), is

- —0—0—@—9—— -

thus the associated parameters are z9(0)) = x1(0) = x2(0) = 0. As we saw in Example 2.5, the
5-abacus associated with the 5-core A = (3,2,2,1) is

thus the associated parameters are
zo(A) = x2(N) =1, z1(A) = z3(\) = —1, z4(X) = 0.
We have the following consequences of Corollary 2.6.
Lemma 2.10. Let A be an e-core. For alli € {0,...,e — 1} we have x;(A) = n*(A\) — n'T1(N).

Corollary 2.11. Let A\ be an e-core. For alli € {1,...,e—1} we have n*(\) = n®(\) — zo(\) —
e xi—l()\)-

If X is an e-core then Lemma 2.10 ensures that zo(A)+- - -+z.—1(A) = 0. Using Corollaries 2.6
and 2.7, we can also prove the converse.



Proposition 2.12. Let zqg,...,2c—1 € Z. Then xqg+ -+ 4+ xe—1 = 0 if and only if there is an
e-core A such that x; = x;(\) for alli € {0,...,e—1}.

We thus have a bijection

{e-cores} Al {(xoy...,Xe1) €Lt o+ -+ + ey = 0} = Z,.
The function n® defined on the set of e-cores is a symmetric polynomial in zg,...,Ze_1.
Indeed, exchanging the runners i and ¢ + 1 for any i € {0,...,e — 2} only modifies the number

of (i+1)-nodes (by Corollary 2.6) and we conclude since the symmetric group ({0, ...,e—1})
is generated by the transpositions (i,7 + 1) for all i € {0,...,e —2}. We will explicit this

symmetric polynomial in Theorem 2.13 using [ , Bijection 2]. We will give in Theorem 2.18
an equivalent formula, obtained by an abacus manipulation (see also [O], top of page 24]). We
denote by ||-|| the euclidean norm on tuples of integers.

Theorem 2.13. Let A\ be an e-core. We have:
1
200 = 5l = sz

Proof. For any i € {0,...,e — 1}, our integer x;(\) is exactly the integer n; of | , §2]. Let
us recall the construction of n;. A node v = (a,b) of Y()\) is exposed if it is at the end of a row,
that is, if (a,b+1) ¢ Y(X). For any j € Z, we define the region R; of Y()) as the set of nodes
(a,b) € Y(A) such that e(j — 1) < b—a < ej. The integer n; is then defined as the greatest
integer j such that R; contains an exposed i-node (if such a node does not exist, we consider
the nodes of the “(—1)th column” of Y()), which are all exposed). Considering the e-abacus
associated with A, it is now clear that n; = z;()), since:

e the beads on runner ¢ correspond to exposed i-nodes, by definition of the S-number (cf.
[ , 2.7.38 Lemmal);

e the rightmost bead on runner 7 corresponds to the i-node in the region R; for the largest
possible j (two different beads on the same runner correspond to exposed nodes in two
different regions).

Thus, we can apply the result of | , Bijection 2]: we have

A= Sl + (b2 (V).

where b = (0,1,...,e — 1) € Z° and (-,-) is the scalar product associated with ||-||. Since
Al = n’()\), using Corollary 2.11 and Proposition 2.12 we obtain

= [Al = Zn

e—1i—1
= S + bz (V) = (e = D) + 3 3" (N
i=1j=0
e—2
= SlaI? + 3 () = (e = Dn°(N) + (e = j = Da;(N)
§=0
e—1
= Sl = (e = D) = (e = 1) Y- ;)
7=0
=0
= SleM)? = (e = (V)



and we conclude. O

Remark 2.14. Let X\ be an e-core. Using Corollary 2.11 and Theorem 2.13 we obtain
n'(A) = ZllEWI7 = 20(A) =+ = @i (),

forall i € {1,...,e—1}.

Ezample 2.15. We take p = 2 and e = 4. We consider the parameter = = (2,—1,—1,0) € Zé.
The corresponding 4-abacus is

the S-number is then (4,0, —1, —4, —5,...) and this corresponds to the 4-core A = (5,2,2). The
multiset of residues is [9]1][2]3]0] and the number of 0-nodes is 3 = %(22 +12 412 4 0?).

0
3]0
213

Ezample 2.16. We take p = e = 3. We consider the parameter x = (1,2,-3) € Z§. The
corresponding 4-abacus is:

"—.—Oewwl

the S-number is then (4,1,0,—2,—3,—5,—6,—8,—9,...) and this corresponds to the 4-core
A= (5,3,3,2,2,1,1). The multiset of residues is 0[1] and the number of O-nodes is

2
1
0

O =N O =

[o] =[] o] =[]0

7=3(12+2243?).
We will now prove the formula of Theorem 2.13 using an abacus manipulation.

Lemma 2.17. Let 0 < i <i <e—1 and h € Z. Let X be an e-core and let u be the e-core
whose parameters satisfy

xi(p) = zi(N\) + h,
zi(p) =z (A) = h,
xj(p) =z (), for all j #1i,7.

Then n®(u) = n°(\) + hlz;(X) — 2 (V)] + B2

Proof. Note that the e-core u is well-defined thanks to Proposition 2.12. By Corollary 2.6 and
since i < ¢, moving beads from runner ¢ down to runner ' or from runner 7’ up to runner 7 only
changes the number of j-nodes for j € {i +1,...,i7}. Since 0 < i < i <e— 1, we deduce that



these operations do not change the number of 0-nodes. Hence, to determine n®(y) it suffices to
consider additions and deletions of e-rim hook, more specifically bead slides on runners ¢ and
-/
7.

Noticing that exchanging A and p changes the sign of h, an easy calculation shows that we
can assume that A > 0. Moreover, by induction it suffices to prove the lemma for h = 1. Thus,

we have

zi(p) = zi(A) + 1,
i () = xp(N) — 1,
zi(p) = z;(N), for all j # 4,4’

To get from the e-abacus of A to the e-abacus of p, we need to perform |d] slides on runner i or
i', where § := x;(\) — zy(\) + 1. More precisely:

e if § > 0 then we slide right § times the rightmost bead on runner <" and then move it up
to runner ¢ (thus we added § times a 0-node);

e if § <0 then we move up the rightmost bead on runner ¢’ to runner 7 and we slide it —¢
times to the left (thus we removed —4§ times a 0-node).

We conclude that n°(u) = n®()\) + &, which is exactly the desired formula for i = 1. O

Write o1 (respectively o9) for the homogeneous elementary symmetric polynomial of degree
1 (resp. of degree 2) in e — 1 indeterminates. We have:

e—2
Ul(an cee ,,17672) - Z Ty,
=0

Ug(xo,...,xefg) = Z xixj.

0<i<j<e—2
Theorem 2.18. Let & = (xg,...,%c2) € Z° L. The number of 0-nodes in the e-core X of
parameter T = (T, ..., Te_9,—T0 — - — Te_2) € Z& is n°(\) = 01(%)? — 02(Z).

Proof. We start with the e-abacus of the empty partition A_y) = (). We use the runner e — 1
as a buffer. For ¢ from 0 to e — 2, we apply Lemma 2.17 to A(;_;) and runners ¢ and e — 1 with
h = ;. The e-core A(; that we obtain satisfies

.%']()\(Z)) = Ty, for all j € {O, R ,i},
z;(A\s)) =0, forall je{i+1,...,e—2},

Te-1(A@) = —xo — -+ — @i,
and
no()\(i)) = no()\(i_l)) + x; [mi()\(i_l)) — xe_l()\(i_l))] + m?
If i = 0 the above formula just reads n®(X\(g)) = 2§, and for any i € {1,...,e — 2} we obtain

no()\(i)) = no()\(i_l)) + x; [O — (—xo — e = mi_l)} + x%
= n’(\-1) + zi(zo + -+ + 3i1) + 7.

10



Since A = A(._g), we have

as desired. 0

Remark 2.19. Since n°()\) = ||#|> 4+ 02(%) and x._1()\)? )s

we recover the formula of Theorem 2.13.
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2.4 Multipartitions

Let d,n,p € N* and assume that e = np. We define r := dp and we identify Z/rZ with the
set {0,...,r —1}. Let k = (ko,...,kr—1) € (Z/eZ)" be a multicharge. An r-partition (or
multipartition) of n is an r-tuple A = (MO ... X0=D) of partitions such that [A| = [A©)] 4
R |)\(r_1)| =n. We write A € P} if X is an r-partition of n. We say that x is compatible with
(d,m,p) when

Kktd = Kk + 1, for all k € Z/rZ. (2.20)

Thus, the multicharge x is compatible with (d,n,p) if and only if

K= (Ko Kde1,K0 F 1,y Kde1 + 1y evnnn. o+ (=D, ka1 + (p—1)n).  (2.21)
Ezample 2.22. If d = 1 and n = p = 2 (thus e = 4 and r = 2), the multicharge x = (0,2) €
(Z/A7)* is compatible with (d,n, p).

The Young diagram of an r-partition A = ()\(0), . ,)\(r_l)) is the subset of N3 defined by

r—1

Y = (YA9) x {e}) .

c=0

The k-residue of a node v = (a,b,c) € Y(X) is res,(y) :=b—a+ k. (mod e). For any i € Z/eZ,
we denote by ni () its multiplicity in the multiset of x-residues of all elements of V(). We
also define

e—1
ak(A) = Z Qres,o(v) = Z n:(Na; € Qt.
YEV(A) i=0

We have |a,(A)] = |Al. By [ ], the blocks of H} partition the set of r-partitions of n via
the map A — a,(X). We say that two r-partitions A and p belong to the same block of H if
ak(A) = a,(p). Finally, if A is an e-multicore, for any k € {0,...,r — 1} we write

2B (A) = 2(A®)) e z¢,

for the parameter of the e-abacus associated to the e-core A(%),

Remark 2.23. For partitions, which are 1-partitions, we recover the definitions of §2.1 if x = 0.
In particular, if A is a partition then n’(\) = n§(\) for all i € {0,...,e — 1} and a(\) = ag()).
Moreover, if A is an e-core then z(O(\) = z()\).

The next lemma is straightforward.
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Lemma 2.24. Let A be a partition and i,0, k. € Z/eZ. We have

nfu-{-é(}‘) = “2:6()\)-

We now give a generalisation of Lemma 2.10 and Theorem 2.13 in the setting of multipar-
titions. Recall that we identify {0,...,e — 1} (respectively {0,...,r — 1}) with Z/eZ (resp.
Z]rZ).

Lemma 2.25. Let A be an e-multicore. For alli € {0,...,e — 1} we have
) ) r—1
M) =i ) = 3, (.
k=0

Proof. Write A = (A ... A=) and let i € {0,...,e — 1}. By Lemmas 2.10 and 2.24 we
have

nk(A) = nE ) = 3 [nh, (A®) = niH (@)
k=0
r—1
_ {nifnk ()\(k)) nitl—re (A(k))}
k=0
r—1
= Z xi_ﬁk()\(k‘))
k=0
r—1 )
= Z xl—ﬁk(x)
k=0
]
Finally, for any i € {0,...,e—1} define L;(x) = Zéf:lo xy for all x € Z¢. By Corollary 2.11,
if X = (MO ... A=) is an e-multicore we have
r—1 r—1 r—1
P = 3700, 00) = 3w (240) = 37 [1000) - 1, (1)
k=0 k=0 k=0
Hence, by Theorem 2.13,
r—1 1
m) = X [l = Lo e P ). (2:20
k=0

2.5 Shifts

We are now ready to define our two shift maps.

Definition 2.27. Recall that e is determined by 7 and p. For any i € Z/eZ we define oy - a; ==
®itn € QT and we extend oy, to a Z-linear map Q — Q.

Definition 2.28. Recall that r is determined by d and p. If A = ()\(0),...,)\(”*1)) is an
r-partition, we define

9dp )\ 1= ()\(de), o ’)\(7’71), )\(0) - ’A(rfdfl)).

9.
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For any a € QT, we denote by P¥ the subset of P¥ given by r-partitions A such that
a,(A) = a. The two shifts of Definitions 2.27 and 2.28 are compatible in the following way.

Lemma 2.29. Assume that the multicharge k is compatible with (d,n,p). If X is an r-partition
then a,.(7“?X) = oyp - a(X). In other words, the map o4, induces a bijection between Pl and

Pli

On,p& °
Proof. Recall that we are identifying Z/eZ (respectively Z/rZ) with {0, ...,e—1} (resp. {0,...,r—
1}). We write A = ()\(0), ey )\(T*I)). Using the compatibility equation (2.20) for the multicharge

k and Lemma 2.24 we have

(TP A) = g ATTD L ACTD AO) A rmd=D)y

)
I
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= 0-77717 : a(A)’
as desired. The second statement follows. O

Remark 2.30. Let p’ be an integer that divides p. We have r = dp = (p’d)}% and e = pn = I%(p'n).
The multicharge x, which is compatible with (d, n,p), is also compatible with (p'd, p'n, I%): we
have Ki1q = ki + 1 thus Kippq = K; + p'n. Then, applying Definitions 2.27 and 2.28 we obtain

v i +
TInp = Op'n. L in Q7

p/ oy
Tip = O'p/d7§, on r-partitions.

We can now state the main theorem of the paper, which will be proved in Section 4.

Theorem 2.31. Let A be an r-partition and let o := (X)) € Q. Assume that k is compatible
with (d,n,p). If oyp -« = a then there is an r-partition p € PL with “drp = p.
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We say that an r-partition p as in Theorem 2.31 is stuttering. We will often drop the
subscripts and only write o for 04, and o, ), when the meaning is clear from the context.

Example 2.32. We consider the setting of Example 2.22 and the bipartition A := ((5,2,1), (1,1)).
The multiset of k-residues is
2[3]0]
)

thus a,(X) = 3(ap+a2)+2(a; +as) = a. Hence, we have o-a = abut A = ((1,1),(5,2,1)) #
A. We now consider the partition p = (3,1,1). The residue multiset of the bipartition (u, 1) is

(=1

[v]w]o

1]2] 3[o]

[roeo]o

[o]=]w

thus o, (i, 1) = 3(ap + a2) + 2(aq + a3) = a. Hence, the stuttering bipartition (u, ) is as in
Theorem 2.31.

Remark 2.33. Two particular cases of Theorem 2.31 easily follow from Lemma 2.29.

(1) If °A = X then 0 - @ = a and there is nothing to prove.

(13) If A is the only r-partition in P¥ (e.g. when the associated Ariki—Koike algebra is semi-
simple, see [ |) then X € PZ , = P4. Hence, if 0 - & = o we conclude that A = A.

Let us denote by [A] (respectively by [a]) the orbit of an r-partition A (resp. of a € Q™)
under the action of 0. We now state Theorem 1.3 from the introduction.

Corollary 2.34. Assume that k is compatible with (d,n,p) and let a € Q" such that P% is not
empty. Then #[a] is the smallest element of the set {#[A] : X € P5}. In other words, if A is
an r-partition and o = ag(X), if 09 -« = « for some j € {0,...,p — 1} then there exists an
r-partition p such that o (@) = a and  p = p.

Proof. The second part of the statement is clear. Let C be the set {#[A] : A € P4} and let
us prove that #[a] is the smallest element of C. For each A € P%, by Lemma 2.29 we have
ak(°A) = 0 - ak(A) thus #[A] > #[a], hence #]a] is a lower bound of C. To prove that it is the
smallest element, it suffices to prove that there is an r-partition g € P/ such that #[p] < #[a].
Write p’ := #[a]. The integer p’ divides p since o has order p. By Remark 2.30, we know that

K is compatible with (p'd, p'n, z%)' Moreover, we have afz’:p -« = a thus Remark 2.30 also gives

Ty, 2 - @ = Q.
Hence, by Theorem 2.31 applied with (p'd, p'n, I%) we know that there is an r-partition p € P~
such that

T’

S
Pp=
that is, by another application of Remark 2.30,

Ugjpu = M
Hence, we have #[u] < p’ and we conclude since p’ = #[a]. O

Remark 2.35. By | ], two r-partitions are in a same P¥ if and only if they belong to the same
block of H}:. Thus, Corollary 2.34 gives a little information about the r-partitions that belong
to each block. As we mentionned in the introduction, Wada [\Wa] proved that the maximum
of the set {#[A] : A € P5} of Corollary 2.34 is always p, provided that this set has at least
two elements. His proof is very short but relies on the (non trivial) fact that if A and p are in
P then they are Jantzen equivalent (cf. [ ]). On the contrary, we did not find a way to
use | | to prove Theorem 2.31.
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We conclude this section by a reduction step for our main theorem. We assume that the
multicharge x is compatible with (d,n,p). For any ¢ € {0,...,d— 1}, we define the multicharge
k) € (Z/eZ)P by

’{(Z) = (’{b Ketdy -+ Rﬁ—‘,—(p—l)d) = (’%5, Ke+1, ... ke + (p - 1)77) (236)
We first need the following lemma.

Lemma 2.37. Let ¢ € {0,...,d— 1}, let X be a partition and let p be a partition obtained from
A by wrapping on an n-rim hook. We define the two p-partitions AP and pP by NP == (A\,..., \)
and pP = (g, ..., p1). If a = a0 (N\) and B = o, (@) then f=a+ag+ -+ ae_1.

Proof. By Remark 2.3, we have ., (1) = v, (A) + g + - - - + tigyn—1 for some ig € Z/eZ. Thus,
for any j € {0,...,p — 1} we have

O‘fw—l—jn(ﬂ) =07 O, (,u)

=gJ oz,w +E ol e 7]

n—1
= Qpjn(A) + Z ig+itjn-

=0
We obtain
B = a0 (1P)

p—1

= Z Ap+jn (M)
=0
p—1 p—1n—1

= Z Qpeppin(A) + Z Z Qig+itjn
=0 j=0i=0

=oa, 0 (N)+ag+- -+ e
=atay+ -+ e 1.

O

If A= (A0, .. A0=D)is an r-partition, its e-multicore is the r-partition X = (W, co AT
We say that X is an e-multicore if X = X, that is, if each A*%) for k € {0,...,7 — 1} is an e-core.

Proposition 2.38. [t suffices to prove Theorem 2.31 for the e-multicores.

Proof. Let X be an r-partition such that o - . (A) = a.(A) and let X be its e- multicore. By
definition of the e-multicore and by Remark 2.3, we have a,(X) = ax(X) + w50 o where
w € N is the number of e-rim hooks that we need to wrap on to obtain A from A. Since a, ()
and Y77 a; are both stable by o, we have o - a,(X) = a,(X). If Theorem 2.31 is true for
the e-multicore X, we can find a stuttering r-partition 1 = @t with (1) = a.(X). Write
n = (ﬁ(o), e ,ﬁ(”*l)) and let 19 be a partition obtained by wrapping on w times an 7-rim
hook to i), We define

pb? = 1,0 forall j € {1,...,p—1},
p®=n®  forall ke {0,...,r —1}\{0,d,...,(p—1)d}.
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The r-partition p = (p©,..., u"=V) satisfies g = “p. Moreover, since i) = pU? for all
j€e{l,...,p— 1}, we can apply w times Lemma 2.37 with ¢ := 0 starting from the p-partition
(7). 7). We obtain

d—1
ali(l“l') = Qg0 (:U'(O)a s uu(O)) + Z Q0 (:U'(Z)a s a:U’(Z))
=1

e—1 d—1
= oo (A7, BY) +w e+ Y e (B, 5O)
=0 =1

e—1
= () +wd o
=0

e—1
=aeX) +wd o
i=0
= ag(A).
Hence, Theorem 2.31 is proved for A. U

Remark 2.39. Since the n-rim hooks that we wrap on are arbitrary, the stuttering r-partition
in Theorem 2.31 is not unique in general. Moreover, using the same idea of wrapping on 7-rim
hooks we can easily prove Theorem 2.31 in the particular case n = 1 (that is, p = e). Finally, if A
and p are as in Theorem 2.31 and if A is an e-multicore, then p is not necessary an e-multicore.

3 Binary tools and inequalities

In this section, we introduce two technical tools that we will need to prove Theorem 2.31.
In §3.1, given a family of binary matrices satisfying some conditions, our aim is to prove that
we can find a series of compatible submatrices (} ). We will need to study some particular
cases (Lemma 3.6 and Proposition 3.7) before stating the main result, Corollary 3.8. We use this
result to prove in §3.2 the existence of a binary matrix with prescribed row, (partial) column
and block sums. Finally, we will give §3.3 some inequalities. The first one will be reminiscent
of the binary setting, and the others will use convexity.

We use |-| : R — R" to denote the sum of the coordinates (we warn the reader that we do

not take the sum of the absolute values) and we write ||-|| for the euclidean norm.

3.1 Binary matrices

Given two matrices with entries in {0, 1} whose row sums (respectively column sums) are pair-
wise equal, we can get from the one to the other by replacing submatrices (§9) by (9§) (cf.
[Rv]). These interchanges do not change the row or column sums, however they may change
block sums. The results of this section, particularly Corollary 3.5, will be used to prove Propo-
sition 3.14 in §3.2, where we show the existence of a binary matrix with prescribed row, column
and block sums. Note that Chernyak and Chernyak [ | considered matrices with prescribed
row, column and block sums, but they did not study the existence problem.

We call binary matriz a matrix with entries is {0,1}. If M is an m x n binary matrix, we
write My, for its entry at (¢,k) € {1,...,m} x {1,...,n}. We denote by -, (M) the binary
matrix that we obtain from M by changing the entry (¢, k) to 1 — My,. We write Ry(M) for the
¢th row of M. Note that if |[M| denotes the sum of the entries of M then |M| = Y ,|Re(M)|.
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Mt
Finally, if the number of rows of M is even, we will systematically write M = _ | where

M

M)
M™ and M~ have the same size, and we define (M) = Vek( .
'YZ,k( ) (’7(,]9 (M_)

BTt
B-
number of rows. We say that the matrix (§ ) is a compatible submatrix of ( A | B ) if there

exist £, k, k' such that

Jr
Definition 3.1. Let A = (j_) and B = < ) be two binary matrices with the same even

+ +
A =1, B/, =0,
AZﬁ‘ =0, szl - 1.
In that case, we will write A =1 v B. We denote by v (A, B) == (Wlftk(A),ﬁtk/(B)) the pair
of binary matrices that we obtain if we replace the submatrix () by (93).

Slllvy

11 1 00
+ + .
A ._<0 0), B ._<0 1 0),
(10 L
A ._<0 1), B ._<

The red entries prove that A |=1 23 B. With (A,B) = 71,2,3(A, B), we have

~ 10 ~ 1 01
+ . + .
A“(o 0)’ B'_<010>’
(11 ~_ (1 00
A"(o 1)’ B'_<101>'

If A and B are two binary matrices with the same even number of rows, the set of all pairs
Yer k' (A, B) where ¢, k, k" are such that A =/ B is denoted by I'(A4, B). Moreover, we will
write A |= B if the set I'(A, B) is non-empty, that is, if there exist ¢, k, k" such that A =5 1 B.

We can generalise these notations to a family (A4;)1<i<p of binary matrices with the same
even number of rows. Let ((4;, ki, k}))i1<i<n—1 be a family of triples such that

Ai Fu, ik Aitrs

foralli e {1,...,n—1}. For any i € {2,...,n — 1} we have

Aia ):&7171%71,16;_1 A; ):Zi,k‘i,k‘; Aiy1,

thus, according to Definition 3.1,

+
Ezample 3.2. We consider the binary matrices A = (j) and B = ) defined by

(Cima, Ki—y) # (Li ki)

Hence, for all i € {2,...,n — 1} we have

Aia lzzifhki—l,k;,l
+
Vzi_l,k;_l(Az‘) o ki Ait1,

+
7€i7ki(Ai)’
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and

'Yz s ('Yzl 1k (A ) = 'Yzz LR, (VZkl(Az)) (3.3)

We denote by v, ;)

v ))1<i<n—1

((Ai)lgign) the family (Ai)lgign defined by

gl = ’Yzi k;l(A )

A 75 b (Wz ok (A;)), foralli € {2,...,n — 1},

-1

A, =~F (An).

n—1,k —1

By (3.3), no choice has been made to define A; fori e {2,...,n — 1}. Finally, we denote by
[(Ar,..., Ay) the set of all families v, b, x1))<ic,_, ((Ai)1<i<n) Where (6, ki k7)), 18
such that A1 g gy bt Froy i b, An, and we will write Ay = -+ = A, if T(Ay,. .., Ay)
is non-empty.

The following properties are straightforward from the definition.

Proposition 3.4. Let A and B be two binary matrices with the same even number of rows such
that A lzf,k,k/ B. If (A, B) = ’Yf,k,k/(A7 B) then

it — a+ Pt _ pt

Ag,=Ap — 1, B = By + 1,

A@:Aaﬁ—i—l, B;k,:B;k,—l,

the other entries being unchanged. Hence, the following equalities are satisfied:

Af 4+ Ay = A+ Ay, By, + By = B, + By,
Rg(x?ﬁ—) + Rg(é+) = Rg(A+) + Rg(B+), RZ(AV_) + Rg(é_) = Rg(A_) + Rg(B_),

and

At = AT -1, |B¥|=1B"]+1,

A7 =|A7]+1, B|=|B| - 1.
As a consequence, if A = B = C and (A, B,C) € I'(A, B,C) then |B*| = |B*| and |B~| =
B~

Corollary 3.5. Let (A;)1<i<n be a family of binary matrices with the same even number of rows.
Assume that ig, ... is are distinct integers such that Ay, = ... = A;, and let (Ay,,..., A;) €
P(Aim e 7Ais)- Then

AL = 1AL -1, A= 1AL] +1,

A | = 145 + 1, [Ai I =14, =1

iol =
and for all t € {1,...,s — 1} we have

4| = |A7
4 =14

Zt| Zt|

The following, easy to prove, lemma is very important in the proof of Proposition 3.14.
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Lemma 3.6. Let A and B be two binary matrices with the same even number of rows. We
assume that

|Ry(AM)| 4 |Re(B)| = |Re(A7)| + |Re(B7)), for all £,
|A*] > |A7].
Then A = B.

Proof. Since |A*| > |A™|, there is some ¢ such that |[Ry(A")| > |R¢(A™)|. Since the matrices
have their entries in {0, 1}, for all k£ we have

(4 <16)-6)-0)-6))

1

Jr
Thus, there is some k such that <ﬁ£_’“> = <O> Moreover, we have
Lk

[Re(BT)| = |Re(B7)| + ([Re(A7)| = [Re(AT)]) < [Re(B7)].

Jr
Again, we deduce that there is some k' such that (g%') = (?) Finally, we have
ok

+ _ + _
Agk =1, Bﬁk’ =0,
AZC — 0, BZ?{)/ — 1,
thus A |= B. O
Let us now give a generalisation of Lemma 3.6 to an arbitrary number of matrices.

Proposition 3.7. Let (A;)1<i<n be a family of binary matrices with the same even number of
rows. We assume that

STIRUAD) = SO IRo(AT)],  for all t,
i=1 i=1

AT > AT,
|AF| > | A7, forallie{2,...,n—1}.
Then there exists a sequence 1 < iq,...,is—1 <n of distinct integers such that

AlFA FA, E . F A F A

Proof. We consider the following binary matrices with an even number of rows:
B1 = (AQ A3 s An—l An) .

For each £ we have |Ry(By")| = 15| Re(Af)| and |Ry(By)| = XF5|Re(A; )| Thus,

[Ro(AD)| + |Ro(B)| = |Re(A])]
=1

= |Re(A])]
=1

= |Re(AT) + D _|Re(A7))
=2

[Re(AD)] + [Re(BY)| = | Re(A7)| + [Re(By )

19



Since |A]| > |A{ |, we can apply Lemma 3.6 to the matrices A and B;. Hence, if we define I
as the set of integers i € {2,...,n} such that A; & A;, then [; is not empty. If n € I; then
the proof is over, and otherwise we start an induction. Assume that for some integer s we have
some pairwise disjoint non-empty subsets Iy := {1}, I1,...,Is—1 of {1,...,n — 1} such that for
allt € {1,...,s— 1} we have

for all 4, € I}, there exists i;—1 € I;_1 such that 4;, | = 4,,.

In the following, we write i ¢ IoU---Ul;_j tomean i € {1,...,n}\ (IpU---UI;_1). We define
the two following binary matrices with the same even number of rows:

A+ (A)ZEI()U Ul 1

By = (Al) i¢IgU---Ul,_; ’

Note that the matrix B; is not empty since n € {1,...,n}\ (loU---UI;_1). For all £ we have

IRe(AD) = > |Ri(A),
i€lgU---Ulg_1
Re(AD) = > |Ro(A)),
i€lgU---Ulg_1
and
[Re(BH| = > [|R(Af)],
1¢IoU--Uls_1
[Re(BS) = > |Re(A7)]
1¢IoU--Uls_q
Thus,
|Re(A$)| + |Re(B \—Z!RZAH—Z\RZ ) = [Re(A7)] + [Re(BY).

Furthermore, since |A;| > |A; | foralli € [ U---Ul;_1 C{2,...,n— 1} and |[A]| > |A]| we
obtain
A= > AT+ AT
i€l U--Ul_q
> ) AT+ AT
i€l U--Ul_q
> |AJ] = AT+ AT
AT > A7)
As a consequence, we can apply Lemma 3.6 to the matrices A, and B,. Hence, the set I of
integers ¢« € {1,...,n} \ (JoU---UIs_1) such that A~ |= A; for some 7 € Iy U --- U Iy is
non-empty. Moreover, by construction such an integer 7 is necessary in I,_;. We stop here if

n € I, and otherwise we continue the induction with Iy, I1, ..., I;.

Since the sets that we construct are non-empty, pairwise disjoint and included in {1,...,n},
there is some integer s such that n € I;. By construction, for any ¢t € {1,...,s} if iy € I
then there exists 4,—1 € I;_; such that A;, , = A;,. Hence, starting with n € I, since the
sets (It)o<t<s are pairwise disjoint and Iy = {1}, we can find a sequence 1 < iy,...,i5_1 < n of
distinct integers such that A; F A;, = ... = A, | E An. O
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Corollary 3.8. Let (Aj)i<i<n be a family of matrices with the same even number of rows. We
assume that

ZIRz(A?)I =N IRi(AD),  for all t,
( i=1

|AL ] > |A; ], for some ig € {1,...,n}.

Then there exists a sequence of distinct integers i1,...,1s distinct from iy such that
Aio ): Ail ’: Ai2 ’: s ): Ais—l ): Ais’
with |Af| < |A; |

Proof. Let m € {1,...,n — 1} be the number of i € {1,...,n} such that |[A]| > |A]|. Let

(jk)1<k<n be a reordering of {1,...,n} with j; = iy such that
+ —
AT | > [A] |, for all k € {1,...,m},
]A;;]<\A;k, forallk e {m+1,...,n}.

We define the following binary matrix with an even number of rows:

For all ¢ we have

Z’Rz 4 |[R(AT)] = Z’Rz A )|+ [Re(A7)]-

k=1

Hence, we can apply Proposition 3.7 to the family (A4;,,...,4;,,A). We find a sequence
i1,...,1s—1 of distinct elements of {ja,...,jm} such that

Ajp = Ai FAiE...F A, FA
We conclude since A4;, , = A implies that there exists is € {jm+1,.-.,Jn} such that A; | |
A, O

3.2 Application to binary averaging

The following result is well-known.

Lemma 3.9. Let wo,...,wy—1 € {0,...,p}. For alli €{0,...,n — 1} we define v; = % and

we set v = (vg,...,vn_1) € [0,1]". There exist some vectors €°,...,eP~1 € {0,1}" such that
152
v=- Z €.
b =0

In particular,
122 12

- Z\ej\ = ZHGJH2 [0].

If in addition |v| € N then for all j € {0,...,p—1} we can choose € such that || = ||€7]|? = |v].
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The last result is equivalent to the existence of a binary p X n matrix with row sums
(Jvl,...,|v]) and column sums (wy,...,w,—1). By a general result of [Ga, Ry], we know that
such a matrix exists, since the conjugate (p,...,p) (with |v| terms) of the partition (|v|,...,|v|)
dominates the partition w for the usual dominance order on partitions, where w is the partition
obtained by rearranging the entries of w in decreasing order. However, for the convenience of
the reader we give a simplified proof for the particular setting of Lemma 3.9.

Proof. For any i € {0,...,n — 1}, we define the set
Wi = {wo—i—---—l—wi_l—i—l,...,wo—i—---—i—wi}.

For any j € {0,...,p — 1}, we consider the element ¢/ := (e%, . ) € {0,1}™ defined by

n—1

j {1 if W; contains an element of residue j modulo p,

0 otherwise,

for any i € {0,...,n — 1}. Since W; has cardinality w; and is given by at most p successive
integers, the set of residues modulo p of the elements of W; has also cardinality w;. Hence, there
are exactly w; integers ef for all j € {0,...,p — 1} that are equal to 1. The other are 0, thus

p—1

J_
Z € = Wj.
Jj=0

The ith component of % Z?;é €l is thus % = v; and we obtain

Since || is additive, we deduce that %Z?;& €/| = |v|. Moreover, since ¢/ € {0,1}" we have
: : 1
] = ]2 thus L S2Y1ed |2 = Jo].
Now assume that |v| € N. There are in the set {1,...,|v|p = |w|} exactly |v| integers of
residue j modulo p for each j € {0,...,p—1}. Since {W;}icqo,....n—1} is a partition of {1,.. ., |w|},
we deduce that

n—1
Z e = #{elements of {1,...,|w|} of residue j modulo p} = |v|,
=0

for all j € {0,...,p— 1}. Hence |¢/| = |v| and we conclude. O

We will use Corollary 3.8 of §3.1 to generalise Lemma 3.9: see Proposition 3.14. Let us first
give an easy lemma.

Lemma 3.10. Let ao,...,a,—1 be integers of sum a multiple of p. The following integer:
m :=max {a; —aj :j,j' €{0,...,p—1}} €N,
satisfies m =0 or m > 2.

Proof. Assume m < 1. Then, for all j,5" € {0,...,p — 1} we have |a; —ay| < 1. If jy €
{0,...,p — 1} is such that aj, is the minimum of {a;};co,... p—1} then for all j € {0,...,p — 1},
there exists €; € {0,1} such that a; = aj,+¢;. From the hypothesis, we know that pa;, —i—Z?;é €;
is a multiple of p, thus Z?;é ¢; is a multiple of p. Since ¢;, = 0, we deduce that ¢; = 0 for all j.
We conclude that aj, = a; for all j € {0,...,p — 1} thus m = 0. O
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We need to introduce some notation in order to state Proposition 3.14. For any ¢ €
()
{0,...,d — 1} and i € {0,...,e — 1}, let wy) € {0,...,p} and set vi(z) = %. For each

¢e€{0,...,d— 1} we define
0 = (v(()z), . ,vig_)l).
We obtain a d x e matrix
(0
V= :
pd=1)

We assume that for all £ € {0,...,d — 1} we have |[v()] € N. Hence, for all ¢ € {0,...,d — 1}
we can apply Lemma 3.9 (with n = e). We obtain some vectors /() € {0,1}¢ for all j €
{0,...,p— 1}, such that

122
v = 230, (3.11)
p jZO
and
1O = v]. (3.12)

For all j € {0,...,p — 1}, define the following d x e matrix:

()
El =

Recall that e is a multiple of  (and e = np). We write the matrix V' with n blocks of the

same size V = (V[O] V[”_u), and we use the same block structure for the matrices
EI = (Ej[o] Ej["’”). As a consequence of (3.11), we have
4 1=t
[V = =37 pili), (3.13)
p j=0

for all i € {0,...,n—1}.

Proposition 3.14. We keep the previous notation. In addition to the hypotheses |v(£)| e N for
all £ € {0,...,d — 1}, assume that for all i € {0,...,n — 1} we have |VIl| € N. Then we can
choose the vectors €O for all j € {0,...,p — 1} and £ € {0,...,d — 1} such that the previous
properties (3.11) and (3.12) still hold, together with

|EI| = |V, (3.15)
forallj€{0,...,p—1} andi€{0,...,n—1}.

Ezample 3.16. Take p = 4 and d = 2. With the following matrix:

112 2 1|2 301 v(©)
_ 1 _ _ 0 | 11
v 4(0213‘1320) (v(1)> (V v )
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we have [v©] = o] = [V = |V[J| = 3. The vectors /) constructed as in the proof of
Lemma 3.9 are the following:

EO(O) — (1, 0’ 1, 0’ 0, 1’ 0, 0)’ 60(1) e (0, 1; 07 1; 07 1; 07 0)?
& =(0,1,0,1,0,1,0,0), e =(0,1,0,1,0,1,0,0),
&% =(0,1,0,0,1,1,0,0), e =(0,0,1,0,1,0,1,0),
30) _ (0,0,1,0,1,0,0,1), s — (0,0,0,1,0,1,1,0).

Thus, we have

oo (30520t 0 )= ()=o)
s (000 1[5 10 8)=(m)=(om o)
ee (0010 0 0] ()= (o),
o= (0000800 s)= ()= ommm)

However, we have |E| = 4 # |9 thus these vectors /) do not satisfy the condition (3.15)
of Proposition 3.14. Let us consider the two compatible submatrices indicated by the coloured

0[0] 0[1] 1[0] 1[1]
entries. Define A = <§2[0}> and B := <g2[1]> (respectively C = (g3[0]> and D = (g?)[l]))

and set (4, B) == v1.1.1(A, B) (resp. (C, D) = 4121(C, D)). We have

E=(At| Bt ),
E'=(Cct|D* ),
E*= (A" |B" ),
E3:(c—\D—),
and
B )- (L0000 10,
N N )]
B (e )-(5 00,
(e 1m)-(0 0000 0)

, ~ ()
The vectors &) defined for all j € {0,...,3} and £ € {0,1} by B/ = (Ej(1)> satisfy (3.11) and
€

(3.12), together with the condition (3.15) of Proposition 3.14. In general, the existence of such
interchanges will be given by Corollary 3.8.
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The remaining part of this subsection is now devoted to the proof of Proposition 3.14. First,

note that the interchanges () <> (9 ) that are compatible with the block decomposition

E° E000] . EOn—1]
EP1 E@-DOI [ ... | gle—Dn—1]

do not affect properties (3.11) et (3.12). However, these interchanges change the value of some
| [i]|, as described in Proposition 3.4. Thus, it suffices to prove that there exists a sequence
of compatible interchanges that modifies each |E7| to |[V1!|. We endow N x N* with the usual
lexicographic order. We will use an induction on (A, N) € N x N*| where

A= max{|Eﬂi1| —|E'Wviefo0,...,n—1},4.5 € {0,...,p—1}} €N,

and
Ni=#{6.5,7) €{0,....,n =1} x {0,...,p — 1}*: [Bl] — | BI'l] = A} € N",
Define
M i=max {|B| i € {0,...,n—1},5 €{0,....p—1}},
m::min{\Eﬂﬂ\ ief0,...,n—1},j € {0,...,p—1}},
and

Nmax :#{(l’]) € {05577_1} X {Oaap_l} : |EJ[Z]| :M}’
Nunin 1= #{(5:5) €{0,...,n =1} x {0,...,p =1} : |[E/| = m .
We have A = M —m and N = NpaxNmin- If A = 0 then by (3.13) we have |Ej[i]| = |Vm| for

all 7, j so the proof is over. Assume A > 1 and let iy € {0,...,e —1} and jo, j; € {0,...,p— 1}
such that |E7olio]| — | Edolio]] = A, We now consider the matrix

o Eiolol ...  pgiolio] ... Edoln—1]
Eio | — \ gislol ... pghglio] ... pigln—=1 >

given by the joth and jjth block-rows of the matrix of (3.17). We consider the family (A4;)o<i<y—1
of matrices with the same even number of rows defined by

A;" Fold]
A= (Al.> = (EJ‘S[@'])’

for all i € {0,...,n— 1}. The hypotheses of Corollary 3.8 are satisfied, thanks to the definition
of ig and (3.12) (note that Ry(E7°) = e0() and Ry(E’0) = eo(¥)). Hence, we can find a sequence
of distinct integers iy, ..., i, distinct from 4o with |4 | <|A; | and
Ao F A
Let (Aiy, ..., A;,) € T(Aj, ..., Ai,). By Corollary 3.5, we know that
A = 1431,

A1 =147,

(3.18)
A it

1t
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for all t € {1,...,s —1}. Moreover, we have
A | =AY -1, ALl =14, | +1, (3.19a)
A = |AF|+1, |A7 | =|A;|— 1. (3.19b)

1s

We now want to evaluate the new values A and N of A and N that we obtain and prove that
(A, N) is strictly less than (A, N). We have

A = max {|E0| - |BIW) i€ {0,...,n = 1},5,5 €{0,....,p—1}} €N,
and
N=#{.4.5) € {0.....n—1} x {0,....p— 1} : |9l | B/ = R} e N,

where N
AZ if i = iy for some t € {0,...,s} and j = jo,
Il = ﬁ; if i = i; for some t € {0,...,s} and j = jj,
Filil - otherwise.
Moreover, with
M::max“f]ﬂi”:iG{O,...,n—l},jG{O,...,p—l}},
ﬁl::min{|Ej[i]|:iG{0,...,77—1},jE{O,...,p—l}},

and

NmaX::#{(’L',j)E{0,...,77—1})({0,...,])—1}1|Ej[i]|:j\2},
Nmin :#{(l,j)e{o,,’I’]—l}X{O,,p—1}|E][Z]|:ﬁ”L},

we have A = M — N and N = Nyax Nonin. Note that by (3.18), for all i € {0,...,7 — 1} and
j€{0,...,p— 1} we have

B9 = | B, if i ¢ {io,is} or j ¢ {jo. Jo}- (3.20)

By the assumption |VI!| € N and (3.13), thanks to Lemma 3.10 we know that A = |Ajg |—|A4;,| =
M —m > 2. Hence, by (3.19a) we have

m < |A;| < |Af| < M. (3.21)
Furthermore, since m < |A]| < |A; | < M, by (3.19b) we have

m < |Af| < |47 < M, (3.22a)
m < |Af| < |47 < M. (3.22b)

Equations (3.20), (3.21) and (3.22) prove that M < M and m > m, thus A <A.If A < A then
(A,N) < (A, N), thus we now assume that A = A, that is, M = M and m = m. By (3.20) we
have

Nmax - Nmax = # {(17]) € {iO7is} X {]07](1)} : ’E]M’ - M}
— #{(0,5) € {ioyis} x {o,do} 1BV = M} .
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Thus,
Nmax — Nmax =1 +6\A:|,M - # {(la]) € {’io,’is} X {.]Oa](/]} : |E]M| = M},

where ¢ is the Kronecker symbol. By (3.21) and (3.22), we obtain

Nmax_Nmale‘{’(SlAi—s"M—(s (323)

AL LM
By (3.22a), we know that

0 <4

|AT | .M = C|A; | M
1517 s

thus (3~.23) yields Nmax — Nmax > 1. Similarly, we have Ny — Nmin > 1. Finally, we obtain
N = NmaxNmin < NmaxNVmin = N and thus (A, N) = (A,N) < (A,N). By induction, this
concludes the proof of Proposition 3.14.

3.3 A few inequalities

We will prove some inequalities that we will use to prove Theorem 2.31. The setting of the first
one is reminiscent of Lemma 3.9 and the following ones use convexity. Recall that ||-|| is the
euclidean norm on R™ and denote by (-,-) the associated scalar product.

Lemma 3.24. Let n € N* and h : R" — R be a function such that h — %||-|? is affine. Let
v € R™ and suppose that €°,... =1 € {0,1}" satisfy v = %Z?;é e and |€/] = ||€/]|? = |v| for
all 5 €{0,...,p—1}. For any a € R™ we have

15~ N S
h - = 7= .
(a+v) Zh(a+e ) 5
7=0
More specifically, there exists j € {0,...,p — 1} (depending on a) such that
vl —[lv
2

‘ 2
h(a+¢€) < h(a+v)+ | :

Proof. Denote by A := h(a+v)— % Z?;é h(a + €7) the left-hand side of the equality. Note that
the Hessian matrix of the second partial derivatives of h is the identity matrix. More precisely,
since h is a degree 2 polynomial, the Taylor formula reads

1
h(a +w) = h(a) + (Vh(a),w) + §HwH2, for all w € R™,

where Vh(a) denotes the gradient of h at a. Since v = %Zg;é ¢/, the quantity that defines A
vanishes at the affine level, hence

1l e 18~ 0
A LE =D
We conclude since ||¢/||? = |v|. The second assertion is straightforward. O

The next inequalities involve convexity. The first one is a particular case of a Jensen’s
inequality for convex functions. The reader may refer to | , Theorem 4]; we include a proof
for convenience.
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Lemma 3.25. Let n € N* and m € R. Let h: R" — R such that h — Z||-||* is convez. For any
zo, ..., Tp—1 € R"™ we have

1p . )
th] ——ZH%—SUII
where T = Z] Ox]

Proof. Since h — 2|-|| is convex, we have

m 127! m P2
hE) — TP < -3 b)) - o Sl P
Thus,
— 15 = 2 12
ME) < =Y h(z)) - % > llzill* = pliz|
e B!
12! m
<= h(zg) — 5= ZH% -7l + QZ x;, %) — 2p||z||”
D= 2p
7=0
10! m -1
<= h(z)) — % >l — Z)* + 2p(z, 7) — 2p|7|?
pj:0 p j=0
1% m P2
<= > h(eg) - 55 3l 7l
pj:() pj:0

O

Remark 3.26. The real number m of Lemma 3.25 is usually taken to be positive. In this case,
the map h is convex and we say that it is m-strongly conver. We have stated Lemma 3.25 for
a general m since we will need it to be negative in the proof of Lemma 3.27.

For any = € R, we denote by {z} € [0, 1] its fractional part. We have {z} =z — |z], where
|z] € Z is the greatest integer less than or equal to z.

Lemma 3.27. Let x,...,7,_1 € Z be integers and let T = 1 Z] 0 xj. Withv = {Z} we have

10!

v—v< Z

Proof. Let us consider the function ¢ : R — R defined by z +— {2} — {2}? + 2%. Tt is continuous
on R\ Z, and in fact continuous on R since lim,_,,— ¢(x) = lim,_,,+ ¢(z) = n? for any n € Z.
Moreover,

$(x) =z — |z] — (2° = 2[z]z + [2]?) + 2® = (1 + 2|z])z — [2] (1 + |2]).

Thus, the function ¢ is affine on each interval [n,n + 1| for n € Z, with slope 2n + 1. Hence,
the function ¢ is continuous with non-decreasing left derivative thus ¢ is convex. Applying
Lemma 3.25 with n =1, m :== —2 and h := {-} — {-}? we obtain

1p 1 p 1 B
v-v? < Z ({25} = {=3)%) + Z(xj -7)”,
] =0
For any j € {0,...,p — 1} we have z; € Z thus {z;} = 0 and we conclude. O
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4 Proof of the main theorem

We are now ready to prove Theorem 2.31, which we repeat here for the convenience of the
reader.

Theorem 2.31. Let X be an r-partition and let o .= o (X) € Q. Assume that k is compatible
with (d,n,p). If 0 -« = « then there is an r-partition p € PL with “p = p.

Let A be an r-partition and assume that the multicharge x € (Z/eZ)" is compatible with
(d,n,p). Recalling the reduction step Proposition 2.38, we assume that A is an e-multicore. We
define

a = ag(A),
2 ®) = 2B (x), for all k € {0,...,r — 1},
n' = nl(X), for all i € {0,...,e —1}.

In the whole section, we assume that o - & = . There will be four steps in the proof, each step
corresponding to one subsection. First, we will give an expression of n° in terms of the abacus
variables (9, ..., 2"~ which takes into account the o-stability of o. We will then give a key
lemma, followed by a naive (but useful) attempt to prove the theorem. Finally, we will use the
results of Section 3 to conclude the proof.

4.1 Using shift invariance

In this subsection, we will write n° in terms of xgk) for ke {0,...,r—1}and i € {0,...,e—1}
(Lemma 2.25). The difference with the equality of Lemma 2.25 is that « is now assumed to be
o-stable, which will allow us to make the expression symmetric. The map (R€)” — R that we
obtain will be later used to apply the convexity results of §3.3.

Recall from §2.4 that we have some linear forms Ly, ..., Le_1 that satisfy (2.26):

0= 3 [N~ 1 (@)

Since 0 - a = a, for all jo € {0,...,p — 1} we have n2(X) = ng(("_j0 A) by Lemma 2.29. We
deduce that

r—1
= 3 Gl Lo, w400)]

1
2

-
= o

1 2
SO = Lo o).

i

0
Averaging on jp € {0,...,p — 1}, we obtain
r—1 1 9
k T k
= 3 [51e I - Tee®)]

k=0

where EE is a linear form that depends only on the residue k € {0,...,d — 1} of & modulo d.
Now, if for £ € {0,...,d — 1} we consider the map defined on R¢ by

1 -
ge: x> §HxH2 — Ly(x), (4.1)
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we have
d—1p—1

n? =373 g (aY) = f(2, . 20, (4.2)

(=0 j=0

The map f : (R®)" — R is of the form f = %||-|?> — L where L is a linear form. Moreover, define

£ (0 gy Zgg ©)

——f(a: G D N A
p

(4.3)

gy

gld=D @

where, in the expression f (x(o), Ll x(dfl)) the sequence z(©), ... z@1 ig

repeated p times. Like f, the map f®) : (R®)? — R is of the form 3|-||*> — L%?, where L) is a
linear form. Note that for all j € {0,...,p — 1} we have

O (0D gld=1tid)) Zgﬁ (C+id))

hence, by (4.2) we deduce that

p—1

f(x(0)7 o ’x(r—l)) — Z £ (x(jd)’ . ’x(d—1+jd)).

J=0

4.2 Key lemma

Lemma 4.5 that we will give in this subsection is the key to our proof of Theorem 2.31. Recall
that o = ay () satisfies 0 - « = a. For any i € {0,...,n — 1}, define

8 =n' —n'tL,
The o-stability of a implies that §; = ni*/0m — pitiontl for all jo € {0,...,p — 1}. We deduce
from Lemma 2.25 and the compatibility of x with (d,n,p) (cf. (2.20)) that

5 - ZxH—]O?] Ki ZZ Zf{;j)ﬁn ke’ (4'4)

(=0 j=0

for all jo € {0,...,p—1}.

As noted in Remark 2.39, the stuttering r-partition g of Theorem 2.31, which satisfies
ax(p) = «, is not necessary an e-multicore. The following lemma shows that, to prove Theo-
rem 2.31, it suffices to find a stuttering e-multicore v such that a,(v) = a—h(ag+ -+ + de—1)
for some h € N.

Lemma 4.5. Suppose that 2, ... (4= ¢ Z§ are such that

pf@ (2O 2Dy < (O gD, (4.6)
and
d—1p—1 o
Z Z Zi sy = Ois (47)
(=0 j=0

for alli € {0,...,m —1}. Then Theorem 2.31 is true for the e-multicore A: we can find an
r-partition p such that o, (p) = o and “p = .

30



Proof. For any £ € {0,...,d — 1} and j € {1,...,p — 1}, define 2(t79) = 2O ¢ 7¢& For

each k € {0,...,r — 1}, let E(k) be the e-core of parameter z(k). We obtain an e-multicore
o= {9, ..., m=Y) that satisfies °T& = f. For any i € {0 . 1} We deﬁne mt = n’ ([).
Since k is compatible with (d,n, p), we have Z Zf é 2 m iy = Zk 0 Z Hk By Lemma 2.25
and the assumption (4.7), we deduce that
mi —mitt = g,

for all i € {0,...,n— 1}. Hence, for all i € {0,...,n — 1} we have m’ — m**t = n — n*! thus

m® —m! =n® —n'. (4.8)
The above equality is also true for any i € {0,...,e — 1} since n’ = n**" and m* = m**" (by

Lemma 2.29). Recalling the definition of f (respectively f) given at (4.2) (resp. (4.3)), the
assumption (4.6) implies
m? < nY.

Hence, as in the proof of Proposition 2.38 we can construct an r-partition g = (M(O), .. ,M(T*I))
such that “p = p and:

e the partition (%) is obtained by adding n® — m® times an 7-rim hook to z(®;
o we have pl9) =70 for all j € {1,...,d — 1}.
Finally, by Lemma 2.37 and (4.8) we obtain

ag(p) = ax(@m) + (n° —=m°)(ap + - + ae-1)
e—1
= Z a, + Z n —m? (e%
=0
e—1 )
= Z(no +m' —m®)
i=0
e—1 )
= noy
1=0
= C\f,
thus we conclude. O
4.3 Naive attempt
We will use the convexity of the map f : (R®)” — R to obtain some parameters 20 . zd-1)

that almost satisfy the conditions of Lemma 4.5. These parameters will not necessary be integers:
we will fix this in the next section.

Proposition 4.9. For any ¢ € {0,...,d — 1}, we define

g fo-i—jd) c Ze
J =0 p
We have
d 1p—1
pfP(EO L FED) < p (O gDy _Zzux (t+5d) _ 5(0) H2
£=0 j=0
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Proof. Let ¢ € {0,...,d — 1} and let k € {0,...,r — 1} be of residue £ modulo d. Recall the
definition of the map g, : R® — R given in (4.1). The map g, — 1[|-||? is convex, thus by
Lemma 3.25 we deduce that

p—1

g(Z0) < lng (i) ZH:C(Z—Hd 50 H
P
Summing over all £ € {0,...,d — 1}, we obtain
RGO, seny < Lo e leleH (+id) _ 50|
p pe 0j=0
Multiplying by p gives the desired result. U

Remark 4.10. The inequality of Proposition 4.9 is in fact an equality since g, — 3||-[|? is linear.

Let us now try to verify the hypotheses of Lemma 4.5 with the parameters (0 ... z(d-1 ¢
17¢ of Proposition 4.9. First, for each ¢ € {0,...,d — 1} we have

~(¢ 1p71 (¢ d 1p S
B :52) (t+5d) Zo = 0. (4.11)
]:

Moreover, since H:c(”jd) — g(tHi'd) | > 0 we deduce from the inequality of Proposition 4.9 that

pfPEO, . EED) < (2@, 2 0), (4.12)

Finally, for each i € {0,...,n — 1} we have, using (4.4),

d—1p—1 d 1p—1p-—-1 é-i—j’d)
Zzzm W—J;ZZZ i—jn—re
(=0 j=0 ¢=0 j=0j'=0

P ,
= > N
= ——

::jo

1 p=l fd=1p-1 i)
_x J
'y 2 2 Titomire

Jo=0 \4=0j'=

124

pj0:0
= 0. (4.13)

Hence, all hypotheses are satisfied but one: the parameters 70 .z ¢ %ZS are not

necessary in Zg.

4.4 Rectification of the parameters

We will construct from 20, ... z(d=1) ¢ lZe (defined in Proposition 4.9) some elements 29, ... 2(d-1) ¢
Z§ that satisty all the assumptions of Lemma 4.5. To that end, We will approximate 20, ... z(d=1)
using Proposition 3.14, and we will control the value of f(z(®, ... 2(#D) using Lemma 3.24.

The remaining of this subsection in now devoted to the proof of the following proposition.
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Proposition 4.14. There exist elements 29, ... 2

d—1p—1
=0 j=0

for alli € {0,...,n—1} and

J4
Z ZZ(—)jn—fw -

—1 € 7§ such that

I3

dlpl

FPO ) < e (30 ZZHm(ﬁﬂd F(t HQ-
pe 0 j=0
Let £ € {0,...,d —1}. Since 2\ € %Ze, we know that for any i € {0,...,7 — 1} and
j€40,...,p— 1} there exist unique elements mglw € Z and wjﬂp € {0,...,p — 1} such that
(0) O (2
~ 7
Zifjnfw = ijrip ]p E. (4'15)
The fractional part of zl( )m ke 18
w?
+ip _. ()
{ Zi— jn K[} - J 2 = vj(‘-H‘p- (416)
For each £ € {0,...,d—1}, we have two e-tuples m(?) = (mgz), . ,mg_)l) and v = (v(()z), . ,vg_)l .

Let 7, be the permutation of {0, ...

,e — 1} defined by

me(J +ip) =1 — jn — ky,

forallz'E{O ,m—1} and j € {0,..
to mo, ..., T4_1, we obtain a map f¥

fiv (m(O) +0O .om

,p—1}. Permuting the components of e-tuples according
(Re)d — R that satisfies

(4=1) 4 y(d=1))

— f<p>(g(0)"”,

z(d—l))‘

To match with the setting of §3.2, we define the two following d x e matrices:

m(©) 00
m={ : | v=| ¢ |
mld—1) pld=1)
so that
FO (M 4 V) = RO ), (4.17)
Like f{), the map f%® defined on the d x e matrices is of the form e B L where ||-||? is the

sum of the squares of the entries and L is a linear form. We now write the matrix V blockwise

in the same fashion as for Proposition 3.14. That is,

20
V= : = (V[O}
H(d=1)

where

(0)
Vil = :
(d 1)
Yip
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for any i € {0,...,n7 — 1}. We now check that V satisfies the assumptions of Proposition 3.14.
First, for any ¢ € {0,...,d — 1} the element v satisfies ‘v(z)| > 0 since its entries are non-
negative. Furthermore,

—1p—1
‘ = Z Z Uj+zp
=0 5=0
n—1p—1
(¢ [
=3 Y G, —mil,)  (by (415),(4.16))
i=0 j=0
S T o
=2 % My tip
=0 =0 j=0
n—1p—1
0)
( | o Z Z mJ+zp
=0 7=0

0
4 Jtip
shows that |Vl € N for any i € {0,...,n7 — 1} since

Hence, we have ]v(é)‘ € 7 since ]E(Z)] =0 and m € 7, thus ]v(é)‘ € N. The same argument

) d—1p—1 ®
VM| - Z Zvjﬂ'p
¢=0 j=0
d—1p—1 © d—
—227 Jn—re szjﬂp
£=0 j=0 £=0 j=0
d—1p—1

=0 _szﬁw

£=0 j=0

Thus, we can apply Proposition 3.14. There exist vectors /() € {0,1}¢ forall j € {0,...,p—
1} and ¢ € {0,...,d — 1} such that

p—1
126]
9] = [019], (4.18)
|El| = |V, forallie{0,...,n—1}. (4.19)

In the above equality, the matrices E9[! for any i € {0,...,n—1} are defined by the same block
decomposition as V:
¢3(0)
B o— : _ (Ej[O] Ej[nfl]) :
e(d=1)

in particular each E’l has size d x p. The map f<p> and the matrices V and E’ for all
j €{0,...,p—1} satisfy the assumptions of Lemma 3.24. Hence, there exists jo € {0,...,p—1}
such that
vi-1vi?

2
For each ¢ € {0,...,d — 1}, define the vector 2 by permuting the coordinates of m(® 4 fo(®)
via mp. We have

f(P)(M +Ej0) < f(P)(M_i_ V) +

(p) (,(0) (d=1)y — £(p) jo
R CA ) = fP(M + E’°),
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thus, recalling (4.17),

VI = VI

OO, 20) < f0 0, sy T

(4.20)

We now check that z(©, ..., 2(¢=D have the properties described in Proposition 4.14. First, for
any ¢ € {0,...,d — 1} the vector 2 is a permutation of m® + €0 Since m® e Z¢ and
e € {0,1}°, we have 29 € Z¢. Moreover,

0] = @] + [
= |m®| + [ (by (4.18))
- 1)
(by (4.11)),

thus z() € Z§. The equality condition of Proposition 4.14 is satisfied, since for any i € {0,...,n—
1} we have

—1p-1 ‘
58 = S5 il )
J J
(STS I N
=2 > myly+ B0
=0 j=0
d—1p—1 . '
= > > mi,+ v (by (4.19))
=0 j=0
d—1p—1

= Z Z { Mijip + ]+lp:|

£=0 j=0
d—1p—1

_ZZ zm g

£=0 j=0
= 4.

It remains to prove that the value of f®) (z(o), cees z(d_l)) does not grow too much. We have

— —1n—1p—1
VI-IVIP _ 12700 @)2] = LSS O (0 2
=3 2 [P 10O = 3 X 3 ol - 0f2)°]
(=0 (=0 i=0 j=0
Recall the definition of the vectors () for any £ € {0,...,d— 1} given in Proposition 4.9. Since
for alli € {0,...,n—1} and j € {0,...,p — 1}, each v(@ is the fractional part of

(0 LA~ ()
~(£ _ 1 2+5'd
Zi—jn—ry P Z Limjn—re
/=0
and since each x%ﬁ;f?i% is an integer, we can apply Lemma 3.27. We obtain
O )2 PR (a4 500 )2
Yj+ip J'Hp - p Z i—jn—re _ Fi—jn—ke)

35



for all i € {0,...,m— 1} and j € {0,...,p — 1}, thus

1”1

Z e

[0 =[]

It follows from (4.20) that

d—1
FPEO LDy < p) O ) o % Z UN)‘ _ HU(@HQ}

dlpl

< fPEO L F ZZH:U(HM — 0%,

péojo

as desired.

4.5 Proof of the main theorem

We now conclude the proof of Theorem 2.31. Let 2(0 ... 201 ¢ Z§ be as in Proposition 4.14.
They satisfy

d—1p—1
SN, =6 (4.21)
(=0 j=0
for all i € {0,...,n7— 1} and
d—1p—1
FP O D) < (30 Fd-D) ZZHm(fﬂd (0 H2-
pz 0j=0
Since, by Proposition 4.9, we have
d 1p—1
pf<p>(g(0),_”,g(d*1)) < f(g:(o),... (r— 1 _ _ZZH (t45d) _ 5(0) || ,
{=0 j=0
we obtain
d 1p—1
pfP D, AY) < (@@, 2 Y) ZZH t+d _ 20|
E 05=0
d 1p—1
+5 ZZH?E“W 20|,
Z 05=0
thus

pfP (O, 24D) < f®, 20D,

Remark 4.22. The error term % Zg;é Z?;é Hx(“j d) _ () ||2 vanished thanks the strong convexity
inequality of Proposition 4.9, the “basic” convexity inequality (4.12) being not accurate enough.

The above inequality, together with (4.21), prove that the elements 20 2d-h) ¢ Z§
satisfy the hypotheses of Lemma 4.5. Hence, Theorem 2.31 is proved for the e-multicore A.
Recalling the reduction step from r-partitions to e-multicores, Proposition 2.38, we conclude
that Theorem 2.31 is true for any r-partition.
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5 Applications

We assume that the multicharge x is compatible with (d,n,p) (cf. (2.20) and (2.21)). We
present two applications of Theorem 2.31 and Corollary 2.34. First, we will recall the definition
of cellular algebras, as introduced by Graham and Lehrer | ]. The algebra #H! and its blocks
HE for a € QQF are examples of cellular algebras. We are interested in the fixed point subalgebras
Hy 1) (respectively Hy ) of Hiy (resp. HZE) for the algebra homomorphism o. We can easily
give bases for these algebras (cf. Proposition 5.17). In §5.2.4, we prove that if #[a] = p (resp.
if p and n are coprime) then Hp o] (resp. My ,,) is cellular. Otherwise, using Corollary 2.34 we
show that if in addition p is odd then none of these bases of 7—[;7[ o] are adapted cellular (see
§5.2.5). Finally, in §5.3 we will study the restriction of Specht modules of 7-[’[’”04.

5.1 Cellular algebras

Let A be an associative unitary finite-dimensional F-algebra. A cellular datum for the algebra
A is a triple (A, T, ¢) such that:

e the element A = (A, >) is a finite partially ordered set;

e for any A\ € A we have an indexing set 7(\) and distinct elements ¢ for all 5,t € T()\)
such that
{cgt INEA, s tE 7'()\)} ,

is a basis of A as an F-module;

e forany A € A,t € T(\) and a € A, there exist scalars ry(a) € F such that for all s € T(A),

c;‘ta: Z rm(a)cﬁ‘n (mod A>>‘),
veT(N)

where A>* is the F-module spanned by {ct, : u > X and a,b € T (1) };

e the F-linear map * : A — A determined by (¢})" = ¢\ for all A\ € A and s,t € T()\) is an
anti-automorphism of the algebra A.

We say that A is a cellular algebra if it has a cellular datum. We say that a basis B of A is
cellular if it coincides with {c), : A € A,s,t € T(\)} where (A, T, c) is a cellular datum for A.

Remark 5.1. If (A, T,c) is a cellular datum for A then
dim A =) #T (N>

AEA

Lemma 5.2. Let (A, 7T,c) be a cellular datum of A and let * be the corresponding anti-
automorphism. The cardinality of

[ redste T, () =c}

iS Z)\EA #T()\)
Proof. Since (c))" = ¢\, we have (¢}y)" = ¢ if and only if 5 = t. O
Assume that (A, 7T,c) is a cellular datum for A. By [ ], for each A € A we have an

A-module 8?*, called cell module, endowed with a certain bilinear form by whose radical is an
A-module. Moreover, if D* denotes the quotient of S* by the radical of by, the set {D* : \ €
A, D* # {0}} is a complete family of non-isomorphic irreducible A-modules.
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5.2 Cellularity of the fixed points subalgebra

We will first give more definitions from combinatorics, and recall the existence of a particular
cellular datum for H}; and its blocks H/. Then, we will construct bases for the algebra H o]
and study its cellularity. We will use the following notation:

QF = {a € QT : there exists X € PJ¥ such that a,(A) = 04} :

n

5.2.1 Tableaux

Let A = (\©, ... AU=D) be an r-partition of n. Recall that we defined in §2.1 and §2.4 the
Young diagram Y(X) of X. A A-tableau is a bijection t = (t©) ... t"=D): Y(X) = {1,...,n}.
The k-residue sequence of a A-tableau t is the sequence

res,(t) == (I“GS,@ (f_l(a)))

A A-tableau t : Y(A) — {1,...,n} is standard if the value of t increases along the rows and
down the columns of Y(X). We denote by 7 (A) the set of standard A-tableaux.

Ezample 5.3. We take r = p = 2 and we consider the bipartition A := ((4,1),(1)). The map
t: Y(A) —{1,...,6} described by

a€{l,...n}’

—_

p[4]6] [3],

2
is a A-tableau (we warn the reader that we represented in the same way the multiset of residues
associated with a multipartition), but it is not standard. The tableau s : Y(A) — {1,...,6}
described by

—_

2

A[5[6] [3],

is standard. With k = (0,2) and e = 4 = 27, the residue sequence of s is res,(s) = (0, 3,2, 1,2, 3).
Mimicking Definition 2.28, we define the shift of a A-tableau t = (... t"=1)) by

Tti= (1D D 0 )y

and we denote by [t] the orbit of t under the action of o. Note that 7t is a “ A-tableau, which is
standard if t is standard. In particular the set T[A] := U7 (1) is stable under o and there is a
well-defined equivalence relation ~ on 7 [A] generated by t ~ “t. We write T[A] := T [A]/~ for the
set of equivalence classes. Choose a lift ¢ : T[A] — T[A] of the canonical projection 7[A] — T[A].
In other words, if t is any standard A-tableau then ¢([t]) € [t]. For any j € {0,...,p — 1}, we
define _
TP = {te T(A)  o() ="t}

Note that the set 77)()\) may be empty for some j € {0,...,p — 1}, but we have a partition
TA) = U§;17}¢(A). Moreover:

if t€ 7”(A) then “t € T2, ("A). (5.4)
We have 1

#T3 A = ~#TIA (5.5)

where T [A] = U“ep\ﬂ'od)(u,) — {te T[A] : ¢([)) = t}. In particular, the cardinality of 7o’ [A]
does not depend on ¢ and we may abuse notation by writing #7[A] instead of 76¢[)x]. Since
#T(A) = ﬁ#T[A], we also deduce that

AT(N) = #Tf{xy (5.6)
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Ezample 5.7. Recall that the multicharge x is compatible with (d,n,p). For any t € T[A], the
compatibility condition (2.21) ensures that there exists a unique standard tableau ¢(t) € [¢]
such that 1 is in the image of the first d components of gE(t), that is, such that there exists
¢ € {0,...,d — 1} with ¢(t)((0,0,c)) = 1. Note that when d = 1 (i.e. when r = p), this
condition is the same as res, (¢ (1)) = ko. The map ¢ : T[A] — T[A] is constant on the
equivalent classes of ~. Thus, it factorises to a map ¢ : T[A] — T[A] that lifts the natural
projection. In this case, for any j € {0,...,p — 1} we have

7;»(15(/\) = {t € T(A) : there exists c € {(p—j)d, ..., (p—j+1)d— 1} such that £((0,0,c)) = 1}.

We will see in §5.2.4 another example of a lift ¢ of the natural projection.

Remark 5.8. Here, we chose ¢ to be a map T[A] — T[A]. If P is any subset of P/ /~, the
equivalence relation ~ is also defined on UjyjepT[A] and the equivalence classes are in natural
bijection with UjyjepT[A]. Thus, we can allow ¢ to be a lift UjxjepT[A] — Upnjep T [A-

5.2.2 Cellular datum for the Ariki—Koike algebra

It is known that we can find a family

{:xePyandste TN}, (5.9)
that form a cellular basis of Hf (cf. | ). Now recall that we defined in (1.1) a particular
algebra automorphism o : H% — HE of order p. Let m be the n-tuple (n,...,n) considered
as an element of (Z/eZ)". By | , Ro], we know that the algebra H[ is generated by some
elements

e(i), for any @ € (Z/eZ)",
Ve, for any a € {1,...,n — 1},
Yas for any a € {1,...,n},

the “Khovanov—Lauda generators”, for which

o(e(i)) =e(i —n), for any @ € (Z/eZ)", (5.10a)
0(ta) = VYa, for any a € {1,...,n — 1}, (5.10b)
0(Ya) = Ya, for any a € {1,...,n}. (5.10c)

The elements {e(2) : ¢ € (Z/eZ)"} form a complete system of orthogonal idempotents, that is,

e()? = e(i), for any @ € (Z/eZ)", (5.11a)
e(i)e(3) =0, for any @ # j € (Z/eZ)", (5.11b)
> oe(d) =1 (5.11c)

ic(Z/eZ)™

Among the generators e(¢) for any ¢ € (Z/eZ)"™, we know exactly the ones that are non-zero
(see [ , 4.1. Lemmal).

Lemma 5.12. For any i € (Z/eZ)", the idempotent e(i) € Hf is non-zero if and only if there
exist A € P and t € T(A) such that © = resy(t).
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There is a well-defined algebra anti-automorphism * : HF — HF, which we now fix, that is
the identity on each Khovanov—Lauda generator (see | , §5.1]). We can find a cellular
basis of H! of the form (5.9) such that the associated anti-automorphism is the map *, with
the additional property

€ e(res.(s))H e(ress (1)), (5.13)

for all A € Py and s,t € T(X) (see | | and also [30]). Note that we recover the result of
Lemma 5.12. We now fix such a cellular basis.

Remark 5.14. The cellular bases that are constructed in | , Bo] are graded cellular bases:
the algebra H% is Z-graded ([Rou, ]) and there exists a map deg : [[xepx T(A) — Z
such that c;\t is homogeneous of degree degs + degt. These graded cellular bases seem to be
more adapted to o than the ungraded one of | ] if HE is semi-simple, we can prove that
o permutes the elements of the graded basis but its action on the ungraded basis is more
complicated.

The condition (5.13) allows us to give a more precise description of this cellular structure
for H. For any a € Q* with |a| = n, denote by I® the subset of (Z/eZ)" given by the
n-tuples ¢ € (Z/eZ)"™ that have exactly «; components equal to ¢ for any i € {0,...,e—1}. The
subalgebra

M= Y eli)Hie(s) C He,
1,JEl™
is a block of Hf if o € QF and {0} otherwise (see | ). By (5.13), when a € Q% the algebra
HE is cellular, with cellular basis

e xePrands,te TN}
(cf. [ , Corollary 5.12]).

5.2.3 Subalgebras of fixed points

Recall from the introduction that we defined a subalgebra Hj,, C Hj as the subalgebra of the

fixed points of o : H)y — H. If p: HE — HE is the linear map defined by p = Z?;é ol we
have u(Hy) = Hy .-

Remark 5.15. We warn the reader that the map that we denoted by p in [Ro] is the map % .

We now look at the blocks of HE. Let aw € QF and denote by [a] the orbit of o under the
action of o (cf. Definition 2.27). The subalgebra #H}; C H} is not necessarily stable under o.
Indeed, by (5.10a) we have

o(Hy) CHy.o (5.16)

Hence, the smallest subalgebra of H]: stable under o and containing H}, is

Hiy = D H-
pela]

Similarly, we define Pg, = Uge[o)Pj. Note that by Lemma 2.29 we have [A] C P Hence, as

for the tableaux, there is a well-defined equivalence relation ~ on 73[’;] generated by A ~ “A. We

write ‘B’[“a | = 73[”;} /~ for the set of equivalence classes. As in §5.2.2, the algebra H[ o] is cellular,
with cellular basis {c} : A € Pl and s,t € T(A)}. As in the introduction, if Hy € HF
denotes the subalgebra of fixed points of o then H7 o] = /L(H’[’”Od).
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Proposition 5.17. Let

o: U TN— U TIA

NEB, NEB,
be a lift of the canonical projection. The family

() X ePL s e TN, te TN}, (5.18)

is an F-basis of Hp ]’

Proof. Tt suffices to prove that the family
{07(cd) 5 €{0,....p— 1L AP s € T te TPV},

is an F-basis of 7—[’[2{]. For any j € {0,...,p — 1}, define the idempotent

=YY efresalt

AP T (N

The family {c : X € Prps € T(A) te TP ()} is an F-basis of ’Hfa}eg. Since k is compatible
with (d,n,p), for any X € 73[’;} and any A-tableau t we have

res (7t) = res,(t) + 7.

Using (5.4), we deduce that J(ej-)) ]H for all j € {0,...,p — 1}. Hence the family {o7(c)
A€ 73[’; s € T(A),te Td) A)} is an F-basis of Hiy€j- By (5.11c) and Lemma 5.12 we have
Zj 0 ] =1 thus H[ 1 }e and we conclude. O

a] T = [oz

Remark 5.19. Recall from Remark 5.14 that the algebra 7—[’[’”& | is Z-graded. By [Ro], the algebra
H, (o) 18 also Z-graded and the basis (5.18) is homogeneous.

)

We will prove the following partial alternative:

o if #[a] = p, the family (5.18) is a (graded) cellular basis of H; (o> for a particular choice
of lift ¢ (§5.2.4);

e if #[a] < p and p is odd, for any lift ¢ the family (5.18) is not an adapted cellular basis

of 7 (,)» in the sense of Definition 5.27 (§5.2.5).

5.2.4 Cellular basis in the full orbit case

Let o € QF and assume that #[a] = p. By Lemma 2.29, given A € 73[’;] we know that for any

t € T(A) there is a unique standard tableau t, € [t| whose underlying r-partition is in P/5. We
have in fact t, € T(Ay), where A, is the unique element of [A] that is in P/. We obtain a map

o U TN — U TN
(Aepr, eRr, :
t — t,

that lifts the natural projection. For any A € 77[’;], we have

{T(,\), if X € Pr,

0, otherwise.
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The basis (5.18) of H o) that we obtain is thus
{m(c}) : X e Py and s,t € T(A)}. (5.20)

For any A € P% and 5,t € T(X), we set d)} := u(c}). Recall that (P4, T,c) is a cellular datum
for HE.

Proposition 5.21. Recall that #[a] = p. The triple (P%,T,d) is a cellular datum for Hp o]

Proof. 1t suffices to prove that u commutes with * and induces an algebra isomorphism between
HE and 7—[;,[ o] The first point is clear: indeed, since * fixes each Khovanov—Lauda generator
and by the action of o on these generators (cf. (5.10)) we know that % and o commute. Now,
the restriction of p to HY is an algebra homomorphism. Indeed, for any j € {1,...,p — 1} we
have a # 07 - a since #[a] = p, hence for any h,h’ € HY we have ho’(h') = 0 (recall (5.11b)

and (5.16)). We conclude since by (5.20), p1 sends a basis of 1, onto a basis of H o] O

Corollary 5.22. Ifp and n are coprime then the algebra Hy ,, is cellular.

Proof. Let us first prove that #[3] = p for all 8 € QT with |3] = n. If #[3] = p’ then p’ divides
p and we can write
p'n—1
B = E: 5&0%4-aﬂn+i+"'+%%d7nyn+07
i=0

where d := 1% and By, ..., Byy—1 € N. We deduce that

p'n—1

=0

hence d divides n. But d also divides p thus d = 1 and p’ = p as desired. Hence, each subalgebra
appearing in the following decomposition

F) Hy 15, (5.23)

[BleQr

is cellular by Proposition 5.21, where 9 is the quotient of Q! by the equivalence relation ~
generated by 8 ~ o - (8 for all B € Q. We now easily check that Hj,, is cellular, using the
following fact: for any [3] # [3'] € QF we have hh/ = 0 for all h € H{s and B e Higy (cf
(5.11b)).

5.2.5 Adapted cellularity

Let o € QF and let ¢ be as in Proposition 5.17. By (5.6), we have

dimHy o = > (#TO)) (#TP (V)

XEP,)
_ p P ¢\
= Y LT IN) (T
2 ) T ) T ()
= 3 %(#Tf{xn S 4T (w)
AP, nel
b @ 2
= L (TN
NEB, (Al ’



Recalling that #Tf [A] does not depend on ¢, we obtain

; K _ b 2
dmHy = > gy #TR)™ (5.24)
NEBE,
Remark 5.25. With (5.6) and Remark 5.1 we obtain the equality dim 7—[“[

pla] T

d1m7-[[

Suppose that there exists a cellular datum (A, 7, ¢) for 7—[’; o] Remark 5.1 and (5.24) give
two ways to write dim ’H; [o] @S @ sum of squares:

al’

dim H;; Z #T (A Z #(#%P‘D%

AEA By }E‘I*[a]
These two sums have the same terms up to reordering if and only if for all [A] € 2]3’["04, there

exist Apy) ;- - )‘[M € A such that

#T(A\g) = #TolN], for allje{l,...,m}, (5.26a)

and
. b
A A vy and ..., —&=¢¢ =A 5.26b
{3 ey and e {1 20 (5.26b)
Recall that the anti-automorphism * : Hf — H¥ was fixed in §5.2.2.

Definition 5.27. Suppose that (A, 7, ¢) is a cellular datum for Hp (- We say that (A, T,c)is
an adapted cellular datum if for all [A] € By, there exist Ay 1, )‘[M € A such that the

conditions (5.26) are satisfied, together with ()" = ¢ for all A € A and s, t eTN.

We say that a basis B of 7—[; B is adapted cellular if there exists an adapted cellular datum
(A, T,c) for H |, such that B coincides with {cd:xeAands te TN}

Lemma 5.28. Let A € P% and s,t € T(X). Then u(c})” = u(cd) if and only if

s =1, if p is odd,

s =1t oro”?(c) =, if p is even.

Proof. Since p and * commute, we have

()" = plet) Zaﬂ

Thus, if p(c})” = p(c) then
p— p—1
Yool =D ().
j=0 =0
By (5.10a), (5.11a), (5.11b) and (5.13), we deduce that there exists j € {0,...,p—1} such that
cp = ol (). (5.29)

Since o and * commute, we obtain



thus,
o7 (c) = 0¥ (cfy)-
Combining with (5.29), we obtain
cf; = g% (cf;)

By (5.10a), (5.11a) and (5.11b) and since n € (Z/eZ)™ has order p, this equality implies that
25 € {0,p}. If p is odd then j = 0 and (5.29) yield ¢ = ¢ thus s = t. If p is even then
J € {0, %} and similarly we conclude using (5.29). The converse is straightforward. O

Given the result of §5.2.4, it seems natural to look for a cellular basis for Hy B of the
form (5.18). The following proposition uses Corollary 2.34 to give a partial answer to this
problem.

Proposition 5.30. If #[a] < p and p is odd then the basis (5.18)
() X ePL s e TV, te TN},
of #p ol

Proof. Let N be the cardinality of

(i) X e Py s € T, te TP, 1) = m(ed)} -

Assume that the basis (5.18) is adapted cellular with associated cellular datum (A, 7, ¢). Lemma 5.2
yields, with the notation of Definition 5.27,

N=> #T()\

A€A

is not adapted cellular.

We have ﬁ > 1 for all [A] € ‘B’f Moreover, since #[a] < p we know by Corollary 2.34 that
there exists [A] € P such that Zr5 > 1. Thus, we obtain

N> > #To[Al (5.31)
RIS

#P\

But now p is odd, thus by Lemma 5.28 we know that
//J(csl\t) _Cs)‘t — 5:’(,

for all X € P, 5 € T(A) and t e 7'¢ . Hence, the only elements of the basis (5.18) that are

fixed by the * anti- automorphlsm are the p(c) for all A € Py and s € 76¢(A). We obtain

al

N=Y #7700 = Y #TN) = Y #To[A
)\GP[’;] AEP[” I [A]G‘Bfa]

which contradicts (5.31). O
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Remark 5.32. We can also define an adapted cellularity for Hj, , similarly to Definition 5.27.
Using Proposition 1.2, we can show that if p and n are not coprime and p is odd, then the basis
of Hy,, that we obtain from (5.18) and (5.23) is not adapted cellular. Note that, under these
conditions, there can exist an a € QF with #[a] = p, so that the subalgebra 7-[’;7[&] is cellular

(cf. §5.2.4). This explains why we are dealing with 7—[;7[&} and not only with H7 .

5.3 Restriction of Specht modules

Since we have a cellular datum (P, T, ¢) for the algebra H}, we have a collection of cell modules
{8* : X € P%}. In this case, the cell modules are called Specht modules. The algebra My, is nOt
known to be cellular in general, but Hu and Mathas | | defined what they also called
Specht modules for Hj .. It is a family

{Sj‘\:je{o,...,#—l}},

of Hj ,-modules with
Hy
A n ~ A DY A
S ng’n ~S53 DD S#’f,\]_l’ (5.33)

K

Hy
for any A € P}, where SAL{K denotes the restriction of the H/-module S? to an H, ,-module.
p,n
For any A € P and j,5" € {0,..., # — 1}, the H}; ,,-modules S]’»\ and S]’»\, are isomorphic up to
a twist of the action of Hj ,,. The purpose of the name “Specht module” is that each irreducible
Hj, ,-module is isomorphic to the head of a Sj‘.

By Proposition 1.2, we know that the maximal number of summands in (5.33) is ged(p,n)
when we restrict a Specht module of H! and that this bound is reached. Our result Corollary 2.34
refines this result.

Proposition 5.34. For any a € QF, the mazimal number of summands in (5.33) is % and
this bound is reached, when we restrict a Specht module S with X € 77[’;], that s, when we
restrict a Specht module of 7—[’[2{].

Acknowledgements I am thankful to Maria Chlouveraki and Nicolas Jacon for their numer-
ous corrections and suggestions about the presentation of the paper.
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