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Abstract. In this work, a method to estimate unsteady 2D heat sources is developed. The 
sources are estimated from Infra-Red (IR) temperature mapping on the front face of thermally 
thin material. A comparison of the estimation accuracy as well as the evaluation of time cost is 
also carried out between a direct method (coupled with filtering techniques) and an iterative 
method (of conjugate gradient type). The present work was realised on experimental data. 
 

1. Introduction 

Composite materials, such as matrix resin reinforced with glass fibers are designed because of their 
noticeable mechanical properties and can be found in various applications and especially in 
aeronautics. Their mechanical behaviour is strongly coupled to their thermal behaviour when in use. 
Such a behavior is known as the thermo-mechanical behaviour law of the material. It is important to 
know this law particularly to understand the damage mechanisms. Heating ignition of such materials is 
present when subjected to an inelastic deformation (e.g. in a tensile test experiment), either in quasi-
static regime or in fatigue regime. Thermal ‘observation’ of such material during mechanical stress 
can thus be useful to understanding the mechanisms of its damage (fiber/matrix rubbing, creating 
cracks in the matrix, rupture of fibers, etc.). 

This observation is, however, not sufficient if it is not associated with a method of estimating heat 
sources allowing the precise determination of the energies involved during these tests. These estimates 
consist in determining the cause (the source) from the consequence (the temperature field measured by 
IR thermography) and correspond to the category of inverse problems in heat conduction. Some 
methods have already been developed mainly in 1-D framework for homogeneous materials. They 
allow the estimation of the heat sources involved during tensile tests on homogeneous materials [1]. 
Very recently, direct 2-D methods have been developed on numerical [2] and experimental data. These 
methods are classified according to three main families [3]: 
- methods based on calculation of derivatives (regularization by data filtering) [4] 
- methods based on the research of “quasi-solutions” (regularization of the inverse operators) [5] [6] 
- methods based on successive optimization (iterative algorithms on direct problem) [7] 

In this work, two methods have been developed for comparison of their performances (precision 
and speed). The first method (corresponding to the first family) is a 2-D direct inversion by identifying 
the source term of the diffusion equation coupled to filtered data [8]. The second method 
(corresponding to the third family) uses the conjugated gradients in 2-D [7]. 
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2. Experimental setup 
 
A linear heating resistor (and flat) (Figure 1b) is positioned between two thin sheets of vinyl. The 
‘sandwich’ is painted in black to overcome the problems of reflection and emissivity to form a test 
sample (Figure 1b). The complete thermal experiment description is presented in Figure 1c with the 
following dimensions: Lx=6.33cm x Ly=5.63cm 
 

             
Figure 1a. Plane electrical 
resistors 

Figure 1b. Test sample Figure 1c. Scheme of the 
thermal experiment 

The spatial and temporal distribution of this heat source is presented in Figure 2. The boundary 
conditions in 0,  ,  0  x x Lx y and y Ly= = = =  ( )-43.5175 10dx dy m= = ×  are considered as adiabatic 
because of the small involved areas and the embedded heating source is far enough from the edges and 
the material has a low thermal diffusivity. The acquisition is made by an IR camera to a frequency of 
50Hz ( 0.02 ,  40 )finaldt s t s= = . 

 
Figure 2. Space and time experimental profiles of heat sources  

1.5e mm= ; 10 31.85592 10dV e dx dy m−= × × = ×  ;  10 / ².ch W m K=  
( ) ( )_ max ax

6
m  2  –     d 12d 0x .73 1yconv amb cP T h W WT −= × × × × = ×   

( )6 63   1.03 10  / 191.16 10prod dVW WS m −= × × = ×   

Convective losses represent less than 6% of the heat source we want to estimate. Therefore, during this 
study, we will neglect these convective losses. 

We work with the following physical configuration:  
31380 / ; 1160 / . ; 0.355 / .vinylrho kg m cp J kg K k W m K= = =   

Imposed source: 3
6 3

-9

P U × I 2V×0.07A 0.14 WS  = = =  =  = 1.03×10  W/m
V l×L×e 0.003m×0.03m×0.0015m 13 m5×10
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3. Two dimensional unsteady heat sources estimation 

3.1. Direct Method 

3.1.1. Description 
The equation governing heat diffusion in the material is given by: 

( ) ( )( ) ( ), ,
  . , , , ,p

T x y t
C T x y t S x y t

t
ρ λ

∂
−∇ ∇ =

∂

 

            (1) 

The resolution of the inverse problem is based on the discretization by an implicit finite difference 
scheme (order 1 in time and order 2 in space). The estimation of sources terms field is done by 
identifying the first and second derivatives terms of the temperature. The implicit discretization allows 
the stability of the numerical scheme and to obtain a matrix ‘operator’ linking directly the causes 
(Boundary Conditions and Sources) to the consequences (temperature field). The discretization is done 
so that the searched sources are at the pixel scale. The material is isotropic and thermally thin, 
thermally thin. Its thermal properties do not depend on the temperature. No prior information on the 
spatial-temporal form is given. The initial temperature is known and uniform (𝑇𝑖𝑖𝑖𝑖 = 20°𝐶). Using 

the thermal diffusivity
.Cp
λα

ρ
= , the discretization of the heat diffusion equation gives [3], [6]:  

[ ]{ } { } { }1 1N+ += +N NA  T T S                        (2) 
[ ] { } Matrix Representation   ;   Vectorial Representation ; N = time index   ;    N+1 = future time index X X− −         
In this equation (2), the 2D matrix T(x,y) is reorganized in a vector T(k) where k contains the two XY 
coordinates. 
 
To find the source terms, it only needs to apply the tridiagonal operator [A] on the temperature field 
and subtract it from the temperature field in the previous step. 

{ } [ ] { } { }1 1.N N+ += −NS A  T T                         (3) 

Therefore, the ‘direct’ calculation of { } 1+NT would requires a matrix inversion (of A) from eq. (2) 
whereas the inverse calculation (calculation of the 2D source term) only requires a vector matrix 
product and a subtraction [9], [10]. Anyhow, the measurement noise is amplified by the matrix [A], 
which justifies a preliminary filtering of input data that will be realized thanks to the singular value 
decomposition (SVD). 

3.1.2. Data filtering by singular values decomposition (SVD) 
Singular value decomposition of a rectangular matrix X (m, n) (i.e. the 2-D field temperature at a 
given time) is given by the expression:  

   TX  U S V=              (4) 
This mathematical decomposition [11] is a matrix factorization that directly gives a diagonal 
rectangular matrix [S] in a direct way containing the singular values of the matrix X (in decreasing 
order). It is thus possible to implement a low-pass filter by truncating these modes from a certain rank. 
The matrices U and V contain a set of orthonormal vectors: U is the matrix of eigenvectors of XTX, 
and V is the matrix of eigenvectors of 𝑋𝑋T. Truncating a part of the singular values is a way to 
compress the input data (matrix X). The filtering is performed in three steps on 2-D matrices extracted 
from our data T (x, y, t). The first step is a purely spatial SVD filtering process applied on each 
temperature map T(x,y) obtained at each time step. This gives the filtered field T_f1 (x,y,t). This field 
is then subjected to a second SVD filtering process, at each y value, on the extracted T_f1 (x,t) 2D 
matrices; that gives the filtered field T_f2 (x,y,t). The third step is also a SVD space and time filtering  
applied, at each x value, on the extracted T_f2 (y,t) 2D matrices. 
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Figure 3. 1-D section (over the time, at x=80.dx & y=75.dy) of errors with perfect signal for noisy and 
filtered signals at different filtering levels  
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
Figure 4.  1-D section (over the time) of errors with perfect signal for noisy and filtered signals at 
different filtering levels (ZOOMED) 
 
The Figure 3a shows also a maximum heating of 5°C above the initial temperature. Therefore, it is 
possible to neglect the convective losses of the sample. 
 
The new standard deviations of the residual noise measurement (post filtering) as well as the noise’s 
reduction ratio according to different axes of the data matrix are presented below: 

)
)

( 0.65 28.26
( 0.023

old

new

Std X
Std X

= =                     
)
)

( 0.65 34.21
( 0.019

old

new

Std Y
Std Y

= =                
)
)

(t 1.3 92.86
( 0.014

old

new

Std
Std t

= =  

3.1.3. Estimation results 
Despite the filtering effort, the identified heat source is finally too noisy, and does not enable to 
retrieve the imposed heat source profiles (see green curves on Figure 5). Therefore, in order to 
stronger regularize our estimation, we proceed to an oversampling of our input data (temperatures) 
followed by a moving temporal average of our output data (source terms fields obtained by the first 
inverse method). The estimation thus appears correct for a temporal average of at least 20 time steps 
(newdt = 20.dt) [Figure 6]. This method is very interesting because of its short computation time and 
its simplicity; but the precision of the estimation requires material that would allow a high frequency 
acquisition, and of low diffusivity in order to suppose the quasi-steady state of the system during the 
20 time steps required for the moving average. 
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3.2. Conjugate Gradient Method (CGM) 

3.2.1. Description 
The conjugate gradients method consists in solving the direct problem corresponding to our 
experiment, with a given prescribed heat source, and to minimize the squared difference between the 
results and temperature measurements, by modifying the prescribed heat source in the model. The 
subsequent resolution of adjoint and sensitivity problems leads to the determination of the direction of 
descent and the step size respectively. The direct problem is defined by the heat diffusion equation 
presented in paragraph 3.1.1 (inputs: sources / outputs: temperatures). 𝑇𝑖𝑖𝑖𝑖 = 20°𝐶 

3.2.2. Inverse problem 
The inverse problem consists in estimating S in order to minimize the squared difference defined by 
the following criterion: 

( ) ( ) ( )( )2

1 0

1  , , , , , ,
2

x yN N t

cal measJ S T x y t S T x y t S dt= −∑ ∫            (5)   

measT - Measured temperature by  IR thermography   

calT - Calculated temperature by direct problem resolution  

The conjugate gradient method is an iterative method which consists in approaching the new iterated 
1itS + from the previous iterated itS  as follows: 

( ) ( )1 , , ( , , ), , .it it it it
descente descenteS x y t S x y t D x tP y+ = −                         (6)   

itS - Estimated heat source at iteration it   
it

descenteP - Step size calculated at iteration it   
it

descenteD - Direction  of descent calculated at iteration it     

The specificity of this method is to build the direction of descent 𝐷𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑖𝑖  in such a way that the 
successive directions of descent are combined together. To do this, the direction of descent at each 
iteration is calculated as follows: 

( ) ( )1, , ( , , ) . , ,it it it it
descente descenteD x y t x y t D x y tβ −= Ψ +                        (7)   

With itβ , the conjugation PRP [7] coefficient is defined by: 

( ) ( ) ( )( )
( )

1

1

[Ψ , , . Ψ , , Ψ , , ] Ω 

Ψ , , ²

it it it
it

it

x y t x y t x y t d dt

x y t
β

−

−

−
=∬                       (8)   

3.2.3. Adjoint problem & Gradient equations 
The adjoint problem enables to obtain the expression of the criterion gradient J∇  in order to 
determine the direction of descent. We show mathematically that in our case of heat sources 
estimation, the criterion gradient is equal to the Lagrange multipliers: 

J∇ = Ψ         (10) 
The resolution of the adjoint problem enables to calculate the Lagrange multipliers: 

                         
( ) ( )( ), ,

  . , , ( , , ) ( , , )p cal meas
x y t

C x y t T x y t T x y t
t

ρ λ
∂Ψ

+∇ ∇Ψ = −
∂

 

                        (11)   

This problem is solved in a backward way in time; we then need to impose a final condition in order to 
start this backward process: ( ), , t 0finalx yΨ =  
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3.2.4. Sensitivity problem & Step size 
The resolution of the sensitivity problem aims to give the equations that enable to obtain the sensitivity 
function according to the unknowns to finally calculate their step size in the direction of descent: 

( ) ( )( ) ( )
 , ,

 . , , , ,p
descente

C T x y t
T x y t D x y t

t
ρ d

λ d
∂

−∇ ∇ =
∂

 

                       (12) 
Calculation of the step size: 

( ) ( )( ) ( )

( )( )

.

1 0
.

1 0

, , , , . , ,  
 

, , ² 

tNx Ny it it
cal measit

descente tNx Ny it

T x y t T x y t T x y t dt
P

T x y t dt

d

d

−
=
∑ ∫

∑ ∫
               (13)   

3.2.5. Stopping criterion 
In accordance with the "discrepancy principle", the iterations continue while the criterion is strictly 
greater than the threshold value defined by: 

1 . . . ²
2 x y tThreshold N N N s=               (14)   

x y tN ,N , N -Number of point X,Y,t   
Standard deviation of noises −   

The problems encountered by this type of method generally fall within the slow convergence of the 
iterative calculation, or the tendency of the algorithm to adapt the model to fit the noise fluctuations 
into the signal. To avoid ‘explaining noise’ from the model, and for acceleration of convergence, an 
interesting trick consists in using the preliminary filtered data (in order to reduce the measurement 
noise) and to rely on stopping criterion the local algorithm at pixel. By choosing a local criterion, the 
expression of the threshold changes because it is specific to each pixel: 

Here, with  𝜎 = 0.03 𝐾       1 . ²
2 tThreshold N s=                       (15) 

3.2.6. Optimizing computational time 
The set of calculations are performed on the Matlab software. The simplicity of the problem geometry 
allows optimizing the computation time. The three problems i.e. direct, adjoint and sensitive are 
solved by an explicit finite difference scheme. This scheme is preferred for its resolution simplicity; it 
is moreover possible to replace the matrix products by simple products terms by terms by tri-diagonal 
aspect of transfer matrices which further optimizes the speed of the calculations. It is simply needed to 
ensure the stability of scheme by choosing a mesh Fourier number Fo such as:  

( )2
. 1

4
tFo

x
α ∆

= <
∆

 , thermal diffusivityα =  

3.3. Comparison between CG Method & Direct Method 

To estimate heat productions imposed inside the material, both methods give correct results. However, 
some over and under source estimations appear. If we want to estimate an intense threshold 
(rectangular function) it is important to not over-regularize the inversion, which explains why some 
oscillations emerge. This error set is largely due to the two-dimensional approximation. Indeed, 
although the “thermally thin” supposition is valid, the sample includes several layers (vinyl-paste-
vinyl paint), and it becomes very difficult to predict the behavior of the 2D thermal diffusion. Mistakes 
made on the material’s properties thermo-physical characterization are also very important as we have 
seen in the previous part. We can also wonder if the ignition resistance is really instantaneous and 
uniform across the resistance’s surface. 
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Figure 5.  1D heat sources estimations by direct and iterative methods, with SVD filtering, without 

moving average 
 

 

 
Figure 6. 1D heat sources cut estimations by direct and iterative methods, with SVD filtering, with 20 

frames moving average 

The direct method is simple to implement. Indeed, the implicit finite difference scheme 
(unconditionally stable) discretizes only the time with order 1 but shows only one operator, therefore 
the inversion only requires a matrix-vector product; moreover, this matrix operator possesses a lower 
conditioning (~ 100) which limits the amplification of random perturbations of the input signal. This 
method is very interesting to use if the studied material is low diffusive and subject to have an 
acquisition material allowing an oversampling of the input data, because the estimation result (with 
implicit scheme, SVD filtering and post moving average) is quantitatively satisfactory and also very 
fast in these exploitation conditions. The method is also very effective for estimating the spatial and 
temporal steep fronts. 

The conjugate gradient method is generally much more stable. It is important to correctly initialize the 
domain temperature during each resolution of the direct problem. This stability also implies a 
tendency (due to the diffusive nature of the equation solved) to mitigate steep fronts sources. 
However, convergence and estimation are optimized due to the introduction of a local convergence 
criteria which reduces the number of iterations (with a low number of iterations, estimation is stable 
but very imprecise because regularization is very important) and at a given filtering data which 
reduces the standard deviation of the measurement noise and increases the number of iterations (to 
better approach the exact solution); this combination is a very good compromise to represent all the 
source grades all by regularising the estimation. 
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The programming optimization soft the numerical scheme in both cases make these methods relatively 
quick methods in terms of calculation time (5 minutes for the direct method and ~ 2 hours for the 
iterative method) Nx=181 ; Ny=161 ; Nt=2000. 

4. Conclusion 
To conclude, we can say that the difficulty of an inverse problem is principally to correctly regularize 
the resolution, but without creating bias in the estimation. Every configuration corresponds to a 
method or an optimal combination of methods. In case of heat sources estimation, it seems better to 
use conjugate gradient method than direct method because of its stability and for its estimation way; 
this method has a more general behaviour than the other. The execution times are acceptable for both 
methods (in the physical configuration presented in this article), it is possible to consider (in a 
thermomechanical test) to use both methods to check the accuracy of the estimations and deduce a 
relevant physical analysis. The solution for a better estimation could be working on a 
thermomechanical experiment, where heat sources would take place in homogeneous way in the 
material, without multilayer problems.  
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