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Abstract

The multidimensional Gaussian kernel-density estimation (G-KDE) is a
powerful tool to identify the distribution of random vectors when the max-
imal information is a set of independent realizations. For these methods, a
key issue is the choice of the kernel and the optimization of the bandwidth
matrix. To optimize these kernel representations, two adaptations of the
classical G-KDE are presented. First, it is proposed to add constraints on
the mean and the covariance matrix in the G-KDE formalism. Secondly, it
is suggested to separate in different groups the components of the random
vector of interest that could reasonably be considered as independent. This
block by block decomposition is carried out by looking for the maximum of
a cross-validation likelihood quantity that is associated with the block for-
mation. This leads to a tensorized version of the classical G-KDE. Finally, it
is shown on a series of examples how these two adaptations can improve the
nonparametric representations of the densities of random vectors, especially
when the number of available realizations is relatively low compared to their
dimensions.
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1. Introduction

The generation of independent realizations of a second-order R
d-valued

random vector X, whose distribution, PX(dx), is unknown but can only be
approximated from a finite set of N ≥ 1 realizations, is a central issue in
uncertainty quantification, signal processing and data analysis. One possible
approach to address this problem is to suppose that the searched distribu-
tion belongs to an algebraic class of distributions, which can be mapped
from a relatively small number of parameters (for instance, the multidimen-
sional Gaussian distribution). Generating new realizations of random vector
X amounts therefore at identifying the parameters that best suit the avail-
able data and then, at sampling independent realizations associated with the
identified parametric distribution. However, when the dependence structure
associated with the components of X is complex, such that its distribution
can be concentrated on an unknown subset of Rd, the definition of a rele-
vant parametric class to represent PX(dx) can become very difficult. In that
case, nonparametric approaches are generally preferred to these parametric
constructions [? ? ]. In particular, the multidimensional Gaussian kernel-
density estimation (G-KDE) method approximates the probability density
function (PDF) of X, if it exists, as a sum of N multidimensional Gaus-
sian PDFs, which are centred at each available independent realization of
X. Optimizing the covariance matrices associated with these N PDFs is a
central issue, as they control the influence of each realization of X on the
final approximation of PX(dx). Even if there are many contributions on this
subject (see for instance [? ? ? ? ? ]), when the dimension d of X is
high (d ∼ 10− 100), constant covariance matrices parametrized by a unique
scaling parameter are generally considered. In particular, the Silverman rule
of thumb [? ] for choosing this scaling parameter is widely used because of
its simplicity and its good asymptotic behaviour when N tends to infinity.
However, for fixed values of N , this Silverman choice often overestimates the
scattering of PX(dx), and can have difficulties to correctly concentrate the
new generated realizations of X on their regions of high probability.

To overcome this problem, a two-step procedure is introduced. First, we
suggest to center and to uncorrelate the random vector X (using a Principal
Component Analysis for instance). Then, based on the maximization of a
global "Leave-One-Out" likelihood, the idea is to separate in different blocks
the elements of X, which could reasonably be considered as statistically
independent. A tensorized version of the classical G-KDE that is adapted
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to this dependence structure is eventually proposed. Indeed, for a finite
number of realizations of X, the less elements there are in each group, the
more chance we have to correctly infer the multidimensional distribution of
each sub-vector constituted of each group elements, and so the better should
be the estimation of the PDF of X. Nevertheless, the identification of this
(unknown) block decomposition is a difficult combinatorial problem. This
paper presents therefore two algorithms to find relevant block decompositions
in a reasonable computational time.

The outline of this work is as follows. Section 2 presents the theoretical
framework associated with the G-KDE and the optimization of the covariance
matrices on which it is based. The block decomposition we propose is then
detailed in Section 3. At last, the efficiency of the method is illustrated on a
series of analytic and industrial examples in Section 4.

2. Theoretical framework

Let X := {X(ω), ω ∈ Ω} be a second-order random vector defined on
a probability space (Ω, T ,P), with values in R

d. We assume that the prob-
ability density function (PDF) of X exists. By definition, this PDF, which
is denoted by pX , is an element of M1(R

d,R+), the set of positive-valued
functions, whose integral over R

d is 1. It is assumed that the maximal
available information about pX is a set of N > d independent and dis-
tinct realizations of X, which are gathered in the deterministic set S(N) :=
{X(ωn), 1 ≤ n ≤ N}. Given these realizations of X, the kernel estimator
of pX is

p̂X(x;H ,S(N)) =
det(H)−1/2

N

N∑

n=1

K
(
H−1/2 (x−X(ωn))

)
, (1)

where det(·) is the determinant operator, K is any function ofM1(R
d,R+),

and H is a (d × d)-dimensional positive definite symmetric matrix that is
generally referred as the "bandwidth matrix". In the following, we focus on
the classical case when K is the Gaussian multidimensional density. Hence,
the PDF pX is approximated by a mixture of N Gaussian PDFs, for which
the means are the available realizations of X and the covariance matrices
are all equal to H :
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p̂X(x;H ,S(N)) =
1

N

N∑

n=1

φ (x;X(ωn),H) , x ∈ R
d, (2)

where for any R
d-dimensional vector µ and for any (Rd × R

d)-dimensional
symmetric positive definite matrix C, φ(·;µ,C) is the PDF of an R

d-dimensional
Gaussian random vector with mean µ and covariance matrix C:

φ (x;µ,C) :=
exp

(
−1

2
(x− µ)T C−1 (x− µ)

)

(2π)d/2
√

det(C)
, x ∈ R

d. (3)

By construction, the matrix H in Eq. (2) characterizes the local con-
tribution of each realization of X. Thus, its value has to be optimized to
minimize the difference between pX , which is unknown, and p̂X(·;H ,S(N)).
The mean integrated squared error (MISE) performance criterion

MISE(H ; d,N) = E

[∫

Rd

(pX(x)− p̂X(x;H ,S(N)))2 dx

]
(4)

is generally considered to quantify such a difference. Here E [·] is the mathe-
matical expectation. For this criterion, it can be noticed that the set S(N) is
random, whereas in the rest of this paper it is deterministic. Given sufficient
regularity conditions on pX , an asymptotic approximation of this criterion
can be derived. In low dimension, the value of H that minimizes this asymp-
totic criterion can be explicitly calculated, but its value depends on the un-
known PDF pX and its derivatives (see [? ] for more details). Studies have
therefore been conducted to estimate these functions (generally iteratively)
from the only available information given by S(N) (see for instance [? ? ]).
However, the convergence of these methods is rather slow in high dimension,
such that in practice, a widely used value for H is given by the Silverman
bandwidth matrix

HSilv(d,N) := (hSilv(d,N))2




σ̂2
1 0 · · · 0

0 σ̂2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 σ̂2

d


 (5)

where for all 1 ≤ i ≤ d, σ̂2
i is the empirical estimation of the variance of Xi,

and where
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hSilv(d,N) :=

(
1

N

4

(d+ 2)

) 1
d+4

. (6)

This expression, which is derived from a Gaussian assumption on pX , is
thought to be a good compromise between complexity and precision. How-
ever, it is generally observed that, for fixed values of N , when the distribution
of X is concentrated on an unknown subset of Rd, the more complex and
disconnected this subset, the less relevant the value of HSilv(d,N). To face
this problem, the diffusion maps theory [? ] can be used to bias the gen-
eration of independent realizations under p̂X(·;HSilv(d,N),S(N)) and make
them closer to the ones we could have got if they had been generated under
the true PDF pX . Indeed, diffusion maps are a very powerful mathemati-
cal tool to discover and characterize sets on which the distribution of X is
concentrated, and their coupling to nonparametric statistical representations
has shown promising results, even when dealing with very high values of d
[? ].

From another point of view, the likelihood L(S(N)|H) associated with
H can also directly be used to identify relevant values of H . From Eq. (1),
it follows that

L(S(N)|H) :=

N∏

n=1

p̂X(X(ωn);H ,S(N)) =
1

NN

N∏

n=1

N∑

m=1

φn,m(H), (7)

φn,m(H) := φ (X(ωn);X(ωm),H) , 1 ≤ n,m ≤ N. (8)

The function L(S(N)|H) uses twice the same information (to compute
p̂X(·;H ,S(N)) and to evaluate it). Hence, it tends to infinity when H tends
to zero, which can be seen as an overfitting of the available data. In order
to avoid this phenomenon, it is proposed in [? ] to consider its "Leave-One-
Out" (LOO) expression

LLOO(S(N)|H) :=
N∏

n=1

1

N − 1

N∑

m=1,m6=n

φn,m(H) (9)

instead. Given this approximate likelihood obtained from an LOO cross-
validation, and an a priori density pH for H , Bayesian approaches can be
used to compute the posterior density of H [? ]:
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pH(H|S(N)) := c LLOO(S(N)|H)pH(H), H ∈M
+(d). (10)

Here, c is a normalizing constant and M
+(d) is the set of all (d×d)-dimensional

symmetric positive definite matrices. In particular, the maximum likelihood
estimate of H is denoted by

HMLE(d,N) := arg max
H∈M+(d)

LLOO(S(N)|H). (11)

Additionally, considering that the best available approximations of the
true mean and covariance matrix of X are given by their empirical estima-
tions

µ̂X :=
1

N

N∑

n=1

X(ωn),

R̂X :=
1

N − 1

N∑

n=1

(X(ωn)− µ̂X)⊗ (X(ωn)− µ̂X),

the expression given by Eq. (1) can be slightly modified to ensure that
the mean and the covariance matrix of the G-KDE approximation of X are
equal to these estimations. Following [? ], this can be done by considering
the subsequent proposition. The proof is given in Appendix.

Proposition 1. If the PDF of X̃ is equal to

p̃X(·;H ,S(N)) :=
1

N

N∑

n=1

φ (·;AX(ωn) + β,H) , (12)

β := (Id −A)µ̂, H := R̂X −
N − 1

N
AR̂XAT , (13)

where A is any (d× d)-dimensional matrix such that H is positive definite,

then the mean and the covariance matrix of X̃ are equal to µ̂ and R̂X re-
spectively.

Given S(N), the G-KDE of the PDF of X under constraints on its mean
and its covariance matrix is denoted by p̃X(·;HMLE(d,N),S(N)). Here,
HMLE(d,N) is the argument that maximizes the LOO likelihood of H asso-
ciated with p̃X .
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Given µ̂, R̂X , and HMLE(d,N), the generation of independent realiza-

tions of X̃ ∼ p̃X(·;HMLE(d,N),S(N)) is straightforward. Indeed, for
any M ≥ 1, the Algorithm 1 (defined below) can be used to generate a
(d×M)-dimensional matrix Z, whose columns are independent realizations

of X̃. There, U {1, . . . , N} denotes the discrete uniform distribution over
{1, . . . , N} and N (0, 1) denotes the standard Gaussian distribution.

1 Let Q(ω′
1), . . . , Q(ω′

M) be M independent realizations that are drawn
from U {1, . . . , N} ;

2 Let M be a (d×M)-dimensional matrix whose columns are all
equal to µ̂ ;

3 Compute A such that H := R̂X −
N−1
N

AR̂XAT ;

4 Define X̄ :=
[
X(ωQ(ω′

1)
) · · · X(ωQ(ω′

M
))
]

;

5 Let Ξ be a (d×M)-dimensional matrix, whose components are dM
independent realizations that are drawn from N (0, 1) ;

6 Assemble Z = M +A(X̄ −M) +HMLE(d,N)1/2Ξ.

Algorithm 1: Generation of M independent realizations of X̃.

Finally, this section has presented the general framework to nonparamet-
rically approximate the PDF of a random vector when the maximal infor-
mation is a set of N independent realizations. Some adjustments of the
classical formulation have been proposed to take into account constraints on
the first and second statistical moments of the approximated PDF, and it
has been proposed to search the kernel density bandwidth as the solution of
a computationally demanding LOO likelihood maximization problem.

However, from the analysis of a series of test cases, it appears that R̂X is
a rather good approximation of HMLE(d,N) for the nonparametric modelling
of high dimensional random vectors (d ∼ 10− 100) with limited information
(N ∼ 10d for instance). From Eqs. (12) and (13), this means that we are
approximating the PDF of X as a unique Gaussian PDF, whose parameters
correspond to the empirical mean and covariance matrix of X:

lim
H→R̂X

p̃X(·;H,S(N)) = φ(·; µ̂, R̂X). (14)

This could prevent us from recovering the subset of Rd on which X is
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actually concentrated. To face this problem, we can be tempted to impose
smaller values for the components of H in the nonparametric model. If all
the components of X are actually dependent, there is however no reason
to do so without biasing the final constructed distribution in focusing too
much on the available data. Thus, instead of artificially decreasing the most
likely value of H (according to the available data), the next section proposes
several adaptations of this G-KDE formalism.

3. Data-driven tensor-product representation

This section presents some adaptations of the classical G-KDE to improve
the nonparametric representations of pX when the number N of available
realizations of X is relatively small compared to its dimension d. Following
[? ] and [? ], we first suggest to pre-process the realizations of X (from a
Principal Component Analysis for instance) such that X is now supposed to
be centred and uncorrelated:

µ̂X = 0, R̂X = Id.

Here, Id is the (d× d)-dimensional identity matrix. This makes independent
the components of X that were only linearly dependent. Then, the idea is
to identify groups of components of X that can reasonably be considered
as statistically independent, if they exist. Instead of using statistical tests,
we propose to search these groups by looking for the maximum of a cross-
validation likelihood quantity that is associated with each block formation.
Thus, given a block by block decomposition of the components of X, the PDF
pX is approximated as the product of the nonparametric estimations of the
PDFs associated with each sub-vector of X. For instance, if the d components
of X are sorted in d distinct groups, the approximation of pX corresponds
to the product of the d nonparametric estimations of the marginal PDFs
of X. Indeed, if the identified block decomposition is correctly adapted to
the (unknown) dependence structure of X, there are good chances for the
nonparametric representation of pX to be improved.

More details about this block decomposition are presented in the rest of
this section. First, we introduce the notations and the formalism on which
this decomposition is based. Then, several algorithms are proposed for its
practical identification.
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3.1. Block by block decomposition

For any b in {1, . . . , d}d and for all 1 ≤ i ≤ d, bi can be used as a block
index for the ith component Xi of X. This means that if bi = bj , Xi and
Xj are supposed to be dependent and have to belong to the same block. On
the contrary, if bi 6= bj , Xi and Xj are supposed to be independent and they
can belong to two different blocks. In order to avoid any redundancy in the
block by block parametrization of X, the following subset of {1, . . . , d}d is
considered:

B(d) :=

{
b ∈ {1, . . . , d}d | b1 = 1, 1 ≤ bj ≤ 1 + max

1≤i≤j−1
bi, 2 ≤ j ≤ d

}
.

(15)
Additionally, for any b in B(d), let

• Max(b) be the maximal value of b,

• s(ℓ)(X ; b) be the random vector that gathers all the components of X
with a block index equal to ℓ,

• dℓ be the number of elements of b that are equal to ℓ,

• Sℓ(N) be the set that gathers the N independent realizations of s(ℓ)(X; b)
that have been extracted from the N independent realizations of X in
S(N).

There exists a bijection between B(d) and the set of all block by block de-
compositions of X. For instance, for d = 5, all the elements of {(i, j, i, k, k), 1 ≤ i 6= j 6= k ≤ 5}
correspond to the same block decomposition of X, but only b = (1, 2, 1, 3, 3)
is in B(d). We can also identify

s(1)(X; b) = (X1, X3), s(2)(X; b) = X2, s(3)(X; b) = (X4, X5), (16)

Max(b) = 3, d1 = 2 d2 = 1, d3 = 2. (17)

According to Eq. (12), for any Hℓ in M
+(dℓ), the PDF of s(ℓ)(X; b) can

be approximated by p̃s(ℓ)(X;b)(·;Hℓ,Sℓ(N)). It follows that the PDF of X
can be constructed as the product of these Max(b) PDFs:
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p̃X(x;H1, . . . ,HMax(b),S(N), b) :=

Max(b)∏

ℓ=1

p̃s(ℓ)(X;b)(s
(ℓ)(x; b);Hℓ,S

ℓ(N)).

(18)
Such a construction for the PDF of X means that the vectors s(ℓ)(X; b),

1 ≤ ℓ ≤ Max(b), are assumed to be independent. For any b in B(d), let
HMLE

1 (b), . . . ,HMLE
d (b) be the arguments that maximize the LOO likelihood

associated with p̃X . Hence, for a given block by block decomposition of X
that is characterized by a given value of b, the most likely G-KDE of pX is
given by

p̃X(x;HMLE
1 (b), . . . ,HMLE

d (b),S(N), b). (19)

Using Eqs. (9), (12) and (18), for any b in B(d) and any (H1, . . . ,HMax(b))
in M

+(d1)× · · · ×M
+(dMax(b)), this LOO likelihood is given by

LLOO(S(N)|H1 . . . ,Hd, b) =

Max(b)∏

ℓ=1

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b), (20)

φ̃n,m(Hℓ, b) := φ
(
s(ℓ)(X(ωn); b);Aℓs

(ℓ)(X(ωm); b),H(ℓ)

)
, (21)

Hℓ := Idℓ −
N − 1

N
AℓA

T
ℓ . (22)

Noticing that

max
H1,...,HMax(b),b

Max(b)∏

ℓ=1

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b)

= max
b

Max(b)∏

ℓ=1

max
Hℓ

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b),

(23)

it follows that for a given block by block decomposition of X, the most likely
values of H1, . . . ,HMax(b) can be computed independently, and saved for

a possible re-use for an other value of b. Indeed, if b(1) = (1, 1, 2, 2), two
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values H
(1)
1 and H

(1)
2 have to be chosen for the bandwidth matrices (one for

each block). This means that two independent LOO likelihood maximization
problems have to be solved. In the same manner, if b(2) = (1, 1, 2, 3), three

values H
(2)
1 , H

(2)
2 and H

(2)
3 have to be chosen. However, given the same set

of realizations of X, it is clear that the most likely value of H
(1)
1 is equal

to the most likely value of H
(2)
1 . Hence, the most likely value of b, which is

denoted by bMLE, is eventually solution of

bMLE := arg max
b∈B(d)

LLOO(S(N)|HMLE
1 (b), . . . ,HMLE

d (b), b). (24)

There, we remind that for any b in B(d) and any 1 ≤ ℓ ≤ Max(b),

HMLE
ℓ (b) := arg max

Hℓ∈M
+(dℓ)

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b). (25)

Analyzing the value of bMLE can give information on the actual depen-
dence structure for the components of X. Indeed, if bMLE = (1, . . . , 1), the
most appropriate representation for the PDF of X is its classical multidimen-
sional Gaussian kernel estimation. This would mean that all the components
of X are likely to be dependent. On the contrary, if bMLE = (1, 2, . . . , d),
the most likely representation corresponds to the assumption that all the
components of X are independent. Other values of bMLE can also be used
to identify groups of dependent components of X, which are likely to be
independent the ones to the others.

3.2. Practical solving of the block by block decomposition problem

The optimization problem defined by Eq. (24) being very complex, we
suggest to search the most likely block by block decomposition of X using
very simple parametrizations of the bandwidth matrices. Indeed, once vector
X has been centred and uncorrelated, it is reasonable to parametrize each
bandwidth matrix Hℓ by a unique scalar hℓ, such that Hℓ = h2

ℓIdℓ . From
Eq. (22), it follows that

Aℓ =
N

N − 1

√
1− h2

ℓIdℓ . (26)

Hence, for a given precision ǫ, the complex problem of searching the most
likely values of H1, . . . ,HMax(b) can be reduced to minimizing Max(b) non
convex but explicit functions over the closed interval [ǫ, 1]. This can be done
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value of d 1 2 3 4 5 6 7 8 9 10
value of NB(d) 1 2 5 15 52 203 877 4140 21147 115975

value of Nmax
greedy(d) 1 3 8 17 31 51 78 113 157 211

Table 1: Evolution of NB(d) and Nmax
greedy(d) with respect to d.

in parallel, and each minimization problem can be solved very efficiently
using a combination of golden section search and successive parabolic inter-
polations (see [? ] for further details about this method). However, solving
the optimization problem defined by Eq. (24) can still be computationally
demanding when d increases. Indeed, as it can be seen in Table 1, the number
of admissible values of b, which is denoted by NB(d), increases exponentially
with respect to d. Hence, a brute force approach, which would consist in
testing all the possible values of b, can not be used to identify bMLE.

As an alternative, we propose to consider a greedy algorithm, whose com-
putational cost can be bounded. Starting from a configuration where all the
components of X are in the same block, which corresponds to b = (1, . . . , 1),
the idea of this algorithm is to remove iteratively one element of this initial
block, and to put it in a block that would be already built, or in a new
block where it is the only element. The Algorithm 2 provides a more de-
tailed description of this procedure. By construction, the number Ngreedy(d)
of evaluations of b 7→ maxh LLOO(S(N)|b,h) verifies

Ngreedy(d) ≤ Nmax
greedy(d) := 1 +

d−2∑

i=0

(d− i)(i+ 1) ≤ d3. (27)

For d > 4, such an algorithm can therefore be used to approximate bMLE

at a computational cost that is much more affordable than a direct identifi-
cation based on NB(d) evaluations of b 7→ maxh LLOO(S(N)|b,h).

When modelling high dimensional random vectors (d ∼ 50 − 100), the
value of Nmax

greedy(d), which is definitely much smaller than NB(d), can also
become very high:

Nmax
greedy(d = 50) = 22051, Nmax

greedy(d = 100) = 171601. (28)

To identify relevant values for b at a lower computational cost in such
a constrained discrete set B(d), the genetic algorithms (see [? ] for further

12



1 Initialization: b∗ = (1, . . . , 1), ind.blocked = ∅ ;
2 for k = 1 : d do

3 L(k) = ∅, b(k) = ∅, index(k) = ∅, ℓ = 1 ;
4 for i ∈ {1, . . . , d} \ind.blocked do

5 for j = 2 : min(d,Max(b⋆) + 1) do

6 Adapt the value of the block index: btemp := b∗, btemp
i = j ;

7 Compute: Ltemp = maxh LLOO(S(N)|btemp,h);

8 Save results: L(k) {ℓ} = Ltemp, b(k) {ℓ} = btemp,

index(k) {ℓ} = i ;
9 Increment: ℓ← ℓ+ 1;

10 end

11 end

12 Find the best block index at iteration k: ℓ∗ = argmaxℓ L
(k) {ℓ} ;

13 Actualize: b∗ ← b(k) {ℓ∗}, ind.blocked← ind.blocked ∪ index(k) {ℓ∗}
;

14 end

15 Maximize over all iterations: (ℓgreedy, kgreedy) := argmaxℓ,k L
(k) {ℓ};

16 Approximate bMLE ≈ b(k
greedy)

{
ℓgreedy

}
.

Algorithm 2: Greedy search of bMLE.
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details) seem to be particularly adapted. Hence, an adaptation of these
algorithms to the case of the identification of the most likely block by block
decomposition of X is proposed. The fusion and the mutation processes on
which such algorithms are generally based, as well as a pseudo-projection
in B(d) are therefore detailed in Appendix. In these algorithms, for any set
S (which can be discrete or continuous), we denote by U(S) the uniform
distribution over S. Based on these three functions, the Algorithm 3 shows
the genetic procedure we suggest for solving Eq. (24). The results given by
this genetic algorithm are dependent on three parameters:

• the maximum number of iterations imax,

• the probability of mutation pMut,

• the size of the population we are considering in the genetic algorithm
Npop.

For this algorithm, the number of evaluations of b 7→ maxh LLOO(S(N)|b,h)
is equal to N tot = imax ×Npop. For a given value of N tot, it is however hard
to infer the optimal values for these three parameters, as it depends on d and
on the optimal block-by-block structure of the considered random vector of
interest. However, from the analysis of a series of numerical examples, it is
generally interesting to choose small values for pMut to limit the number of
spontaneous mutations, and favour high values for the number of iterations
imax rather than for the population size Npop.

Once a satisfying value b̂
MLE

of b has been identified using the scalar
parametrization of the bandwidth matrices, it is possible to enrich the parametriza-
tion of the bandwidth matrices to improve the nonparametric representation
of the PDF of X. This amounts at solving

HMLE
ℓ (b̂

MLE
) = arg max

Hℓ∈M
+(dℓ)

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b̂
MLE

) (29)

for all 1 ≤ ℓ ≤ Max(b̂
MLE

). In practice, we observed on a series of test
cases that the interest of such an enrichment of the bandwidth matrix was
relatively limited.
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1 Choose Npop ≥ 2, 0 ≤ pMut ≤ 1 and imax ≥ 1 ;
2 Initialization ;
3 Define B = ∅, L = ∅, inc = 1 ;

4 Choose at random Npop elements of B(d),
{
b(1), . . . , b(Npop)

}
;

5 for n = 1 : Npop do

6 Compute: Ltemp = maxh LLOO(S(N)|b(n),h);

7 Save results: L {inc} = Ltemp, B {inc} = b(n), inc = inc + 1 ;

8 end

9 Iteration ;
10 for i = 2 : imax do

11 Gather in S the Npop elements of B associated with the Npop highest
values of L ;

12 Choose at random Npop distinct pairs of elements of S:{(
b(n,1), b(n,2)

)
, 1 ≤ n ≤ Npop

}
;

13 for n = 1 : Npop do

14 Fusion: bFus = Fusion(b(n,1), b(n,2)) ;

15 Mutation: bMut = Mutation(bFus, pMut) ;

16 Compute: Ltemp = maxh LLOO(S(N)|bMut,h);

17 Save results: L {inc} = Ltemp, B {inc} = bMut, inc = inc + 1 ;

18 end

19 end

20 Maximize over all iterations: kgene = argmax1≤k≤inc−1 L {k} ;

21 Approximate bMLE ≈ B {kgene}.

Algorithm 3: Genetic search of bMLE. The functions Mutation() and
Fusion() are presented in Appendix, and are detailed in Algorithms 4
and 5.
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4. Simulation and application studies

The purpose of this section is to illustrate the interest of the correlation
constraints and the tensorized formulation for the nonparametric represen-
tation of PDFs when the maximal information is a finite set of independent
realizations. To this end, a series of examples will be presented. The first
examples will be based on generated data, so that the errors can be con-
trolled, whereas the last example presents an industrial application based on
experimental data.

4.1. Monte Carlo simulation studies

4.1.1. Lemniscate function

Let U be a random value that is uniformly distributed on [−0.85π, 0.85π],
ξ = (ξ1, ξ2) be a 2-dimensional random vector whose components are two in-
dependent standard Gaussian variables, and XL = (XL

1 , X
L
2 ) be the random

vector so that

XL =

(
sin(U)

1 + cos(U)2
,
sin(U) cos(U)

1 + cos(U)2

)
+ 0.05ξ. (30)

We assume that N = 200 independent realizations of XL have been gath-
ered in S(N). Given this information, we would like to generate additional
points that could sensibly be considered as new independent realizations of
XL. Based on the G-KDE formalism presented in Section 2, four kinds of
generators are compared in Figure 1, depending on the value of the band-
width and on the constraints on the statistical moments of XL.

• Case 1: p
X

L is approximated by p
X̂

L(·; (hSilv(d,N))2Id,S(N)), which

is defined by Eq. (1) (no constraints).

• Case 2: p
X

L is approximated by p
X̃

L(·; (hSilv(d,N))2Id,S(N)), which

is defined by Eq. (12) (constraints on the mean and the covariance).

• Case 3: p
X

L is approximated by p
X̂

L(·; (hMLE(d,N))2Id,S(N)) (no con-

straints).

• Case 4: p
X

L is approximated by p
X̃

L(·; (hMLE(d,N))2Id,S(N)) (con-

straints on the mean and the covariance).
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The relevance of the different approximations of p
X

L can be analysed
from a graphical point of view in Figure 1. It is instructive to compare the
associated values of the LOO likelihood, which is denoted by LLOO(S(N)|H),
as the higher this value, the more likely the approximation. Hence, for this
example, introducing constraints on the mean and the covariance of the G-
KDE tends to slightly increase the values of LLOO(S(N)|H). Moreover,
these results are strongly improved when choosing hMLE(d,N) instead of
hSilv(d,N). Then, for these four cases, Figure 2 compares the evolution
of hSilv(d,N) and hMLE(d,N) with respect to N , and shows the associated
values of the LOO likelihood. For this example, it can therefore be seen
that hSilv(d,N) strongly overestimates the scattering of the distribution of
XL, for any considered values of N . This is not the case when working
with hMLE(d,N). It is also interesting to notice that for values of N lower
than 104 (which is very high for 2-dimensional cases), the difference between
hMLE(d,N) and hSilv(d,N) is always important.

4.1.2. Four branches clover-knot function

In the same manner than in the previous section, let U be a random value
that is uniformly distributed on [−π, π], ξ = (ξ1, ξ2, ξ3) be a 3-dimensional
random vector whose components are three independent standard Gaussian
variables, and XFB be the random vector so that

XFB = (cos(U) + 2 cos(3U), sin(U)− 2 sin(3U), 2 sin(4U)) + ξ. (31)

Once again, starting from a data set of N = 200 independent realizations,
we would like to be able to generate additional realizations of XFB. For
this 3-dimensional case, as in the previous section, Figures 3 and 4 allow
us to underline the interest of considering G-KDE representations that are
constrained in terms of mean and covariance, for which the bandwidths are
optimized from the likelihood maximization point of view.

4.1.3. Interest of the block-by-block decomposition in higher dimensions

As explained in Section 3, when d is high, the G-KDE of pX requires
very high values of N to be able to identify the manifold on which the dis-
tribution of X is concentrated. In other words, if N is fixed, the higher d,
the higher hMLE(d,N) and the more scattered the new realizations of X. As
an illustration of this phenomenon, let us consider the two following random
vectors, for d ≤ 1:
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Figure 1: Lemniscate case: N = 200 given data points (big black squares) and 104 ad-
ditional realizations (small red and green points) generated from a G-KDE approach for
h = hSilv(d,N) (first row) and h = hMLE(d,N) (second row). The first column corre-
sponds to the case where no constraints on the mean and the covariance of the generated
points are introduced, whereas the second column corresponds to the case where the mean
and the covariance of the generated points are equal to their empirical estimations that
are computed from the available data. Under each graph is shown the value of the LOO
likelihood for the associated value of h.
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Figure 2: Evolution of the bandwidth (left) and of the LOO-likelihood (right) with respect
to N for the Lemniscate function (2D). The red dotted lines correspond to the Silverman
case: h = hSilv(d,N). The black solid lines correspond to the MLE case: h = hMLE(d,N).
For this 2D example, the distinctions between the cases with correlation constraints or
without were negligible compared to the difference between the Silverman and the MLE
cases. Hence, only the cases where correlation constraints are imposed on the G-KDE are
represented. Each curve corresponds to the mean values of h and log(LLOO(S(N)|h2Id)),
which have been computed from 50 independent generated 200-dimensional sets of inde-
pendent realizations of XL.

• Case 1: X(2D) = (XL,Ξ3, . . . ,Ξd).

• Case 2: X(3D) = (XFB,Ξ4, . . . ,Ξd).

Here, Ξ3, . . . ,Ξd denote d independent standard Gaussian random vari-
ables, whereas the random vectors XL and XFB have been introduced in
Section 4.1. For these two cases, two configurations are compared.

• On the first hand, a classical G-KDE of the PDFs of X(2D) and X(3D)

is computed. In that case, no block decomposition is carried out. The
block by block vectors associated with these modelling, which are re-
spectively denoted by b(2D,1) and b(3D,1), are equal to (1, . . . , 1).

• On the second hand, we impose b(2D,2) = (1, 1, 2, . . . , d−1) and b(3D,2) =
(1, 1, 1, 2, . . . , d− 2), and we build the associated tensorized versions of
the G-KDE of the PDFs of X(2D) and X(3D).

Hence, when no block decomposition is carried out, we can verify in Fig-
ure 5 that hMLE(d,N) quickly converges to 1 when d increases, for the two
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Figure 3: Four branches clover-knot case: N = 200 given data points (big black squares)
and 104 additional realizations (small red and green points) generated from a G-KDE
approach for h = hSilv(d,N) (first row) and h = hMLE(d,N) (second row). The first
column corresponds to the case where no constraints on the mean and the covariance of
the generated points are introduced, whereas the second column corresponds to the case
where the mean and the covariance of the generated points are equal to their empirical
estimations that are computed from the available data. Under each graph is shown the
value of the LOO likelihood for the associated value of h.
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Figure 4: Evolution of the bandwidth (left) and of the LOO-likelihood (right) with respect
to N for the four branches clover-knot function (3D). The red dotted lines correspond to
the Silverman case: h = hSilv(d,N). The black solid lines correspond to the MLE case:
h = hMLE(d,N). For this 3D example, the distinctions between the cases with correlation
constraints or without were negligible compared to the difference between the Silverman
and the MLE cases. Hence, only the cases where correlation constraints are imposed
on the G-KDE are represented. Each curve corresponds to the mean values of h and
log(LLOO(S(N)|h2Id)), which have been computed from 50 independent generated 200-
dimensional sets of independent realizations of XKB.

considered cases. As a consequence, the capacity of the classical G-KDE for-
malism to concentrate the new realizations of X(2D) and X(3D) on the correct
subspaces of Rd decreases when d increases. To illustrate this phenomenon,
for N = 500, Figure 6 compares the positions of the first components of the
available realizations of X(2D) and X(3D), and the corresponding positions
of 104 additional points generated from a G-KDE approach. Hence, just by
working on the optimization of the value of the bandwidth, it is quickly im-
possible to recover the subsets of R2 and R

3 on which the true distributions
of XL and XFB are concentrated. On the contrary, when the block by block
decompositions given by b(2D,2) and b(3D,2) are considered, the approxima-
tion of the PDFs of the two first components of X(2D) and X(3D) is not
affected by the presence of the additional random variables Ξ3, . . . ,Ξd. As a
consequence, for each considered values of d, the new generated points are
concentrated on the correct subspaces, as it can be seen in Figure 6.

At last, the high interest of introducing the block by block decomposition
for these two examples is emphasized by comparing in Figure 5 the values of
the LOO likelihood in each case.
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Figure 5: Evolutions of hMLE(d,N) and LLOO(S(N)|(hMLE(d,N))2Id) with respect to d,

for N = 500. The left column correspond to the modelling of X(2D), whereas the right
column corresponds to the modelling of X(3D).
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Figure 6: Comparison between the positions of N = 500 given values of X(2D) and X(3D)

(big black squares) and the positions of 104 additional values (small red points) generated
from a G-KDE approach for several values of d and two configurations of the block by
block decomposition for the G-KDE of the PDF of X(2D) and X(3D). The left column
corresponds to the modelling of X(2D), whereas the right column corresponds to the
modelling of X(3D).
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value of b value of hMLE(d,N) log(LLOO(S(N)|hMLE(d,N), b))
(1,1,1,1,1) 0.395 −1.21× 103

(1,2,3,4,5) (0.115,0.163,0.0971,0.108, 0.118) −1.15× 103

(1,2,1,2,1) (0.290,0.226) −1.19× 103

(1,1,2,2,2) (0.113,0.140) −8.35 × 10
2

(1,1,2,2,3) (0.113,0.119,0.118) −9.96× 102

Table 2: Influence of the choice of b on the LOO log-likelihood of the G-KDE for the
modeling of the PDF of X = (XL,XFB) with N = 200 independent realizations.

In the same manner, if we define X as the concatenation of XL and
XFB, which are chosen independent, the interest of introducing the correct
block by block decomposition of X in terms of likelihood maximization is
shown in Table 2. Indeed, choosing b = (1, 1, 2, 2, 2) instead of the two
classical a priori choices b = (1, 1, 1, 1, 1) (all the components are modelled
at the same time) and b = (1, 2, 3, 4, 5) (all the components are modelled
separately), allows us to strongly increase the likelihood associated with the
approximation of the PDF of X. Reciprocally, such an example seems to
confirm the fact that maximizing LLOO(S(N)|hMLE(d,N), b) should help us
to find the dependence structure in the components of X.

4.1.4. Efficiency of the proposed algorithms for the block-by-block decompo-
sition

This section aims at comparing the efficiency of the proposed algorithms
for solving the optimization problem given by Eq. (24). To this end, using
the same notations than in Section 3.1, we denote by X the random vector
such that for all 1 ≤ ℓ ≤ Max(b),

s(ℓ)(X, b) = ξ(ℓ)/
∥∥∥ξ(ℓ)

∥∥∥+ 0.15Ξ(ℓ). (32)

Here ξ(ℓ) and Ξ
(ℓ) denote independent standard Gaussian random vectors,

and ‖·‖ denotes the classical Euclidean norm. By construction, the random
vectors s(ℓ)(X, b) are concentrated on dℓ-dimensional hyper-spheres, dℓ being
the dimension of s(ℓ)(X, b). Thus, random vector X presents a known block
by block structure, and its distribution is concentrated on a subset of Rd.

Then, we assume that the maximal available information is a set of N =
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Chosen values of b d NB(d) Ngreedy(d) N̂
(10,0.01)
gene (d)

(1,2,2,1,3,4,1) 7 877 68 (52) 32.4
(1,2,2,1,3,4,1,2,4,5) 10 115975 174 (141) 25.5

(1,2,2,1,3,4,1,2,4,5,5,6,3,4,7,6,8,1,2,7) 20 5.17× 1017 968 (879) 51.1

Table 3: Comparison of the efficiency of the greedy and the genetic algorithms for the
identification of the block-by-block structure of X .

pMut \ Npop 2 5 10 20 50
0 ∞ 13.5 16.0 35.8 58.1

0.005 ∞ 15.9 19.5 39.7 77.7
0.01 13.4 15.7 25.5 36.0 62.9
0.1 22.9 44.3 41.0 64.7 78.7

Table 4: Influence of the parameters pMut and Npop on the mean number of tested values

of b, which is denoted by N̂
(Npop,p

Mut)
gene (d).

500 independent realizations of X. For different values of d and b, the ability
of the greedy and the genetic algorithms to find back the correct block by
block structure of X is compared in Table 3. In this table, Npop = 10, pMut =

0.01, and we denote by N̂
(Npop,pMut)
gene (d) the mean number of distinct values

of b that were tested for the genetic algorithm to identify the optimal value
of b. These values were computed from 20 runs of the algorithm initialized
in 20 different initial populations chosen at random in B(d). For the greedy
case, the algorithm, which is deterministic, was run until it stopped, and we
indicate in Table 3 two quantities: the total number of iterations Ngreedy(d),
and, in parenthesis, the number of iterations that was actually needed to
get the best value of b. Hence, for these particular examples, the genetic
algorithm was more efficient than the greedy one.

The influence of parameters Npop and pMut is then analysed in Table 4, for

d = 10 and b = (1, 2, 2, 1, 3, 4, 1, 2, 4, 5). A value of N̂
(Npop,pMut)
gene (d) equal to∞

means that the correct value was never found after 105 iterations. Therefore,
this example (the same thing was observed for the other examples we tried)
seem to encourage the use of small (but not zero) values of pMut, as well as
small values of Npop such that several mutation processes can be achieved.
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4.2. Application to the generation of relevant ballast grain shapes

The mechanical behaviour of the railway track strongly depends on the
track superstructure and substructure components. In particular, the me-
chanical properties of the ballast layer are very important. Therefore, a
series of studies are in progress to better analyse the influence of the bal-
last shape on the railway track performance. In that prospect, the shapes of
N = 975 ballast grains have been measured very precisely. As an illustration,
Figure 7 shows the scans of three ballast grains. These measurements can
be considered as independent realizations of a complex random field. From
this finite set of realizations, a Karhunen-Loève expansion (see [? ? ] for
more details about this method) has been carried out to reduce the statistical
dimension of this random field. Without entering too much into details, we
admit in this paper that the random field associated with the varying bal-
last shape can finally be parametrized by a 117-dimensional random vector,
which is denoted by X. As a consequence of the Karhunen-Loève expan-
sion, this random vector is centred and its covariance matrix is equal to the
117-dimensional identity matrix:

E [X] = 0, E[X ⊗X] = I117. (33)

From the experimental data, we have access to N = 975 independent
realizations of X, which are gathered in S(N). Based on this maximal avail-
able information, we would like to identify the PDF of X from a G-KDE
approach. The results associated with several modellings based on the G-
KDE formalism are summarized in Table 5. In this table, we notice the high
interest of introducing correlation constraints. Indeed, for such a very high
dimensional problem with relatively little data, if no constraints are intro-
duced, we get very poor models associated with very low values of the LOO
likelihood. In that case, assuming that all the components are independent
leads to better results than assuming that they are all dependent. This can
be explained by the fact that if all the component of X are chosen indepen-
dent, we impose a diagonal structure for E[X ⊗X], which is, in that case,
very close to imposing that E[X ⊗X] = I117.

On the contrary, much higher values of the LOO likelihood are obtained
by adding constraints on the mean value and the covariance matrix of the
G-KDE of the PDF of X. In both cases, it can be noticed that it is worth
working on the values of the bandwidth. Indeed, passing from hSilv(d,N)
to hMLE(d,N) makes a big difference when looking at the LOO likelihood.
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Figure 7: Three scanned ballast grains (provided by SNCF).

Value of b Value of h Correlation constraints LOO Log-likelihood
(1, . . . , 1) hSilv(d,N) no -179379
(1, . . . , 1) hMLE(d,N) no -176886

(1, . . . , d) hMLE(d,N) no -162398
(1, . . . , 1) hSilv(d,N) yes -161745
(1, . . . , 1) hMLE(d,N) yes -161262

(1, . . . , d) hMLE(d,N) yes -161775

bMLE hMLE(d,N) yes -160930

Table 5: Influence of the value of the bandwidth, of the presence of constraints on the
covariance, and of the choice of the block by block decomposition for the approximation
of the PDF of X.

At last, introducing the tensorized representation as it is done in Section 3,
and working on the value of the block-by-block decomposition of X leads to
another high increase of the LOO likelihood. For this application, the value of
bMLE has been approximated from the coupling of the greedy algorithm and
the genetic algorithm presented in Section 3. The greedy algorithm was first
launched, and stopped after 30000 iterations. Then, based on these results,
additional 20000 iterations were performed using the genetic algorithm with
Npop = 500 and pMut = 0.005.

Finally, by working on both the correlation constraints and the block by
block decomposition of X, it is possible to construct, for this example, very
interesting statistical models for X. Such models can then be used for the
analysis of the ballast statistical properties.
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5. Conclusion

This work considers the challenging problem of identifying complex PDFs
when the maximal available information is a set of independent realizations.
In that prospect, the multidimensional G-KDE method plays a key role,
as it presents a good compromise between complexity and efficiency. Two
adaptations of this method have been presented. First, a modified formalism
is presented to make the mean and the covariance matrix of the estimated
PDF equal to their empirical estimations. Then, tensorized representations
are proposed. These constructions are based on the identification of a block
by block dependence structure of the random vectors of interest. The interest
of these two adaptations has finally been illustrated on a series of analytical
examples and on a high-dimensional industrial example.

The identification of the bandwidth matrices and of the block structure is
carried out in the frequency domain. Investigating Bayesian sampling for the
bandwidth matrices and the block structure selection could be interesting for
future work.

Appendix

A1. Proof of Proposition 1

We can calculate:

E

[
X̃

]
=

1

N

N∑

n=1

AX(ωn) + β = µ̂. (34)

Cov(X̃) =

∫

Rd

x⊗ x p̃X(x;H ,S(N))dx− µ̂⊗ µ̂

=
1

N

N∑

n=1

H + (AX(ωn) + β)⊗ (AX(ωn) + β)− µ̂⊗ µ̂

= H +
N − 1

N
AR̂XAT

= R̂X .

(35)

A2. Description of three algorithms used in the genetic algorithm

This section presents the three algorithms that are used in the genetic
algorithm defined in Section 3. Algorithm 4 presents the fusion function,
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Algorithm 5 describes the mutation function, and Algorithm 6 shows the
pseudo projection on B(d) on which they are based.

1 Let b(1) and b(2) be two elements of B(d) ;
2 Initialization: b = (0, . . . , 0), index = {1, . . . , d}, n = 1 ;
3 while index is not empty do

4 Choose i ∼ U({index}), j ∼ U({1, 2}), k ∼ U({1, 2}) ;

5 Find u(1) = which(b(1) == b
(1)
i ), u(2) = which(b(2) == b

(2)
i ) ;

6 if k==1 then

7 Define v = u(j) ∩ index ;
8 end

9 else

10 Define v = (u(1) ∪ u(2)) ∩ index ;
11 end

12 Fill b[v] = n ;
13 Actualize n← n + 1, index← index\v.

14 end

15 Fusion(b(1), b(2)) := ΠB(d)(b).

Algorithm 4: Algorithm for the fusion of two elements b(1) and b(2) of
B(d).
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1 Let b be an element of B(d) and 0 ≤ pMut ≤ 1 ;
2 for i = 1 : d do

3 Choose u ∼ U([0, 1]) ;
4 if u < pMut then

5 bi ∼ U({1, . . . , d})\ {bi};
6 end

7 end

8 Mutation(b, pMut) := ΠB(d)(b).
Algorithm 5: Algorithm for the mutation of an element b of B(d).

1 Let b be an element of {1, . . . , d}d, index = (1, . . . , 1), n = 1, b∗ = (0, . . . , 0) ;
2 for i = 1 : d do

3 if sum(index)==0 then

4 break ;
5 end

6 else

7 Find u = which(b == bi) ;
8 Fill b∗[u] = n;
9 Actualize n = n + 1, index[u] = 0.

10 end

11 end

12 ΠB(d)(b) := b∗.

Algorithm 6: Pseudo-projection ΠB(d)(b) of any element b in {1, . . . , d}d

on B(d).
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