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Abstract

Simulation plays a major in the conception, the optimization and the
certification of complex systems. Of particular interest here is the calibra-
tion of the parameters of computer models from high-dimensional physical
observations. When the run times of these computer codes is high, this work
focuses on the numerical challenges associated with the statistical inference.
In particular, several adaptations of the Gaussian Process Regression (GPR)
to the high-dimensional or functional output case are presented for the em-
ulation of computer codes from limited data. Then, an adaptive procedure
is detailed to minimize the calibration parameters uncertainty at the mini-
mal computational cost. The proposed method is eventually applied to two
applications that are based on dynamic simulators.
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1. Introduction

Following the increase of the computational resources and a series of
breakthroughs in the modelling of physical phenomena, simulation has be-
come a major tool for conception, optimisation and certification of complex
systems. Computer codes are therefore introduced to predict the behaviour
of these systems. The codes we consider in this work are deterministic, which
means that running them with the same inputs produces the same output,
and are treated as "black boxes". Such codes are generally based on two kinds
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of inputs. On the one hand, the system parameters are used to characterize
the conditions of the experiment, such as the temperature, the pressure, the
dimensions of the systems, the boundary conditions, and so on. On the other
hand, the calibration parameters refer to the physical or numerical quanti-
ties that need to be defined for the codes to be run. These parameters are
supposed to be independent of the system parameters, and generally corre-
spond to the parameters of physical laws (one can think to the laws of crack
propagation, turbulence, thermal conductivity for instance). To make the
codes predictive, these calibration parameters have to be carefully adjusted
from measurements that are representative of the working conditions of the
system.

The Bayesian framework of Kennedy and O’Hagan [16] to the calibra-
tion of computer codes is applied in this work. The calibration parameters
are supposed to be random, and we search their posterior distribution given
some measured data. Such a posterior distribution characterizes the residual
uncertainty about the calibration parameters, and can eventually be propa-
gated to associate credible intervals to the prediction given by the calibrated
code.

The computation of such a posterior distribution is generally based on
a huge number of code evaluations [5, 15]. When the computational cost
associated with one evaluation of the computer code is high (between several
minutes to several days CPU), surrogate models have to be introduced to
emulate the time-demanding computer code in the inversion procedure. To
this end, following [25] and [26], we assume a Gaussian process prior dis-
tribution for the code output, conditional on several hyper-parameters. The
idea is, then, to update this prior distribution using a limited number of code
evaluations. Under not too restrictive conditions on the parametric structure
of the Gaussian prior, the posterior prediction is Gaussian and its mean and
covariance functions can explicitly be derived.

In principle, such a Bayesian formulation can be applied to any multi-
variate output code. But in practice, two kinds of simplification hypotheses
are generally introduced. On the one hand, in association with some ba-
sis representations (such as the principal component analysis) to condense
the statistical properties of the high-dimensional or functional outputs, ex-
tensions of the univariate case can be proposed by considering the reduced
outputs as independent random variables [12, 3, 6]. On the other hand, it is
very convenient to assume that the input and the output dependence struc-
ture can be separated in the definition of the covariance function. Indeed,
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taking advantage of the Kronecker structure of the covariance matrices, this
strongly reduces the computational costs associated with the construction of
the emulator [27, 23, 2, 8, 13]. The first objective of this work is to compare
these two approaches in terms of computational efficiency and flexibility to
solve the inference problem.

The posterior distribution of the calibration parameters aggregates at
least three sources of uncertainty: the choice of the prior distribution of the
calibration parameters, the experimental errors, and the substitution of the
computer code by its random emulator. Whereas it is generally not possible
to work on the two first sources of uncertainty, the third source of uncertainty
can be reduced by updating the Gaussian emulator using additional code
evaluations. Iterative procedures can therefore be proposed to minimize the
dispersion of the calibration parameters at a minimal computational cost.
Proposing criteria for such an adaptive calibration is the second objective of
this paper.

The outline of this work is as follows. Section 2 presents the theoretical
framework of the Bayesian calibration. The construction of emulators for
multi-outputs computer codes and the criterion we propose for the adaptive
calibration are then explained in Section 3. At last, the efficiency of the
method is illustrated on two examples in Section 4.

2. Bayesian calibration

2.1. General framework

In this work, we are interested in the time response of a complex sys-
tem, whose properties (dimensions, densities, boundary conditions) can be
characterized by a vector of d ≥ 1 inputs. We denote by x ∈ X ⊂ R

d the
vector gathering these inputs, and by y(·;x) ∈ R the associated time re-
sponse, which is supposed to be discretized on a fixed Nt-dimensional grid,
T := {t1, . . . , tNt

}. To analyse this system, we have access to a parametric
computer code, g(·;x,β), where β ∈ B ⊂ R

Nβ gathers the Nβ ≥ 1 param-
eters that have to be fixed for this code to be run. This computer code is
assumed non linear with respect to β and computationally expensive, and
we suppose that it has no model discrepancy. That is, the computational
cost associated with one evaluation of g is high (between several minutes to
several days) and there exists β⋆, so that:

y(x) = g(x,β⋆), (x,β) ∈ X× B. (1)
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Here, we denote by y(x) and g(x,β) the vectors gathering the projection of
y(·;x) and g(·;x,β) on T:

y(x) := (y(t1;x), . . . , y(tNt
;x)), g(x,β) := (g(t1;x,β), . . . , g(tNt

;x,β)).
(2)

The no-discrepancy assumption can be strong if it is not justified. As no
computer code can virtually be said to be a perfect representation of reality,
this only means that the predictions provided by the calibrated code are
accurate enough (compared to the measurement error) for its intended use.
In particular, it can exploit error compensation to maximise its predictive
capabilities, and therefore not necessarily perfectly fits reality.

In addition, we assume that the system response has been measured in
Nx ≥ 1 points of X, which are gathered in X (Nx) :=

{
x(1), . . . ,x(Nx)

}
. For

all x in X (Nx), let ymes(x) be the measurement of y(x). In the following,
the subscript "mes" will always refer to the measured quantities. These
measurements are supposed to be noisy:

ymes(x) := y(x) + εmes(x) = g(x,β⋆) + εmes(x), (3)

where εmes(x) characterizes the experimental error. Based on these Nx mea-
surements of y, the idea of this work is to propose a general method to adjust
the value of β⋆ to make computer code g be as predictive as possible.

2.2. Notations

The notations that will be used in this paper are the following:

• a, b will correspond to scalars.

• a, b will correspond to vectors.

• A,B will correspond to matrices.

• The entries of a vector a will be denoted by (a)i, and the entries of a
matrix A will be denoted by (A)ij .

• AT , det(A) and Tr(A) will denote the transpose, determinant and
trace of a square matrix A respectively.
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• A ⊗ B will correspond to the Kronecker product of two matrices A

and B.

• diag(·) will be the vector operator which arranges the elements of a
vector into a diagonal matrix, such that:

∀ a ∈ R
N , diag(a) =




a1 0 · · · 0

0 a2
. . .

...
...

. . .
. . . 0

0 · · · 0 aN


 . (4)

• N (a,A) will correspond to the multidimensional Gaussian distribu-
tion, whose mean vector and covariance matrix are given by a and A

respectively.

• GP(µ, C) will correspond to the distribution of a Gaussian process
whose mean function is µ, and whose covariance function is C.

• UΩ will correspond to the uniform distribution over the space Ω.

• For all N ≥ 1, IN will be the (N × N)-dimensional identity matrix,
such that (IN)ij is equal to 1 if i = j, and to 0 otherwise.

2.3. Bayesian calibration

In this work, we assume that vector β⋆ is random and we denote by fβ⋆

its probability density function (PDF). This PDF is supposed to be known
from expert judgment [17]. Hence, calibrating β⋆ amounts to searching the
conditional distribution, fβ⋆|ymes

, of

β⋆ | ymes(x
(1)), . . . ,ymes(x

(Nx)). (5)

To do so, we first suppose that the experimental error is random, but
that its distribution is known. For the sake of simplicity, it is supposed to
be centred and Gaussian in the following:

(
εmes(x

(1)), . . . , εmes(x
(Nx))

)
∼ N (0,Σmes) , (6)

where Σmes is a known (NtNx × NtNx)-dimensional symmetric positive def-
inite matrix. Each evaluation of the true model being computationally ex-
pensive, we then assume that for all (x,β) in X × B, the value of g(x,β)
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corresponds to a particular realization of a Gaussian random vector, which
is denoted by ymeta(x,β). In the following, the subscript "meta" will al-
ways refer to the quantities associated with the Gaussian emulator of g. Let
Σmeta(β) be the covariance matrix of (ymeta(x

(1),β), . . . ,ymeta(x
(Nx),β)). Fi-

nally, for all β in B, under the condition that the matrix Σmes +Σmeta(β) is
invertible, we deduce:

fβ⋆|ymes
(β) =

f̃β⋆|ymes
(β)

∫
B
f̃β⋆|ymes

(b)db
, (7)

f̃β⋆|ymes
(β) :=

exp
(
−1

2
δ(β)T (Σmes +Σmeta(β))

−1
δ(β)

)

det (Σmes +Σmeta(β))
1/2

fβ⋆(β), (8)

δ(β) :=
(
ymes(x

(1))− E[ymeta(x
(1),β)], . . . ,ymes(x

(Nx))− E[ymeta(x
(Nx),β)]

)
.

(9)
A two-step procedure is generally used to compute PDF fβ⋆|ymes

. First,
sampling techniques, such as Monte Carlo Markov Chains (MCMC) [24], are
used to generate a set of points that are approximately distributed according
to the PDF of β⋆ | ymes(x

(1)), . . . ,ymes(x
(Nx)). Based on these points, PDF

fβ⋆|ymes
can be constructed from statistical non-parametric approaches [19,

20].

2.4. Uncertainty reduction

According to Eq. (8), we can list at least three sources of uncertainty for
β⋆:

• the prior uncertainty that is summarized by PDF fβ⋆ ,

• the experimental uncertainty characterized by Σmes,

• the model uncertainty associated with ymeta.

To reduce the first two sources of uncertainty, more a priori information
about β⋆ and a more precise experimental protocol are needed, which is
generally not possible. On the contrary, several directions can be investigated
to minimize the third source of uncertainty at a given total computational
cost. Indeed, the model uncertainty depends on the kind of model that is
used to replace the expensive computer code, but also on the positions of the
evaluation points. This raises at least three questions :
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• from a given set of code evaluations, how to construct a relevant emu-
lator of g?

• how to efficiently compute PDF fβ⋆|ymes
when Nt is high?

• how to (iteratively) choose the positions of the evaluation points?

3. Adaptive calibration

For the sake of clarity, most of the mathematical justifications of the
results presented in this Section have been moved to Appendix.

3.1. Gaussian process-based surrogate models for multi-outputs computer codes

As explained in Introduction, the Gaussian process regression (GPR) is
a very popular class of surrogate because of its closed-forms expressions,
flexibility and ability to provide prediction uncertainties. It is based on the
assumption that function g is a particular realization of a Gaussian process,
G, such that for all (z, z′, t, t′) ∈ Z× Z× T× T, with Z := X× B,

{
E[G(t; z)] = µ(t; z),

Cov(G(ti; z),G(tj ; z′)) = C(ti, tj; z, z
′), 1 ≤ i, j ≤ Nt.

(10)

Here, µ is the mean function, and C is the covariance function, which are
a priori two unknown functions. Let us assume that g has been evaluated
in Nz ≥ 1 points of Z,

{
z(1), . . . , z(Nz)

}
. Let gobs := (g(z(1)), . . . , g(z(Nz)))

be the NtNz-dimensional vector that gathers the time response associated
with these Nz evaluations of g, where for each z = (x,β) in Z = X × B,
g(z) := g(x,β). For all z, z′ in Z and all 1 ≤ i, j ≤ Nt, the following
notations are introduced:

• (R(z, z′))ij := C(ti, tj; z, z
′),

• Robs :=




R(z(1), z(1)) · · · R(z(1), z(Nz))
...

. . .
...

R(z(Nz), z(1)) · · · R(z(Nz), z(Nz))


 ,

• S(z) :=
[
R(z, z(1)) · · · R(z, z(Nz))

]T
,

• µ(z) := (µ(t1; z), . . . , µ(tNt
; z)),
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• µobs := (µ(z(1)), . . . ,µ(z(Nz))).

Thus, if the matrix Robs can be inverted,

g | µ, C, gobs ∼ GP (µ⋆ ,C⋆) , (11)

{
µ⋆(z) = µ(z) + S(z)TR−1

obs(gobs − µobs),

C⋆(z, z
′) = R(z, z′)− S(z)TR−1

obsS(z′).
(12)

Under this formalism, for any non-observed point z in Z, µ⋆(z) is the
best deterministic prediction of g(z) in the L2 sense, whereas C⋆(z, z) can
be used to quantify the precision associated with this prediction. If functions
µ and C are known, the notations of Eq. (8) can be found back by identifying,
for all β in B and all 1 ≤ n ≤ Nx:

E[ymeta(x
(n),β)] = µ⋆(z

(n)), z(n) := (x(n),β), (13)

Σmeta(β) =




C⋆((x
(1),β), (x(1),β)) · · · C⋆((x

(1),β), (x(Nx),β))
...

. . .
...

C⋆((x
(Nx),β), (x(1),β)) · · · C⋆((x

(Nx),β), (x(Nx),β))


 .

(14)
The computational budget that is needed to compute PDF fβ⋆|ymes

, which
is defined by Eq. (8), can be divided in two main contributions. On the one
hand, the computational cost for the construction of the emulator is mostly
driven by the Nz evaluations of expensive function g and the inversion of the
(NzNt × NzNt)-dimensional matrix Robs. On the other hand, the computa-
tional cost associated with each MCMC step is mostly driven by the inversion
of the (NxNt×NxNt)-dimensional matrix (Σmes +Σmeta(β)). In this general
case, if Nt is high (between several dozens to several thousands), this total
computational budget is not affordable. To circumvent this problem, two
simplifications are generally introduced, whose pros and cons are presented
in the next two sections.

3.1.1. Reduced basis approach

If DQ is a (Nt ×Q)-dimensional matrix so that DT
QDQ = IQ, the vector

gQ := DT
Qg corresponds to the projection of g on the space spanned by the

columns of DQ. It comes:
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gQ ∼ GP
(
µQ = DT

Qµ,RQ = DT
QRDQ

)
. (15)

Let µ⋆,Q and C⋆,Q be the mean and covariance functions of gQ|gobs, whose
computations only require the inversion of an (NzQ×NzQ)-dimensional ma-
trix. For all z in Z, if g(z) ≈ DQD

T
Qg(z), it follows that:

f̃β⋆|ymes
(β) ≈ exp

(
−1

2
δQ(β)

T (Σmes,Q +Σmeta,Q(β))
−1

δQ(β)
)

det (Σmes,Q +Σmeta,Q(β))
1/2

fβ⋆(β), (16)

where:

δQ(β) :=
(
DT

Qymes(x
(1))− µ⋆,Q(x

(1),β), . . . ,DT
Qymes(x

(Nx))− µ⋆,Q(x
(Nx),β)

)
,

(17)

Σmes,Q := (DT
Q ⊗ INx

)Σmes(DQ ⊗ INx
), (18)

Σmeta,Q(β) =




C⋆,Q((x
(1),β), (x(1),β)) · · · C⋆,Q((x

(1),β), (x(Nx),β))
...

. . .
...

C⋆,Q((x
(Nx),β), (x(1),β)) · · · C⋆,Q((x

(Nx),β), (x(Nx),β))


 .

(19)
This approach requires the definition of DQ, µQ and RQ. Matrix DQ is

generally obtained by carrying out a singular value decomposition (SVD) of
Gobs =

[
g(z(1)) · · · g(z(Nz))

]
[12, 3, 6], or by selecting relevant element of

an adapted wavelet basis [1]. In these cases, the elements of gQ are usually
assumed independent, leading to a diagonal representation for RQ. When Q
is very small (less than 5 for instance), non-diagonal representations can also
be proposed [11], but at the expense of a much higher number of parameters
to identify. If the covariance structure of g seems easier to infer, function
RQ can also be searched under the form DT

QRDQ, where R would be a
particular element of a well-known class of parametric covariance functions
(see [25, 26] for further details about classical covariance functions). At last,
a constant vector that corresponds to the empirical estimation of the mean
of g is usually chosen for µQ:
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µQ(z) =
1

Nz

Nz∑

k=1

DT
Qg(z

(k)), z ∈ Z. (20)

But once again, more sophisticated representations could be proposed for
µQ (or µ), depending on the studied application.

Under this formalism, the computational cost associated with each eval-
uation of function f̃β⋆|ymes

is now driven by the inversion of an (NxQ×NxQ)-
dimensional matrix, which has to be compared to the inversion of an (NxNt×
NxNt) matrix in the general case. The main difficulty of this approach is the
choice of DQ when Nz is small. Indeed, the rank of matrix Gobs being less
than Nz, at most Nz columns of DQ are actually relevant for the descrip-
tion of g. Thus, the interest of choosing Q > Nz for the construction of
the emulator is almost zero if the construction of DQ is based on an SVD.
Nevertheless, if Q is too small, the difference between g and DQD

T
Qg(z) can

be significant, and the approximation given by Eq. (16) may not be true
anymore, leading to poor calibration results.

3.1.2. Separable covariance structure

As an alternative to the reduced basis approach, it can be very convenient
to suppose that the input and the output dependence structures can be
separated in the modelling of function C. This amounts to assuming that
there exists two covariance functions Ct and Cz such that:

C(ti, tj ; z, z
′) = Ct(ti, tj)Cz(z, z

′), 1 ≤ i, j ≤ Nt, z, z′ ∈ Z. (21)

Indeed, if the matrices Rt and Rz, so that (Rz)kl := Cz(z
(k), z(l)) and

(Rt)ij := Ct(ti, tj), can be inverted, it follows that:

g | µ, Ct, Cz, gobs ∼ GP (µ⋆ , c⋆Rt) , (22)

{
µ⋆(z) = µ(z) + (Gobs −M obs)R

−1
z rz(z),

c⋆(z, z
′) = Cz(z, z

′)− rz(z)
TR−1

z rz(z
′),

(23)

where M obs =
[
µ(z(1)) · · · µ(z(Nz))

]
and rz(z) := (Cz(z, z

(1)), . . . , Cz(z, z
(Nz))).
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Therefore, taking advantage of the Kronecker structure of the covariance
matrices, it is possible to construct an interesting emulator of g, whose mean
and covariance functions are based on the inversion of the unique (Nz ×Nz)-
dimensional matrix Rz. Closed-forms expressions for this emulator can also
be derived when a linear form is proposed for the parametrization of mean
function µ (see Appendix). In particular, for all z, z′ in Z, if µ(z) = Ah(z),
with h a given vector-valued function,

g | h, Ct, Cz, gobs ∼ GP (µ⋆ , c⋆Rt) , (24)

{
µ⋆(z) = GobsR

−1
z

(
rz(z) +HT (HR−1

z HT )−1u(z)
)
,

c⋆(z, z
′) = Cz(z, z

′)− rz(z)
TR−1

z rz(z
′) + u(z)T (HR−1

z HT )−1u(z),

(25)
where u(z) := h(z)−HR−1

z rz(z) and H := [h(z(1)) · · · h(z(Nz))].

The former results are conditioned by the choice of functions Cz and Ct.
In the same manner than for the reduced basis approach, when the maximal
available information about g is a finite set of evaluations, these two functions
can be chosen in a general parametric class of symmetric positive definite
functions. For instance, Cz can be chosen in the Matern-5/2 class, such that,
for all z and z′ in Z:

Cz(z, z
′) = (1+

√
5h+5/3h2) exp(−

√
5h), h :=

∥∥diag(ℓz)
−1(z − z′)

∥∥ . (26)

There, ‖·‖ is the classical Euclidian norm and the vector ℓz characterizes
the correlation lengths associated with each element of z. The choice of the
class of covariance functions associated with Ct is however more complicated,
as there is no reason for the correlation between two code responses at two
distinct times to be stationary. To circumvent this difficulty, it is interesting
to notice that if the mean function is known ("Simple Kriging") or can be
written as µ(z) = Ah(z) ("Univeral Kriging"), the mean and the covariance
functions of the GPR of g only depend on Rt. This means that even not-
invertible estimations of Rt can be proposed to predict the value of g(z) in
a non-observed point z ∈ Z. In particular, the matrix

R̂t :=
1

Nz

(
Gobs − M̂

)
R−1

z

(
Gobs − M̂

)T
, (27)
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M̂ :=

{
M obs in the "Simple Kriging" case,

A0H in the "Universal Kriging" case,
(28)

is not invertible when Nz < Nt, but can be seen as the maximum likeli-
hood estimation of Rt (see Appendix and Property 3 for more justification
of this estimation). Here, the matrix A0 is an a priori choice for matrix
A. But this matrix can also be chosen equal to its posterior estimation,
GobsR

−1
z HT (HR−1

z HT )−1.

Hence, if Cz is chosen in the Matern-5/2 class, the construction of the
GPR of g only requires the identification of ℓz. This is generally done by
maximizing the likelihood of getting gobs given ℓz. However, if Rt is ap-

proximated by R̂t, and if R̂t is not invertible, this likelihood is not well
defined. As an alternative, we propose to search ℓz using a cross-validation
procedure. To this end, for all 1 ≤ k ≤ Nz, we denote by µ(−k)(z; lz) the
mean function of the GPR of g(z) that is constructed from the Nz − 1 eval-
uations

{
g(z(1)), . . . , g(z(k−1)), g(z(k+1)), . . . , g(z(Nz))

}
only. The following

"Leave-one-out" (LOO) error is then introduced:

e2(lz) :=

Nz∑

k=1

∥∥µ(−k)(z(k); lz)− g(z(k))
∥∥2 , (29)

so that:

ℓz = arg min
l∈(R+)

Nβ+d
e2(l). (30)

Cross-validation procedures can be computationally expensive in the gen-
eral case. However, in our case, Nz is relatively small as each evaluation of
the computer code is expensive. Hence, the evaluation of µ(−k)(z; lz) is quick
as it only relies on the product of small-dimensional matrices, and so is the
evaluation of e2.

Once parameter ℓz has been identified, for all β in B, it follows that:

Σmeta(β) = Rmeta(β)⊗ R̂t, (31)
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Rmeta(β) =




c⋆((x
(1),β), (x(1),β)) · · · c⋆((x

(1),β), (x(Nx),β))
...

. . .
...

c⋆((x
(Nx),β), (x(1),β)) · · · c⋆((x

(Nx),β), (x(Nx),β))


 .

(32)
Such a separation in the input and the output dependence structures

is particularly interesting when Σmes also presents a separable structure.
Indeed, if it exists two symmetric positive definite matrices Rmes,β and Rmes,t

so that Σmes = Rmes,β ⊗ Rmes,t, we can define V β(β) and V t as the two
invertible matrices that verify:

Rmeta(β) = V β(β)diag (λβ)V β(β)
T , Rmes,β = V β(β)V β(β)

T , (33)

R̂t = V tdiag (λt)V
T
t , Rmes,t = V tV

T
t . (34)

It comes that:

Σmeta(β) +Σmes = (V β(β)⊗ V t)diag(Λ)
(
V β(β)

T ⊗ V T
t

)
, (35)

diag(Λ) := diag (λβ)⊗ diag (λt) + INx
⊗ INt

. (36)

We deduce (for the sake of concision, the derivations leading to this ex-
pression have been moved to Appendix):

f̃β⋆|ymes
(β) ∝ exp

(
−1

2
t2
)

det (V β(β)TV β(β))
Nt/2

∏NxNt

l=1 (Λl)1/2
fβ⋆(β), (37)

where:

t2 :=
Nx∑

j=1

∥∥diag(Λj)
−1/2V −1

t ∆v(j)(β)
∥∥2 , (38)

v(j)(β) :=
(
(V β(β)

−1)j1, . . . , (V β(β)
−1)jNx

)
, (39)

∆ := [δ1(β) · · · δNx
(β)] , δk(β) := ymes(x

(k))− µ⋆(x
(k),β), (40)
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and where diag(Λ1), . . . , diag(ΛNx
) are the (Nt × Nt)-dimensional diagonal

matrices so that:

diag(Λ) =




diag(Λ1) 0 · · · 0

0 diag(Λ2)
. . .

...
...

. . .
. . . 0

0 · · · 0 diag(ΛNx
)


 . (41)

Given the formerly introduced constraint on the dependence structure
of the experimental uncertainty, the computational cost associated with the
evaluation of f̃β⋆|ymes

is strongly reduced. Indeed, matrices V t and diag (λt)
can be calculated once for all, such that for each value of β, the evaluation
of f̃β⋆|ymes

only requires the inversion of an (Nx × Nx)-dimensional matrix,
which has to be compared with the inversion of an (NxNt×NxNt)-dimensional
matrix in the general case, and the inversion of an (QNx×QNx)-dimensional
matrix in the reduced basis approach.

Remarks.

• If Σmes = 0, Eq. (38) becomes:

t2 = Tr
(
Rmeta(β)

−1
∆

TR−1
t ∆

)
. (42)

• Although it is always very convenient from a computational point of
view, the separable structure may not be adapted to the emulation of
function g. In that case, before trying to emulate g, it is generally
interesting to work on a transformation to apply to g to make this
assumption more relevant (when it is possible).

3.2. Adaptive calibration

For a given set of evaluations of the computer code, once the surrogate
model has been computed, MCMC procedures can be used to approximate
fβ⋆|ymes

(see [24] for further details about these approaches). As presented
in Introduction, the dispersion of the posterior distribution is mostly depen-
dent of the prior uncertainty associated with fβ⋆ and the experimental error
characterized by Σmes, but also of the prediction uncertainty controlled by
β 7→ Σmeta(β). Whereas it is not possible to work on the two first sources
of uncertainty, the prediction uncertainty can be reduced by increasing the
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number of evaluations of the computer code. In that prospect, following the
works achieved in [22], let γ be the cost function defined on B so that

γ(β) :=

Nx∑

n=1

∥∥g(x(n),β)− g(x(n),β⋆)
∥∥ . (43)

Assuming that the computer code has been evaluated for each point of

{
(x(n),β(m)), 1 ≤ n ≤ Nx, 1 ≤ j ≤ M

}
, (44)

function γ is known in M values of β. Based on this information, we can
construct its GPR, which is denoted by γ̂M . Hence, the dispersion of the
posterior distribution of β⋆ can be reduced by adding to the learning set
the Nx new input points (x(1), β̂), . . . , (x(Nx), β̂), where β̂ is solution of the
following expected improvement (EI) based optimization problem (see [14]
for more details about the EI criterion):

β̂ := argmin
β∈B

E

[
max

(
min(γ(β(1)), . . . ,γ(β(M)))− γ̂M(β), 0

)]
. (45)

In the same spirit, [21] proposed to use this EI formalism to minimize
another function inspired by the Kullback-Liebler divergence to aggregate
the differences between g(x(n),β) and g(x(n),β⋆) for each 1 ≤ n ≤ Nx.

However, when the computer code is very expensive, requiring the com-
puter code to be evaluated Nx times for each value of β may be too restrictive,
as in that case, the number of code evaluations quickly increases. In the same
manner, considering a fixed grid in space X is generally not optimal for the
construction of the GPR of g. In this work, we propose to consider another
selection criterion for the new evaluation point, znew := (xnew,βnew). Two
considerations are taken into account to choose this point. First, there is no
interest for the surrogate model to be precise in the unlikely regions for β.
Thus, we propose to search βnew where fβ⋆|ymes

is maximal:

βnew = argmax
β∈B

fβ⋆|ymes
(β). (46)

Then, to minimize the prediction uncertainty in the most likely regions of
β⋆, we propose to adopt a Stepwise Uncertainty Reduction (SUR) strategy
[4, 7]. The purpose of these approaches is to choose the new evaluation
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point in order to minimize the expected value of a well chosen measure of
the uncertainty about the search domain. In our case, this uncertainty is
characterized by Σmeta. Denoting by Σ

x
meta the adaptation of function Σmeta

given the new evaluation of the computer code in (x,βnew), xnew can therefore
be searched where the difference between Σmeta(β

new) and Σ
x
meta(β

new) is the
highest. However, we observed on a series of test cases that better results
were obtained when working on the predictive variance rather than on the
predictive covariance. Hence, in this work, we propose to choose xnew as the
solution of:

xnew := argmax
x∈X

Nt∑

i=1

(Σmeta(β
new))ii −

Nt∑

i=1

(Σx
meta(β

new))ii . (47)

Remarks.

• The searching set for xnew can be reduced in practice to the convex
hull of the set of the available experimental data, that is to say to the
smallest convex region enclosing all the points in

{
x(1), . . . ,x(Nx)

}
.

• Under the formalism presented in Section 3.1, it is important to notice
that no evaluation of the computer code is needed for the computation
of Σx

meta for any x in X.

4. Applications

This section aims at illustrating the proposed adaptive calibration on two
applications. The first application is based on simulated data, whereas the
second one is based on experimental data.

4.1. Analytical example

4.1.1. Description of the problem

The first application we present can be linked to the identification of the
mechanical properties of a structure from a non-destructive test. In that
prospect, let us consider the coupled system that corresponds to Figure 1,
where :

• y is the horizontal displacement of the beam,

• θ is the rotation angle of the pendulum,
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Figure 1: Parameterization of the mechanical system of interest.

• θ0 is the initial rotation angle of the pendulum,

• x := gℓ sin(θ0) is the potential energy of the system,

• β := (M, k) corresponds to the mechanical properties of the rigid beam,

• m and ℓ are the characteristics of the pendulum,

• g is the gravity.

In this application, the gravity and the characteristics of the pendulum
are supposed to be known. For the numerical application, we chose g =
9.81, m = 0.5, ℓ = 2. We assume that there exists a true value for the
mechanical properties of the beam, β⋆ = (2, 1.2). This value has to be
inferred from the analysis of the movement of the beam that is induced by
the movement of the pendulum. To carry out this calibration of β, we assume
that the time evolution of the beam displacement has been measured in Nx

initial configurations of the pendulum,
{
x(1), . . . , x(Nx)

}
, on the fixed time

grid {tr = 10r/101, 0 ≤ r ≤ 100}. It follows that Nt = 101. Let ymes(t; x)
be the measured beam displacement at time t corresponding to the initial
energy x. These measurements at each time step are supposed to be affected
by a centred Gaussian measurement error. For all 1 ≤ n,m ≤ Nx and all
1 ≤ r, s ≤ Nt, it comes:

ymes(tr; xn) ∼ N (y(tr; xn), σ
2
mes), (48)

E [ymes(ts; xm)ymes(tr; xn)] = y(ts; xm)y(tr; xn) + δr,sδn,mσ
2
mes. (49)
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Figure 2: Comparison of the evolution of y with respect to several values of M , k and
x. Red continous line : (x,M, k) = (10.8, 2.33, 2.29). Blue dashed line : (x,M, k) =
(15.0, 0.573, 0.813). Black dotted line : (x,M, k) = (9.62, 1.06, 1.68).

There, σ2
mes is supposed to be known, and δn,m is the Kronecker symbol,

which is equal to 1 if n = m and to 0 otherwise.

In addition, for all z := (x,M, k) in [−gℓ, gℓ] × R
+∗ × R

+∗, the time
evolutions of y and θ can be computed as the solutions of the following
system of coupled equations:





(M +m)ÿ(t; z) + ky(t; z) +mℓ
(
θ̈(t; z) cos(θ(t; z))− θ̇2(t; z) sin(θ(t; z))

)
= 0,

ÿ(t; z) cos(θ(t; z)) + ℓθ̈(t; z) + g sin(θ(t; z)) = 0,

y(t = 0; z) = 0, θ(t = 0; z) = θ0.
(50)

As no analytic solution exists for this problem, numerical procedures
based on a time discretization were used to find the values of y(t; z) and
θ(t; z) at each time step and for each value of z. A verification analysis was
performed to adapt this time discretization such that no distinction is made
in the following between y and the true solution of Eq. (50). To illustrate the
influence of z on y, Figure 2 represents the evolution of y(t; z) with respect
to t for three values of z.

Even if the system defined by Eq. (50) is non-linear, it can be interesting
to consider its linear approximation, which is defined by:
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(b) x = 11.7, β = β∗
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(c) x = 16.5, β = β∗

Figure 3: Comparison of the time evolutions of y and ylin for different values of x. Red
continuous line : y. Blue dashed line : ylin.





(M +m)ÿlin(t; z) + kylin(t; z) +mℓθ̈lin(t; z) = 0,

ÿlin(t; z) + ℓθ̈lin(t; z) + gθlin(t; z) = 0,

ylin(t = 0; z) = 0, θlin(t = 0; z) = θ0.

(51)

Indeed, as the former system of equations is linear, its solutions, which
are denoted by ylin and θlin, can be derived explicitly. By construction, the
smaller is the value of x, and the closer y and ylin are likely to be. This can be
seen in Figure 3, which compares the evolutions of y and ylin for the same val-
ues of β but for three different values of x. Even if the computational time
associated with the computation of y(z) = (y(t1; z), . . . , y(tNt

; z)) is rela-
tively small, it is much higher than the one associated with the computation
of ylin(z) = (ylin(t1; z), . . . , ylin(tNt

; z)).

To identify β⋆, Nz ≪ Nt values of z are chosen in Z,
{
z(1), . . . , z(Nz)

}
.
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To optimize the space filling properties of this set, set
{
z(1), . . . , z(Nz)

}
is

chosen as an optimized Latin Hypercube sample (LHS) [10, 9, 18]. Based
on the evaluation of y at these Nz points only, two Gaussian process-based
surrogate models were constructed.

• The first one is based on the classical reduced-basis approach intro-
duced in Section 3.1.1:

y(z) ≈ ylin(z) +

Nz∑

q=1

ωq(z)dq, (52)

where {d1, . . . ,dNz
} gathers the Nz < Nt eigenvectors of the empirical

estimator of the covariance matrix of y − ylin associated with the Nz

highest eigenvalues. Matern-5/2 covariance functions are chosen for
the projection coefficients ωq(z), which are supposed to be centred and
statistically independent:

E [ωq(z)ωp(z
′)] = δqp

d∏

i=1

(1+
√
5hi+5h2

i /3) exp(−
√
5hi), hi = |zi−z′i|/ℓq,i,

(53)

where the parameters ℓ1,1, . . . , ℓNz,d are chosen as their maximum like-
lihood estimates.

• The second one is based on the separable covariance structure approach
presented in Section 3.1.2. The mean function of y(z) is also chosen
equal to ylin(z). This latter surrogate is the direct extension of the
"Simple Kriging" formalism to the multi-output case. A Matern-5/2
is also chosen for the covariance structure in z, whereas the covariance
structure in time is given by its empirical estimator given by Eq. (27).

Figure 4 compares the relevance of these two surrogate models with re-
spect to the number Nz of code evaluations. In this figure, it can be noticed
that, for each value of Nz, the mean-squared errors associated with the sepa-
rable covariance structure is better, in average. In the following, we therefore
focus on this particular emulator of y. To illustrate the fact that the more
code evaluations are available, the more precise is the prediction, Figure 5
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Figure 4: Comparison of the mean-squared errors associated with two kinds of surrogate
models for Nz ∈ {10, 20, . . . , 100}. Red: surrogate model associated with a dimension-
reduction technique. Blue: extension of the Simple Kriging case to the multi-output case.
Boxplots are produced from 50 runs with different initial DoE.

compares the capacity of the proposed surrogate models to predict, with a
given precision, the value of y in a non-observed value of z for two values of
Nz.

Based on this emulator, it is possible to infer the value of β⋆ at a rea-
sonable computational cost, from a limited number of code evaluations and
experimental measurements. As an example, Figure 6 shows the calibration
results associated with the former surrogate models for Nz = 20 and Nx = 3.
A uniform prior is chosen for β⋆:

fβ⋆(β) =

{
1/4 if β ∈ [0.5, 2.5]2,

0 otherwise.
(54)

Even for these low values of Nz and Nx, it can be seen that good estimates
of β⋆ can be found in each case. If we focus on the 90% credible ellipse for β⋆,
it is also possible to quantify the influence of the experimental uncertainties
on the estimation of β⋆. Indeed, dividing by 10 the value of σmes allows us
to strongly concentrate the posterior PDF of β⋆ on its true value.

In order to better quantify the robustness of the calibration results, Figure
7 shows the evolution of the distance, εβ, between the true value of β⋆ and
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Figure 5: Influence of the number of code evaluations on the prediction precision of the
surrogate models. Grey area : 95%−credible interval for the prediction. Black dotted line:
a posteriori mean prediction. Red continuous line: code output y(t; z). Blue dashed line :
a priori mean prediction. These predictions are based on a separate covariance structure.

its maximum likelihood estimate, βMLE, with respect to different values of
Nz, Nx and σmes:

εβ :=
∥∥β⋆ − βMLE

∥∥ . (55)

The boxplots are produced from 50 runs with different initial space filling
designs of experiments for the construction of the surrogate models, and
different values of x in [−gℓ, gℓ] for the experimental data. In these figures,
we verify that, in average, the value of εβ decreases with respect to Nz and
Nx, and increases with respect to σmes. However, for fixed values of σmes and
Nx, the decrease of εβ with respect to Nz is slow. As explained in Section
3.2, this decrease can be accelerated by better choosing the new positions
of the code evaluations. Indeed, focusing the new code evaluations in the
region of high probability for the true value of β⋆, while uniformly filling the
input space of x, can strongly reduce the prediction uncertainties given by
the surrogate models, and therefore better concentrate the PDF of β⋆ on its
true value. As an illustration, Figure 8 compares the evolutions of distance
εβ with respect to Nz, for two enrichment procedures. Whereas the proposed
adaptive procedure is represented in red, the results in blue correspond to the
case where the surrogate models are based on the evaluation of the computer
code on independent Nz-dimensional space filling designs. Hence, for σmes =
0.1 and different values of Nx, it can be seen that working on the position
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Figure 6: Influence of the experimental uncertainties on the calibration results for Nz = 20
and Nx = 3. In subfigures (a) and (b), the contour plots correspond to the level sets
associated with the posterior PDF of β⋆, the black points indicate the values of β where
the code has been evaluated to compute the surrogate model (each of these values were
associated with different values of x), the white square is the true value of β⋆, and the
red dotted line defines a 90% credible ellipse, such that the integration of the posterior
distribution of β⋆ on this ellipse is equal to 0.9. For a given value of x and for σmes = 0.1,
subfigure (c) compares the true evolution of y (the red squares) to the discrete experimental
information (the blue circles) that is available for the calibration of β⋆.
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of 10 new code evaluations can allow us to divide by two the final values
of εβ. Such a reduction is even higher when σmes = 0.01. Indeed, in that
case, the experimental uncertainties are relatively small compared to the
prediction uncertainties, such that the precision of the calibration results
mostly depends on the prediction uncertainties provided by the surrogate
models.

4.2. Industrial example

The second application deals with the calibration of an Eulerian hydro-
dynamics code developed by CEA. A spherical explosive charge is placed at
the geometric center of a spherical containment vessel. Once it is ignited, we
measure the transient pressure acting on the inner surface of the containment
vessel, which is denoted by y to be coherent with the notations of Section
2. It is worth noticing that the evolution of the pressure is not regular, as
several reflections of the shock wave on the wall of the vessel can be observed.
Nx = 5 experiments were carried out for five different quantities of explosive.
This defines the available information for the calibration. Let x > 0 denote
the radius of the explosive charge, which characterizes the quantity of explo-
sive in the vessel, and let x(1) < . . . < x(5) be the five radii that were used
for the five experiments. The time evolutions of the measured inner pressure
for these five values of x are represented in Figure 9.

For confidentiality reason, only normalized values are presented in this
second application. To simplify the construction of the surrogate models,
the time origin of the simulation and the measurements is chosen equal to
the time of the first shock reflection.

The experiments are supposed to be discretized on a fixed Nt-dimensional
time grid, {t1, . . . , tNt

}, with Nt = 353. Using the same notations than in
Section 2.1, for each value of x, we denote by y(x) = (y(t1; x), . . . , y(tNt

; x))
and ymes(x) = (ymes(t1; x), . . . , ymes(tNt

; x)) the vectors that gather respec-
tively the true values and the measured values of the inner pressure at the
different time steps. The experiments are affected by measurement uncer-
tainties, which are assumed to be centred, Gaussian and non-stationary in
time. These uncertainties are related to the precision of the measurement de-
vice, which does not depend on the quantity of explosive that is placed in the
vessel. In that case, the global covariance of the experimental measurements,
Σmes, presents the following separate structure in time and space:
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Figure 7: Dependence of the calibration results on the number of code evaluations, Nz,
the number of experimental measurements, Nx, and the level of experimental uncertainty,
σmes. The boxplots are produced from 50 repetitions of the calibration procedure. In
each case, the initial designs of experiments for the construction of the surrogate models
correspond to space filling LHS, whereas the values of x for the experimental data are
uniformly drawn in [−gℓ, gℓ].
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Figure 8: Influence of the positions of the new code evaluations on the calibration results.
The boxplots in red correspond to the proposed adaptive method, whereas the boxplots
in blue are based on independent Nz-dimensional space filling LHS. Each boxplot is pro-
duced from 10 repetitions of the calibration procedure with different initial designs of
experiments.
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Σmes = INx
⊗Rmes,t, (56)

where the (Nt ×Nt)-dimensional matrix Rmes,t is supposed to be known.

To predict the inner pressure, the vessel is modelled by a spherical steel
shell, and the explosive is supposed to be a homogeneous sphere. As an illus-
tration, the true containment vessel and its spherical model are represented
in Figure 10. The hydrodynamics code is then used to simulate the explo-
sive burns, the internal gas dynamics, and the shock wave propagation. An
elastic-plastic law is considered to describe the mechanical deformations of
the vessel. The pressure evolution is then deduced from this calculation for a
duration that is sufficient to cover the initial blast loading and the principal
reverberations inside the vessel. The hydrodynamics code we are considering
requires the calibration of three parameters. The first one, β1, characterizes
the speed of the shock wave. The second one, β2, controls the shock intensity.
The third one, β3, plays on the time attenuation of the shock intensity. The
definition domain for these three parameters is supposed to be [−1, 1], such
that β = (β1, β2, β3) is an element of B = [−1, 1]3. For any values of x and
β, let g(x,β) = (g(t1; x,β), . . . , g(tNt

; x,β)) be the vector that gathers the
simulated pressure at each element of T. The individual influence of these
three parameters can be seen in Figure 11. This hydrodynamics code is sup-
posed to have no discrepancy in the sense that we assume that it exists a
true value for β, β⋆, such that:

y(x) = g(x,β⋆). (57)

A uniform prior is once again chosen for β⋆:

fβ⋆(β) =

{
1/8 if β ∈ [−1, 1]3,

0 otherwise.
(58)

We now assume that the hydrodynamics code has been evaluated in
Nz values of z := (x, β1, β2, β3) in Z = [0.9 × min(x(1), . . . , x(5)), 1.1 ×
max(x(1), . . . , x(5))] × B. Given these values, we can construct a Gaussian
process-based surrogate model to predict the value of g(z) for any non-
observed point z. Hence, vector-valued function z 7→ g(z) is supposed to
be a particular realization of a Gaussian process, whose mean and covari-
ance functions are denoted by µ and C. Unlike the first application, we do
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not have access, in this second application, to a simplified modelling of the
pressure evolution, which makes the definition of µ harder. The "Universal
Kriging" formalism is therefore adopted, which consists in assuming a linear
parametric representation for µ:

µ(z) = Ah(z), h(z) = (1, z), z ∈ Z. (59)

There, A is a (Nt × 5)-dimensional matrix that needs to be identified from
the Nz code evaluations. In addition, a separate structure is proposed for
function C. A Matern-5/2 covariance is chosen for the covariance structure
in z, and the covariance in time is given by its empirical estimator given by
Eq. (27). This choice is motivated by two main reasons. First, reduced-
basis representations are not well adapted to this kind of functions, which is
mostly due to the fact that parameters x and β1 play on the arrival time of
the shock wave. Thus, several dozens of projection functions are required to
make these representations relevant. Secondly, as it is explained in Section
3.1.2, considering a separate structure for C allows us to exploit the separate
structure of Σmes and to reduce the computational cost of the likelihood
evaluation. As an illustration of the prediction capability of the surrogate
model, Figure 12 compares the true code response and its Gaussian predictor
at four randomly chosen values of z in Z. This Gaussian predictor is based
on the evaluation of the hydrodynamics code in only Nz = 40 values of z,
which were uniformly chosen in Z using a space filling LHS.

Given this surrogate model of g, we can now search β⋆ using the devel-
opments presented in Sections 2 and 3. For this application, as the value of
β⋆ is unknown and the experimental uncertainty is small, the following L2

error is introduced to assess the relevance of its estimation:

ε2L2 :=
Nx∑

n=1

∥∥ymes(x
(n))− g(x(n),βMLE)

∥∥2 , (60)

where βMLE is the maximum likelihood estimate of β⋆ given the available
experimental data. Two approaches are compared for the identification of β⋆

in the following.

• On the one hand, we call "non adaptative calibration" the calibration of
β⋆ that is based on Nz independent evaluations of the hydrodynamics
code in Nz points that are uniformly chosen in Z.
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Figure 9: Evolution of the pressure at the inner surface of the containment vessel with
respect to the time for the five available measurements. The more explosive, the higher
the pressure maximum. For each measure, the time of the first shock reflection is chosen
as the time origin.

• On the other hand, we call "adaptive calibration" the calibration of β⋆

that is based on the concatenation of 20 evaluations of the hydrody-
namics code in 20 points that are uniformly chosen in Z, and Nz − 20
additional evaluations of the code in well chosen positions, as it is pro-
posed in Section 3.2.

The calibration results associated with these two approaches are shown
in Figure 13. Hence, much less code evaluations are needed to get the same
value of ε2L2 when considering the proposed adaptive calibration than the
non adaptive one. The interest of the proposed procedure can also be seen in
Figure 14, which compares the evolution of each measured inner pressure to
its 95% credible area using the calibrated code. To lay stress on the relevance
of the proposed approach, for all 1 ≤ n ≤ Nx, the credible area of the nth

experiment is based on all the available experiments but the nth. That is,
the credible area of the nth experiment is based on the post-processing of
20 evaluations of the hydrodynamics code in 20 independent realizations of
β⋆

−n, where we denoted by β⋆
−n the estimator of β⋆, whose PDF has been

computed using all the available measurements but the nth. In each case,
the calibration results are based on the proposed adaptive procedure with a
maximum number of code evaluations that is equal to Nz = 40.
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(a) Studied containment vessel

r

2x

(b) Spherical model of the containment
vessel

Figure 10: Presentation of the true containment vessel and its spherical model.

5. Conclusion

This work considers the challenging problem of calibrating the parameters
of computationally demanding computer models when few high-dimensional
physical observations are available. In that prospect, several surrogate mod-
els for multi-outputs computer codes have been presented, and an adaptive
procedure has been proposed to minimize the uncertainty on the calibration
parameters using a reduced number of code evaluations. The efficiency of the
proposed approach has eventually been illustrated on two applications. The
first one was based on generated data, whereas the second one was based on
experimental data.

The main assumption of this work is the fact that the computer code has
no discrepancy. If it is not the case, it is important to introduce a model error
in the calibration process. However, this model error is generally unknown
and has also to be identified from the available experimental data. When
only few measurements are available and when surrogate models have to be
introduced to emulate the computer code to solve the inference problem, as
it is the case in this work, proposing simple but relevant structures for the
model error is an interesting perspective for this work.

In the same manner, the fact that the pressure is always positive has not
been taken into account in the construction of the surrogate models of the
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Figure 11: Sensitivity of the code response to the values of β1, β2 and β3. In each figure,
two components of β = (β1, β2, β3) are fixed to 0, whereas the third component is equal to
-1 for the dashed black line, to 0 for the blue dotted line, and to 1 for the red continuous
line.
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Figure 12: Relevance of the proposed Gaussian process-based surrogate model to predict
the value of the simulated inner pressure at four particular non-observed values of z, given
Nz = 40 code evaluations. The code response is represented in red continuous line. The
thick black dotted lines correspond to the mean predictions, whereas the grey areas show
the 95% credible intervals for the prediction.
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Figure 13: Interest of the adaptive calibration in terms of computational cost reduction
for the identification of β⋆. The boxplots associated with the "non adaptive calibration"
(left) are based on independent Nz-dimensional space filling LHS. The boxplots associated
with the "adaptive calibration" (right) correspond to the proposed adaptive method. Each
boxplot is produced from 20 repetitions of the calibration procedure with different initial
designs of experiments.
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Figure 14: Cross validation prediction of the five available measured evolutions of the
pressure. Grey area : 95%−credible interval for the prediction. Red continuous line:
experimental data.
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second application. Trying to integrate positivity or monotony constraints
in the surrogate models seems also promising for future work.

Appendix

� Proof of Eq. (12)
For all z, z′ in Z, we have:

(g(z), gobs)|µ, C ∼ N
([

µ(z)
µobs

]
,

[
R(z, z) S(z)
S(z)T Robs

])
. (61)

By property of the Gaussian conditioning, it comes:

E [g(z)|µ, C, gobs] = µ(z) + S(z)TR−1
obs(gobs − µobs), (62)

Cov(g(z), g(z′)|µ, C, gobs) = R(z, z′)− S(z)TR−1
obsS(z

′). (63)

�

� Proof of Eq. 23
For all 1 ≤ i, j ≤ Nt and all z, z′ in Z, if C(ti, tj; z, z

′) = Ct(ti, tj)Cz(z, z
′),

then:

• R(z, z′) = Cz(z, z
′)Rt,

• Robs = Rz ⊗Rt,

• S(z) = rz(z)⊗Rt.

We deduce:

E [g(z)|µ, Ct, Cz, gobs] = µ(z) + (rz(z)⊗Rt)
T (Rz ⊗Rt)

−1(gobs − µobs),

= µ(z) + (rz(z)
T ⊗Rt)(R

−1
z ⊗R−1

t )(gobs − µobs),

= µ(z) + (rz(z)
TR−1

z )⊗ INt
(gobs − µobs),

= µ(z) + (Gobs −M obs)R
−1
z rz(z),

(64)
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Cov(g(z), g(z′)|µ, Ct, Cz, gobs) = R(z, z′)− (rz(z)⊗Rt)
T (Rz ⊗Rt)

−1(rz(z
′)T ⊗Rt),

= R(z, z′)− (rz(z)
T ⊗Rt)(R

−1
z ⊗R−1

t )(rz(z
′)T ⊗Rt),

= (Cz(z, z
′)− rz(z)

TR−1
z rz(z

′))Rt.

(65)

�

Proposition 1. For all z in Z, if µ(z) = F (z)α, where F (z) is a (Nt×Na)-
dimensional matrix, and if α ∼ URNa , then:

g | F , Ct, Cz, gobs
∼ GP (µ⋆⋆ ,R⋆⋆) , (66)





F obs :=
(
F (z(1)) . . . ,F (z(Nx))

)
,

Q⋆ := (F T
obs

R−1
z ⊗R−1

t F obs)
−1,

α⋆ := Q⋆F
T
obs

R−1
z ⊗R−1

t g
obs

,

µ⋆⋆(z) := U (z)α⋆ +
(
(rz(z)

TR−1
z )⊗ INt

)
g

obs
,

U(z) := F (z)−
(
(rz(z)

TR−1
z )⊗ INt

)
F obs,

Q−1
⋆⋆ := Q−1

⋆ + c−1
⋆ (z, z)U(z)TR−1

t U(z),

R⋆⋆(z, z)
−1 := c−1

⋆ (z, z)R−1
t − c−1

⋆ (z, z)R−1
t U(z)Q⋆⋆U(z)TR−1

t c−1
⋆ (z, z).

(67)

� Proof of Proposition 1
First, we can calculate:

(gobs − F obsα)T R−1
z ⊗R−1

t (gobs − F obsα)

= gT
obsR

−1
z ⊗R−1

t gobs +αTF T
obsR

−1
z ⊗R−1

t F obsα− 2αTF T
obsR

−1
z ⊗R−1

t gobs

= gT
obsR

−1
z ⊗R−1

t gobs −αT
⋆Q

−1
⋆ α⋆ + (α−α⋆)

TQ−1
⋆ (α−α⋆)

= gT
obs

(
R−1

z ⊗R−1
t −R−1

z ⊗R−1
t F obsQ⋆F

T
obsR

−1
z ⊗R−1

t

)
gobs + (α−α⋆)

TQ−1
⋆ (α−α⋆).

Then, µ⋆(z) = U (z)α+ ((rz(z)
TR−1

z )⊗ INt
)gobs, such that we have:

g(z)− µ⋆(z) = g(z)− µ⋆⋆(z) + µ⋆⋆(z)− µ⋆(z)

= g(z)− µ⋆⋆(z) +U(z)(α⋆ −α),
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Introducing α⋆⋆ := α⋆+c−1
⋆ (z, z)Q⋆⋆U(z)TR−1

t (g(z)−µ⋆⋆(z)), it comes:

(g(z)− µ⋆(z))
T c−1

⋆ (z, z)R−1
t (g(z)− µ⋆(z)) + (α−α⋆)

TQ−1
⋆ (α−α⋆)

= (g(z)− µ⋆⋆(z))
T c−1

⋆ (z, z)R−1
t (g(z)− µ⋆⋆(z)) + (α−α⋆)

TQ−1
⋆⋆ (α−α⋆)

+ 2(α⋆ −α)TU(z)T c−1
⋆ (z, z)R−1

t (g(z)− µ⋆⋆(z))

= (g(z)− µ⋆⋆(z))
T c−1

⋆ (z, z)R−1
t (g(z)− µ⋆⋆(z)) + 2αT

⋆U(z)T c−1
⋆ (z, z)R−1

t (g(z)− µ⋆⋆(z))

+αTQ−1
⋆⋆ α+αT

⋆Q
−1
⋆⋆ α⋆ − 2αT

(
Q−1

⋆⋆ α⋆ +U(z)T c−1
⋆ (z, z)R−1

t (g(z)− µ⋆⋆(z))
)
,

= (g(z)− µ⋆⋆(z))
T c−1

⋆ (z, z)R−1
t (g(z)− µ⋆⋆(z)) + (α−α⋆⋆)

TQ−1
⋆⋆ (α−α⋆⋆)

+αT
⋆Q

−1
⋆⋆ α⋆ + 2αT

⋆U (z)TC−1
⋆ (z, z)R−1

t (g(z)− µ⋆(z))−αT
⋆⋆Q

−1
⋆⋆ α⋆⋆.

Noticing that:

αT
⋆⋆Q

−1
⋆⋆ α⋆⋆ = αT

⋆Q
−1
⋆⋆ α⋆ − 2αT

⋆U(z)T c−1
⋆ (z, z)R−1

t (y(z)− µ⋆(z))

+ (g(z)− µ⋆⋆(z))
T c−1

⋆ (z, z)R−1
t U (z)Q⋆⋆U(z)TR−1

t c−1
⋆ (z, z)(g(z)− µ⋆⋆(z)),

we get:

(g(z)− µ⋆(z))
T c−1

⋆ (z, z)R−1
t (g(z)− µ⋆(z)) + (α−α⋆)

TQ−1
⋆ (α−α⋆)

= (g(z)− µ⋆⋆(z))
TR⋆⋆(z, z)

−1(g(z)− µ⋆⋆(z)) + (α−α⋆⋆)
TQ−1

⋆⋆ (α−α⋆⋆).

Let fg(z)|gobs
, fg(z)|α,gobs

, fα|gobs
and fα be the PDFs of (g(z)|F , Ct, Cz, gobs),

(g(z)|α,F , Ct, Cz, gobs), (α|F , Ct, Cz, gobs) and α respectively. By defini-
tion, for all y in R

Nt , we have:

fg(z)|gobs
(y) =

∫

RNa

fg(z)|α,gobs
(y)fα|gobs

(a)da,

∝
∫

RNa

exp

(
−1

2

(
(y − µ⋆(z))

T c−1
⋆ (z, z)R−1

t (y − µ⋆(z))
+(a−α⋆)

TQ−1
⋆ (a−α⋆)

))
fα(a)da.

∝
∫

RNa

exp

(
−1

2

(
(y − µ⋆⋆(z))

TR⋆⋆(z, z)
−1(y − µ⋆⋆(z))

+(a−α⋆⋆)
TQ−1

⋆⋆ (a−α⋆⋆)

))
fα(a)da

(68)

If α ∼ URNa , then fα(a) ∝ 1, and we eventually deduce:

g(z)|F , Ct, Cz, gobs ∼ N (µ⋆⋆(z) ,R⋆⋆(z, z)) . (69)

�
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Proposition 2. For all z in Z, if µ(z) = FAh(z), where F is a (Nt×Na)-
dimensional matrix, h(z) is a M-dimensional vector, and if A ∼ UMNa×M (R),

then:

g | F ,h, Ct, Cz, gobs
∼ GP (µ⋆⋆ ,R⋆⋆) , (70)





H :=
[
h(z(1)) · · · h(z(Nz))

]
,

A⋆ := (F TR−1
t F )−1F TR−1

t GobsR
−1
z HT (HR−1

z HT )−1,

u(z) := h(z)−HR−1
z rz(z),

µ⋆⋆(z) := GobsR
−1
z rz(z) + FA⋆u(z),

u⋆(z) := u(z)T (HR−1
x HT )−1u(z)c−1

⋆ (z, z),

R−1
⋆⋆ (z, z) := c−1

⋆ (z, z)R−1
t − c−1

⋆ (z, z)R−1
t F (FR−1

t F T )−1F TR−1
t u⋆(z)/(1 + u⋆(z)).

(71)
where MNa×M(R) is the set of all the (Na × M)-dimensional real-valued

matrices.

� Proof of Proposition 2
If fobs(A) :=

(
FAh(z(1)), . . . ,FAh(z(Nz))

)
, then we have:

(gobs − f obs(A))TR−1
z ⊗R−1

t (gobs − fobs(A)) ,

= Tr
(
(Gobs − FAH)R−1

z (Gobs − FAH)T R−1
t

)
,

= Tr

((
GobsR

−1
z GT

obs − FA⋆(HR−1
z HT )AT

⋆F
T
)
R−1

t

+ (A−A⋆)(HR−1
z HT )(A−A⋆)

TF TR−1
t F

)
.

(72)

Moreover, we have:

(rz(z)
TR−1

z )⊗ INt
(gobs − fobs(A)) = (Gobs − FAH)R−1

z rz(z), (73)

such that:

µ⋆(z) = GobsR
−1
z rz(z) + FAu(z), (74)

g(z)− µ⋆(z) = g(z)− µ⋆⋆(z) + F (A⋆ −A)u(z). (75)
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It comes:

(g(z)− µ⋆(z))
T c−1

⋆ (z, z)R−1
t (g(z)− µ⋆(z)) + (gobs − f obs(A))TR−1

z ⊗R−1
t (gobs − f obs(A))

∝ (g(z)− µ⋆⋆(z))
T c−1

⋆ (z, z)R−1
t (g(z)− µ⋆⋆(z)) + Tr

(
(A−A⋆)Q̂

−1
(A−A⋆)

TF TR−1
t F

)

− 2(g(z)− µ⋆⋆(z))
T c−1

⋆ (z, z)R−1
t F (A−A⋆)u(z)

∝ (g(z)− µ⋆⋆(z))
TR−1

⋆⋆ (z, z)(g(z)− µ⋆⋆(z)) + Tr
(
(A−A⋆⋆)Q̂

−1
(A−A⋆⋆)

TF TR−1
t F

)
,

(76)

where A⋆⋆ is a constant matrix that does not depend on g(z) and A, and

Q̂
−1

:= HR−1
x HT + c−1

⋆ (z, z)u(z)u(z)T .
Assuming a prior distribution for A that is constant (improper prior),

integrating A, we eventually get:

g(z)|F ,h, Ct, Cx, gobs ∼ N (µ⋆⋆(z) ,R⋆⋆(z, z)) . (77)

�

Proposition 3. If:

• Nz and Nt are two integers such that Nz ≥ Nt,

• A is a (Nz ×Nz)-dimensional symmetric positive-definite matrix,

• W is a (Nt × Nz)-dimensional matrix such that WA−1W T can be

inverted,

• w is the vector gathering the elements of W columnwise, such that

w = ((W )11, . . . , (W )Nt1, (W )12, . . . , (W )NtNz),

• M
+(R) is the set of all the real-valued (Nt×Nt)-dimensional symmetric

positive-definite matrices,

• C is the cost function such that for all B in M
+(R):

C(B) =
exp

(
−1

2
wTA−1 ⊗B−1w

)

(2π)NzNt/2det(A)Nt/2det(B)Nz/2
, (78)
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Then:

1

Nz

WA−1W T = arg max
B∈M+(R)

C(B). (79)

� Proof of Property 3
Let DA and ℓA be the orthogonal matrix and the vector that respectively

gather the eigenvectors and the eigenvalues of ZA−1ZT :

ZA−1ZT = DAdiag(ℓA)D
T
A.

In the same manner, for any matrix B in M
+(R), let DB and ℓB be the

orthogonal matrix and the vector that respectively gather the eigenvectors
and the eigenvalues of B−1:

B−1 = DBdiag(ℓB)D
T
B.

It comes:

zTA−1 ⊗B−1z = Tr
[
(ZA−1ZT )B−1

]
,

= Tr
[
DT

BDAdiag(ℓA)D
T
ADBdiag(ℓB)

]
,

= Tr
[
V diag(ℓA)V

Tdiag(ℓB)
]
,

=
Nt∑

i=1

Nt∑

j=1

ℓA,iV
2
ijℓB,j,

(80)

where V := DT
BDA is an orthogonal matrix.

We deduce:

log(C(B)) = c +
Nx

2

Nt∑

j=1

log(ℓB,j)−
1

2

Nt∑

j=1

ℓB,j

Nt∑

i=1

ℓA,iV
2
ij , (81)

where c is a constant that do not depend on B. For all 1 ≤ j ≤ Nt, the
application ℓB,j 7→ log(C(B)) is concave, and we have:

∂ log(C(B))

∂ℓB,j

=
Nx

2ℓB,j

− 1

2

Nt∑

i=1

ℓA,iV
2
ij . (82)
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Let ℓ⋆B be the vector such that for all 1 ≤ j ≤ Nt,

ℓ⋆B,j =
Nx∑Nt

i=1 ℓA,iV 2
ij

. (83)

As for all 1 ≤ i ≤ Nt,
∑Nt

j=1 V
2
ij = 1, the concavity of the log function

gives:

log(C(B)) ≤ log(C(DBdiag(ℓ⋆B)
−1DT

B)),

≤ c− Nx

2

Nt∑

j=1

log

(
1

Nx

Nt∑

i=1

ℓA,iV
2
ij

)
− NxNt

2
,

≤ c− Nx

2

Nt∑

i=1

log

(
1

Nx
ℓA,i

) Nt∑

j=1

V 2
ij −

NxNt

2
,

≤ c− Nx

2

Nt∑

i=1

log

(
1

Nx

ℓA,i

)
− NxNt

2
.

(84)

Hence, if DB = DA, then Vij = 1 if i = j and zero otherwise, such that

log(C(DBdiag(ℓ⋆B)
−1DT

B)) = c− Nx

2

∑Nt

i=1 log
(

1
Nx

ℓA,i

)
− NxNt

2
and :

diag(ℓ⋆B)
−1 =

1

Nx
diag(ℓA). (85)

Finally, we conclude that:

1

Nx
DAdiag(ℓA)D

T
A =

1

Nx
ZA−1ZT = arg max

B∈M+(R)
C(B). (86)

�

� Proof of Eqs. 35 and 36
If Rmes,β and Rmes,t are two symmetric positive definite matrices, there

exists two invertible matrices, V β(β) and V t, and two diagonal matrices,
diag (λβ) and diag (λt), such that:

Rmeta(β) = V β(β)diag (λβ)V β(β)
T , Rmes,β = V β(β)V β(β)

T , (87)

Rt = V tdiag (λt)V
T
t , Rmes,t = V tV

T
t . (88)
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Moreover, by property of the Kronecker product:

(
V β(β)diag (λβ)V β(β)

T
)
⊗
(
V tdiag (λt)V

T
t

)
+
(
V β(β)V β(β)

T
)
⊗
(
V tV

T
t

)

= (V β(β)⊗ V t) (diag (λβ)⊗ diag (λt) + INx
⊗ INt

)
(
V β(β)

T ⊗ V T
t

)

= (V β(β)⊗ V t) diag(Λ)
(
V β(β)

T ⊗ V T
t

)
,

(89)

which leads to the searched result.
�

� Proof of Eq. 37

δ(β)T (Σmes +Σmeta(β))
−1

δ(β)

= δ(β)T
(
(V β(β)⊗ V t) diag(Λ)

(
V β(β)

T ⊗ V T
t

))−1
δ(β),

= δ(β)T
((
V β(β)

−T ⊗ V −T
t

)
diag(Λ)−1

(
V β(β)

−1 ⊗ V −1
t

))
δ(β),

=
Nx∑

j=1

Nx∑

i=1

Nx∑

k=1

(V β(β)
−1)ji(V β(β)

−1)jkδi(β)
TV −T

t diag(Λj)
−1V −1

t δk(β),

=
Nx∑

j=1

v(j)(β)T∆TV −T
t diag(Λj)

−1V −1
t ∆v(j)(β),

=

Nx∑

j=1

∥∥diag(Λj)
−1/2V −1

t ∆v(j)(β)
∥∥2 ,

(90)

det (Σmes +Σmeta(β)) ,

= det
(
(V β(β)⊗ V t) diag(Λ)

(
V β(β)

T ⊗ V T
t

))
,

= det (diag(Λ))det
((
V β(β)

T ⊗ V T
t

)
(V β(β)⊗ V t)

)

∝ det
(
V β(β)

TV β(β)
)Nt

NxNt∏

l=1

Λl.

(91)

�
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