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Abstract: A classic approach for modeling transport phenomena in heterogeneous media is 
to adopt a larger macroscopic scale of description, where the transport is assumed to be 
smooth in space and time. However, because non-equilibrium effects at the scale of the 
heterogeneities (micro-scale) are not accounted for, the macroscopic approach fails in 
some configurations where both scales have to be considered simultaneously. This paper 
outlines two popular two-scale approaches for such configurations. For each approach, 
numerical simulations highlighting the capabilities of the model are presented for an 
example problem, including low temperature drying of softwood and water flow in 
heterogeneous materials. 
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INTRODUCTION 

Macroscopic approaches for modeling transport 
processes in a heterogeneous medium, for example a 
composite material or a porous medium, are well 
established. In porous media, to overcome the 
impossible task of solving the microscopic transport 
equations on the highly complex porous geometry, 
the macroscopic approach adopts a larger scale of 
description. At this length scale, the fluid phases are 
viewed as fictitious continuums and volume 
averaging is used to derive balance equations from 
the standard conservation laws. The resulting 
macroscopic equations resemble those of a 
continuum with the exception that volume-averaged 
quantities and effective parameters now appear in the 
equations[1]. Such an approach has been widely used 
to simulate transport processes in porous media, 
however, it fails in some documented cases. For 
example, the macroscopic formulation of coupled 
heat and mass transfer known as TransPore[2-4], 
which has been extensively applied over the past 
twenty years to model and simulate the drying 
process, fails when applied to hardwood[5]. 

Another problem where the macroscopic approach is 
often used is modeling fluid flow in a composite 
material that exhibits small-scale heterogeneity in 
physical properties such as permeability or porosity. 

In this case, numerical solution of the governing 
partial differential equations is intractable due to the 
massive number of elements and vertices required to 
mesh the full heterogeneous geometry and capture 
the small material interfaces. To overcome these 
impracticalities, the macroscopic approach again 
consists of adopting a larger scale of description, 
where the heterogeneous medium can be viewed as a 
fictitious homogeneous medium, and a macroscopic 
equation with effective parameters can be derived. 
While the macroscopic model works well provided 
the assumption of local equilibrium holds (which is 
only true if the properties of the different materials 
are of the same order of magnitude), it fails if the 
assumption is violated. A common example is fluid 
flow in a two material medium where one material is 
connected and has high conductivity/permeability 
and the other material forms disconnected inclusions 
and has low conductivity/permeability. In this case, 
the flow in the connected material is rapid and a 
macroscopic model cannot account for the delay that 
occurs in the flux entering the inclusions. A classic 
example of such a configuration is fluid flow in 
fractured rocks[6].  

The aforementioned limitations of macroscopic 
approaches have motivated the introduction of 
methods that attempt to describe the transport 
processes on two scales, macroscopic and 
microscopic. For porous media, the microscopic 



 

scale refers to the pore-scale where as for a 
composite material it refers to the scale of the 
heterogeneities. In this paper, we consider perhaps 
the two most prominent two-scale approaches: the 
heterogeneous multi-scale methods and the 
distributed microstructure models. The central idea of 
both approaches is the same, namely, that solving the 
microscopic transport equations on a number of small 
domains (micro-cells) sparsely distributed throughout 
the full heterogeneous medium is much less 
expensive than solving the full microscopic problem. 
In the next sections, we present the general 
framework of both approaches, briefly discuss their 
numerical implementation and demonstrate their 
application to an example problem. 

HETEROGENEOUS MULTI-SCALE METHODS 

Heterogeneous multi-scale methods[7,8] are among 
those multi-scale approaches that assume local 
equilibrium at the micro-scale. In these methods, the 
form of the macroscopic flux is not proposed prior to 
the simulation but instead it is estimated throughout 
the simulation by solving the microscopic equation 
on micro-cells that have been strategically positioned 
at points where macroscopic flux estimation is 
required. The microscopic equation is solved under 
steady state conditions[9] or evolved to a quasi-steady 
state[7,8], at which point the macroscopic flux is 
estimated and the macroscopic solution then evolved. 
The objective of this approach is purely to describe 
the macroscopic behavior of the flow: the 
microscopic solution does not represent the solution 
to the full microscopic model at that point in space. 
For this reason the method is restricted to problems 
where the macroscopic scale is the only scale of 
interest.  

Example: Low temperature convective drying of 
wood in the hygroscopic range 

Heterogeneous multi-scale methods have been 
applied to simulate water flow in heterogeneous soils 
governed by the Richards’ equation[7,8]. Recently, a 
similar idea was used to simulate low temperature 
convective drying of softwood in the hygroscopic 
range[9]. Under low temperature drying conditions, 
the assumption of a fixed gaseous pressure is valid, 
which means that only balance equations for the 
conservation of water and energy are required, giving 
the following pair of coupled macroscopic equations: 

Macroscopic conservation of water and energy 

 !!M
(w)

!t
+"#qM

(w) = 0  (1)

 !!M
(e)

!t
+"#qM

(e) = 0  (2) 

where the conserved quantities are defined in terms 
of the primary variables: moisture content (XM) and 
temperature (TM). The subscript M is used to denote a 
macroscopic quantity and the subscript m a 
microscopic quantity. Each time the macroscopic 
fluxes need to be estimated, one solves the following 
pair of coupled steady state equations on the 
underlying pore structure specified by the geometry 
of the micro-cell at the given point:  

Micro-cell steady state problem 

 !"qm
(w) = 0  (3) 

 !"qm
(e) = 0  (4) 

Once a solution to the steady state problem has been 
obtained, the macroscopic moisture and thermal 
fluxes are computed by averaging the microscopic 
fluxes over the micro-cell: 

 qM
(w) =

1
|Y |

qm
(w)

Y! dy  (5) 

 qM
(e) =

1
|Y |

qm
(e)

Y! dy  (6) 

where the micro-cell domain is denoted by Y and |Y| 
is the area of the cell. 
 
In the hygroscopic range, liquid water is absent from 
the pores so the void space in the porous medium is 
composed of air and water vapor only. Thus, the 
liquid mass flux at the microscopic consists of two 
contributions: bound water diffusion in the solid 
phase and water vapor diffusion in the gaseous phase. 
The transport of energy is governed by heat 
conduction (Fourier’s Law) and the diffusive energy 
fluxes associated with bound water and vapor. For 
the full form of the microscopic fluxes the reader is 
referred to the literature[9]. 

Additional coupling between the macroscopic and 
microscopic variable fields is described below: 

(i) Calibration of the macroscopic and microscopic 
conserved quantities is enforced 
 

 !M
(w) =

1
|Y |

!m
(w)

Y! dy  (7) 

 !M
(e) =

1
|Y |

!m
(e)

Y! dy  (8) 

 
where the microscopic conserved quantities are 
defined in terms of the microscopic primary 
variables: moisture content (Xm) and temperature 
(Tm). 



 

(i) The macroscopic gradients of moisture content 
and temperature are imposed on the microscopic 
boundary via the following quasi-periodic 
boundary conditions: 

 Xm (a, y2 ) = Xm (0, y2 )+ a
!XM

!x1
 (9)

 Xm (y1,b) = Xm (y1, 0)+ b
!XM

!x2
 (10)

 Tm (a, y2 ) = Tm (0, y2 )+ a
!TM
!x1

 (11)

 Tm (y1,b) = Tm (y1, 0)+ b
!TM
!x2

 (12) 

 
where a and b are the width and height of the 
micro-cell Y, respectively.  

 
Clearly, the two-scale model described above 
requires a significant increase in computational 
resources (e.g., memory and computation time) 
compared with a standard macroscopic approach. 
The extreme size of the numerical problem becomes 
apparent when applying a control volume finite 
element (CVFE) method to the macroscopic 
equations. In this case, macroscopic flux estimation 
is required at the midpoint of each control volume 
edge in the mesh throughout the entire simulation. 
Each time the flux is estimated one must solve the 
steady state problem numerically on the micro-cell 
(Eqs. 3 and 4) using an appropriate numerical 
strategy (e.g. a CVFE method together with a 
Newton iteration). In this work, the discrete 
macroscopic solution is advanced in time using an 
exponential Rosenbrock method[9]. 
 
To highlight the capabilities of the model we present 
simulation results for low temperature convective 
drying of a small cross-section of softwood of size 
5cm x 2.5cm. The micro-cell geometry is assumed to 
be fixed in space and time with size 50µm x 
40.963µm. Two different micro-cell configurations 
are tested representing a cell in wood with and 
without pits (see Figs. 1 and 2).  Initially, the 
moisture content and temperature are uniformly 
equal to 0.275kgkg-1 and 50°C, respectively. For the 
specific drying boundary conditions and parameters 
used the reader is referred to the literature[9]. All 
simulations were performed with a macroscopic 
mesh containing 928 triangular elements and 552 
nodes in total, however, due to the symmetry of the 
problem only one quarter of these are computed on. 
The simulation time was approximately 5 hours when 
implemented in a hybrid MATLAB/C code on a 
MacBook Pro with a 2.7 GHz Intel Core i7 processor 
and 4 GB of RAM running MAC OS X and 
MATLAB R2011a using a microscopic mesh 
comprising 576 nodes.  
 

The significant effect of the micro-cell configuration 
on the macroscopic moisture content fields is 
demonstrated in Figs. 2-7. The inclusion of pits eases 
the moisture transfer along the width of the cross-
section (parallel to the direction of the pits) leading to 
a significantly faster drying rate and a quasi-flat 
moisture field after 18 hours of drying (Fig. 8). This 
phenomenon is explained by the fact that gaseous 
phase is connected in the direction of the width of the 
board (see Fig. 1). Since the mass flux is more 
conductive in the gaseous phase than in the solid 
phase, the connectivity of the gaseous phase 
increases the magnitude of the mass flux. 
 
It is worth noting that one could also exhibit the 
microscopic distributions of moisture content (Xm) 
and temperature (Tm). However, these solutions are 
not representative of the actual distribution at the 
pore-scale. It is for this reason that we believe that 
this two-scale model closely aligns with a 
macroscopic approach, where the effective 
parameters are supplied using homogenization 
theory[5]. 
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Fig. 1. Micro-cell configuration (pits) 
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Fig. 2. Micro-cell configuration (no pits) 
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Fig. 3. Macroscopic moisture content field after 6 

hours (no pits) 
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Fig. 4. Macroscopic moisture content field after 12 

hours (no pits) 
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Fig. 5. Macroscopic moisture content field after 18 

hours (no pits) 
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Fig. 6. Macroscopic moisture content field after 6 

hours (pits) 
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Fig. 7. Macroscopic moisture content field after 12 

hours (pits) 
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Fig. 8. Macroscopic moisture content field after 18 

hours (pits) 

 

 



 

DISTRIBUTED MICROSTRUCTURE MODELS 

Unlike the heterogeneous multi-scale methods, 
distributed microstructure models do not assume 
local equilibrium at the microscopic scale. These 
models are designed specifically for a heterogeneous 
medium composed of two materials, where one 
material has high conductivity/permeability and is 
macroscopically connected (known as the matrix or 
the conductive phase) while the other has low 
conductivity/permeability and forms disconnected 
inclusions (also known as the storage phase). The 
underlying idea is that a macroscopic equation 
describes the global flow in the macroscopically 
connected material and a family of microscopic 
equations describes the local flow in the isolated 
inclusions. Coupling between scales occurs on the 
material interface within each micro-cell via a 
Dirichlet condition matching the microscopic and 
macroscopic variables and a source term at the 
macroscopic level representing the flux passing from 
the inclusions to the connected material. Recent 
work[10] has permitted such models to be applied to 
irregular inclusion geometries, and, if necessary, 
modified to account for additional phenomena (e.g., 
imposing the macroscopic gradient on the micro-
scale). 

Example: Water flow in heterogeneous soils 

We consider a two-scale distributed microstructure 
model that uses a Richards’ equation description of 
the flow. Richards’ equation is commonly used to 
describe unsaturated flow of water in heterogeneous 
soils and represents a simplified form of the full two-
phase (air and water) flow model under the 
assumption that the air phase is held at constant 
(atmospheric) pressure. The two-scale model consists 
of the following coupled macroscopic and 
microscopic equation: 

Macroscopic conservation of water 

 !
!t
(!M"M )+"# ($Keff (hM )"(hM + x2 )) =Q  (13) 

Microscopic conservation of water 

 !!m
!t

+"# ($Km(hm )"hm ) = 0 on Ym  (14) 

where !M = |YM | |Y | , hM  is the macroscopic 

primary variable (pressure head in the matrix) , hm  is 
the microscopic primary variable (pressure head in 
the inclusions), Keff   is the effective conductivity 
given according to homogenization theory[10,11] and 
Ym  is the sub-domain of the micro-cell occupied by 
the weakly conductive inclusion (see Fig. 9). As 
previously mentioned, coupling between scales 
occurs in two ways: 

(i) Equality of the macroscopic and microscopic 
variables is imposed on the material interface, 
which forms the boundary condition for the 
microscopic problem: 

  hm = hM on !  (15) 

(ii) The source term Q  quantifies the amount of 
fluid flux that passes through the material 
interface (from the inclusions to the connected 
material) scaled by the area of the micro-cell: 

 Q = 1
|Y |

!Km(hm )"hm #n$ dy$%  (16) 

where n
!

is the unit vector normal to the interface 
directed outward from the inclusion.  

This model represents a significant increase in 
complexity compared with a classical macroscopic 
approach: at each macroscopic node the solution of 
separate partial differential equation is required (Eq. 
14). The difference with the heterogeneous multi-
scale method, however, is that both the macroscopic 
and microscopic equations are completely coupled 
and evolved using the same time step.  

To close the model the van Genuchten relationships 
are used that express the moisture content and 
hydraulic conductivity in terms of the pressure head: 

 ! (h) =!res + (!sat !!res )Se (h)  (17) 

 K(h) = KsatSe(h)
1/2[1! (1! Se(h)

1/m )m ]2  (18) 

where m =1!1 n and the effective saturation 

 Se(h) = [1+ (!!h)
n ]!m  (19) 

The various parameters included in the relations 
describe the hydraulic properties of the material[10].  

To highlight the capabilities of the model, we present 
numerical simulation results for a water infiltration 
problem into a square domain of size 30cm by 30cm 
consisting of weakly conductive inclusions 
embedded in a highly conductive material. All 
boundaries are no flux apart from a 10cm section at 
the center of the top boundary, where a constant 
infiltration rate of 0.3cmh-1 is applied. Initially, the 
domain is very dry with the pressure head set equal 
to –20cm everywhere at both scales. The hydraulic 
properties of both materials are the same apart from 
the saturated hydraulic conductivity, which is 1000 
times smaller in the inclusions  (see Table 1). 

Table 1. Hydraulic properties 

      

Matrix 4.4 0.058 0.41 0.073 1.89 

Inclusions 0.0044 0.058 0.41 0.073 1.89 

Ksat !res !sat ! n



 

The two-scale model is solved using a CVFE method 
applied to a macroscopic mesh consisting of 961 
nodes (30 by 30 grid with 1cm spacing between grid 
points). At each macroscopic node, the microscopic 
equation (3) is solved on the micro-cell depicted in 
Fig. 9 using an unstructured mesh consisting of 186 
nodes. The resulting discrete differential system has 
dimension N = 961 + 961 x 186 = 179,707, which is 
solved numerically using an exponential Rosenbrock-
Euler method[10]. For a simulation of 20 hours, the 
computation time was approximately 40 minutes 
when implemented in a hybrid MATLAB/C code on 
a MacBook Pro with a 2.7 GHz Intel Core i7 
processor and 4 GB of RAM running MAC OS X 
and MATLAB R2011a.  

Inclusion (Ym)

Matrix (YM )

0.8 cm

0.8
cm

 
Fig. 9. Micro-cell configuration. 
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Fig. 10. Saturation contours after 5 hours. 
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Fig. 11. Saturation contours after 8 hours. 
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Fig. 12. Saturation contours after 12 hours. 

 

As evident in Figs. 10-12, the distributed 
microstructure model is quite powerful, providing 
local descriptions of the flow behavior at the 
microscopic scale of the inclusions in addition to a 
global description of the flow in the full macroscopic 
domain. The microscopic solution is shown at two 
chosen points, however, in reality it is stored at every 
macroscopic node. After 5 hours of infiltration the 
saturation in the inclusion located at the macroscopic 
point (15,25) is unchanged from its initial state due to 
the low inclusion conductivity. As the simulation 
progresses, the inclusion is slowly infiltrated (Fig. 
11) and eventually reaches an equilibrium state with 
the surrounding matrix after 12 hours (Fig. 12). This 
behavior is even clearer in Fig. 13, where the 
evolution of the saturation in the matrix and the 
center of the inclusion are profiled versus time. 
Initially, the saturation increase in the matrix (high 
conductivity material) is rapid and delayed in the 
inclusion (low conductivity material) before 
eventually reaching the matrix value after 
approximately 13 hours. It is worth noting that such 
non-equilibrium behavior at the microscopic scale 
cannot be captured by a classical macroscopic model. 

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Sa
tu

ra
tio

n 
(S

e) [
]

Time (t) [hrs]

   Inclusion

 
 Matrix

 
Fig. 13. Comparison of the evolution of the 

saturation in the matrix and inclusion located at 
(15,25).  



 

CONCLUSIONS 

This paper gave an overview of two current two-
scale modeling approaches for simulating transport in 
porous media and demonstrated their application to 
two important problems: low temperature drying of 
wood in the hygroscopic range and unsaturated water 
flow in soils exhibiting small-scale heterogeneities. A 
clear limitation of the heterogeneous multi-scale 
methods is the assumption of local equilibrium at the 
microscopic scale, which means that the method is 
restricted to problems where this assumption holds 
true. On the other hand, while the distributed 
microstructure models allow for non-equilibrium 
behavior at the microscopic scale, they are limited to 
the specific problem of a heterogeneous medium 
comprising weakly conductive inclusions embedded 
in a highly conductive matrix. In conclusion, the 
need for a more general two-scale formulation for 
heterogeneous media is evident. 

NOMENCLATURE 

Y micro-cell domain – 
X moisture content kgkg-1 
T temperature °C 
q flux vector – 
K hydraulic conductivity cmh-1 
Keff effective hydraulic conductivity cmh-1 
t time h 
h pressure head cm 
n curve-fitted soil parameter – 
m curve-fitted soil parameter – 
Q source term h-1 
Se effective saturation – 
 
Greek letters 
 
α curve-fitted soil parameter cm-1 
θ volumetric moisture content – 

θres
 residual moisture content – 

θsat
 saturated moisture content – 

ψ conserved quantity – 
Γ material interface – 
 
Subscripts 
 
M macroscopic scale 
m microscopic scale 
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