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Abstract
The beeping model is an extremely restrictive broadcast communication model that relies only
on carrier sensing. In this model, we solve the leader election problem with an asymptotically
optimal round complexity of O(D + logn), for a network of unknown size n and unknown dia-
meter D (but with unique identifiers). Contrary to the best previously known algorithms in the
same setting, the proposed one is deterministic. The techniques we introduce give a new insight
as to how local constraints on the exchangeable messages can result in efficient algorithms, when
dealing with the beeping model.
Using this deterministic leader election algorithm, we obtain a randomized leader election pro-
tocol for anonymous networks with an asymptotically optimal round complexity of O(D+ logn)
w.h.p. In previous works, this complexity was obtained in expectation only.
Moreover, using deterministic leader election, we obtain efficient algorithms for symmetry-breaking
and communication procedures: O(logn) time MIS and 5-coloring for tree networks (which is
time-optimal), as well as k-source multi-broadcast for general graphs in O(min{k, logn} · D +
k log nM

k ) rounds (for messages in {1, . . . ,M}). This latter result improves on previous solutions
when the number of sources is sublogarithmic (k < logn).
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1 Introduction

The leader election (LE) problem, where a single (leader) node is given a distinguished
role in the network, is a fundamental building block in algorithm design. This is because a
leader can initiate and coordinate behaviors in the network, often making leader election a
crucial first step in applications requiring communication and agreement on a global scale.
For example, more advanced communication primitives such as broadcast, gossiping and
multi-broadcast, rely on first electing a leader to coordinate transmissions [11] (see also Sect.
4.3).

Wireless networks with severe restrictions on communication capabilities are an increas-
ingly prevalent subject of study, e.g., [7, 18, 8, 13, 14, 9]. In order to represent these networks,
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Cornejo and Kuhn [8] introduced a convenient formal framework: the discrete beeping model.
In the discrete beeping model, time is divided into synchronous rounds, and in each round, a
node can either listen or transmit a unary signal (beep) to all its neighbors. The possibility
to directly transmit a beep to a node is defined by a static communication graph, and nodes
have no knowledge of this graph. As a beep is merely a detectable burst of energy, a listening
node does not receive the identifiers (ids) of its beeping neighbors. Even more critically, a
beeping node receives no feedback, while a silent (listening) one can only detect that either
at least one of its neighbors beeped or that all of them were silent. Although algorithms can
take advantage of the synchronous nature of the rounds to transmit information using beeps,
doing so impacts the time complexity in a quantifiable manner. This work studies how this
impact can be minimized.
The beeping model has also been justified by its possible applications to biological networks
[16], which are reliant on primitive communications. Fireflies communicate through flashes
of light [2, 15] and cells through the diffusion of specific chemical markers [1, 19].

Beeps are an extremely limited form of communication, making it difficult to coordinate
nodes. Being a fundamental coordination problem, leader election has received a lot of
attention (see Sect. 1.1). Probabilistic and deterministic solutions were proposed for general
graphs, and a time complexity lower bound of Ω(D+logn) was established (D is the diameter
of the network, and n its size). One of the prime concerns is the design of uniform solutions,
that is, of algorithms that do not require any knowledge on the graph topology or on the
parameters n and D (or even on their upper bounds). Indeed, it is unrealistic to assume
that upper bounds on these parameters are always available, especially when considering
dynamic wireless networks.
Amongst existing works for LE in the beeping model, the more difficult (for design) determin-
istic case has received less attention. However, this case is useful whenever random behavior
is inappropriate or deterministic guarantees are required. We show in this work that an
asymptotically time-optimal deterministic algorithm can be designed. This algorithm gives
rise to an anonymous (not using ids) randomized algorithm that also matches the lower
bound.

1.1 Related Work
Leader election (LE), being a fundamental problem in distributed computing, has been
studied in various models. In each newly introduced model, an efficient leader election
algorithm is a foremost concern, since it is frequently used as a building block in more
complex algorithms. In particular, recent models designed for wireless networks assume that
simultaneous communications interfere with each other. Consequently, leader coordination is
even more important in these models, though LE is harder to solve efficiently.
Even though computational complexities (in particular time complexity) for LE are key
aspects in the algorithmic design, additional properties are also of concern: for example,
one might want nodes to detect termination, or to ensure that there is never more than one
leader node during any execution (safety property).

Ghaffari and Haeupler [13] present the first LE algorithm for the beeping model, which
elects a leader in O(D + logn) · O(log2 logn) rounds with high probability (w.h.p.: with
probability 1−n−θ(1)). [13] also gives a lower bound of Ω(D+logn) rounds for LE, applicable
both to deterministic and randomized (w.h.p. time) algorithms. Following this result, Czumaj
and Davies [9, 10] present a randomized LE algorithm with O(D + logn) expected time in
the beeping model. In both randomized algorithms, the safety property is guaranteed w.h.p.,
but some upper bound N on the number of nodes n is required.
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As for deterministic LE, Förster et al. [12] give the first algorithm in the beeping model,
with an O(D · logn) round complexity. This algorithm is uniform in both n and D.
The round complexities of different LE algorithms, including some presented here, are
compared below (see Figure 1).

Figure 1 LE algorithms in the beeping model

Ref Time Safety Knowledge
[13] O(D + log n log log n) ·min{log log n, log n

D
} w.h.p. W.h.p. N = O(n)

[12] O(D · log n): deterministic time Deterministic None
[9, 10] O(D + log n) expected time W.h.p. N = O(n)
Here O(D + log n): deterministic time Deterministic None
Here O(D + log n) w.h.p. W.h.p. N = O(n)

[13, 9, 10, 12] concentrate on improving the time complexity of LE in general graphs. A
different focus is presented in [14], where the goal is to minimize the size of the state machine
representation of an (beeping model) algorithm solving randomized LE in single-hop networks.

Amongst the extensive leader election literature in other models, Casteigts et al. [6]
is particularly relevant to our work. [6] proposes an O(D + logn) time deterministic LE
algorithm in the constant-size ECONGEST model, where the algorithm is uniform in both
the number of nodes n and the diameter D. ECONGEST is much stronger than the beeping
model, in that a node can easily learn its local topology and has direct links to communicate
with its neighbors, whereas the absence of such links in the beeping model causes interference
and makes directed messages (with known sender and receiver) unachievable or plainly
inefficient. Notice that by using a 2-hop coloring and by encoding messages with both the
colorings of sender and receiver, the constant-size ECONGEST model can be simulated, but
with a prohibitive multiplicative factor of O(∆4) [4] (where ∆ is the maximum degree).
Nevertheless, one of the main contributions of [6] is a rooted (in the maximum id node)
spanning tree construction and information diffusion algorithm, designed to spread the
maximum identifier efficiently, in a pipeline-like manner (rather than performing consecutive
local comparisons of a complete identifier). This latter shift is crucial to the time-optimality
of their algorithm, and is used in our work to improve on the O(D · logn) result from [12].

1.2 Contributions
We present a deterministic and completely uniform (in n and D) leader election algorithm
with an O(D + logn) asymptotically optimal round complexity. By independently sampling
θ(logn) bits to create unique identifiers w.h.p. and using the deterministic LE algorithm, we
obtain a uniform (in D only) randomized leader election algorithm which takes O(D + logn)
rounds w.h.p. and works in anonymous networks. Both solutions are the first to achieve time-
optimality for these guarantees in the beeping model, outperforming all previous deterministic
and randomized results.

Furthermore, using the proposed deterministic LE algorithm, we propose the first asymp-
totically time-optimal O(logn) time Maximal Independent Set (MIS) and 5-coloring al-
gorithms for trees in the beeping model (leveraging the fact that given a leader in a tree
network, it is simple to compute a 2-coloring). The MIS and coloring algorithms can be
considered as essential symmetry-breaking procedures, and designing optimal-time solu-
tions (even limited to tree networks) might be crucial for other applications in the beeping
model. Then, we give an O(min{k, logn} · D + k log nM

k ) time k-source multi-broadcast
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(with provenance) algorithm (for messages in {1, . . . ,M}). This latter algorithm improves
a previous result by Czumaj and Davies [9], when the number of sources is sublogarithmic
(k < logn), by executing k consecutive leader elections. Communication primitives are
especially important in the beeping model, as they allow to deal with the interferences caused
by simultaneous communications, and thus design complex algorithms.

2 Model and Definitions

2.1 Preliminaries
The communication network is represented by a simple connected undirected graph G =
(V,E), where V is the node set and E the edge set. The network size |V | is also denoted by
n, and the diameter by D. Nodes have unique identifiers (ids). This property is essential
in order to break symmetry in deterministic algorithms. Let [k] be the set {1, . . . , k}. The
identifier of a node u ∈ V , id(u), is an integer from [N ] where N = nc with a constant c > 1.
N is an upper bound on the total number of nodes in G. Then, the maximum length over all
identifiers in G is lmax=O(logN)=O(logn).

Now, we give definitions pertaining to binary words. The operator ‖ is for the string
concatenation. The length of a binary word bin is denoted by |bin|. For any binary word bin
and integer j ∈ [|bin|], bin[j] denotes the jth most significant bit of bin. Let x and y be two
binary words, x is said to be the prefix (resp., proper prefix) of y if there exists a binary word
(resp., non empty binary word) z such that x ‖ z = y. The empty word is denoted by ε.

The α-encoding [6] of an integer i ∈ N>0 is a binary word obtained from the binary
representation bin of i. By definition, α(i) = 1|bin| ‖ 0 ‖ bin. In the LE section (Sect. 3),
α-encodings of ids are used instead of ids, to ensure the algorithm works in a uniform (in
n) manner, and thus from now on, we also use the term identifier to refer to α-encodings
of ids. A binary word x is well-formed if there exists an integer i such that x = α(i). It is
simple to prove that for every binary word x, there is at most one such integer i. Thus the
α−1 function (α’s “inverse”) is defined on well-formed words.
We introduce a second encoding, the β-encoding: β(i) = 0|bin| ‖ 1 ‖ bin. Whereas α-
encodings are used to compare binary words (in a uniform manner), to look for the longest
and highest binary words, β-encodings are used to look for the shortest but highest binary
words (highest word amongst those with the shortest length).

2.2 Model Definitions
In the beeping model, an execution proceeds in synchronous rounds, i.e., there are synchronized
local clocks and all nodes start at the same time in a synchronous start. The synchronous
start assumption can be replaced by a slightly weaker variant, wake-on-beep [1], by using
EBET [3], for a constant multiplicative overhead. In this variant, a subset of nodes wakes up
in the first round, and all other nodes wake up if and only if a neighboring node beeps.
In each round, nodes synchronously execute the following steps. First, each node beeps
(instruction BEEP in algorithms) or listens (LISTEN in algorithms). Beeps are transmitted
to all neighbors of the beeping node. Then, if a node beeped (in the previous step of the
same round), it learns no information from its neighbors. Otherwise, it knows whether or not
at least one of its neighbors beeped (during the previous step of the same round). Finally,
each node performs local computations.
The ECONGEST (EC) model [17] is of interest in this paper. It is much stronger than the
beeping model, as nodes communicate by sending messages of maximum length B (edge
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bandwidth), commonly O(logn), in a round. Different messages can be sent to different
neighbors and nodes receive the full content of all incoming messages, and distinguish between
communication edges. It should be noted that messages from the same node are always
received through the same edge. We use the term constant-size to express that the bandwidth
B is bounded by some constant value.

We adopt the usual definitions for the system/algorithm: state of a node (values of its
variables), configuration (a vector of all the nodes’ states), execution (a sequence of config-
urations from consecutive rounds’ ends), terminal configuration (a configuration repeated
indefinitely), termination (when a terminal configuration has been reached), round complexity
(number of rounds needed until a terminal configuration satisfying the problem conditions is
reached, in the worst case). A variable var of a node v is explicitly associated to v using a
subscript varv.
An algorithm is said to be uniform1 in a parameter p if the algorithm does not know p (and is
unable to infer it from the information it holds). For example, in a uniform (in n) algorithm,
nodes do not know the size n of the network, neither can they deduce it from their identifier.

2.3 Leader Election
In the leader election (LE) problem, each node has a boolean variable, indicating a leader or a
non-leader state. During an execution, there is never more than one leader (safety property).
Initially, all nodes are non-leaders. Every execution terminates, and at the termination there
is exactly one leader.
Now we give auxiliary definitions. First, we define eventual leader election, where the
algorithm terminates but no node is aware of when it terminates. Then, we define terminating
leader election, where the algorithm terminates and nodes are aware that there remains
a single candidate node (the leader). We solve explicit leader election (when nodes have
unique identifiers): a terminating leader election in which all nodes know the elected leader’s
identifier at the termination.

3 Leader Election Algorithms

Classical approaches used to solve leader election in CONGEST models do not work in the
beeping model. Although they can be adapted using a transformer, doing so is too costly in
most of the graphs (see discussion in the related work section: Sect. 1.1).
To solve the strongest version of LE, explicit leader election, we proceed in two main steps.
First, we design a uniform algorithm for eventual leader election, in Sect. 3.1. Then, in
Sect. 3.2, we combine this algorithm with a specially designed uniform termination detection
component to obtain a uniform explicit leader election algorithm.

3.1 Uniform Eventual Leader Election
The uniform eventual leader election algorithm (Algorithm 1) is described first (Sect. 3.1.1).
Then, in Sect. 3.1.2, k-balanced messages are introduced. They are used to allow constant-
size communication phases composed of rounds and dedicated to the communication (large)
messages respecting local constraints. Using the k-balanced message technique, a detailed

1 It is known that termination detection is easy in a synchronous setting whenever particular parameters
related to the size of the communication graph are known, i.e., non-uniform terminating algorithms are
easier to construct than the uniform ones.
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description of the communication phases (in Algorithm 1) is given, in Sect. 3.1.3. Finally, in
Sect. 3.1.4, we relate the presented techniques to existing works in CONGEST models.

3.1.1 Eventual leader election

Algorithm 1 Eventual Leader Election Algorithm
1: IN: id: identifier ; OUT: leader: boolean, leaderId: identifier
2: candidate := true, Z := ε, suspicious := false . ε is the empty word
3: leaderId := ε, leader := false

4: for diffusion phase p ; p++ do
5: // First, a communication phase with c rounds.
6: Communicate (Z, suspicious) to all neighboring nodes.
7: // Then, apply predicates on received (Z, suspicious) pairs.
8: Use all received (Z, suspicious) pairs to update Z, candidate and suspicious.
9: if not candidate then leader := false

10: else if Z is well-formed (Z = α−1(x) for any binary word x) then
11: leader := true

12: if Z is well-formed then leaderId := α−1(Z)

In the eventual leader election algorithm (Algorithm 1), all nodes aim to spread their
identifiers to the whole network (information diffusion algorithm). They start out as
candidates, with two variables: Z and suspicious. The suspicious boolean is initialized to
false. The binary word Z is initialized to the empty word ε. Z represents the prefix of an
identifier, and most of the time, the highest prefix the node is aware of. A prefix Zu is said
to be higher than a prefix Zv, if Zv is a proper prefix of Zu, or if Zu > Zv, i.e., in the first
differing bit’s position, Zu has 1 and Zv has 0, even if |Zu| < |Zv|.

Nodes execute diffusion phases (of c rounds) synchronously. A diffusion phase consists
of one communication phase of c = O(1) rounds (line 6), used to send Z and suspicious to
all neighbors, which is described in detail in Sect. 3.1.3. In that same diffusion phase, each
node receives (Z, suspicious) pairs from its neighbors, but does not know which node sent
which message, nor how many nodes sent any of these messages (multiplicity).
After the communication phase, any node v checks if its Zv value is a locally higher prefix,
using the received pairs (see details below). If that is the case, then it appends a bit from
its identifier to Zv (if Zv is a proper prefix of α(idv)), or does nothing (if Zv = α(idv)).
Otherwise, it modifies Zv depending on the highest detected Z value, and becomes a follower.
It can no longer become a leader. If that modification removes bits from Zv, node v is said
to be suspicious for the following phase, and suspiciousv is assigned to true for one phase.

More precisely, in line 8, a set of predicates given below is evaluated on the set of the
received (Z, suspicious) pairs, in the given order of priority, and the appropriate described
updates is done. If any of these predicates is true (where w and y are binary words), Zv is
not a locally higher prefix.
1. If there exists a suspicious neighbor u, such that Zu is a proper prefix of Zv, remove

min{|Zv| − |Zu|, 3} letters from the end of Zv.
2. If Zv = (z ‖ 0 ‖ w) with w 6= ε and there exists a neighbor u with Zu = (z ‖ 1 ‖ y), delete
|w| letters from the end of Zv.

3. If Zv = (z ‖ 0) and there exists a neighbor u with Zu = (z ‖ 1 ‖ y), then change Zv to
(z ‖ 1).

4. If there exists a neighbor u with Zu = (Zv ‖ 1 ‖ w) then append 1 to Zv.
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5. If there exists a neighbor u with Zu = (Zv ‖ 0 ‖ w) then append 0 to Zv.
Indeed, if a neighbor u is suspicious and Zu is a proper prefix of Zv, then a neighbor of u has
a higher prefix than Zv, or is changing (its Z variable) according to one (rule 1 above). By
deleting the last bits of Zv, node v is matching Zv to that unknown node’s Z value. In all 4
other cases, Zu is a higher prefix than Zv, therefore Zv modifies its last bits to match Zu.

Additional local computations in lines 9-12 conclude a diffusion phase. Once a node’s
Z variable is well-formed, that is, once Z = α−1(x) for any binary word x, this node sets
itself as a leader. If in later rounds it becomes a follower, then it withdraws from the leader
role. Although this process violates the safety property, it is necessary in order to elect a
leader, as the last remaining candidate cannot detect that it is the last, due to the lack of
termination detection in this preliminary eventual LE version.

The 5 rules described above are an idea adopted from [6]. Thus the described information
diffusion process satisfies Lemma 1 and Theorem 2 below, adopted from the results of [6]
and adapted here to our beeping algorithm (see Sect. 3.1.4 for more details).

I Lemma 1 (Beeping version of Lemma 8 in [6]). Let u and v be two neighboring nodes.
Then, ||Zu| − |Zv|| ≤ 6. Moreover, assume w.l.o.g. that |Zu| ≤ |Zv|, then Zu and Zv are
identical, except in at most 6 bits: from the |Zu|th bit (possibly included) to the |Zv|th bit.
More precisely, if the |Zu|th bit differs in Zu and Zv, then ||Zu| − |Zv|| < 6

I Theorem 2 (Beeping version of Theorem 10 in [6]). Let X be the highest identifier. After
|α(X)|+ 6r phases of the information diffusion algorithm, all nodes within distance r (for
any r ≥ 0) of the node with id X have Z = α(X). Thus, after at most |α(X)|+ 6D phases,
for each node v, Zv = α(X), and there is a unique candidate node.

Proof. Let l be the highest id node. We prove the theorem by induction on r.
Node l has the highest identifier X, thus it appends a bit from X in each diffusion phase.
After |α(X)| phases, Zl = α(X). This concludes the case when r = 0.
For the induction step (r > 0), consider any given node u at distance r+ 1 of node l, and one
of its neighbors v at distance r from l. By Lemma 1, Zu and Zv differ in less than 6 bits, from
the |Zu|th bit (included) to the |Zv|th bit. Since Zv = α(X) (induction hypothesis), node u
necessarily appends a bit from Zv in each of the 6 following phases, until Zu = α(X). J

Recall that a communication phases is composed of c = O(1) rounds (c is defined in Sect.
3.1.3). This implies the following theorem.

I Theorem 3. Eventual Leader Election is solved by Algorithm 1 in O(D + logn) rounds
(in the beeping model).

Proof. Let v be any given node and X the highest identifier in the network. From Theorem
2, Zv = α(X) after O(D + logn) phases. Nodes have the leader’s identifier by applying
the α−1 function. As each diffusion phase consists of c = O(1) rounds, Zv = α(X) after
O(D + logn) rounds.
Moreover, the highest id node is well-formed after |α(X)| = O(logn) phases, thus after
O(logn) rounds. As a result, the highest id node is, and remains, a leader from that point
onwards. J

3.1.2 Balanced messages
A basic component in the beeping model, the multi-slot design pattern [5], allows to com-
municate constant-size messages with no sender id, nor multiplicity, given a synchronous
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start. This component works in communication phases of M rounds, if it allows at most
M possibles messages (in {1, . . . ,M}). Beeping in the jth round of a phase is equivalent
to sending the message j, but receivers cannot detect which (and how many) nodes sent
that message. Thus, due to the beeping model’s restrictions, if a node sends a message m, it
receives no information about whether any of its neighbors also did.

Clearly, this component cannot be used to directly send Z values, as these values are in
{1, . . . , N}, and communication phases would be O(N) rounds long. But this component can
be adapted to send the values of a locally constrained (k-balanced) variable. A variable var is
said to be k-balanced if it satisfies the k-balancing property, that is, if the difference between
neighboring var values is at most k (for every node v, for all u ∈ N (v), |varu − varv| ≤ k).

If one wishes to communicate k-balanced messages, then it is enough to transmit, for a
message m, the remainder r = m mod(1 + 2k), using the previous component, with phases of
M = 1 + 2k rounds (where k needs to be previously known to all nodes). Then, the receiver
node, knowing both its remainder, the sender’s remainder and the fact that the messages are
k-balanced, can deduce the sender’s original message (but does not know if multiple nodes
have sent this message).
Specifically, let v be the receiver and u the sender. Node v simply deduces the original
message mu from the received remainder message ru: mu = mv + ru − rv − b ru−rv

k+1 cM .

Figure 2 Communication of k-balanced messages, where k = 4 and M = 9. The executing node
v, and its message value mv, are highlighted. If v receives a message ru = 3, it is able to deduce
that the corresponding message mu is 21.

Remainder received: ru =

mu −mv =
(ru − rv)− b ru−rv

k+1 cM

Decoded message: mu =

’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’

-1

18

-4

15

-3

16

-2

17

v

19

+1

20

+2

21

+3

22

+4

23

Consider the example depicted in Fig. 2 for k = 4. For a given node v, any message mu

sent by a neighboring node u is in {mv − k, . . . ,mv + k}. By transmitting the remainder
ru = mu mod(1 + 2k), node u indicates whether its message mu is in the next 4 values or in
the previous 4, respectively to mv, and the exact position amongst the 4 possibilities (more
precisely, through ru − rv). The remaining −b ru−rv

k+1 cM factor deals with the fact that some
lower (than mv) messages mu result in a high remainder ru, and some higher messages mu

in a low remainder ru, due to the modulo operation. Node v can deduce the message mu by
using all of this information, along with its own message mv.

The k-balanced message technique is of independent interest, and allows efficient algorithm
design when nodes communicate locally-similar values.

3.1.3 Designing constant-size communication phases
In this section, we show how using only O(1) rounds in the beeping model, with the help of
the k-balanced messages, a node can deduce its neighbors’ Z values (and whether some of
them are suspicious), even though there are O(N) different possible values of Z.

From Lemma 1, we know that |Z| is a 6-balanced variable. Moreover, two neighboring
nodes have similar Z values, which differ only in (a constant number of) the last bits.
Therefore, if a node knows the last 6 bits of a neighboring Z value, and their exact positions,
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then it can fill up the empty bits (in more significant positions) using the bits from its own
Z variable.
It is obvious that the last 6 bits and their exact positions can be deduced from the last 6 bits
and the last bit’s position. For that, one could use two consecutive communication subphases:
the first communicates the position of the last bit (which is |Z|, a 6-balanced variable) in a
subphase with 13 rounds, and the second communicates an ending message with the last 6
bits (using a message from {1, . . . , 26}, encoding all possible 6 letters combinations), in a
subphase with 64 rounds. However, this does not work in the beeping model because one
needs to know, for every ending message, the corresponding position of the last bit (thus the
corresponding position message). Although this is trivial in ECONGEST , because the same
communication edge would be used by a given neighboring node, it is too costly to simulate
this functionality in the beeping model (see Sect. 1.1).
Fortunately, as the message space is constant-size in both of these communication subphases,
the Cartesian product of both message spaces is also constant-size. This allows to associate
position and ending messages, using O(1) rounds, even in the beeping model. Consequently,
communication phases with 832 rounds (for messages in {1, .., 13} × {1, . . . , 26}) can be used
to communicate enough information for a node to deduce all neighboring Z values.

Nevertheless, recall that nodes also need to know whether a neighbor removed bits from
Z in the last round (indicated by the boolean suspicious). For that, the message space
is adapted to {1, .., 13} × {1, . . . , 26} × {false, true}, where the value of suspicious is also
communicated. This results in communication phases (introduced in Algorithm 1, Sect.
3.1.1) of length c = 1664 rounds, which although large, is still O(1) size.

3.1.4 Remarks on the eventual leader election algorithm
As mentioned in the related work (Sect. 1.1), [6] is particularly relevant to our work. In this
section, we discuss this in detail.
The structure of the information diffusion algorithm is essentially the same. The algorithm
progresses in diffusion phases, consisting of a communication phase (corresponding to a single
round in the considered EC model) where nodes send their (Z, suspicious) values, after which
nodes change their Z variable depending on the (Z, suspicious) pairs received. Recall the 5
rules presented in Sect. 3.1.1: the set of the different possible changes for the Z variable
is of a constant size, and these changes are meant to affect at most a constant number of
(the last) bits of Z. An important point in [6] is the proof that this set of changes allows
the maximum identifier to spread over the network, in an optimal O(D + logn) number of
phases. We use the same constant-size set of changes (for Z). That is why Lemma 1 also
applies to our algorithm.

However, the other core element of their information diffusion algorithm, the communica-
tion phase, displays fundamental flaws when considering the beeping model. In [6], nodes
maintain up-to-date copies of the Z variables of their neighbors to circumvent the limited
message size, and can keep these copies up-to-date in a single O(1) rounds communication
phase. In such a phase, nodes communicate what change was carried out (and which neighbor
sent which message): sending the type of change is equivalent to sending the complete Z
value in this situation.
In the beeping model, nodes are unable to know which neighbor sent which message (which
communication edge transmitted a particular message). Although this capability can be
simulated, it seems improbable that it can be done without increasing the time complexity
of [6]. Current methods result in a O(∆4) multiplicative factor (see discussion in Sect. 1.1),
because symmetry-breaking procedures are required to distinguish between neighbors beeping
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at the same time.
One of the main contributions in this work is the introduction of the k-balanced message

method to leverage the local constraints between (unbounded) values, to allow communication
in O(1) rounds. With the k-balanced message technique, a node can transmit a value of Z
to its neighbors in O(1) rounds (of the beeping model) only. This communication process
differs greatly from that of [6].

3.2 Uniform Terminating Leader Election (Explicit LE)
The LE algorithm is often used as a primitive. It is thus essential for it to be uniform
and detect termination (e.g., so it can be composed with other algorithms). Since classical
approaches are not suited to the beeping model, we propose a uniform terminating leader
election using a different termination detection approach.
It should be noted that, as mentioned previously, it is simple (in the synchronous setting) to
transform the uniform eventual leader election algorithm, Algorithm 1, into a non-uniform
algorithm (using knowledge of D and N). Indeed, since the time complexity of the algorithm
is known to all nodes, candidates can wait until the algorithm terminates, i.e., when there is
a single candidate with a well-formed Z.

First, we briefly describe in Sect. 3.2.1. the primitive that we use - the overlay networks.
Then, in Sect. 3.2.2, an improved version of this primitive is used to create a uniform
termination detection component. This component is combined with the previously presented
eventual leader election algorithm to obtain uniform explicit leader election.

3.2.1 Overlay network
The overlay network approach, in the context of leader election, was first used for the beeping
model in [12]. An overlay network has a designated root, and consists of layers centered
around that root. Nodes at a distance d from that root (level d), have up links (resp. down
links) towards all neighboring nodes (of the overlay) at distance d − 1 (resp. at distance
d+ 1) from the root. Using these links, the root can gather information about the network,
and disseminate it. The default behavior for overlay nodes is to relay any message received
over one up (resp. down) link to all down (resp. up) links.
Nodes have a depth variable (in {0, 1, 2}). This variable is initialized when nodes join the
overlay, and needs to respect some local constraints (detailed below) when initialized. Once
depth is properly initialized, it is key to communications over the up and down links (which
cannot be explicitly used in the beeping model). Nodes communicate in overlay phases of 9
rounds. The first 3 rounds are called control rounds, the next 3 up rounds and the last 3
rounds down rounds. Each set of 3 rounds (round triplet) is numbered from 0 to 2.
To listen over an up link (resp. down link), a node listens in up (resp. down) round
depth− 1 (mod 3) (resp. depth+ 1 (mod 3)), where −1 (mod 3) = 2. To communicate over
an up link (resp. down link), a node beeps in up (resp. down) round depth (mod 3). In other
words, communication through up and down links is the same as sending a depth message
using the corresponding triplet of rounds (a message from Mdepth = {0, 1, 2}).

Finally, we describe the joining process. Nodes in the overlay beep in control round depth.
Nodes looking to join listen in all control rounds. If a beep is heard (in round beepHeard),
the node joins the overlay, by assigning itself depth = beepHeard+ 1 (mod 3). If more than
one beep is heard, the node chooses the smallest one.
However, for the overlay to work properly, the depth variable has to satisfy some local
constraints. More specifically, for any distance d and for any given (overlay) node v in
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level d, all neighboring (overlay) nodes u in level d − 1 (resp. in level d + 1) must have
depthu = depthv − 1 (mod 3) (resp. depthu = depthv + 1 (mod 3)). Otherwise, node v is
unable to send messages over the up and down links.

In Sect. 3.2.2, a modified version of the described overlay network is used. Each round
triplet (capable originally of sending messages from Mdepth) is modified into a subphase
capable of sending messages from Mdepth ×MZ , where MZ = {1, .., 13} × {1, . . . , 26}. With
this change, nodes can detect whether the other endpoint of a down link or up link, is
communicating the same message in the MZ field.

3.2.2 Termination detection component for explicit leader election

Algorithm 2 Uniform Terminating Leader Election Algorithm
1: IN: id: identifier ; OUT: leader: boolean, leaderId: identifier
2: candidate := true, Z := ε, suspicious := false . ε is the empty word
3: leaderId := ε, leader := false

4: for diffusion phase p ; p++ do
5: // First, a communication phase with c = O(1) rounds.
6: Communicate (Z, suspicious) to all neighboring nodes.
7: // Then, apply predicates on received (Z, suspicious) pairs.
8: Use all received (Z, suspicious) values to update Z, candidate and suspicious.
9: // Finally, termination detection phase with s = O(1) rounds.
10: If termination is detected, exit the loop.
11: leaderId := α−1(Z)
12: if candidate then leader := true . Last candidate becomes the leader

We describe the proposed termination detection component, and its interactions with
the eventual leader election algorithm (Algorithm 1). The termination detection component
is meant to gather information, from the whole network, on whether there are any higher
id candidates. If there are none, the last candidate terminates and becomes leader. The
combined final algorithm structure is given in Algorithm 2.
First, we describe the construction of the overlay networks. If they are not constructed
properly, they cannot be used to gather information on whether there are any other candidates.
We use modified overlay networks, where up and down links exist only between nodes with
the same Z value, i.e., in the same overlay. Moreover, nodes with different Z values do not
detect each other when beeping in the control rounds.
Once a candidate node has a well-formed Z (after exactly |α(id)| diffusion phases), it sets
itself up as an overlay’s root, but it waits 5 diffusion phases before beeping in the control
rounds of the 6th phase (and only in this phase). On the other hand, follower nodes with a
well-formed Z attempt to join the overlay corresponding to Z right away. Once a follower
node joins an overlay, it also waits 5 phases before beeping in the control rounds of the 6th
phase. By blocking follower nodes from joining an overlay too quickly, the algorithm makes
that sure their depth variables are properly initialized. Moreover, the overlay network grows
by one level every 6 diffusion phases (which aligns with the minimum information diffusion
speed), unless a higher id root is detected.

I Lemma 4. Let r be the root of an overlay network. Its overlay is properly constructed.
That is, (r’s overlay) nodes at level d have the same depth value.
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Proof. Let us prove by induction that for all nodes at distance d from r, if they join r’s
overlay, then they all join in phase |α(idr)|+ 6d.

Let us first consider a node v at distance 1 from r. For node v to join r’s overlay, another
overlay node must beep in the control rounds and Zv must be equal to α(idr), in the same
phase. Notice that nodes that are in different overlays beep in different control rounds,
because of the message modification.
In phase |α(idr)|+ 6, r beeps in the control rounds, and thus v can join in that phase (if
Zv = α(idr)). In addition, if Zv 6= α(idr) in phase |α(idr)|+ 6, then by Theorem 2, node
v does not consider α(idr) as the highest Z value it has encountered. As a result, it is
impossible that Zv = α(idr) after phase |α(idr)|+ 6, and that v joins r’s overlay after phase
|α(idr)|+ 6.

The induction step (d > 1) is the same, starting from a node v at distance d from r. J

Then, we detail how a candidate node detects that it is the last to remain as candidate.
The idea is that, as long as an overlay has not covered the whole network, follower nodes
send messages through up links, stopping the root from becoming a leader. Furthermore,
only the overlay of the highest id node can cover the whole network.
After a candidate node beeps in the control rounds, it listens to its down links in every phase.
As long as it hears a message through these links, or is a border node (there exists a neighbor
with a different Z value), it does not become leader. Once no message is heard, it becomes
leader. On the other hand, a follower node sends messages in the up links in the 7 phases
after it joins the overlay. It also sends messages in the up links if it is a border node (and
relays any message heard through a down link).
Consequently, before an overlay network covers the whole network, the root receives messages
in every (termination detection) phase.

The termination detection phase builds upon the k-balanced message technique, intro-
duced in Sect. 3.1.2. Specifically, a termination detection phase consists of a border detection
phase followed by a modified overlay phase.
The border detection phase is a communication phase for messages in MZ = {1, .., 13} ×
{1, . . . , 26}, where nodes can detect if any of their neighbors has a different Z value.
In the modified overlay phase, different overlay networks (with different Z values) do not
share round triplets. When messages (from Mdepth) are sent over up and down links, a
message (from MZ) is associated such that nodes can check whether the other endpoint of a
down link, or up link, is in the same overlay network or not. A modified overlay phase has
3s′ rounds, and thus a termination detection phase has s = 10|MZ | rounds.

I Lemma 5. Let r be the root of an overlay network. Then from diffusion phase |α(id)|+ 6
onwards, node r receives messages in its down links every phase, until it is a border node or
no longer part of the overlay, or until the overlay cover the whole network.

Proof. Let r be the root of an overlay network. From Lemma 4, r’s overlay network is
properly constructed, therefore the virtual links can be used. We define a (overlay) downwards
path from node v to node u, as a sequence of down links, starting in v and ending in u. A
node u is downwards reachable from node v if there is a overlay downwards path from v to u.

Consider a follower node v, having just joined r’s overlay. Node v beeps in its up links
in the first 7 phases after it joins. For each additional level in the overlay, with nodes that
are downwards reachable from v, it beeps an additional 7 phases, such that there is no
interruption in the up messages.
If an overlay node becomes a border node (some of its neighbors do not join in the 6th phase
after it joins the overlay), then it does not stop sending beeps after the first 7 phases (as if
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levels were constantly added to the overlay). If it exits the overlay, then its neighbors which
are closer to the root become border nodes and beep in their up links, with no interruption
in the up messages.
Therefore, the root keeps hearing message in its down links while levels are added to its
overlay, but also if one of its overlay nodes becomes a border node. In that latter case, the
root does not have the highest id, and hears beeps in its down links until it becomes a border
node itself. J

I Theorem 6. Explicit Leader Election is solved (uniformly) in O(D + logn) rounds in the
beeping model.

Proof. The highest identifier node starts to construct its overlay network in phase |α(id)|+ 6,
which is O(logn). This overlay keeps growing until it covers the whole network, at a rate of
a level every 6 diffusion phases. Therefore, the overlay covers the whole network after an
additional O(D) diffusion phases, and the last up messages are propagated upwards by the
overlay for an additional O(D) phases. After which, the root (highest id node) no longer
hears messages in its down links (Lemma 5) and terminates as leader. By Lemma 5, it is the
only node in the network to do so. Then, it broadcasts a down message to all nodes, so that
they know when to terminate. J

4 Additional Results

LE is an important and often-used primitive when designing distributed algorithms. Thus, it
makes sense that improving the time complexity of LE results in improved time complexities
for other tasks. We propose improved algorithms for leader election in anonymous networks,
MIS and coloring (in trees) and multi-broadcast.

4.1 Randomized Leader Election
Anonymous networks, when dealing with communication-restrictive models such as the
beeping model, are especially important from an application viewpoint. Indeed, when
considering large scale wireless networks, it might not be economically feasible to equip all
nodes with unique identifiers. But nodes might be disinclined to reveal their unique ids
(explicitly or through their actions), due to privacy or security concerns [20]. However, a
deterministic algorithm assuming unique identifiers can be adapted into a randomized (w.h.p.
time and safety guarantees) algorithm for anonymous networks, as stated in [13]. Indeed,
by independently sampling θ(logn) bits to create identifiers, these identifiers will be unique
w.h.p., but in return the knowledge of the network size n, or at least some polynomial upper
bound N = O(nc), is required.

4.2 MIS and 5-coloring for Trees
Symmetry breaking procedures such as maximal independent set (MIS) and coloring are
important building blocks, especially in the communication-restrictive beeping model. Spe-
cifically, the MIS problem consists of choosing a set of nodes (local leaders) so that there are
no two neighbors in the set (independence), and such that no other node of the network can
be added to the set without causing the loss of the independence property. On the other
hand, the c-coloring problem consists of assigning colors in {1, . . . , c} to the nodes of the
network, such that neighboring nodes have differing colors.
It is well-known that given a leader in tree networks (elected using O(D + logn) rounds), it
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is simple to 2-color the tree in an extra O(D) rounds. However, MIS and coloring have a
Ω(logn) lower bound (even in tree networks), so an O(D + logn) algorithm is non optimal
for most communication graphs. Using the proposed uniform leader election algorithm, we
design uniform, asymptotically time-optimal O(logn) MIS and 5-coloring algorithms in the
beeping model, for tree networks.

We give the algorithmic description of the 5-coloring algorithm. Low degree nodes are
colored first using 3 colors, and the remaining nodes form a subgraph where the connected
components have at most a logarithmic diameter. Using the LE algorithm, these connected
components can be 2-colored in a logarithmic number of rounds.
Now, we give more details as to how these steps are achieved. First, the LimitedDegreeColoring
algorithm from [3, 4] is used to 3-color all nodes v with deg(v) ≤ 2, in O(logn) rounds. Then,
since all remaining (non-colored) connected components have diameter at most logn, electing
a leader for each such connected component requires O(logn) rounds. It is well-known
that coloring nodes according to their distance to the root, in trees, can be done using 2
colors. This distance can be learnt by all nodes in O(logn) rounds. Specifically, nodes
are synchronized after the leader election, and the leader broadcasts a beep, using a beep
wave [13, 11] or reusing the overlay network from the leader election. The phase in which a
node receives the broadcasted beep indicates its distance to the leader. Thus the remaining
non-colored nodes can be colored with another 2 colors, resulting in a 5-coloring for the
communication graph.
From this 5-coloring, it is simple to compute an MIS in 5 additional rounds. Nodes with
the same color form an independent set. Adding iteratively (at each round) nodes from
each such set to a common independent set results in an MIS. Consequently, an MIS on the
communication graph can also be computed in O(logn) rounds.

Since all parts of the uniform 5-coloring algorithm are themselves uniform, it is a bit
tricky to force nodes to resynchronize during the sequential execution. For this purpose, we
use the EBET technique [3], to provide synchronization points in a uniform fashion - that is
possible because, for every component of the proposed algorithm, the terminal state at a
node can be detected locally - and thus solve the issue.

4.3 Multi-Broadcast with Provenance
Efficient communication primitives are fundamental building blocks in distributed computing,
both for obtaining efficient algorithms and providing comfortable abstractions from the
actual communication mechanism. These primitives have even greater importance in the
beeping model. When compared to other message-passing models, it is far more difficult to
communicate messages throughout the network with beeps. Indeed, when considering both
the limited message size and the interference produced by simultaneous beeps, a very delicate
coordination between nodes is necessary for intra-network communication to succeed.

Now, consider the multi-broadcast problem. Multiple sources (k sources) have each
a message they wish to broadcast to all other nodes in the network. All messages are
in {1, . . . ,M}. In multi-broadcast with provenance, the k sources need to communicate
their message, associated with their id, to all nodes in the network. Obviously, the most
efficient solution to the multi-broadcast problem is to have nodes communicate messages
simultaneously, as the interference in the beeping model is non-destructive (as opposed to radio
networks). However, excessive interference hinders nodes from understanding and extracting
the messages from the simultaneous communications. In [11], an O(D · logn + k log nM

k )
round algorithm is given and the authors conjecture that the D · logn term might be a lower
bound. By using the deterministic LE algorithm proposed here, we prove that it is not, as it
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Figure 3 Difference between non-compact and compact representations of k different values (ids),
indicated by the number of bits used as labels

can be slightly reduced in cases where the number of sources is sublogarithmic (k < logn).
That suggest that D · logn might be reducible to D in both the deterministic and randomized
cases. Moreover, it is likely that using randomization, ranking the k sources can be done
faster than with k consecutive leader elections.

The multi-broadcast with provenance algorithm in [11] can be divided into three core
components: leader election, computing a ranking for the k sources and finally using the
ranking to communicate all messages properly to the leader (who then broadcasts the
information to the network). In [11], the second component relies on the leader and performs
k simultaneous binary searches, in O(D · logn+ k log n

k ) rounds.
Our contribution for this problem lies in improving the time complexities of the first and
second components. The previous section (Sect. 3) improves the first component, as [11]
uses the leader election from [12]. As for the second component, it is improved by executing
k − 1 consecutive leader elections (assuming the first LE was executing using sources only),
resulting in O(k ·D+ k log n

k ) rounds. However, the k− 1 consecutive leader elections - using
ids - takes k logn rounds instead of k log n

k . Thus, it is essential to be more efficient and use
the information communicated through the previous leader elections.

We do this by using a compact manner of representing k unique values, which compresses
the k logn bits required to communicate k identifiers consecutively, into k log n

k bits. As
shown in Figure 3, after communicating id1 (6 bits), communicating id2 only takes one
bit, and after that communicating id3 takes an additional 3 bits. Thus, with this compact
representation, after the first leader is elected (amongst sources), subsequent leader elections
are more efficient as candidates for subsequent leader elections (non-elected sources) are not
required to communicate their whole id.
Assume all candidates for leader election are given an identifier idg, greater than their own.
They compute a reduced identifier idr, consisting of all bits from the first difference with idg
onwards. Communicating idr to other nodes is, in this setting, the same as communicating
id since these other nodes have knowledge of idg and thus deduce id from idr. Now, if
candidates use the proposed deterministic LE algorithm with β(idr), where β-encoding is
defined in Sect. 2.1, then the algorithm elects the node with the next highest id value. Using
this, we can compute a ranking of the k sources in O(k ·D + k log n

k ).
Executing both this ranking algorithm and the k binary searches in parallel, communicating
all k ids (of the sources) can be done in O(min{k, logn} ·D + k log n

k ) rounds. Then, the
messages are gathered and broadcast using the leader, in a further O(D + k logM) rounds.
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