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Abstract 

Leveraging on the properties of human visual system, most of the well-designed video coding standards 

utilize rate-distortion optimization techniques by maximizing a fidelity cost function (e.g. peak signal 

noise ratio, PSNR) under an available bit rate budget constrain. However, a huge amount of video data 

is consumed by computers rather than by human beings in several application scenarios. In view of this, 

this paper proposes a new coding framework called video analytical coding (VAC) for video analysis. 

We use the term “analytical distortion” to denote the difference of video analysis performance when 

video quality degrades and analytical distortion is estimated by compression distortion. Meanwhile, we 

develop a new rate-analytical-distortion optimization (RADO) method to trade off the bit rate and the 

analytical distortion. Specifically, we consider moving object detection as the analysis task and develop 

a novel rate analytical distortion (RAD) model and a quantization parameter adaptation strategy for video 

coding, where the analytical distortion is related to the object detection performance represented as F1-

measure. Experimental results show that the performance of the video analysis task can be significantly 

improved (up to 40% reduction of analytical distortion). 

Index Terms: Video analysis; video analytical coding; analytical distortion; rate distortion optimization. 

1 Introduction 

The increasing availability of portable or installed cameras and the introduction of new multimedia 

applications to fulfill emerging needs, have given rise to new requirements on video compression and 

communication. As for many multimedia applications, e.g. surveillance, video content is not only 

presented to human beings but also analyzed by computers for variously applicable purposes, such as 

object detection, tracking, recognition, and so on. In other words, computers have become as viewers of 

the videos. Meanwhile, the considerable amount of generated videos need to be efficiently compressed 

due to the cost-effective storage and bandwidth limitation. 

Currently, the main goal of most studies on video coding is to achieve high coding efficiency. Most of 

the widely deployed video coding standards, such as H.264/MREG-4 AVC (Advanced Video Coding) [1] 

and HEVC (High Efficiency Video Coding) [2], are designed under the assumption that human beings 

are the target viewers. Meanwhile, traditional rate distortion optimization (RDO) framework is applied 

into the video coding standards by optimizing the trade-off between the entropy of the discretized 

representation (rate) and the error arising from the quantization (distortion). However, applying the 

traditional RDO framework during video compression may be suboptimal when the video is intended for 

machine analysis. The critical issue is that resulting compression distortion may bring a negative impact 

on the video analysis performance. This point is shown in Fig. 1. More precisely, a foreground extraction 



algorithm is run on the same frame without and with compression. Obviously, it can be observed that the 

extraction results are quite different, especially for the region in red box in Fig. 1(d). Generally, more 

compression distortion lead to more differences. Additionally, research on video analysis mainly aims to 

improve the video analysis performance and pays little attention to the negative impact introduced by 

compression distortion. 

 

Fig. 1 Foreground extraction results on the same frame, without and with compression 

In view of this, two problems should be addressed [3]: (i) How different the video analysis results will 

be depending on different video quality levels? (ii) How much bandwidth can be saved? Obviously, there 

is a trade-off between video quality and accuracy of the video analysis algorithms. To solve above 

problems, we propose a new coding framework, namely video analytical coding (VAC). We develop a 

new rate-analytical-distortion optimization (RADO) method, where the term “analytical distortion” 

represents the difference of the video analysis algorithms’ performance when video quality degrades. The 

compression distortion is measure by Sum of Absolute Difference (SAD) in this paper and SAD of each 

non-I (P or B) frame is estimated by that of an I frame according to the temporal relationship. The 

analytical distortion is predicted by the compression distortion. Specifically, we choose to focus on one 

fundamental video analysis task, moving object detection. Accordingly, we develop a rate analytical 

distortion (RAD) model and an object based quantization parameter (QP) adaptation strategy for video 

coding. Our proposed method is fully standard compatible and the encoded bit-stream can be decoded 

by any HEVC decoder. This paper is an extension of our previous work in [4] and the following are the 

contributions of this paper. 

 We propose a novel coding framework VAC for video analysis and accordingly develop a new 

RADO method to trade off video quality and accuracy of the video analysis algorithm. 

 To avoid a two-pass coding procedure, we introduce a model to predict the compression distortion. 

Meanwhile, we use the predicted compression distortion to estimate analytical distortion. 

 We propose an object based QP adaptation strategy where the object area is compressed using a 

relatively smaller QP compared with the background. 

The reminder of the paper is organized as follows. We review related work in section 2. In section 3, 



we first present the VAC framework and the compression distortion prediction model for non-I frame. 

Then, a brief review of our previous work in [4] is presented including the RADO method and the 

weighting parameter selection. Our proposed object based QP adaptation strategy is presented in section 

3.5. Section 4 experimentally evaluates the proposed method. Section 5 concludes the paper. 

2 Related Work 

A considerable amount of work in video coding aims at improving the coding efficiency. The state-of-

the-art video coding standard HEVC can achieve a near 50% bit rate reduction, while keeping 

comparable perceptual quality, compared with its predecessor H.264/MPEG-4 AVC. Besides, there are 

many developed RDO schemes for HEVC standard [5]-[7]. In [5], a multiple QP optimization scheme is 

introduced, where multiple QP candidates are checked to find the best one by minimizing the rate-

distortion cost. Such multiple QP optimization scheme will definitely increase the coding complexity 

since the video codec needs extra time to find the best QP from the QP candidates. In our previous work 

[8-9], we investigated a RDO scheme taking the inter-frame dependency into account, where the impact 

of coding performance of the current coding unit on that of the following frames is considered. 

However, the above RDO schemes do not consider the fact that human visual system pays more 

attention to region-of-interest (ROI) or foreground objects [10]. To address this problem, researchers 

investigate a few coding methods for some specific video applications, such as teleconference and 

surveillance. 

 Teleconference: In conferencing applications, the face area in the video usually attracts the viewers 

and the background is stationary in most cases. Leveraging on this property, a few ROI based coding 

methods are developed to further save the transmission bandwidth. Liu et al. [11] introduced an 

efficient face ROI determination method using skin color combined with direct frame difference. A 

relatively larger portion of bits and more computational power were assigned to encode the detected 

ROI. Xiong et al. [12] used a motion based face detection method combined with an active contour 

model to find the well-located and compact face regions. Then, they proposed a facial feature 

priority based bit allocation method for ROI conversational video coding. Zhao et al. [13] proposed 

a ROI coding scheme for synthesized video aiming at achieving better and consistent quality given 

a target bit rate. However, there are two major problems in ROI coding methods: 1) the detection 

and segmentation of the ROI, and 2) more computing power at the encoder side. 

 Surveillance: In video surveillance, there is typically little camera motion so that the background 

parts are mainly static. In order to take advantage of this property, some research has been done 

recently that selects or generates a picture as a special reference for coding the background regions. 

Tiwari et al. [14] proposed a long-term reference selection method using simulated annealing, 

where the selected reference is compressed with high quality. Pushkar et al. [15] selected a coded 

picture by taking the usage of skip mode into account. Paul et al. [16] modeled pixels of many 

pictures at the same position as a Gaussian mixture distribution and generated a background picture 

using the most probable pixel value. Zhang et al. [17] generated a background picture by simply 

averaging many pictures pixel by pixel. Chen et al. [18] proposed an approach that generates a 

background picture by updating pixels in some blocks instead of the whole picture. However, these 

methods have some drawbacks. First, it is often impossible to select a picture as the background 

reference, which contains the entire background content. Second, generating a picture needs extra 

processing time and delay to look ahead many future frames or wait for many decoded frames. 

Furthermore, the generated picture must be compressed with high quality and transmitted to the 



decoder side. Finally, it is still a problem for these methods to deal with video sequence containing 

many moving foreground objects, as the foreground pixels are difficult to be filtered out from the 

background. 

The above-mentioned schemes may be suboptimal when video content is consumed by computers 

rather than human beings. In this context, recent research work focuses on feature-preserving coding, 

where only feature descriptors are transmitted to the server side. It can be categorized into two paradigms: 

compress-then-analysis (CTA) and analysis-then-compress (ATC). Redondi et al. [19] compared the 

performance of CTA and ATC for image analysis in visual sensor networks and found out that the 

performance of ATC paradigm was better. Baroffio et al. [20] proposed a coding architecture for coding 

local features (e.g. SIFT, SURF) extracted from a video sequence, which can be adopted to implement 

the ATC paradigm. Both intra and inter-frame coding modes were applied in the proposed coding 

architecture and the final coding mode was determined by comparing the costs of two coding modes. In 

their later work [21], the coding architecture was applied to coding binary local features. As only features 

are transmitted, video content cannot be watched at the server side. It is inapplicable in some scenarios 

(e.g. video surveillance) where it is necessary to visualize the video content. By contrast, Chao and 

Steinbach [22] proposed a novel framework, in which keypoints extracted from a video were encoded 

and transmitted along with the compressed video. However, this framework needs more bits to transmit 

the feature descriptors. 

Few studies have addressed the impact of video compression on video analysis. Korshunov and Ooi 

[3] proposed a formal rate-accuracy optimization framework, where the encoding parameters in 

distributed video surveillance systems could be determined given a target bit rate or accuracy. 

Furthermore, they denoted that there exists a sweet spot where reducing the bit rate would not 

significantly affect the accuracy of face recognition and tracking algorithms. Kokiopoulou and Frossard 

[23] proposed a supervised dimensionality reduction scheme which provides a tradeoff between 

compression and discriminant feature extraction. Liao et al. [24] proposed an analysis-oriented ROI 

based coding approach to reduce the impact of video compression on the performance of video analysis. 

However, the approach in [24] needs prior knowledge to detect ROI, which cannot always be obtained 

in practice. 

3 Video Analytical Coding 

In section 3.1, our proposed video analytical coding framework is presented. In the following, the 

compression distortion prediction model is introduced in section 3.2 and a brief review of our previous 

work is presented in section 3.3. In section 3.4, our proposed parameter adaptation procedure is described. 

Finally, section 3.5 illustrates the proposed object based QP adaptation strategy. 

3.1 Video Analytical Coding Framework 

The flow chart of our proposed video analytical coding framework is shown in Fig. 2. In our 

framework, the QP of an I frame will be refined according to our proposed QP adaptation strategy (see 

section 3.5) and traditional RDO technique is used to compress the I frame. Then, the compression 

distortion of an I frame denoted as SADI can be calculated after decoding. The compression distortion 

(SAD) of a non-I frame (P or B frame) is predicted by SADI according to the compression distortion 

prediction model (see section 3.2). The predicted compression distortion is then used to obtain the 

analytical distortion which denotes the difference of video analysis performance when video quality 



degrades. Meanwhile, a simple frame subtraction algorithm is utilized to obtain the moving object area 

(foreground) of the current frame. The object area is used for updating the weighting parameter (see 

section 3.4) and the QP offset of the foreground coding blocks in P or B frame. Finally, the non-I frame 

is compressed by our proposed RADO method (see section 3.3). 
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Fig.2 Flow chart of the proposed framework 

In our previous work [4], a two-pass encoding procedure is applied to obtain the compression 

distortion. In order to reduce the encoding complexity, we introduce a prediction model to estimate the 

compression distortion of a non-I frame according to the temporal relationship. The following section 

will present the details of the prediction model. 

3.2 Compression Distortion Prediction Model 

 

Fig. 3 Graphical presentation of hierarchical coding structure and the reference structure in HEVC low delay P configuration 

In the state-of-the-art video coding standard HEVC, hierarchical coding structure is adopted to 

improve the coding efficiency. Fig. 3 shows the hierarchical coding structure under low delay P (LDP) 

configuration. Frames in different temporal layers are highlighted by different colors. In temporal layer 



0, an I or IDR frame is denoted by a black bar. Frames in temporal layer 1, 2 and 3 are represented by 

blue, purple and orange bars respectively. In the following, an I frame and the following P frames are 

denoted by layers Li, where i indexes the temporal layers from 0 to 3. Meanwhile, it can be easily seen 

that frames in a lower temporal layer (e.g. 0 and 1) are directly or indirectly referenced by frames in 

higher temporal layers. 

 In view of this, the temporal relationships are investigated in terms of distortion between I frame and 

other frames in different layers [25]. The experiments are conducted on the HEVC test model HM 16.7 

[26]. Two video clips (Clip 1 and Clip 2) are encoded under LDP configuration. In the experiments, the 

QP is set as 22, 27, 32 and 37. The other coding parameters are set as the default use case. Meanwhile, 

the distortion is measured by SAD and the distortion of each layer ( 0i ≥ ) at each QP point is averaged 

over the frames in the same layer. 

The relationship in the average distortion between the layer L0 and other layers (i > 0) is shown in Fig. 

4. From Fig. 4, it can be seen that the average distortion of higher layer (i > 0) increases linearly with 

that of layer 0. The compression distortion prediction model is therefore formulated by a linear equation 

with {1,2,3}∈i  

0i i iL L L LD k D b= ⋅ + ,                              (1) 

where 
iLD represents the average distortion of the i-th layers, 

iLk and 
iLb are the model parameters. 

 

                       (a) Clip 1                                           (b) Clip 2 

Fig. 4 Distortion dependency between temporal base layer and higher temporal layers 

 Using Eq. (1), the resulting predicted compression distortion is used to predict the analytical distortion 

[4]. Then, the predicted analytical distortion is used in our proposed RADO method which is presented 

in the following section. 

3.3 Rate Analytical Distortion Optimization 

Nowadays, a large amount of generated videos are consumed by computers running video analysis 

algorithms for some application-related purposes, such as face detection and recognition. However, most 

of the videos are compressed in a lossy way to further raise the compression ratio, which may decline 

the analysis algorithms’ performance. In addition, the goal of the well-known RDO technology is to 

minimize the compression distortion under an available bit rate budget constrain [27, 28], without 

considering the above-mentioned scenarios. In this section, we address this issue and present our 

proposed RADO approach. Specifically, the difference of video analysis performance caused by video 

compression is denoted as analytical distortion and we use the term “DA” to represent it. 

In order to reduce the negative effect introduced by lossy compression while maintaining the video 



coding efficiency, we formulate the RADO problem by jointly minimizing the compression distortion 

DC in pixel domain and the analytical distortion DA at a given bit rate R 1. It can be written as 

min    . . 
C A T

D D s t R Rτ+ ≤  ,                          (2) 

where τ  is a weighting parameter and RT is the available bit rate budget. Obviously, Eq. (2) will be 

reduced to the traditional RDO formulation when τ = 0. Employing the Lagrangian multiplier method 

[29], the constrained RADO problem in Eq. (2) can be converted into an unconstrained form, which can 

be written as 

min  { }, where 
new new C A new

J J D D Rτ λ= + + ,                  (3) 

where Jnew is the cost function and 
new

λ  is the Lagrangian multiplier. As so far, it is difficult to get the 

optimal solution in Eq. (3) without modeling the interaction between DA and R. In view of this, we 

empirically design a derivable RAD model, which can be expressed as 

2

1 e AC D
R C= ,                                  (4) 

where 
1

C  and 
2

C  are constant parameters. One more thing, we do not change the rate model in HEVC 

codec, so R is differentiable with respect to DC. Consequently, the minimal cost 
new

J  is obtained when 

0new C A

new

J D D

R R R
τ λ∂ ∂ ∂

= + + =
∂ ∂ ∂

,                        (5) 

C A

new

D D

R R
λ τ∂ ∂

= − −
∂ ∂

.                             (6) 

Actually, the derivation of DC with respect to R can be directly obtained from the HEVC codec. When 

the weighting parameterτ = 0, it represents the Lagrangian multiplier of traditional RDO problem which 

is represented by the term
HM

λ . Then, Eq. (6) can be rewritten as 

A

new HM

D

R
λ λ τ ∂

= −
∂

.                             (7) 

Finally, we build the relationship between 
new

λ  and 
HM

λ , which can obtain a fast solution of 
new

λ . 

Furthermore, once the weighting parameter τ  is determined, the Lagrangian multiplier 
new

λ  can be 

calculated from Eq. (7). In the subsequent section, the weighting parameter adaptation procedure is 

presented in details. 

 

 

 

                                                                                    

1 In this paper, we do not aim at studying the absolute performance of a video analysis algorithm itself. Rather, we are more 

specifically concerned with how the analysis algorithm behaves when video quality degrades. For instance, if the video analysis 

algorithm can achieve the same performance when applied on the full quality video and the degraded video, the analytical distortion 

is considered to be zero. Besides, the analytical distortion is predicted by a linear model [4]. 

3.4 Weighting Parameter Adaptation 

Obviously, the optimal Lagrangian multiplier λnew
 in Eq. (10) cannot be obtained without setting the 

weighting parameterτ . Therefore, the weighting parameter τ  plays an important role in our proposed 

RADO method. In order to explore the impact of τ  on the proposed framework, we test a set of values 



where τ  ranges from 0.1 to 0.9. Four QP values (22, 27, 32, 37) are selected and all the experiments 

are conducted under LDP configuration. Besides, four reference video clips (Clip 1-4) are selected, 

including three indoor video clips (Clip 1-3) from PETS2006 [30] and one outdoor video clip (Clip 4) 

from PETS2009 [31]. Clip 1 to Clip 4 are captured by stationary cameras without any zooming. 

Meanwhile, the selected video clips all have 600 frames at a frame rate of 30fps, and have resolution of 

720x576 except for Clip 4 which is of size 768x576. Fig. 5 shows the thumbnails of the four reference 

video clips. 

 

                    (a) Clip 1                                     (b) Clip 2 

 

                    (c) Clip 3                                     (d) Clip 4 

Fig. 5 Thumbnail for each video clip 

Specifically, we consider a task of moving object detection, which is a fundamental component in 

many application scenarios. The moving object detection algorithm in [32] is selected to study the trade-

off between the accuracy of moving object detection and the coding rate. Meanwhile, we choose the F1-

measure to evaluate the performance of moving object detection task [33]. Besides, we consider the 

moving object detection problem as a binary classification scheme [34]. Then, positives and negatives 

are counted at the pixel level. In the following, True and False Positives (denoted by TP and FP 

respectively) refer to the number of detected positives according to ground truth, and similar for True 

and False Negatives (denoted by TN and FN). In particular, we take the detection result of pristine video 

as the ground truth by considering two aspects. On the one hand, the difference of detection results 

(analytical distortion) between the pristine video and the compressed video can be directly indicated in 

this way, since we are more specifically concerned with analytical distortion as aforementioned. On the 

other hand, it is difficult to obtain the ground truth in practice. 

Basically, the F1-measure consists of two parts, namely recall and precision, which are calculated by 

the number of TP/FP and the number of TN/FN. The precision pr and recall re can be calculated by Eq. 

(8) and Eq. (9) respectively. 



=
+

TP
pr

TP FP
,                               (8) 

  =
+
TP

re
TP FN

.                               (9) 

We use F1-measure given by 

2
×= ×
+

pr re
F

pr re
.                               (10) 

  

                     (a) QP = 22                                         (b) QP = 27 

  

(c) QP = 32                                           (d) QP = 37 

Fig. 6 Experimental results of S

A
D with four video clips under different values of τ . (a), (b), (c) and (d) show the results at four 

QPs respectively. 

Using F1-measure, the analytical distortion of the i-th frame i

A
D can be expressed as 

1= −i

A iD F ,                                    (11) 

where Fi the F1-measure value of the i-th frame. Then, the average analytical distortion S

A
D  over the 

video sequence S can be written as 

1

1

=
= 

N
S i

A A

i

D D
N

,                                 (12) 

where N is the total number of frames. In the following of this paper, the analytical distortion is 

represented as S

A
D .  

Fig. 6 shows the experimental results of four video clips under different values of τ  . As a first 
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observation, the average analytical distortion S

A
D  of three indoor video clips (Clip 1-3) is more or less 

constant whenτ increases. The second observation is that the average analytical distortion S

A
D  of Clip 

4 oscillates along with the increase of τ . There are two reasons. First, illumination changes will reduce 

the robustness of object detection algorithms. The analytical distortion will increase along with the 

increase of the differences between the detection results of the frame subtraction algorithm applied in 

our proposed method and that of the object detection algorithm in [32]. Otherwise, the analytical 

distortion will be reduced as shown in the experimental results. Second, the weighting parameter τ  has 

an impact on the mode decision process, which will influence the detection results of the object detection 

algorithm in [32]. Meanwhile, we find that the object area also has a great impact on the analytical 

distortion and the weighting parameter τ  is updated according to the detected object area of each frame 

[4]. The weighting parameter τ  is updated by 

exp( )τ ρ= ×
×

Area

w h
,                               (13) 

where w and h denote the frame width and frame height, Area represents the total detected object area of 

each frame and ρ   is a constant parameter. In this paper, ρ   is set to be 0.1 according to the 

experimental results shown in Fig. 6. 

3.5 Object Based QP Adaptation Strategy 

According to the work in [10], compression distortion has more influence on analytical distortion in 

the object area than that in background. In view of this, we develop an object based QP adaptation strategy. 

It can be expressed as 

,      

,      

f

i

f

QP QP if i object
QP

QP QP if i object

− ∆ ∈=  + ∆ ∉
,                         (14) 

where 
iQP  and f

QP  represent the quantization parameter of the i-th coding tree unit and the frame level 

QP, and ∆QP  denotes the QP offset. Specifically, according our previous work in [8, 9], the coding 

performance of an I frame may have a strong impact on that of the following frames. Therefore, we also 

set a QP offset to the I frame in this paper, which can be expressed as 

I B I
QP QP QP= − ∆ ,                                 (15) 

where 
IQP  and 

BQP  represent the quantization parameter of an I frame and the initial QP, and ∆ IQP

denotes the QP offset. 

4 Experimental Results and Discussion 

In this section, we conduct comparative experiments on the HEVC test model (HM 16.7). Video 

sequences are encoded under LDP configuration. The other coding parameters are set as the default case. 

Four QP values (22, 27, 32, 37) are selected. Both QP offsets QP∆ and IQP∆ (see Eq. (14) and Eq. (15)) 

are set to be 2. The rate-distortion performance of the proposed method is measured in terms of BD-rate 

saving over the HM 16.7.  

In order to show the rate analytical distortion performance of VAC, another 4 test video clips (Clip 5-

8) are chosen, including 3 indoor video clips from PETS2006 and 1 outdoor video clip from CAVIAR 

[35]. Clip 5 to Clip 8 are captured by stationary cameras without any zooming. Besides, Clip 5 to Clip 7 



have 600 frames at a frame rate of 30fps, and have resolution of 720x576. Clip 8 has 200 frames at the 

same frame rate and has resolution of 800x600. 

4.1 Rate-Analytical-Distortion Performance 

The RAD curve comparison of VAC against HEVC on each video clip is shown in Fig. 7. It is worth 

noting that the bit-streams generated by the proposed scheme is still HEVC compliant as none of the 

syntax structures is changed in our proposed scheme. 

As a first observation in Fig. 7, it can be seen that VAC can reduce the analytical distortion effectively. 

In the best scenario (Fig. 7(c)), up to 40% reduction in terms of average analytical distortion can be 

achieved. Meanwhile, Fig. 8 illustrates the detection results of VAC and HEVC. It can be seen that the 

detection results of VAC are better than that of HEVC. Due to the proposed QP adaptation strategy, the 

object area is compressed by a relatively smaller QP, which makes the reconstruction quality higher 

compared with that in HEVC. This could help improve the performance of object detection algorithm. 

  

                   (a) Clip 5                                            (b) Clip 6 

  

                        (c) Clip 7                                           (d) Clip 8 

Fig. 7 RAD curve comparison of VAC against HEVC in LDP configuration 

As a second observation, it should be pointed out that the RAD performance of VAC is a little bit 

worse than that of HEVC under low bit rate in Fig. 7(d). From Fig. 8 (see the third row), it can be seen 

that the performance of VAC may not be satisfactory when the object is small. There are two main reasons. 

First, prediction errors exist in the prediction steps for the estimation of SAD and the analytical distortion, 

which will negatively influence the performance of VAC. Second, due to the frame subtraction algorithm 

used in this paper, small objects could not be detected in some cases. The resulting undetected object will 

be compressed by a relatively lager QP, which will decrease the reconstruction quality and further 
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influence the object detection algorithm. 

 

Fig. 8 Illustration for the detection results of four test video clips. The first column shows the thumbnails of Clip 5-8 respectively. 

The second column shows the detection results of the original frames. The third and the fourth column denote the detection results 

on their compressed versions when using HM 16.7 and VAC respectively. 

4.2 Rate-Distortion Performance 

Table 1 illustrates the RD performance gain of VAC over HEVC in terms of BD-rate saving. It can be 

observed that VAC can achieve about 4.2% BD-rate savings in average over the HEVC HM 16.7, with 

over 4.9% and 6.3% BD-rate savings for Clip 5 and Clip 8 respectively. Fig. 9 shows the RD curve 

comparisons on four test video clips. It can be observed that VAC can achieve better RD performance 

that HEVC. The main reason is that our proposed object based QP adaptation strategy refines the QP of 

an I frame as well as that of the background and the object area. 

Table 1 RD Performance gain of VAC over HEVC in terms of BD-rate saving 

Video Clip BD-Rate (%) 

Clip 5 -4.9 

Clip 6 -2.5 

Clip 7 -3.0 

Clip 8 -6.3 

Average -4.2 



 

(a) Clip 5                                            (b) Clip 6 

 

(c) Clip 7                                           (d) Clip 8 

Fig. 9 RD curve comparison of VAC against HEVC in LDP configuration 

4.3 Complexity Evaluation 

Table 2 shows the complexity comparison between the HEVC HM 16.7 and the proposed scheme in 

terms of encoding time under LDP coding structure. The test is done with Intel Core i5-4570 CPU and 

only one core is used to run the programs for making the running of all sequences under a similar 

workload. Encoding time for each clip is averaged over four test QPs. From the experimental results, it 

can be observed that the proposed scheme requires a slightly increased encoding time compared with 

HM 16.7, since some additional time is spent on the additional procedures such as frame subtraction and 

compression distortion prediction. However, this increase remains reasonable.  

Table 2 Complexity comparison between VAC and HEVC in terms of encoding time (sec.) 

Encoding Time (Sec.) Clip 5 Clip 6 Clip 7 Clip 8 

HEVC 4106.001 4384.378 3905.945 1486.276 

VAC 4241.163 4472.652 3980.182 1537.996 

5 Conclusion 

In this paper, we propose a new coding framework called video analytical coding for video analysis. 

We use the term “analytical distortion” to denote the difference of video analysis performance when 

video quality degrades and develop a new rate-analytical-distortion optimization (RADO) method. 

Typically, analytical distortion is estimated by compression distortion. To show the effectiveness of our 

proposed method, we consider moving object detection as the analysis task and develop a novel rate 
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analytical distortion (RAD) model for video coding, where the analytical distortion is related to the object 

detection performance represented as F1-measure. Experimental results show that the performance of 

the video analysis task can be significantly improved. In our future work, we will extend our framework 

to other scenarios such as object detection in camera motion case, tracking and recognition. Furthermore, 

we will also focus on the parameter adaptation, including for the weighting parameter and QP offset. 
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