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Abstract In eastern Venezuela, the Caribbean-South American plate boundary follows the El Pilar fault
system. Previous studies based on three GPS campaigns (2003–2005–2013) demonstrated that the El Pilar
fault accommodates the whole relative displacement between the two tectonic plates (20mm/yr) and
proposed that 50–60% of the slip is aseismic. In order to quantify the possible variations of the aseismic creep
in time and space, we conducted an interferometric synthetic aperture radar (InSAR) time series analysis,
using the (NSBAS) New Small BAseline Subset method, on 18 images from the Advanced Land Observing
Satellite (ALOS-1) satellite spanning the 2007–2011 period. During this 3.5 year period, InSAR observations
show that aseismic slip decreases eastward along the fault: the creep rate of the western segment
reaches 25.3� 9.4mm/yr on average, compared to 13.4� 6.9mm/yr on average for the eastern segment.
This is interpreted, through slip distribution models, as being related to coupled and uncoupled areas
between the surface and ~ 20 km in depth. InSAR observations also show significant temporal creep rate
variations (accelerations) during the considered time span along the western segment. The transient
behavior of the creep is not consistent with typical postseismic afterslip following the 1997 Ms 6.8
earthquake. The creep is thus interpreted as persistent aseismic slip during an interseismic period, which
has a pulse- or transient-like behavior.

1. Introduction

Shallow fault creep can be detected by measurement of localized aseismic displacement gradients crossing
faults [e.g., Thatcher, 1979]. This shallow creep is common during a postseismic period, as localized afterslip
phenomena, but it can also exist during the interseismic period, as observed on the San Andreas fault system,
Haiyuan fault in China, North Anatolian fault, and the Longitudinal Valley fault of Taiwan among others [e.g.,
Schmidt et al., 2005; Cavalié et al., 2008; Champenois et al., 2012; Kaneko et al., 2013; Lindsey et al., 2014].
Avouac [2015] reviewed key factors controlling aseismic slip. This slip can depend on lithology [e.g., Wei
et al., 2013; Thomas et al., 2014a] or can be related to the fault geometry [e.g., Jolivet et al., 2013; Lindsey
et al., 2014]. The influence of thermal control and fluid pressure on slip-mode processes has also been pro-
posed (e.g., respectively, Blanpied et al. [1991] and Gratier et al. [2011]. In addition, previous seismic ruptures
have an influence on the subsequent slip-mode processes [e.g., Zweck et al., 2002; Çakir et al., 2003]. However,
the relative contributions of these different factors in controlling aseismic slip remain poorly understood,
especially since spatiotemporal variations of aseismic slip have been detected [e.g., Wei et al., 2009; Barbot
et al., 2013; Jolivet et al., 2013; Cetin et al., 2014; Thomas et al., 2014b; Khoshmanesh et al., 2015; Turner
et al., 2015]. More case studies of faults showing spatial and temporal variations in creep, from a range of
different geodynamic and geological contexts, are thus needed to unravel the causes and implications of
aseismic slip. Since both steady and unsteady aseismic slips affect stress accumulation on a fault, it is
important these processes are taken into account the assessment of slip deficit and seismic hazard [Ryder
and Bürgmann, 2008; Shirzaei and Bürgmann, 2013; Shirzaei et al., 2013]. In this study, we present new obser-
vations of temporal and spatial variations along the El Pilar fault system, which is part of the Caribbean-South
American plate boundary.

The E-W dextral strike-slip El Pilar fault, which accommodates almost all of the 20mm/yr relative displace-
ment between the Caribbean and South American plates (Figure 1) [Weber et al., 2001; Jouanne et al.,
2011], is an interesting case study for analyzing the relationship between aseismic and seismic slip modes.
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Seismicity, paleoseismology, and geodesy indicate that this fault exhibits seismic as well as aseismic behavior
[Audemard, 2006, 2007; Reinoza et al., 2015]. For example, the El Pilar fault produced seismic events in 1684,
1797, 1853, 1929, and 9 July 1997 [Audemard, 1999, 2006, 2007, 2011; Altez and Audemard, 2008; Aguilar et al.,
2016]. In addition, aseismic slip has been detected through field observations, episodic measurements
performed in 2003, 2005, and 2013 on a sparse network of 32 GNSS (Global Navigation Satellite Systems)
stations, and measurements of one continuous GNSS station [Audemard, 2006; Jouanne et al., 2011;
Reinoza et al., 2015]. Despite the low resolution in space and time, Reinoza et al. [2015] showed that, in the
seismogenic layer (0–12 km depth), between 40 and 50% of the fault area is locked, and that the aseismic slip
is certainly not spatially uniform.

However, measurements with better spatial and temporal resolution are needed to answer a number of
remaining questions. Near field data can improve the spatial resolution of aseismic slip mapping and help
identify potential segmentation of creep, as proposed by Jouanne et al. [2011] and Reinoza et al. [2015].
Denser and longer geodetic time series would also improve our knowledge about the creeping process,
for instance, by distinguishing the nature of the creep: e.g., afterslip induced by the latest seismic event
in 1997 (Ms 6.8) which has transitioned into a persistent interseismic slip or an afterslip which is still occur-
ring. We would like to understand the local observation of slip acceleration in 2002 [Jouanne et al., 2011] and
the inconsistency between the return periods evaluated in trenches at 400 years [Audemard, 2011] and the
return period estimated at up to 200 years, assuming a geological slip rate of 20mm/yr and a characteristic
slip of 1 to 4m slip (coseismic slip and afterslip) [Pérez et al., 2001; Jouanne et al., 2011]. Finally, higher spatial
resolution can also help to detect asperities that may trigger events like the Ms 6.8 in 1997 [e.g., Chaussard
et al., 2015a, 2015b; Jolivet et al., 2015a].

This paper presents an analysis of 18 SAR (synthetic aperture radar) images from the L band Advanced Land
Observing Satellite (ALOS-1) satellite spanning the 2007–2011 period using the spaceborne SAR interferome-
try technique (interferometric synthetic aperture radar, InSAR). These images, processed with the NSBAS
method [Doin et al., 2011], provide a coverage at high spatial and temporal resolution for the onshore section
of the El Pilar fault and allow us to identify spatio temporal slip variations along the fault. In the last part of the

Figure 1. Geodynamic map of the Caribbean/South American plates. Arrows are GNSS (Global Navigation Satellite
Systems) velocities in the Caribbean region with respect to a fixed South American plate, calculated by Reinoza [2014].
Green arrows represent velocities measured on permanent GNSS sites (cGNSS) from the FUNVISIS, REMOS-IGVSB, and
GEORED networks. Blue arrows represent velocities derived from episodic GNSS data measured in 2003–2005 and 2013
[Reinoza, 2014]. Yellow and red lines are fault systems that represent, respectively, the western and eastern plate boundary
systems in Venezuela. The GNSS velocity field shows that the El Pilar fault accommodates all the relative displacement
between the Caribbean and South American plates. Plate boundary mapping is based on Beltran [1993], Audemard et al.
[2000], Pindell et al. [2006], and Audemard [2009]. DEMs are from the USGS [Rabus et al., 2003]. CRF, Central Range fault; SSF,
San Sebastian fault; OAF, Ocá-Ancón fault; and BF, Boconó fault.
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paper we discuss the segmentation of the El Pilar fault and the relationship between aseismic slip and
seismicity, and the implications for seismic hazard assessment.

2. The El Pilar Fault System: Seismotectonic and Geological Context

The Caribbean-South American plate boundary is a transpressional zone characterized by a complex system:
distributed faults in the west (yellow thick lines in Figure 1) and a localized fault system in the east (red lines in
Figure 1). GPS studies indicate ~ 2 cm/yr eastward motion of the Caribbean plate with respect to a fixed South
American plate [Pérez et al., 2001;Weber et al., 2001;DeMets et al., 2010]. In the eastern part of the plate boundary,
neotectonic studies have shown the existence of strainpartitioning: themajor E-Wcomponent is accommodated
by a tectonic boundary composed of several right-lateral faults (El Pilar, Los Bajos, and Central Range faults)
[Beltran et al., 1996; Audemard and Audemard, 2002], whereas theminor oblique or N-S component is accommo-
dated by active thrusting to the south (Figures 1 and 2) with vertical deformation rates of 0.6 to 0.1mm/yr
[Fajardo, 2015]. Moreover, the seismicity related to the Lesser Antilles subduction ends abruptly along dextral
faults, which suggests a tectonic relationship between both systems due to the tearing of the Lesser Antilles sub-
ducted oceanic lithosphere (Figure 2) [Pérez and Aggarwal, 1981; Clark et al., 2008; Audemard, 2009].

TheEl Pilar fault, whichbelongs to theE-Wdextral system, crosscuts aMesozoic thrust systemseparating twocon-
trasting Mesozoic terrains: a northern province consisting of low-grade metasediments associated with oceanic
crustal remnants (schist, quartzite, and serpentine lenses) and a southern provincemade of nonmetamorphosed
sediments (Figure3) [Metz, 1965;Vignali, 1977;Vierbuchen, 1984; Jacomeetal., 1999].Variationsofelasticproperties
wouldalsobeexpectedacross this tectonicboundary, as suggestedbyReinozaetal. [2015]. TheElPilar fault is com-
posed of several structural segments, defined by neotectonic analyses [Beltran et al., 1996; Audemard et al., 2000;
Van Daele et al., 2011]. Based on the joint interpretation of seismic, magnetic, and gravimetric data Hernandez
et al. [1987] suggested a seismogenic depth of 15 to 20 km. Segmentation, 1997 rupture plane area, and dip
changes (65° northward, to vertical, to 75° southward) of the upper part of the fault were investigated through
the analysis of aftershocks following the 1997Ms 6.8 event which were mainly located between the surface and
14 km depth [Baumbach et al., 2004].

These geological and geometrical constraints were used by Jouanne et al. [2011] and Reinoza et al., [2015] to
explain, through modeling, the observed asymmetric velocity gradients on both sides of the fault and the
high displacement gradient crossing the fault. They investigate different modeling approaches, and their
results suggest the existence of spatial variations of interseismic coupling at seismogenic depths. However,

Figure 2. Seismotectonic map. In eastern Venezuela the major E-W relative displacement between the Caribbean and
South American plates is accommodated along the El Pilar fault (in red). This fault is constituted by several segments
onshore and offshore. Thrusts and reverse faults south of the El Pilar fault accommodate the minor N-S component of the
relative displacement between the Caribbean and South American plates in Venezuela. Deep seismicity (in blue and pur-
ple) related to the Lesser Antilles subduction ends abruptly along dextral faults. Fault mapping is based on FUNVISIS [1994],
Audemard et al. [2000], and on Audemard [2009]. The 1973–2009 seismicity data are provided by GeoMap App http://www.
geomapapp.org/ [Ryan et al., 2009]. CRF, Central Range fault.
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their results were limited by the sparsity of the geodetic network and the availability of only three GNSS cam-
paign (2003, 2005, and 2013) and just one continuous GNSS station.

3. Interferometric Synthetic Aperture Radar (InSAR) Processing

To mitigate InSAR temporal decorrelation due to the dense Venezuelan equatorial vegetation cover, we used
L band (23.6 cm wavelength) images from Advanced Land Observing Satellite (ALOS-1, JAXA), which gives
better results than the C band or X band images in this type of environment [Wei and Sandwell,
2010] (several tests in this area performed with Sentinel-1A data yielded interferograms with less coher-
ence than with ALOS data). ALOS SAR images were processed in Fine Beam Single polarization mode or
in Fine Beam Dual polarization mode but using only the HH polarization, resampled at a spatial resolu-
tion of ~10m. These images were acquired along the ALOS ascending track A123, frame 190. Eighteen
SAR images spanning the 2007–2011 period (16 June 2007 to 2 September 2011) were used to form 73
differential interferograms with the NSBAS processing chain [Doin et al., 2011] based on the ROI-PAC
software [Rosen et al., 2004]. The Shuttle Radar Topography Mission digital elevation model (DEM) at
3 arc sec resolution [Rabus et al., 2003], resampled at 45m resolution, has been used to accurately
coregister the focused SAR images and to correct interferograms from the topographic contribution to
the interferometric phase. The interferogram network and examples of unfiltered and uncorrected
interferograms are provided in the supporting information (Figures S1 and S2). European Centre for
Median-Range Weather Forecast ERAI (ERAInterim) atmospheric reanalysis was used to correct
atmospheric delay [Doin et al., 2009; Jolivet et al., 2011]. DEM errors were corrected on interferograms
following the method of Ducret et al. [2014]. Before unwrapping, two kinds of filter were used with a
spatial window of about 180m: the adaptive filter of Goldstein et al. [1988] and the adaptive weighted
filter of Doin et al. [2011].

In some unfiltered and unwrapped interferograms a clear phase jump is visible across the fault
(see Figure S2); however, the time series analysis greatly improves the measurements. Another distinctive
feature in the interferograms is the swamps where the interferometric phase maintains high coherence

Figure 3. Schematic geological map and geodetic surveys of the El Pilar fault region. The block to the north of the fault is
composed of Mesozoic metamorphosed sediments and oceanic remnants (schist, quartzite, and serpentines lenses), while
to the south it is composed of Mesozoic non metamorphosed sediments [Vignali, 1977; de Juana et al., 1980; Vierbuchen,
1984; Hackley et al., 2005]. White dots are GNSS station. Black arrows are interseismic velocities estimated with GNSS data
(considering a fixed South American plate) [Reinoza et al., 2015]. The rectangle is the shape of the InSAR ALOS-1 ascending
track A123. Surface ruptures of the 1929 and 1997 events are, respectively, plotted as yellow and white lines, with their
respective focal mechanisms [from Baumbach et al., 2004]. Faults mapping come from Audemard et al. [2000].
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and for which local fringes are detected. This is likely due to water level change (see Figure S3 in the
supporting information). This pattern has been already observed in wetland areas and used to measure
water level changes or subsidence [Alsdorf et al., 2000; Kim et al., 2009; Chaussard et al., 2013]. To avoid
unwrapping issues due to these fringes, we chose to mask them. Unwrapping was performed in 2-D
with the NSBAS chain using a method similar than in Doin et al. [2015]. The unwrapped interferograms
were then systematically visually checked. When large unwrapping errors were detected, we used a
manual bridge between coherent areas to correct them as explained in Doin et al. [2011] and Grandin
et al. [2012] (Figure S4 in the supporting information).

To obtain a map of ground velocity along the line-of-sight (LOS) direction (Figure 4a) and a cumulative
displacement map along the LOS for each date of acquisition, we applied a time series analysis using a model
based on López-Quiroz et al., [2009],Doin et al. [2011], and Jolivet et al. [2012]. The final pixel size of our maps is
approximately 30m. The root-mean-square (RMS) on each pixel is given by the time series analysis model

Figure 4. InSAR processing results for ascending track A123. (a) The 30m resolution InSAR line-of-sight velocities estimated
over 3.5 years (2007–2011). Dots are GNSS stations, the dot colors also represent GNSS horizontal projected in LOS (same
color scale as InSAR). (b) RMS values map for each pixel, estimated over 3.5 years (2007–2011): close to swamps and in the
east RMS values can exceed 0.5 rad. (ALOS-1 data distributed by Japan Space Systems © Ministry of Economy, Trade, and
Industry and Japan Aerospace Exploration Agency).
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(Figure 4b) and is calculated “between the observed interferogram phase and the one reconstructed from
inverted successive phase delays” [López-Quiroz et al., 2009]. This RMS value is an estimation of the accuracy
of the inversion scheme and gives a quality value for the LOS displacement or velocity for each pixel, which
can be used to weight these data. For instance, in the following figures of this paper showing velocity profiles,
plotted velocities are a weighted average of 16 pixels (that is 480m) across the profile, with �1 sigma
deviation shown in gray (see Figure 5 for example).

Due to the limited number of images available (18), a velocity map output from NSBAS may be affected by
residual atmospheric, ionospheric, or orbital errors, producing a long wavelength signal. Indeed, our raw
velocity map shows a residual ramp mainly in the range direction (Figure S5), which is almost parallel to
the El Pilar fault. Such a signal is not seen in velocity fields derived from GNSS (Figure 4a). We remove this
signal using a linear function in the radar range and azimuth direction. This deramping function (ax + by
+ c) is estimated in order to minimize the difference between the nine GNSS velocities measured within
the boundaries of the InSAR track and InSAR velocities. The GNSS velocities are relative the SMI1 station.
GNSS velocities are projected into the local satellite LOS (line of sight), and InSAR velocities are averaged
in a circus of 2 km radius around every GNSS stations (Figure 4a). The choice of a simple deramping function
was guided by the low number of GNSS stations covered by the track. It is important to note that this ramp
correction does not affect the localized (<10 km) phase jump across the fault.

Figure 5. (a) The black line is the 1997 surface rupture [Audemard, 2006]. The red line (A–A′) gives the location of the profile
shown in Figure 5b. (b) GPS and INSAR velocity field profile across the El Pilar fault (A–A′). Dots correspond to GNSS
velocities for the stations shown in Figure 3 [Reinoza et al., 2015] projected along the A–A′ profile (we keep GNSS stations
situated up to 100 km of the A–A′ profile). Dot color scale represents the distance between the GNSS stations and the
profile. The green curve shows INSAR velocity (weighted average over 16 pixels (480m) width across the profile) with
1 sigma deviation (gray zone). INSAR velocities have been converted to give an equivalent horizontal fault-parallel com-
ponent velocities, and GNSS velocities are also given for the same component.
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The lack of data acquired along descending tracks does not allow vertical velocity to be estimated. Assuming
that the El Pilar fault is a pure strike-slip fault with no vertical component and that ground displacement is
essentially in the fault-parallel direction, we project LOS InSAR data onto the horizontal surface for all the
following figures of this paper in order to facilitate interpretations. Neglecting the vertical component is
mainly justified by GNSS observations [Jouanne et al., 2011; Reinoza et al., 2015] and by field observations
gathered along the surface rupture of the 1997 earthquake [Audemard, 2006]. We convert the LOS velocities
in fault-parallel horizontal component velocities taking into account the variation of incidence and azimuth
angles along the SAR data swath.

4. InSAR Inversion Results
4.1. Spatial Variation of Creep Rate

On the InSAR velocity map from 2007 and 2011, there is a sharp and linear velocity jump (E-W boundary
between yellow and blue areas in Figures 4a and 5a corresponding, respectively, to relative displacements
away from and toward the satellite). Visual comparison between the sharp boundary and the surface rupture
of the 1997 earthquake mapped in detail by Audemard [2006] shows very good agreement (Figure 5a), within
the limits of InSAR resolution and map uncertainties (<200m). Furthermore, this sharp boundary continues
away from the 1997 surface rupture and follows the El Pilar fault geological trace mapped by Beltran et al.
[1996]. Those observations strongly suggest that the velocity boundary can be interpreted by the presence
of creep along the El Pilar fault, at least in its shallowest part.

The InSAR velocity profile (A–A′) across the fault in Figure 5 shows clearly the velocity jump located at the
fault trace. To compare GNSS and InSAR signals, all horizontal GNSS velocities (in fault-parallel component)
from Reinoza et al. [2015] (plotted in Figure 3) were projected onto the profile. On this profile plotted in
Figure 5, the jump across the fault is slightly higher in 2007–2011 InSAR velocities than in 2003–2005–2013
GNSS velocities. The slight differences between both kinds of data can be explained by (1) different
acquisition periods: 2007–2011 period for average InSAR velocities and 2003–2005–2013 acquisition
campaigns for GNSS velocities (see discussion in 6.3), (2) the vertical components which are not taken into
account (not estimated in the InSAR velocity map), and (3) GPS velocity projections onto the profile, e.g.,
some GNSS stations are located 50 km away from the A–A′ profile where InSAR velocities are sampled in
Figure 5.

Other InSAR velocity profiles across the fault show a large and abrupt step crossing the fault (Figure 6).
As plotted on these profiles, the velocity step across the fault does not correlate with the topography. To
quantify the step and the distance over which the step occurs, we fitted the InSAR velocity values to the
following mathematical function, which is able to represent the main characteristics of our observed profiles
(Figures 6 and S6 in the supporting information; the functions have been adapted from Larson et al. [2004]
who use it for time series):

v xð Þ ¼ v0 þ U
2

tanh
x � X0

D

� �
� 1

� �
þ R � x (1)

In this equation, x is the perpendicular distance to the fault (the x axis of the profile), v(x) is the velocity at
x, v0 is the far field velocity, U is the velocity value corresponding to the step, X0 is the median position of
the large step, D is the distribution that describes the distance over which the step is measured, and R
accounts for a possible velocity ramp along the section. In profiles crossing the fault, the velocity step
between the northern and the southern blocks can be fitted by equation (1) (e.g., in Figure S6).
Parameters and standard deviation errors are estimated from non linear least squares adjustment using
the Levenberg-Marquardt algorithm [Levenberg, 1944; Marquardt, 1963]. To compare the fit quality of each
profile, we performed a χ2 statistical test which provides an estimation of the robustness of the fit. The
advantage of this method is to provide an estimation for the step distribution (D in equation (1)), to eval-
uate the uncertainties on each unknown parameter, and to remove, through the R term in equation (1),
the possible contribution of long wavelength residual orbital errors or atmospheric signals which have not
been corrected in the azimuth direction (see section 3).

Using the mean velocity map over the 2007–2011 period, InSAR velocities were sampled across the fault
along 94 profiles with 480m spacing. Each profile is 3.4 km long and 480m wide; they do not overlap.
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Profiles are then fitted by 1. Using this method, it appears that velocity steps vary along the El Pilar fault
(Figure 7a). Between 63°42′W and 63°30′W along the fault the step regularly increases from ~ 13mm/yr to
~ 40mm/yr. In contrast, eastward of longitude 63°28′W, the step is lower, with a more constant value of
about 13.4� 7.3mm/yr. Unfortunately, the transition between these two portions of the fault is masked
by the presence of swamps. Based on this geodetic contrast, hereafter in the paper, we propose to dis-
tinguish two “segments” (see Figure 7), separated at longitude 63°28′W. From a tectonic point of view
this division point corresponds to a small fault step over [Beltran et al., 1996; Baumbach et al., 2004;
Audemard, 2006]. Baumbach et al. [2004] do not recognize this step over as a major fault segment bound-
ary (in their map of the fault trace our boundary corresponds to the middle of their segment 3).
According to their map, one may argue that the limit could instead be defined at longitude 63°25′W,

Figure 6. InSAR velocitymap (2007–2011 period) and associated uncertainties. AA′, BB′, CC′, andDD′ are fault-perpendicular
profiles, the red line indicates the position of the fault trace. Each plot displays the topography (blue line), the InSAR
velocities projected onto the horizontal fault-parallel direction (weighted average over 16 pixels width (or 480m)) (dark
red line), 1 sigma deviation (gray zone), and the best fit of InSAR velocity values by the equation (1) (black line).
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corresponding to the Guarapiche fault bend. Nevertheless, our following analysis and conclusions remain
valid for both definitions.

Regarding the distribution of the deformation across the fault, Figure 7b shows that most of the steps across
the fault are distributed over less than 500m. The velocity steps are thus essentially extremely localized, and
this indicates that at least the shallow part of the fault is creeping, as suggested by Reinoza et al. [2015].
It should be noted that the step width estimation is limited at its lower boundary not only by the spatial
resolution of the InSAR velocity map, which is 30m, but also by the prior interferogram filtering done on
the basis of 6 pixel size windows, which is 180m (see section 3). Taking that limit into account, it is likely that
in some places the creep could reach the surface, which is supported by field observations [Audemard, 2006;
Jouanne et al., 2011].

4.2. Temporal Variation of Creep Rate

To estimate the temporal variations of the velocity steps across the fault, we follow the same method applied
to the mean velocity map but applied to each time step of the smooth cumulative displacement time series.
Using cumulative displacement profiles across the fault (same profile characteristics as in the section 4.1),
displacement steps at the fault are estimated using equation (1) for each time increment (i.e., between
two consecutive acquisition dates of SAR images) and are converted into incremental velocity steps
(Figure 8). Some dates, for instance, 19 December 2008, contain profiles, which are too noisy to be fitted
by equation (1), and explain the numerous gaps in velocity step estimations in Figure 8.

Figure 7. (a) InSAR mean velocity map (2007–2011 period), the El Pilar fault mapping of Beltran et al. [1996] is shown in
red. Car., city of Cariaco; Que., Quebrada del Tigre; Cas., Casanay; and Caru., Carupano. (b) Spatial variation of velocity
steps across the fault (U in equation (1)), as a function of longitude along the fault. (c) Spatial variation of step width
(D in equation (1)), as a function of distance along the fault. For each estimation, the standard deviation (error bars) and
the χ2 value (dot colors) are plotted.
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Comparing the velocity step variations along the fault and earthquakes (Mw> 2) recorded between 2007 and
2011 (Figure 8), we do not observe a clear spatial and temporal correlation between velocity step variations
and the occurrence of these events, which means that the observed creep is mostly aseismic. The main seis-
mic event is the January 2010 earthquake (Mw 5.5 at 2.4 km depth) with a dextral focal mechanism [FUNVISIS,
2010] which will be discussed below in section 6.2. Regarding the distribution of the deformation (parameter
D in (1)), despite some noisy data, our results indicate that the deformation width remains stable through
time, localized over less than 1 km (see Figure S8 in the supporting information).

Along the western segment, for each time interval, a spatial variation of the cumulative displacement steps
across the fault is observed. In addition to these spatial variations, for each profile across the fault, we can see
a temporal variation of the creep rate. It should be noted that short-term variations cannot be detected due
to the low temporal sampling of ALOS-1 data (ranging from 1 to 6months, see Figure S1 and Table S1 in the
supporting information). According to our analyses, two phases can be distinguished (Figure 9a). Although
the beginnings and endings of each phase are not well constrained due to the low temporal sampling, the
two phases can be defined as Phase I between June 2007 and June 2009, with an average velocity of
15.2� 6.4mm/yr, and Phase II from June 2009 to February 2011, during which time average velocity signifi-
cantly increased and reached 30.2� 18.0mm/yr. Such an acceleration has been already observed in the field
based on measurements of local displacement markers during the 2002–2003 period following the 1997
earthquake [Audemard, 2006; Jouanne et al., 2011]. Velocities during the Phase II locally are higher than the
relative plate motions [Pérez et al., 2001; Weber et al., 2001; DeMets et al., 2010]. This strongly suggests that
it is a transient phenomenon.

No significant temporal variation in the velocity step is detected on the eastern segment (Figure 9b). We
can notice that there is an exception for two profiles that cannot be included in the western segment
which seem to be affected by similar temporal variations. However, these exceptions are isolated, and
our conclusions remain valid. The step seems to be constant at 13.4� 6.9mm/yr over the time period
from 2007 to 2011 (which is consistent with the rate of 13.4� 7.3mm/yr found in the mean velocity
map over the 2007–2011 period).

5. Slip Distribution Model

Among the numerical models performed by Reinoza et al. [2015], their slip distribution inversion shows that
the interseismic aseismic slip is not uniform in the seismogenic layer. However, the spatial resolution of their

Figure 8. Velocity steps across the fault calculated between two consecutive dates; white area corresponds to areas where
cumulative displacement could not be estimated. Black dots correspond to the seismicity provided by the International
Seismological Centre [2013] (Mw> 2). There is no clear general correlation between seismicity and creep rate increases. One
sigma deviation of the creep rate is shown in Figure S7 in the supporting information. Car., city of Cariaco; Que., Quebrada
del Tigre; Cas., Casanay; and Caru., Carupano.
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model was limited by the amount of available data. To improve the resolution, we carried out a similar inver-
sion, but adding in our InSAR results. The GNSS velocity data used in the inversions result from three GNSS
campaigns (2003–2005–2013) [Reinoza et al., 2015]. For InSAR, the LOS mean velocities (2007–2011 period)
from this study are used. LOS values are projected onto horizontal fault-parallel components (assuming no
vertical displacement and only fault-parallel displacements as discussed in part 3) and are downsampled
(weighted by RMS pixel values) at 400m spacing and restricted to data points located in near field within
5 km of the El Pilar fault. We chose to restrict InSAR data coverage to a 10 km wide band around the
El Pilar fault to mitigate possible longer wavelength residual orbital error or atmospheric perturbation, and
because our data analysis had shown that most of the creep velocity jump signal across the fault was
distributed within less than a few kilometers from the fault trace.

The slip distribution model was performed using the SDM software [Wang et al., 2013a, 2013b], which has
been successfully used to invert coseismic slip and afterslip [e.g., Motagh et al., 2008, 2010; Wang et al.,
2009; Diao et al., 2010, 2011; Xu et al., 2010]. This inversion first performs a sensitivity-based iterative fitting
approach; it calculates the portion of the data which can be explained per unit slip by a single patch. The slip
distribution inversion uses an elastic half-space model [Okada, 1985] to calculate Green’s function. To choose
between the many possible slip models, the code chooses a slip model with an appropriate roughness in the
slip distribution. Thus, the code solves a minimization problem applied to an objective function defined as

F bð Þ ¼ Gb� yj jj j2 þ α2 Hτj jj j² (2)

where G is the Green’s function, b is the slip of subfaults, y is the ground observation, α is a positive smoothing
factor, H is the finite difference approximation of the Laplacian operator multiplied by a weighting factor
proportional to the slip amplitude, and τ represents the shear stress drop related to the slip distribution on
the whole fault plane [Wang et al., 2009].

We use a homogeneous Earth model with a Poisson ratio of 0.25 and a smoothing factor of 0.1 (see
supporting information Figure S10). The fault is modeled by three vertical planes, with each plane segment
separated into two parts: an upper part (0–20 km depth), which represents the seismogenic layer, and a lower
part which represents the ductile layer. We considerably extended in depth and width the area of the model
to avoid boundary effects. We considered only right-lateral slip (180° rake) on those planes. The upper part is
discretized into square patches whose size is 1 km in length in the area covered by InSAR and 20 km
elsewhere. The lower part is discretized into squares 10 km in length. The bend of Guarapiche (localized in
Figure 7) is discretized separately. We fixed a threshold for the maximum of slip magnitude in the lower part

Figure 9. Cumulative displacement steps (in centimeters) across the El Pilar fault for each time step of the time series.
Cumulative step estimation involves fitting the times series values weighted with RMS for each 480m (or 16 pixels). For
each estimation using 1, the standard deviation (error bars) is plotted. The dot color corresponds to the longitude along the
fault. (a) Cumulative displacement steps (in centimeters) across the western segment. The average velocity of the two
phases was defined using linear regression between cumulative displacement and the date at each longitude along the
fault. Red star marks theMw 5.5 earthquake in January 2010. (b) Cumulative displacement steps (in centimeters) across the
eastern segment. X2 value for each dot is plotted in Figure S9. Car., Cariaco and Cas., Casanay.
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at 20mm/yr in agreement with GPS far
field velocities [Pérez et al., 2001;
DeMets et al., 2010; Jouanne et al.,
2011; Reinoza et al., 2015]. We also
apply a threshold on the upper part of
70mm/yr. We choose to use a relative
weight for GNSS and InSAR data. The
weight has been chosen in order to
satisfy two criteria: allowing the model
to reach long-term (geologic) slip rates
below 20 km and to reduce residual
errors for InSAR data. In order to invert
velocities measured in 2007–2011
which is probably a transient event
we give a low weight to the near field
SMI1 station (0.01). Indeed, this station
influence our inversion as the velocity
estimated in 2003–2005–2013 repre-
sents an average fault behavior and
not the transient behavior during the
2007–2011 period.

We tested several parameters in order
to evaluate the robustness of coupled
and uncoupled areas. For example, we
tried several weightings for the GNSS
and InSAR data, various slip magnitude
thresholds (e.g., Figure 10), and change
in dip for the upper dislocation (e.g.,
65° northward, vertical, or 75° south-
ward); we also tried using the InSAR
data without first removing the large
wavelength (the one shown in the sup-
porting information Figure S6). The slip
is not uniform in all our inversions, and
the spatial distribution of slip is similar

within ~5 km location uncertainty. For instance, in all inversions there is a zone between the western and
eastern segments characterized by a slip rate lower than 3mm/yr (Figure 10). Segmentation is also observed
in all inversions: the western segment exhibits a widespread uncoupled area (characterized by a slip rate
close to 30mm/yr) reaching the surface, whereas the eastern segment slips at ~20mm/yr. These patterns
are in the same location in all the tests; thus, slip distribution inversions shown in Figure 10 are robust
(see InSAR map of residuals in Figure 11 and simulated GNSS velocities in Figure S11). Our inversions show
that during the ~3.5 year period, the aseismic slip (~17–18mm/yr) released a moment of ~ 8.5 × 1017 Nm
which is equivalent to an earthquake of Mw~6.27 (or Mw 6.25 for test C in Figure 10).

In addition, we inverted slip rates before and after the creep acceleration with the same method by keep-
ing the same parameters and the same GNSS data (Figure 12). Slip distribution inversions show that the
coupled zones are broadly at the same place during the two phases. These zones become smaller in
Phase II (characterized by an increase of slip rate). These inversions are broadly consistent with cumulative
displacement profiles across the fault (Figure 9), even if in the eastern segment profiles do not exactly
match to the slip variation in the two inversions. Regarding residuals (shown in Figure S12), simulated
GNSS velocities are similar to those of the first inversions (Figure S11); however, residuals for InSAR data
are almost the double of the residuals in the slip distribution inversions of the velocities measured during
the whole spanning interval (2007–2011). This difference is most important along the Guarapiche bend
area in Phase II (Figure S11b).

Figure 10. (a) Upper part 3-D view of western and eastern segments
discretized for the slip distribution mode, with the seismicity recorded
between 2007 and 2011 shown as black dots; the inversion displayed is the
same than in Figure 10b. Slip distribution inversions performed with SDM.
In these inversions, we used the LOS mean velocities measured during the
2007–2011 period (whole time span) and we remove the large wavelength
from the InSAR data. (b) Slip distribution with a correlation of 95.20% for an
inversion where GNSS data weight is 50 compared to InSAR data, and the
slip magnitude cannot exceed 70mm/yr. (c) Slip distribution with a
correlation (or fit to the data) of 95.18% for an inversion where GNSS data
have a weight of 100 compared to InSAR data, and the slip magnitude
cannot exceed 70mm/yr. Cer., Cerezal; Car., Cariaco; Cas., Casanay; and
Caru., Carupano.
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6. Discussion
6.1. Short-Term Segmentation and Fault Properties

Detectionofspatial variations in creep rate for the2007–2011periodallowsus toestablish that two fault segments
undergodifferentbehavior. Theshallowsurface rateof thewesternsegmentreaches25.3� 9.4mm/yronaverage
(deduced from InSAR data) and has transient variations. On the contrary, slip in the eastern segment reaches
13.4� 6.9mm/yr on average and does not present significant temporal variations. This segmentation observed
in the short term (3.5 years) may not be persistent over longer timescales. For instance, it is possible that at other
periods thewestern segment could return to a lower steady state valuewhile theeastern segment couldundergo
acceleration. Nevertheless, GNSS campaigns (2003–2005–2013) show a consistent segmentation pattern (a wes-
tern segment creeping faster than the eastern segment) [Jouanne et al., 2011; Reinoza et al., 2015].

Figure 11. Map of residuals for three inversions. (a) InSAR velocity input. (b and c) Map of residuals for InSAR data for the
two tests (displayed in Figures 10b and 10c). Simulated and observed GNSS velocities are displayed in Figure S11 in the
supporting information.

Figure 12. Slip distribution inversions before and after the acceleration (Phase I and Phase II in Figure 9). Inversions per-
formed with SDM where GNSS data have a weight of 50 relative to InSAR data, and the slip magnitude cannot exceed
70mm/yr. (a) Slip distribution inversions for InSAR velocities measured during the Phase I with a correlation of 91.50%.
(b) Slip distribution inversions for InSAR velocities measured during the Phase II with a correlation of 90.82%. See residual
map and simulated GNSS velocities in Figure S12. Cer., Cerezal; Car., Cariaco; Cas., Casanay; and Caru., Carupano.
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Neotectonicanalysisofgeologicalmarkers
shows evidence of fault geometry varia-
tions between the western and eastern
creeping segments. As shown in Figure 7,
the fault mapped in Beltran et al. [1996] is
almost linear along the western segment,
whereas the eastern segment is distribu-
ted along several parallel traces (e.g., bend
of Guarapiche). Thus, the fault geometry
could control the distribution of the creep
as proposed by Lindsey et al. [2014] for
the San Andreas fault.

Frictional properties could control the
creep rate as predicted by the empirical
law of the rate and state formalism
[Dieterich, 1979; Ruina, 1983]. As the fric-
tion coefficient is related to the material
characteristics surrounding the fault,
there could be a lithological control on
creep rate variations. Along the El Pilar

fault, the presence of serpentine lenses, with quartzite and schist [Vierbuchen, 1984] along a fault plane char-
acterized by an important creep (Figure 3), can be compared to experiments of shearing serpentinite ultra-
mafic rocks juxtaposed against quartzite under hydrothermal conditions (200°–350°) carried out by Moore
and Lockner [2013]. This experimental setup promotes aseismic slip at seismogenic depth more than serpen-
tinite shearing experiments without quartzite rocks, and it also shows that long-term shearing of serpentinite
against crustal rocks produces extremely weak minerals such as saponite and talc. Additionally, Moore and
Lockner [2013] and Scuderi et al. [2015], among others suggest that faults can be characterized by strength-
ening and aseismic slip in the presence of high groundwater flow rates. This may be correlated to the exis-
tence of swamps near the western segment of the fault and also to the high number of hot springs and
fumaroles [Urbani, 1989; D’Amore et al., 1994; López, 2013]. Lastly, we note the concentration of microseismi-
city (Mw< 2) in the area where there are no serpentinite lenses at the surface (Figures 3 and 10). This concen-
tration in the eastern segment could be due to a concentration of small asperities which are loaded by
adjacent creep and cause failure. Presence of numerous asperities can be thus correlated to the lack of ser-
pentines. Another explanation could be the variation in pore fluid which would reduce the effective normal
stress and therefore the apparent coefficient of friction [Gratier, 2011; Richard et al., 2014].

6.2. Link With Seismicity

Slip distribution models on the onshore segment of the El Pilar fault allow us to estimate that between 2007
and 2011 the slip released a moment of 8.0–8.5 × 1017 Nm, which corresponds to an earthquake ofMw ~6.26.
Since moment released by the recorded seismicity during the same period of time is 1.55 × 1017 Nm, the slip
was mostly aseismic. This aseismic slip may control the distribution of microseismicity. Slip distribution mod-
els show that the microseismicity (Mw ~2) seems to occur in the transitional area between the uncoupled and
coupled zones especially at the east (Figure 10a). In these areas, microseismicity could result from failure of
asperities (coupled areas) loaded by adjacent creep in the surrounding uncoupled areas. The seismicity
resulting from these failures is often linked to the creep rate [e.g., Nadeau and McEvilly, 2004] and can be
defined as characteristically repeating earthquakes, although the waveforms and magnitudes of microseis-
mic events would be needed to confirm this here.

Despite the low temporal resolution of InSAR analysis, it seems that there is no correlation between recorded
seismicity and temporal slip rate variation (Figure 8). However, it should be noted that aMw 5.5 event (January
2010), at the edge of the western segment, occurred after a period of creep rate acceleration. This may indi-
cate that it was triggered by a rise in creep rate (Figure 13). A sequence of slow slip events followed byMw> 5
earthquakes has been observed in subduction zones, where slow slip events probably induce abrupt stress
changes and then earthquakes [e.g., Radiguet et al., 2016]. However, this sequence is unusual along strike-slip

Figure 13. Profiles perpendicular to the fault showing smoothed cumu-
lative displacement for each acquisition date (see Figure S13 in the sup-
porting information for a version of this plot without smoothing). The
profile crosses the fault at longitude 63°30′W, which is the location of the
epicenter of the January 2010 Mw 5.5 earthquake (red star). Gray zones
around curves correspond to the 1 sigma deviation.
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faults, and in fact, the opposite is often observed; for instance, along the San Andreas fault and the Haiyuan,
Mw 4–5.5 events promote aseismic slip in the adjacent areas [e.g., Murray and Segall, 2005; Taira et al., 2014].

At the regional scale, no significant seismic eventswere recorded in the vicinity of the El Pilar fault (Mw> 4.5) or in
the neighboring countries (Mw >7) [International Seismological Centre, 2013]. Therefore, local or remote earth-
quakes cannot explain the temporal creep variation that occurred in 2009. Slip distribution inversions from
InSARvelocitiesmeasuredbefore andafter June2009 showan increase of slip belowCariacobetween the surface
and 10 kmdepth (Figure 12). Changes in groundwater flow ratesmay explain this variation in the shallowest part
(see section 6.1), especially as the western segment is close to swamp and hot springs. However, for the deepest
part, the transientbehavior couldbeexplainedby stress interactionswithneighboring faults orby variationof fric-
tion properties [e.g., Lienkaemper et al., 1997; Scholz, 1998;Wei et al., 2013].

6.3. Aseismic Slip Types and Seismic Hazard

The 1997 event released a seismic moment of Mo= 3.1 × 1019 Nm. The surface rupture was mapped in the
field 2 days after the event over a distance of 30 km (Figures 14a and 14b). During this field investigation,
the displacements measured yielded an average total slip ranging from ~ 20 cm to ~ 40 cm, assuming a
crack-like rupture [Pérez, 1998; Audemard, 1999, 2006; Baumbach et al., 2004]. Considering earthquake fault
scaling laws of Leonard [2010] a seismic moment of Mo= 3.1 × 1019 Nm corresponds to an average fault dis-
placement of ~1.1m. Therefore, only 20–35% of the expected displacement was accounted by the total
“coseismic” slip observed. This discrepancy could be explained in part by the occurrence of off-fault deforma-
tion [Zinke et al., 2014;Milliner et al., 2016] or by aseismic slip (after the earthquake) on the shallow part of the
fault as proposed in Hussain et al. [2016].

Actually, localized aseismic slip was detected in the field during the 6 years following the 1997 event
(Figures 14a–14b). The total measured slip triples the surface coseismic slip and ranges from 50 to 120 cm
[Audemard, 2006; Jouanne et al., 2011], which is 50 to 100% of the expected average fault displacement cor-
responding to a Mw 6.9. This period of rapid slip after the earthquake is thus interpreted as an afterslip.
Moreover, the logarithmic decay characterizing the afterslip phenomenon [Marone et al., 1991; Chang
et al., 2013] has not been seen in the records from the 2003, 2005, and 2013 geodetic campaigns along
the El Pilar fault segments (Figure 14a). This decay was also not detected by the temporal slip rate investiga-
tion between 2007 and 2011 carried out in this study; on the contrary, a rise in slip rate was observed. We can
therefore hypothesize that short-term transient afterslip (during few years) may have been induced by the
1997 earthquake and it is over since 2002–2003.

In 2005 and 2013 two GNSS campaigns was carried out, considering stations ARI0-PER0 the El Pilar fault is
creeping in average at 13mm/yr. Between 2007 and 2011 the eastern segment showed a similar veloci-
ties (~13mm/yr). However, in the western segment the creep is in average double (~26mm/yr). This
implies that the fault undergoes strong temporal variation to be in agreement with GNSS measurements.
For example, along the western segment, between 2005 and 2007 and between 2012 and 2013 the creep
rate had to decrease significantly (~0mm/yr) to be in agreement with the 13mm/yr deduced from GNSS
measurements (Figure 14a). The El Pilar fault seems thus to be locked during several years and then
undergoes transients of creep during several months. This transient behavior is also supported by the fact
that the creep exceeds the plate relative velocity motion. This pattern was also observed in 2000–2003 in
the western segment (markers b and d in Figure 14a). Several creeping fault around the world had a
transient-like behavior: for example, the North Anatolian fault underwent a transient of 31 days [Rousset
et al., 2016] or the Haiyuan fault [Jolivet et al., 2015b]. Moreover, along the 1999 Izmit surface rupture
of the North Anatolian fault, Hussain et al. [2016] proposed that the steady state afterslip will probably
undergo transient acceleration during the earthquake cycle. The installation of a creep meter will provide
temporal coverage which could inform us about the duration creep events (i.e., several creep events
during days or one creep event during several months).

Although it is not known if the El Pilar fault was creeping before 1997, 10 years after 1997 the aseismic slip is
still high and undergoes accelerations. Thus, it is possible that the succession of locked and of large transients
lasts during the interseismic period (before and after the 1997 events). To test this hypothesis, earthquake
return periods can be evaluated for the cases with or without persistent creep and compared with available
information about return period. For instance, considering a fully locked fault that is affected only by episodic
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partial coupling due to transient aseis-
mic afterslip during a short period of
time (for example, less than 20 years)
and a long-term slip rate of 20mm/yr,
the return period of a characteristic
earthquake similar to the 1997 event (1
to 4m of slip) would range from 50 to
200 years. However, assuming a station-
ary partial coupling of 12–13mm/yr
during the interseismic period, and a
long-term slip rate of 20mm/yr, the
return period would increase from ~80
to 500 years. The latter case is more con-
sistent with relevant paleoseismology
studies which inferred return periods of
~ 400 years for large events [Audemard,
2006, 2011]. Thus, a short-term (several
years) afterslip induced by an earth-
quake, succession of locked and of large
transients during the interseismic period
could better represent the seismic cycle
of the El Pilar fault.

Considering that since 2003 the rapid
afterslip decay has finished, we observe
in Figures 14c and 14d the aseismic slip
occurring during the earthquake cycle.
We can thus propose that the coupled

Figure 14. Fault slip along the 1997 surface
rupture. (a) Total slip measured after the
1997 event. Lines a, b, c, d, e, and f are
localized in Figure 14b. These lines corre-
spond to field measurements reported by
Audemard [2006] and Jouanne et al. [2011].
Lines ARI0-PER0 display the total slip mea-
sured by GNSS between stations ARI0 and
PER0 [Reinoza et al., 2015]. (b) Field slip
measurements along the 1997 surface rup-
ture since 2–3 days after the 1997 event
(Single asterisk and double asterisks signify
that slip was measured in Audemard [2006]
and Jouanne et al. [2011], respectively.) These
measurements are the same than those
plotted in Figure 14a. (c) InSAR velocity slip
along the 1997 surface rupture (measured in
this study from June 2007 to December 2011
in Figure 7). (d) Upper part of the slip distri-
bution inversion performed in this study (see
Figure 10). The figure displays the seismo-
genic layer until 20 km depth. The red area
corresponds to the hypocenter of the 1997
event [Baumbach et al., 2004, and references
therein]. Figures 14b–14d are at the same
scale (in longitude along the fault) and are
located at the same localization (1997 surface
rupture). Cer., City of Cerezal; Car., Cariaco;
and Cas., Casanay.
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area below Casanay corresponds to an asperity which may have been responsible for the 1997 earthquake
(Figure 14d). At that time, the surrounding slipping areas could thus have been activated by the weakening
dynamic triggered by the failure of this asperity. This could explain the existence of ground deformations
(observed 2–3 days after the event) over a length exceeding the length of this asperity. Three months before
the El Pilar 1997 event, a Mw 6.7 occurs in Tobago (~350 km from Casanay) [Weber et al., 2015]. Despite this
earthquake had a normal cinematic, it could have induced stress variation along the El Pilar which triggers
the event.

Considering a long-term slip rate of 20mm/yr and a seismogenic depth below the 1997 surface rupture (of
20 km), the slip deficit estimated from our model corresponds to an earthquake of Mw 5.1–5.5 (accounting
for the seismic moment release due to seismicity over the 3.5 year period of observation). This implies that
the fault accumulates strain and can release it during an earthquake. Therefore, to accumulate a slip deficit
equivalent to the seismic moment of Mo=3.1 × 1019 Nm released during the 1997 event requires more than
800 years. This period is higher than the return period which confirms that we observe a large transient epi-
sode along the western segment.

Regarding seismic hazard, along the western segment, as we inferred increases and decreases in the slip rate
over the 3.5 year study period, it would probably be necessary to perform a time-dependent seismic hazard
forecast, as it has been proposed for the San Andreas fault [e.g., Khoshmanesh et al., 2015] or for the Haiyuan
fault [e.g., Jolivet et al., 2015b]. The bend in the eastern segment, which has a constant and lower creep rate,
has been considered a seismic barrier by Audemard [2006]. However, it could be interesting to perform an
accurate seismic hazard evaluation, because this kind of fault can generate large seismic slips, as explained
by Noda and Lapusta [2013]. Particular attention should also be paid to the transition area between these seg-
ments. Indeed, this zone seems to be coupled and able to provoke failures due to loading by adjacent creep,
as it certainly happened in the case of the Mw 5.5 event.

7. Conclusion

In this paper, we use InSAR analyses in order to characterize the spatial and temporal variation of creep rate
along the El Pilar fault. InSAR velocity profiles across the fault show a large step (greater than 2mm/yr when
projected into horizontal fault-parallel velocity), and demonstrate the continuity of creep localized along the
El Pilar fault trace at the surface. Slip distribution inversions using GNSS velocities from three campaigns
(2003–2005–2013) and the LOS mean velocities (estimated here on the 2007–2011 period) show that the
aseismic slip releases a moment of ~ 8.0–8.5 × 1017 Nm between the surface and 20 km depth during the
3.5 year observation period. Considering a long-term slip rate of 2 cm/yr, this implies that the fault accumu-
lates strain (equivalent to a Mw 5.4–5.6 over 3.5 years) which can be released during an earthquake.

Analysis of the spatial variability of the creep rate between 2007 and 2011 allows us to distinguish two fault
segments of the El Pilar fault which showed different behavior. The creep rate of the western segment
reached 25.3� 9.4mm/yr on average and underwent transient behavior. On the contrary, slip on the eastern
segment reached 13.4� 6.9mm/yr on average and did not show significant temporal creep variation. Locally,
creep rates are higher than the relative plate motions which strongly suggest that it is a transient phenom-
enon. We investigated the geometrical and lithological characteristics which could explain this difference,
and it appears that the faster creeping segment corresponds to a linear and unique trace which crosscuts
a province containing quartzite and serpentinite. Future geodetic monitoring (ALOS-2, Sentinel SAR data)
and installation of a permanent creep meter will further constrain the link between the fault geometry and
lithology [e.g., Thomas et al., 2014a].

Despite the relatively low temporal resolution (18 dates) of our study, the observation of transient behavior
indicates that these segments were affected by episodic interseismic aseismic slip between 2007 and 2011.
The rise in creep rate cannot be explained by a postseismic afterslip mechanism. The creep is thus interpreted
as into interseimic creep showing transients.
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