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Point defects in the flux-line lattice of superconductors

Enrick Olive and Ernst Helmut Brandt
Max Planck Institut fu Metallforschung, P.O. Box 800665, D-70506 Stuttgart, Germany
(Received 24 November 1997

The self-energy and interaction energy of vacancies and interstitials in the triangular lattice of parallel
Abrikosov vortices in type-Il superconductors are calculated within London theory. Various stable and meta-
stable equilibrium configurations of the flux-line lattice around such point defects are investigated. The va-
cancy with highestsixfold) symmetry usually does not exhibit the lowest energy, as was already found by
Freyet al.[Phys. Rev. B49, 9723(1994]. Due to the relaxation of the surrounding vortex lattice, the defect
energies are very small compared with the binding energy of one vortex. The interaction of point defects is
weak and can be repulsive or attractive, depending on their type and distance and on the ratio of the magnetic
penetration depth to the average vortex spaciagIn the limit A\ >a these results should be applicable to thin
films in a perpendicular magnetic field$50163-182608)04521-4

I. INTRODUCTION energies are evaluated exactly, the self-energies and interac-
tion energies of point defects are finite but very small, being
After the prediction of the flux-line lattic¢FLL) in the  differences of two large terms.
type-Il superconductors by Abrikosdvdecoration experi- In the present paper we compute the configuration and
ments by Trable and Essmanfrsucceeded in observing the €nergy of an infinite periodic arrangement of various point
FLL at the specimen surface with high resolution. This Bitterdefects in the lattice of parallel Abrikosov flux lines. The
decoration revealed a more or less defective lattice, contairPeriodicity originates from the periodic boundary conditions
ing vacancies, interstitials, dislocations, partial dislocationsWhich we imply to avoid surface effects originating in finite
stacking faults, and even disclinatiohdhe properties of Systems. The interaction energy of defects is then obtained
edge and screw dislocations in the FLL were discussed firdfom the dependence of the defect energy on the periodicity
in Refs. 4. The energy of flux-line vacancies with sixfold lengthsL, and Ly, and in the limit of large periodicity
symmetry was calculated both at low inductidf®em Lon-  lengths the self-energy of the defects results, since the inter-
don theory, Ref. band high inductiongfrom the linearized ~ action goes to zero.
Ginzburg-Landau theory, Ref).8n a detailed paper consid-  The outline of this paper is as follows. In Sec. Il we
ering also the thermal proliferation of point defects in a FLL describe our computational method and define the defect en-
“supersolid,” Freyet al.’ found that during relaxation of the €rgies. The results are presented in Sec. Ill, and Sec. IV
surrounding FLL the vacancy with sixfold symmetry in the sSummarizes our main findings.
FLL is unstable with respect to a compression along one of
the three axes connecting the nearest neighbors of the va- Il. COMPUTATIONAL METHOD
cancy, but the energy of the final configuration is very close
to this saddle-point configuration with sixfold symmetry.
Our computations below confirm this finding. The role of  We consider the statizero-temperatujeenergy of arbi-
defects and plastic deformation during thermally activatedrary arrangements of parallel vortex linéaong z) in the
motion of the lattices of vortex lines and of vortex disks London limit, which applies when the Ginzburg-Landau
(“pancakes’®) in conventional superconductors and in lay- (GL) parametew=\/£>1 is large and the distanceg be-
ered highT, superconductors was discussed by several auween the vortex lines are much larger than the radius of the
thors, see, e.g., Refs. 9,10 and the review papers, Refs. 1lortex coreg .~ &. Here\ is the magnetic penetration depth
15. and ¢ the superconducting coherence length. Practically, the
As shown recently®'’ the self-energies and interaction London limit means that the inductidB is much less than
energies of unrelaxed point defects in soft lattices are comthe upper critical fieldB.,=®,/(27£%) and that therepul-
pensated almost completely by the relaxation energy of theive) interaction between the flux lines is purely magnetic,
surrounding lattice. Insotropic lattices this compensation is
even perfect, and the resulting defect energies thus vanish, if V(rij) =EgKq(ri; /\). @
one applies the continuum approximation and linear elastic-
ity theory and disregards the shear modulus. In soft latticeslere Eq=®5/(2muoh?) is an energy per unit lengifin the
(with smooth long-range interactipthe continuum approxi- following we shall putEy=1), Ko(x) is a modified Bessel
mation is very good, and the shear modulus is much smalldiunction with the limitsKy(x)~In(1/x) (x<1), andKg(x)
than all other moduli. Iranisotropiclattices a finite defect ~(/2x)Y%xp(—x) (x>1). If « is not large, the interaction
energy results even in these approximations, e.g., in thbetween vortices is not only a magnetic repulsion but there is
three-dimensionaBD) lattice of pancake vorticé$'’in lay-  also an attractive contribution of rangé./2, originating
ered superconductors. If the lattice sums defining such defeftom the gain in superconducting condensation energy when

A. Interaction potential
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the vortex cores overlap. Thus, the effective interaction iswith rj;=r;—r;. The dash at th¢ sum excludes the term
approximatelyV(r)cKo(r/n) —Ko(1/2r/€), which has a fi-  =i. V(r) is an effective interaction potential between two
nite value atr =0.2 In the special case=1/,/2 both con-  vortices inside one periodicity cell including the interaction
tributions compensate such théfr)=0, which is an exact Wwith the “image lines” positioned at;+R whereR=R,,
result in this special case, i.e., all vortex configurations have= (mL,+nL,) (m,n intege) are the vectors of the “super-

the same energy ik =1//2. lattice.” This effective interaction is periodic and may thus
In Fourier representation the potent{d) reads be expressed as a Fourier series,
d?k - . d%k . ,
V<r>=fmwk>e'k'f, @ Ve(r) =2 V<r+R)=f 22V (ke ek R
R m R

20 1o - 2w cosK.r
V(K\=Er—— =—2, V(K) cosK:-r=—2, ——. 5
V(k)_EOkz_H\fz' (3a A; (K) A ; K2+\72 ©

To facilitate the numerical evaluation of sums over recipro-HereK=K ,, are the reciprocal lattice vectors of the super-

cal lattice vectors below, we multipy(k), Eq. (38, by a lattice, e.9.K ,,=2m(u/Ly,v/Ly) for the rectangular basic
convergence factor expck?) with c— 0. This heuristic cut- Cell of areaA=L,L,. In Eq. (5 we have used a general
off converges more rapidly than the difference of two formula for 2D lattices with cell area,

Lorentzians which would follow from the effective potential 5

V(r)ocKo(r/\) —Ko(y/2r/£); see Ref. 19 for the discussion E eik.R:AiE S,(k—K) 6)

of various vortex-core cutoffs. The Gaussian cutoff factor is R AR 2 ’

equivalent to a convolution o¥/(r) with the Gaussian

(1/7-rr§)exp(—r2/r§) of half width rozz\/E, which removes Whered,(x,y) is the 2D delta function and the infinite sums
the logarithmic infinity ofV/(r) atr =0 and slightly enhances run over all reakR) and reciprocalK) lattice vectors.

V(r) at larger distances, since the volugié(r)d?r remains The constanNU,/2 in Eq. (4) originates from the inter-
constant. To lowest order ir, the enhancement is obtained &ction of each vortex with its own “images,” which had
by the Taylor expansion of/(|r—r'|) aroundr, yielding dr_opped out _from the_ first sum in E4) when the termg
V(r)—>V(r)+(rS/4)V2V(r)+O(ré). For the London poten- =1 Were omitted. This term doasot deper_wd on the vortex
tial (1), this convolution gives the enhancemef§(r/\) positions, such as thg vortex self-energies, Wh'Ch are also
—>K0(r/)\)(1+r§/4)\2). Thus, up to small terms of order omitted in the interaction energy). However, sinceNU g,

4 . o _ depends on the periodicity lengths andL,, this term is
O(rp) thg potenpal(l) may be replaced by a modified po important when the energies of periodicity cells of various
tential with Fourier transform

shape or size are compared. In particular, whigg, is dis-
5 expl — r2k/4) _regayded, then_the interactigp-.energy per voldgx N of thg

m 0 _ (3b) infinitely large ideal FLLartificially depends on the choice
K24 N2 1+r5/4\? of the periodicity area, see Table Il in Ref. 7. Explicitly one

has
The inner cutoffr plays the role of a vortex core radius. It

is thus related to the coherence lendtr, (Refs. 19,20 d2k _ . 1. _
and to the Ginzburg-Landau parameter by N/ é~M\/rg.  Upe= V(R)=fFV(k)(z e'K'r—l) :KZ V(K)
Since we are mainly interested in the extreme London limit R#0 m K K

V(k)=E,

k—o, we shall chooserg<a, e.g., ro=a/20, wherea a2k o 1 1
=(2®d,/+/3B)¥?is the average spacing of the vortices in the — J —V(K)~—— > —————-In(1+K3\?).
ideal triangular lattice. The choice,/a=1/20 guarantees 77 A K=k KZ+N72 2
that alwaysB/B.,= (47/+/3)(&/a)?<1 in our simulation. 7

Thus, the only parameter which matters hera/fa, related
to B and to the lower critical fiel®.,~®Inx/(y87\?) by  The cutoff radiusk, in the last line of Eq.7) should be

B/Bcy~ (M a)2(4m2/3)/Ink~(10/Ink)(\a)2 chosen so large that the sum contains many terms, say
10%. - - 10°. The logarithm in this line results from integration
B. Periodic boundary conditions of V(k), Eq.(3a), over the circular arek<K,. The approxi-

: - .
The interaction energy of an arbitrary arrangement of vor-.matlon(7) means that foK=K, the sum is replaced by an

tices with positiong; extended periodically with periodicity integral; the two integrals over the outer regior K, then

lenghtsL, andL, to the infinitexy plane is in eache.g cancel.
X y 0., : , _ o _ _
rectangular periodicity cell of areaA=L,L, containingN Equation(4) is easily checked by considering the interac

) . = tion energy of one vortex with all other vortices in an infinite
vortices(vortex densityN/A=B/®), ideally periodic lattice. This energy is twice the binding en-
1 o 1NN N ergy Ug=Uy/N of a vortex; it is the same for all vortices;
Uo== L V(r )= = ")+ =U and it does_ not depend on _the qh0|ce_of_ the supercell. The
NT2 Zl 121 () =73 izl 121 elMi))+ 5 Uper factors 1/2 in Eq(4) appear since in the infinite sums all pair
(4 interactions were counted twice. Finally, the tety,/2 is
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the same for ideal and defective lattices since it does not vac doal . wae NT2
depend on the vortex positioms but only on the size and Uvac=Un=1—UnT1=UNS TUN +Ucor-
shape of the periodicity cell. (10)

The energy of ideal periodic vortex lattices may be easily
computed by a single sum over the interaction§,(R/\).  The second line in E¢(10) was written such thal ;¢ is a
If \ is very large one may transform this infinite sum oversmall correction of the order dfg/N=U}*¥/N2. The sec-
ideal lattice pointsR into an expression of the forr(i), ond line in Eq.(10) allows us to compute the ideal-lattice
where now theR andK are interpreted as the vectors and energyU ',3‘*" by the same numerical method used also for the
reciprocal vectors of the vortex lattice. The precision of thisenergy of the defective latticesince the index i\, not N
computation is considerably enhanced if the sum is not cut-1). This means near compensatign a small difference
off abruptly atk =K; but smoothly, e.g., by multiplying the of large termg of the inaccuracies which may originate from
terms of the sum by a factof+ 3tanf1.9(K; — K)/K yin] the approximate potenti@Bb) and its numerical calculation
(the factor 1.9 was found to optimize the accunaay.g., or interpolation.
choosingK ;=400 i, and summing oveK<410K i, with As stated above, the ideal binding eneldy, Eq. (8),
K min the shortesK. In this way we get for the binding en- depends only on the ratiay /A where ay=(2A//3N)2
ergy of the triangular FLL wittK2 = (167%/3a%)(m*>+mn =N~ 2is the ideal vortex spacing at constant supercell area

+n?) (m,n intege) A=L,L,. Thus one may write
ﬁeeﬂ 2 )\2 1 N Uvac:N_2Uﬁeal_uﬁeai:(N_z)UB(aN)
Ug(a/N)= == Ko(RIN)=—==—5In= “r N -
s(a/)=— = =35 2 Ko ~Ga 2"
—(N=1)Ug(an-1)- (1)
—a(Na), (8)

Since UZr is small, it may be calculated from the exact

where the constant is found numerically asr=0.754486 binding energyUg(a/\) as described above E(gB), even

for NMa—cw and a=0.884512, 0.792504, 0.764426, though the remaining terms ld,,, Eq.(10), are computed
0.757000, 0.754890, 0.754587, 0.754512, 0.7544904sing the approximate potentiédb). This consideration is
0.754487, 0.754486 fax/a=0.25, 0.5, 1, 2, 5, 10, 20, 50, important since the vacancy energy after relaxation is ex-
100, 1000. UsingEy=®2/(2muoh?) and B=2d,/\3a2, pected to be very small, requiring high precision identical
one finds from Eq(8) in the limit A>a the energy density of &PProximationsin the calculation of the large terms in the

the ideal FLL B/®,)EoUg=B2/2u, as it should be. difference, Eq(10). In the limit A\>a, one has from Eq8)
Ug=(27/3)(\/a)2. Inserting this into Eq(11) one ob-
tains

C. Definition of defect energies

The energy of a superlattice of defects which do not .. 27 \? (N—1)? _ IN= — U dea) 2
change the numbeN of vortices in the periodicity area, Corrwﬁa_ﬁ TSN ~—Ug/N=—Uy"/N".
naturally is defined as the difference between the energies of (12)

the defective and the ideal vortex lattices per periodicity cell,
Similarly, one finds for a superlattice of interstitials the

U 4= U gefect_yideal (99  energy per supercell,

Examples for such defects are one vacancy and one intersti-  y, =yint | —yidea—yint Euﬁeabr uint

tial per supercellof areaA=L,L,) or a pair of edge dislo- N

cations. (13

Defects which change the number of vortices in the suyith the small correction
percell, e.g., one vacancy or one interstitial, should be con-
sidered at constant vortex denskyA=B/®d,. This defini- int deal + rideal
tion has the additional advantage that the self-energy of the Ucor=—y YN~ Un+1=(N+2)Ug(ay)

vortex lines drops outl .~ 3 Egln k (for k>1). For ex-

ample, generating a vacancy means that one removes one —(N+1)Ug(ay-1). (14)
vortex and rebuilds it into the ideal vortex lattice; this is |n the limit A>a this gives

easily possible for large systems with many vacancies. For a

finite supercell, the concrete procedure to add the removed 2
vortex again without generating a new defect, is less obvi- U'&}ﬁ —
ous. But ifN>1 is not too small, one may replace this pro- V3
cess by a subsequent linear elastic uniform compression ~yvac (15)
which restores the original average vortex spacng eort _

The energy of a superlattice of vacancies in our infiniteThus, forA>a the two small correctionl (5. and U &, are
vortex lattice is conveniently computed as follows. The en-equal. Note that in the definitions and result®)—(15) it
ergy per vacancy, or per supercell with—1 vortices and was not assumed thatl is large. These formulas apply,
areaA, is defined by therefore, to arbitrary order in 1/

)\2

— ~—Ug/N=—U*N?
ay

(N+1)32
N
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TABLE I. Energies of point defects at constant line dengityb, for several sizes of the periodicity cell
(Ly ,Ly):(5,6\/§/2)ta witht=1, 2, 3, 4, 5. Listed are the self-energies of vacanitégd and interstitials
(Ui, for various symmetries, see text, for three ranges of the vortex interactéon 100, 1, and 0.25. The
energy unit isEq=®3/(2mu\?).

NMa=100
t Ulae Ulae Ui Ui Uit
1 0.10484 0.10235 0.07152 0.07174
2 0.12382 0.10768 0.10507 0.07354 0.07265
3 0.12411 0.10801 0.10571 0.07387 0.07286
4 0.12421 0.10811 0.10594 0.07398 0.07296
5 0.12425 0.10815 0.10606 0.07403 0.07300
NMa=1
t uis Ul Ui ug g
1 0.09422 0.09230 0.06533 0.06536
2 0.11148 0.09701 0.09489 0.06703 0.06603
3 0.11179 0.09735 0.09548 0.06730 0.06620
4 0.11190 0.09746 0.09569 0.06739 0.06628
5 0.11195 0.09751 0.09578 0.06743 0.06632
NMa=0.25
t Ulae Ul Ul uYz U Uit
1 0.02433 0.02450 0.02454 0.02072 0.02034
2 0.02767 0.02560 0.02557 0.02555 0.02079 0.02009
3 0.02788 0.02580 0.02578 0.02573 0.02078 0.02006
4 0.02796 0.02587 0.02584 0.02579 0.02078 0.02005
5 0.02801 0.02591 0.02587 0.02581 0.02078 0.02005
When N>\?%/a® is large, consideration of the term N+2n . ,
1 . . Udef -—— " U ideal__ U ideal
5In(\/a) in Ug, Eq.(8), contributes tdJ,,,, a constant{l corr N N N-+n
independentterm that dominates whea’<\?<L2~a’N.
In this limit one finds from Eqs(11) and (14) =(N+2n)Ug(ay)—(N+n)Ug(anin) (18
- N1 2mA%n? n | AL \ s
vac,ln% | o ~—— —— = In—-— = >a).
Usen "=+ In - 5. (16) BaN 22 ( )

(19

In this case these two correction terms have different signgne can show that this defect energy vanishes as it should
for vacancy (~0) and interstitial 0), but they are still e \when the defect disappears, i.e., when during relaxation
much smaller in magnitude than the binding enelgy  the vortices rearrange to an ideal lattice again. The correction
~3.6(\/a)">1. For our computations below we shall com- (1) aiso vanishes in the trivial case=0, i.e., when the

pute the correction term from the exact Eqk1) and (14),  gefect consists of an equal number of vacancies and intersti-
using for Ug the algorithm described above E@) when tials, see Sec. Il D.

Na>1, or from the sum over modified Bessel functions in

Eqg. (8) when \/a~1. Inclusion of this correction term al- Il RESULTS
lows the precise computation of defect energies, which de-
pend on the size and shape of the supercell. A. Computations
Generalizing the expressiof0)—(16) to defects withn The lattice relaxation was performed by a quasistatic

vortices added to the superced.g.,.n=—-2, —1, 1, 2, ré&-  meihod using the effective interaction potentia(x,y), Eq.
spectively, for double vacancy, vacancy, interstitial, and(5) with Fourier transform(3b)

double interstitigl we find the energy per defect
27 « cosK-r exp(—r3K2/4)
def ideal def _ NH2N ieal | def Velr)= L,L ; K2+ )2 1+r§/4)\2
Udef:UN+n_UN+n:UN+n_TUN + U corrs y

(20

(17)  in energy unitsEq=®3/(2mueh?) and with ro=a/20, a
=(2®d,//3B)*2 To accelerate the computation we tabulate
with the small correction Ve(X,y) and its three derivatives, , V,, andV,,=V,, on a
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. TABLE Il. Energy .of ygcancy-iqterstitial paird p,;, at constant (LX,Ly)=(5,6\/§/2)ta, wheret=1, . ..,5 is aninteger and
line density. The periodicity cell sizes are,(L,)=(56v3/2)ta  a the lattice spacing. These numbers were chosen such that
with t=1, 2, 3, 4, 5. The symmetry of each point defect in the pairthe rectangular box approximates a square to within 4%.

is also listed. Similar almost quadratic periodicity cells also where chosen

in Refs. 7,22.
Aa=100 ) We present here numerical calculations for three different

t U pair Defect symmetries ratios of the magnetic penetration deptho the ideal vortex

1 0.12555 V2 and CI spacinga, namely,A\/a=100, 1, and 0.25. As discussed be-

2 0.17468 V2 and CI low Eq. (3b), &a~rgy/a=1/20 was held constant in our

3 0.17802 V2 and CI computations, thusB/B,~ (4m/+/3)/2F~0.02, and our

4 0.17880 V2 and Cl N a values meark~\/§~2000, 20, and 5; thus one always

5 0.17910 V2 and CI has k>1 and B<B_,, which means the London theory is
applicable. Sinc®/B.;~ (10/Ink)(\/a)?, our values\/a cor-

Aa=0.25 respond to reduced inductior®/B.;~1.3x10%, 3.4, and

t U pair Defect symmetries 0.4. From our results below one sees that the ceke

1 0.03432 V2 and CI =1QO is the ext_reme London limi>1 with strqngly over-
lapping vortex fields, and even the casea=1 differs little

2 0.04517 V2 and ClI Lo

3 0.04581 V2 and Cl from this limit. Our results fqm/a>1 .should thgs.be com-
pared to those of Ref. 7, which considers the likit-co. In

4 0.04591 V2and CI our third example)/a=0.25, the vortices interact only with

5 0.04592 V2 and CI a few nearest neighbors.

dense two-dimensional grid, from which we interpolate B. Vacancies

Ve(x,y) rapidly using the bicubic routine of Ref. 21. To create a superlattice of vacancies we start from the

We used two different routines to minimize the total en-jgeg| triangular lattice and remove one flux line per super-
ergyUy, Eq.(4). The first routine is the standard conjugate- ce||. After relaxation we then find four different equilibrium
gradient method described in detail in Ref. 21. In our secon@onfigurations exhibiting sixfold, fourfold, threefold, and
minimization method the componentsandy; of the vortex  wyofold axial symmetry around the vacan¢y6, V4, V3,
positions are changed by a displacement proportional to thgz)' see Fig. 1 for examples. One can see that the center of
ratio of the first and second partial derivatives of the energsymmetry of all these configurations is the initial vacancy

U with respect to this component, e.g., position. The fourfold symmetry will not be considered fur-
ther in the following since it is supposed to be an artifact due
X =X — P U/ X 21) to our rectangular periodicity cell. The sixfold symmetry
R R 2ulaxd configuration for the smallest box size LyL,)

=(5,6\3/2)a, i.e., fort=1, also will not be considered fur-
The proportionality coefficienp in Eqg. (21) is chosen ap  ther since it was not found to be a metastable state for this
<1, and sometimep<1, which guarantees good conver- small box size. The other vacancy types were metastable in
gence and stability of the meth@dunder-relaxation”). This  the sense that our “viscous” relaxation method remained
relaxation method is symmetric since thil 2oordinates of stationary at these configurations during many iteration steps
the N vortices are all changed simultaneously within thebefore it continued to find a configuration with lower energy.
same step after theNefirst and 2\ second partial derivatives The vacancy energy was computed from Ed€®) and
have been calculated. This second method approximately d€t1). Our results are displayed in Fig. 2 and Table I. We find
scribes the relaxation of vortices which experience a viscouthat for all three\/a ratios the lower the symmetry is, the
drag force proportional to their velocity. Since the curvaturedower is the final vacancy energy. Our periodic boundary
#°Uy/x2~3?Uy/dy? are roughly constant for all vortices conditions mean that we have a rectangular superlattice of
(i=1...N), the effective viscosity is approximately con- defects. Since we change only the size of the periodicity cell
stant and proportional to i/ and not its shape, i.eL,,/L,=0.96, the total energy of such

Whereas the conjugate-gradient method may trap the sys superlattice of defects should exhibit qualitatively the same
tem in one of the metastable states, the second method sutistance dependence as the interaction between two single
cessively visits several metastable states. Any metastabliefects in a large periodicity cell. In particular, if the inter-
state found by this second method and then inserted as attion between two point defects at a distancillows a
input configuration into the conjugate-gradient method, wagpower lawU=~r "~ ¢, the energy of a superlattice of such de-
then observed to be “stable.” We shall compare our resultdects will follow the same power law and our method gives
with those obtained by Frest al,” which were computed by the correct exponent.
methods adapted from molecular-dynamics simulations and For each type of vacancy we find that the defect energy
using an Ewald sum technique. increases with increasing sitg X< L, of the periodicity cell.

To calculate the interaction between periodically arranged-rom this we conclude thdhe interaction between two va-
point defects we consider periodicity cells of various sizescancies is attractivavhatever their symmetry is. This con-
The number of independent positions of flux linesNs clusion is in contradiction with the findings of a repulsive
=30t2, contained within a rectangular basic cell of sizeinteraction between twofold symmetric vacancies in Ref. 7.
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V6 A
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| ] FIG. 1. Different metastable configurations of
e o @ . e © @ O e © 4 single vacancies in the vortex lattice with peri-
L i odic boundary conditions using a large supercell
; e ® (Lx.Ly)=(5,63/2)ta with t=5, containingN
=25X30 vortices. Shown is only the central re-
® ® L gion 1(a X 10a of the periodicity cell. To create a
vacancy one vortex is removed from the center of
the central hexagon. Starting from this configura-
tion (hollow circleg, several metastable states are
observed after relaxatioffilled circles: (a) six-
© © fold symmetric configuration V6(b) threefold
] symmetric configuration V3, andc) twofold
® ® P symmetric configuration V2. The dotted lines in-
| dicate the mirror planes of the relaxed configura-
® ® tion. The small deviations from ideal mirror sym-
y 1 metry originate from the rectangular periodicity
® ® e s ® ® ® & e e s cell. In all three configurations the initial vacancy
- 1 position remains the center of symmetry. Shown
is the casen/a=100, but the lowem/a=0.25
. : . . . : : : : gave the same pictures.

[ ]
[ ]
Py
@

(b)

With the lowest value oh\/a, a qualitatively new result Two different types of interstitials were investigated: the
appears, see Fig.(@. Now we find that the lower energy centered interstitialCl) positioned in the center of a triangle
does no longer correspond to the vacancy V2 which has #ormed by three neighboring flux lines, and the edge inter-
twofold symmetry axis through the initial vacancy position, stitial (El) which sits in the middle between two flux lines.
but to a new configuration V2with a twofold symmetry axis After relaxation both types of interstitials keep their origi-
through a vortex position as shown in Flg 3. Starting Withna| symmetry, see Fig. 4 for examples of such configura-
this new Configuration V2 we have observed its metastabil- tions. This means that the Cl remains in the center of a
ity also forA=1. In these cases, the energy of this configu-yriangle and hence has threefold symmetry. In the case of the
ration is very close to the energy of the vacancy V2 butg| the relaxation of the surrounding flux lines proceeds
slightly higher. mainly in one of the nearest-neighbor directions of the ideal
triangular lattice. Thus the original twofold symmetry is pre-
served. The interstitial energies are computed from Ef3.

Starting from the ideal triangular lattice, we added oneand (14). In Fig. 5 we plot the energies for both types of
flux line per supercell to create a superlattice of interstitialsinterstitials versus the linear sitg of the basic box, see also

C. Interstitials



57 POINT DEFECTS IN THE FLUX-LINE LATTICE OF ... 13 867

*--- *----- +----- - Ve
0420 |
H
2 Ma=100
k]
=
3
5
Iy
§ 0.110 |
i A ————-—-— ¢ V3
- e 2
-
0.100 ~ 5 10 15 20 25 20
(a) La
- - “*----- -+ Ve
0.110
3§ Ma=1
8
=
2
@
§ 0.100
g - *—-—-— *—-—-—¢ V3
e v2
-
0.000 - 5 10 15 20 25 30
(b) La
0.028 J— —- . v
"
g 0.027
=]
2
|4
5
0.026 va
§ v2
> v’
0.025
0.024 . \
0 5 10 15 20 25 20
© L/a

FIG. 2. Supercell-sizéor distance dependence of the defect
energies for the sixfold symmetric vacancy Whashed ling three-
fold symmetric vacancy V3dash-dotted ling and twofold sym-
metric vacancy VZsolid line). The energy in units o, is plotted
versusL,/a whereL, andL,=1.04., are the sides of the rectan-
gular periodicity box ana is the lattice spacing. Results are pre-
sented for(@) A/a=100, (b) A/a=1, and(c) A\/a=0.25. The lower
the symmetry is, the lower is the vacancy energy. In the adae
=0.25 a new configuration V2is reachedsee Fig. 3 which has
lower energy(dotted ling than V2. For all three\/a values the
interaction between vacanciéshatever their symmetjyis attrac-
tive for distanced ,>5a.
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FIG. 3. The new vacancy configuration V®btained for the
box size (_X,Ly):(5,6\/§/2)ta with t=5, presented as in Fig. 1.
In the casen/a=0.25 this new vacancy type has a lower energy
than the vacancy V2 shown in Fig(c. One can see that the two
mirror planes(dotted lineg cross at a flux line and not at the initial
vacancy position. Thus, the initial vacancy position is no longer the
center of symmetry.

The energies of the Cl and El interstitials increase with
increasing size of the basic box fafa=1. This implies
attractive interactiondor both El and CI at distances larger
than five lattice spacinga. But for A\/a=0.25 the situation
is different. In this case, the Cl showsepulsive interaction
at distanced ,>5a. For the El, we observe gepulsive in-
teraction for distancesL,>10a. But for smaller distances
the energy decreases with decreasing size of the periodicity
cell, which means aattractive interactionof such intersti-
tials at distances between five and ten lattice spacings.

Finally, one can notice that the self energies of the inter-
stitial are lower than those of the vacancies. Hence, as al-
ready found by Freet al,’ the interstitials, rather than the
vacancies, are energetically favored, and among them the
centered interstitial has the lower energy.

D. Vacancy-interstitial pairs

As a third case, we considered vortex configurations with
one vacancy and one interstitial per periodicity cell, choosing
Na=100 and\/a=0.25 as above. In Secs. IlIB and 1lI C
we have shown that the lower energy configurations for an
isolated vacancy correspond to a twofold symmégigher
V2 for N/a=100 and\/a=1 or V2’ for A/a=0.25), and for
an isolated interstitial to a threefold symmetoentered in-
terstitial Cl for all values ofx/a). In the present subsection

Table I. One can see that the Cl always has a lower energye investigate the interaction between these point defects
than the EI. Thus, in contrast to the vacancies, the higher thend describe how the twofold and threefold local symmetries
symmetry of the interstitial is, the lower is the final defect of the vacancies and interstitials change when the distance

energy.

between them becomes finite.
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FIG. 5. Supercell size dependence of the defect energies for the

Q ® @ ® C @ @ ® ® ® é centered interstitia(solid line) and for the edge interstitiddash-
(b) dotted ling. The energy in units o, is plotted versus,/a where
L, is one side of théalmost quadraticperiodicity box andh is the
FIG. 4. The interstitial configurations obtained for the rectangu-lattice spacing. Results are presented f@r A\/a=100, (b) \/a
lar box size [ ,Ly)=(5,6\/§/2)ta with t=5, presented as in Fig. =1, and(c) N/a=0.25. For all three\/a values the centered inter-
1. To create a superlattice of interstitials in the triangular vortexstitial has a lower energy than the edge interstitial. Thus the higher
lattice, one flux line per supercell is inserted eitt@rin the center  symmetry now has the lower energy. Furthermore Mta=1 the
of a triangle to create a centered interstitial Clloyin the middle  interaction between centered or edge interstitials is attractive for
between two flux lines to create an edge interstitial El. Startingdistances larger than five lattice spacings. But Xéa=0.25, the
from these situationghollow circleg, the relaxed configurations interaction between centered interstitials becomes repulsive for dis-
(filled circles keep their original symmetry. The dotted lines show tancesL,>5a. For the edge interstitial, we observe an attractive
the mirror planes of these configurations. In both cases, the inteinteraction at distancels,<10a, and a repulsive interaction &t
stitial is the center of symmetry. >10a.

As in the previous subsections, we consider here periodstitial is created as close as possible to the center of the cell.
icity cells of different sizes, which now contain one vacancyThus, our periodic boundary conditions yield two interlaced
and one interstitial. The vacancy, which we choose as originsuperlattices of vacancies and interstitials. For each size of
is created in one corner of the periodicity cell and the interthe periodicity cell {,,Ly), the closest distance between a
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" 'Y Q @ 'Q.\ ® FIG. 7. The various symmetry changes caused by the elastic
r ) i interaction between a vacancy and an interstitialXftei= 100 and
NMa=0.25. The vacancy is created in one corner of the periodicity
& & @ @ ® @ cell and the interstitial is created as close as possible to the center of
the cell. The plotted axis gives the distarte L, /2 between the

vacancy and the interstitial in units of the lattice spacing. For each
FIG. 6. The new centered interstitial configuratiod Gbtained ~ value of A five distancesd have been computed dfa
for the box size (X,Ly):(S,G\/§/2)4a. Shown is only the central =~17.7,14.1,10.6,7.1,3.5) corresponding to periodicity cell sizes
region 6ax 6a of the periodicity cell. The symmetry of the original (Lx.L,)=(5,6V3/2)ta with t=5,4,3,2,1, respectively. The sym-
centered interstitial is threefold, see Fig. 4. Whereas the interactiometry of the vacancy and interstitial are indicated for each case with
between interstitials does not change this symmetry, the interactiofie notations defined in the text.
between a vacancy and an interstitial changes the symmetry of the
interstitial, which becomes twofold. This symmetry change occurs
in both _case&/a=100 and\/a=0.25 atd<14.1a andd=<10.6a, cell-sizes (_X,Ly)=(5,6\/§/2)ta with t=3, 2. 1, no further
respectively. deformation is observed, i.e., the relaxed configurations still
contain a vacancy V2 and an interstitial’Cl
For N/a=0.25 and when the distance between the two
vacancy and an interstitial is theh=L,/+2 and the vector defects is infinite, we expect the lower energy configuration
connecting them forms an angle~ /4 with thex direction  to be formed by a twofold symmetric vacancy Vand a
of our periodicity cell, which coincides with one of the three centered interstitial Cl, see Secs. lll B and Il C. When de-
nearest-neighbor directions of the ideal triangular latticecreasing the distance between the point defects we again ob-
Since the number of vortices is not changed by the creatiogerve the appearance of the twofold symmetric interstitial
of vacancy-interstitial pairs, the total energy of this superlat-Cl’ shown in Fig. 6, which we observed also fota=100.
tice of defect pairs is computed from E(@) [i.e., the cor- But this new interstitial symmetry now appears at smaller
rection term in Eq(17) is zerd. Before we present the en- distances than in the case)fa= 100. This might have been
ergy of the vacancy-interstitial pair, we discuss how theexpected, since withh/a=0.25 the flux lines interact only
structure of the two point defects changes with their distancewith a few neighbor shells, thus the direct magnetic interac-
For A\/a=100 and infinite distancel between the two tion between the point defects becomes of short range and
defects we expect the configuration with lower energy toonly the indirect elastic interaction matters. For this short
consist of a twofold symmetric vacancy V2 and a centeredsalue we observe this symmetry change of the interstitial for
interstitial Cl as described in Secs. llIB and Il C. This is d~10.6a. At the same distanca, the vacancy also changes
indeed observed for distancds-L,/\2 down tod~17.7a,  its symmetry, namely, it switches from the Vaymmetry,
i.e., to the periodicity cell sizeL(,(,Ly)=(5,6\/§/2)5a. But  observed at largd, to the V2 symmetry commonly observed
when d is decreased further, qualitative changes are obfor A/a=100. For isolated vacancies these two symmetries
served. Atd~14.1a, i.e., for (LX,Ly)=(5,6\/§/2)4a, the V2’ and V2 have very close energies, see Fi).2The
vacancy V2 remains unchanged but the symmetry of the ineoexistence between a twofold symmetric vacancy V2 and
terstitial switches from threefold to twofold, see Fig. 6. Thethe twofold symmetric interstitial Clis also observed at the
center of symmetry now is no longer at the interstitial as itsmaller distanced~7.1a andd~3.5a.
was for the centered and edge interstitials, but at one of the These symmetry changes induced by the elastic interac-
corners of the initial triangle centered at the original intersti-tion between a vacancy and an interstitial are summarized in
tial. We denote this new centered interstitial by’ CThe  Fig. 7. The energy of the vacancy-interstitial superlattice is
symmetry change of the interstitial may be ascribed to theplotted in Fig. 8 versus the cell width, for interaction
elastic interaction between these point defects. At smalleranges\/a=100 and\/a=0.25, see also Table Il. We ex-
distancesd~10.6, d~7.1a, andd~3.53, i.e., for super- pect the total energy of such a superlattice of defect pairs to
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0.20 - - - - - TABLE 1ll. The exponentsa of power lawsU=A+Bd ¢
which fit the energy of a superlattice of point defects of spadng
by three parameters, B, anda. The notations for the defect sym-
metries are given in the text. The exponeatsvere obtained from

5015 the data in Figs. 2, 5, and 8 and in Tables | and Il, excluding the
> case with shortestl. No « is listed in cases when the numerical
g accuracy did not allow for a fit.
@
g 0.10 Defect symmetries \/a=0.25 NMa=1 Na=100
g V6-V6 15 2.0 2.1
T V3-V3 1.8 2.2 24
O
§ V2-V2 24 2.0 1.8
S 005 Jor— ——— .- - 1 V2'-Vv2' 2.3
7 El-EI 2.1 2.1
Ma=0.25 ci-Cl 3.0 13 15
V2-CI 3.1
0.00 0 5 10 15 20 25 30 v2'-Cl 4.4

L./a

FIG. 8. Supercell size dependence of the energies of the supef ey of jteration steps, but then the relaxation proceeds to
lattice formed by vacancy-interstitial pairs, fa/a=100 (solid different configuration with lower ener In particular. we
line) and\/a=0.25(dash-dotted line The energies in units d&, a dim g 7 gy-inp ]
are plotted versug,/a wherel, is one side of th€almost qua- C.O”f'”T‘ the_ result of F_reyet al." that the vacancy Con_flgura-
dratio periodicity box anda the lattice spacing. The increasing tion with sixfold rotational symmetry, cons@ered n Refs_.
curves in the rangesSL,/a<25 show that the interaction between 5:6’ does not haye the lowest energy. This vacancy with
a vacancy and an interstitial is attractive for distances larger thaffignest symmetry is metastable, another vacancy with three-
d~L,/\2~3.5 and smaller thani~L, /\2~17.7a fold rotational symmetry has somewhat lower energy, and a

vacancy with only twofold symmetry has the lowest energy
of these vacancy configurations.
exhibit qualitatively the same distance dependence as _In c_ontrast to this, for the interstitials the configuration
single defect pair. From the observed increase of the defeﬁIth h|.g_her(t.hreefold symmetry has lower energy than the
pair energy with .increasing cell size,x L, we thus con- fi terst|t|gl vynh tqufold symmetry. The centered thrgefold
clude thatthe interaction between a vacan)é:y and an intersti-Symmetrlc interstitial has the lowest energy of all point de-
ial in the vortex lattice is attractiveThus, vacancies attract fects, also lower tharj al vacancy ensrgies. These results ap-
Eztr:nother vacancies and interstifials ' ply to t_he range of interaction lengths Oh/a< 1OQ. A _

: further interesting finding is that the symmetry of an intersti-
tial may change when a vacancy is added even at a large
distance of 144.

For point defect interactions, we find that the interaction

In conclusion, we computed the arrangement of vorticedetween two vacancies is attractive whatever their symmetry
around various point defects, and the corresponding defeds. This contradicts the repulsive interaction between twofold
energies, in an infinite lattice of long parallel Abrikosov vor- symmetric vacancies found in Ref. 7. We also obtain an at-
tices in type-1l superconductors, using London theory andractive interaction between two interstitials fofa=1 and
periodic boundary conditions. In the limit of large London 100. But forA/a=0.25, we find that two interstitials repel
penetration depth part of our results should also apply to each other at distances larger than ten lattice spacings.
the short vortices in thin films of thicknesk<A in perpen- As can be seen from Figs. 2, 5, and 8, the defect enérgy
dicular magnetic field. These films exhibit an effective pen-changes only little with increasing distandebetween the
etration depth\ =2\?/d that may become much larger than point defects forming a superlattice. We find that for not too
the vortex spacing. For distances <A the interaction be- smalld in all considered cases these energies approximately
tween such flat vortices is logarithnfie?* V(r)<In(A/r), as  follow power lawsU(d)=d™* with various exponents 1.3
the interaction between parallel Abrikosov vortices at short<a=<4.4. Note that this implies that the interaction between
distancesd/(r)cKqy(r/N)=~In(\/r) is for r<\, cf. Eq.(1). In  two isolated point defects of distancefollows the same
the case of long-range interactiare>a, the self-energies of power law, i.eV(r)«r~*. The accuracy of the exponents
vacancies and interstitials, defined at constant average vort@btained by fitting our numerically obtained interaction en-
densityB/®, are very small compared to the binding energyergies is not very high. Since we were interested mainly in
of one vortex, and the interaction between point defects itarge distances, we exluded the case of smallest cell size
even smallef:}” Our computations confirm this prediction. from this fitting. Somea values obtained in this way are

We find that vacancies and interstitials of various symmelisted in Table Ill. One can see that for the interaction be-
tries may occur during the relaxation of the vortex lattice.tween vacancies and edge interstitials the exponeistap-
Such a configuration may be called a metastable state if theroximately 2, but when centered interstitials are involved,
relaxation procedure remains quasistationary during a largexponents between 1.3 and 4.4 are observed in our compu-

IV. SUMMARY AND CONCLUSIONS



57

tations. This finding indicates that at the considered distances

between 10 and 25 flux-line spacings and in the consid-
ered direction, the exponent of the observed power-law
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