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Point defects in the flux-line lattice of superconductors

Enrick Olive and Ernst Helmut Brandt
Max Planck Institut fu¨r Metallforschung, P.O. Box 800665, D-70506 Stuttgart, Germany

~Received 24 November 1997!

The self-energy and interaction energy of vacancies and interstitials in the triangular lattice of parallel
Abrikosov vortices in type-II superconductors are calculated within London theory. Various stable and meta-
stable equilibrium configurations of the flux-line lattice around such point defects are investigated. The va-
cancy with highest~sixfold! symmetry usually does not exhibit the lowest energy, as was already found by
Frey et al. @Phys. Rev. B49, 9723~1994!#. Due to the relaxation of the surrounding vortex lattice, the defect
energies are very small compared with the binding energy of one vortex. The interaction of point defects is
weak and can be repulsive or attractive, depending on their type and distance and on the ratio of the magnetic
penetration depthl to the average vortex spacinga. In the limit l@a these results should be applicable to thin
films in a perpendicular magnetic field.@S0163-1829~98!04521-4#
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I. INTRODUCTION

After the prediction of the flux-line lattice~FLL! in the
type-II superconductors by Abrikosov,1 decoration experi-
ments by Tra¨uble and Essmann2 succeeded in observing th
FLL at the specimen surface with high resolution. This Bit
decoration revealed a more or less defective lattice, cont
ing vacancies, interstitials, dislocations, partial dislocatio
stacking faults, and even disclinations.3 The properties of
edge and screw dislocations in the FLL were discussed
in Refs. 4. The energy of flux-line vacancies with sixfo
symmetry was calculated both at low inductions~from Lon-
don theory, Ref. 5! and high inductions~from the linearized
Ginzburg-Landau theory, Ref. 6!. In a detailed paper consid
ering also the thermal proliferation of point defects in a F
‘‘supersolid,’’ Freyet al.7 found that during relaxation of the
surrounding FLL the vacancy with sixfold symmetry in th
FLL is unstable with respect to a compression along one
the three axes connecting the nearest neighbors of the
cancy, but the energy of the final configuration is very clo
to this saddle-point configuration with sixfold symmetr
Our computations below confirm this finding. The role
defects and plastic deformation during thermally activa
motion of the lattices of vortex lines and of vortex dis
~‘‘pancakes’’8! in conventional superconductors and in la
ered high-Tc superconductors was discussed by several
thors, see, e.g., Refs. 9,10 and the review papers, Refs.
15.

As shown recently,16,17 the self-energies and interactio
energies of unrelaxed point defects in soft lattices are c
pensated almost completely by the relaxation energy of
surrounding lattice. Inisotropic lattices this compensation i
even perfect, and the resulting defect energies thus vanis
one applies the continuum approximation and linear elas
ity theory and disregards the shear modulus. In soft latti
~with smooth long-range interaction! the continuum approxi-
mation is very good, and the shear modulus is much sma
than all other moduli. Inanisotropic lattices a finite defect
energy results even in these approximations, e.g., in
three-dimensional~3D! lattice of pancake vortices16,17 in lay-
ered superconductors. If the lattice sums defining such de
570163-1829/98/57~21!/13861~11!/$15.00
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energies are evaluated exactly, the self-energies and inte
tion energies of point defects are finite but very small, be
differences of two large terms.

In the present paper we compute the configuration
energy of an infinite periodic arrangement of various po
defects in the lattice of parallel Abrikosov flux lines. Th
periodicity originates from the periodic boundary conditio
which we imply to avoid surface effects originating in fini
systems. The interaction energy of defects is then obtai
from the dependence of the defect energy on the periodi
lengths Lx and Ly , and in the limit of large periodicity
lengths the self-energy of the defects results, since the in
action goes to zero.

The outline of this paper is as follows. In Sec. II w
describe our computational method and define the defect
ergies. The results are presented in Sec. III, and Sec
summarizes our main findings.

II. COMPUTATIONAL METHOD

A. Interaction potential

We consider the static~zero-temperature! energy of arbi-
trary arrangements of parallel vortex lines~along z) in the
London limit, which applies when the Ginzburg-Landa
~GL! parameterk5l/j@1 is large and the distancesr i j be-
tween the vortex lines are much larger than the radius of
vortex coresr c'j. Herel is the magnetic penetration dep
andj the superconducting coherence length. Practically,
London limit means that the inductionB is much less than
the upper critical fieldBc25F0 /(2pj2) and that the~repul-
sive! interaction between the flux lines is purely magnetic

V~r i j !5E0K0~r i j /l!. ~1!

HereE05F0
2/(2pm0l2) is an energy per unit length~in the

following we shall putE051), K0(x) is a modified Besse
function with the limitsK0(x)' ln(1/x) (x!1), andK0(x)
'(p/2x)1/2exp(2x) (x@1). If k is not large, the interaction
between vortices is not only a magnetic repulsion but ther
also an attractive contribution of rangej/A2, originating
from the gain in superconducting condensation energy w
13 861 © 1998 The American Physical Society
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13 862 57ENRICK OLIVE AND ERNST HELMUT BRANDT
the vortex cores overlap. Thus, the effective interaction
approximatelyV(r )}K0(r /l)2K0(A2r /j), which has a fi-
nite value atr 50.18 In the special casek51/A2 both con-
tributions compensate such thatV(r )[0, which is an exact
result in this special case, i.e., all vortex configurations h
the same energy ifk51/A2.

In Fourier representation the potential~1! reads

V~r !5E d2k

4p2Ṽ~k!eik•r, ~2!

Ṽ~k!5E0

2p

k21l22
. ~3a!

To facilitate the numerical evaluation of sums over recip
cal lattice vectors below, we multipyṼ(k), Eq. ~3a!, by a
convergence factor exp(2ck2) with c→0. This heuristic cut-
off converges more rapidly than the difference of tw
Lorentzians which would follow from the effective potenti
V(r )}K0(r /l)2K0(A2r /j); see Ref. 19 for the discussio
of various vortex-core cutoffs. The Gaussian cutoff facto
equivalent to a convolution ofV(r ) with the Gaussian
(1/pr 0

2)exp(2r2/r0
2) of half width r 052Ac, which removes

the logarithmic infinity ofV(r ) at r 50 and slightly enhance
V(r ) at larger distances, since the volume*V(r )d2r remains
constant. To lowest order inr 0

2, the enhancement is obtaine
by the Taylor expansion ofV(ur2r 8u) around r , yielding
V(r )→V(r )1(r 0

2/4)¹2V(r )1O(r 0
4). For the London poten-

tial ~1!, this convolution gives the enhancementK0(r /l)
→K0(r /l)(11r 0

2/4l2). Thus, up to small terms of orde
O(r 0

4) the potential~1! may be replaced by a modified po
tential with Fourier transform

Ṽ~k!5E0

2p

k21l22

exp~2r 0
2k2/4!

11r 0
2/4l2 . ~3b!

The inner cutoffr 0 plays the role of a vortex core radius.
is thus related to the coherence lengthj'r 0 ~Refs. 19,20!
and to the Ginzburg-Landau parameter byk5l/j'l/r 0.
Since we are mainly interested in the extreme London li
k→`, we shall chooser 0!a, e.g., r 05a/20, where a
5(2F0 /A3B)1/2 is the average spacing of the vortices in t
ideal triangular lattice. The choicer 0 /a51/20 guarantees
that alwaysB/Bc25(4p/A3)(j/a)2!1 in our simulation.
Thus, the only parameter which matters here isl/a, related
to B and to the lower critical fieldBc1'F0lnk/(A8pl2) by
B/Bc1'(l/a)2(4pA2/3)/lnk'(10/lnk)(l/a)2.

B. Periodic boundary conditions

The interaction energy of an arbitrary arrangement of v
tices with positionsr i extended periodically with periodicity
lenghtsLx and Ly to the infinitexy plane is in each~e.g.,
rectangular! periodicity cell of areaA5LxLy containingN
vortices~vortex densityN/A5B/F0),

UN5
1

2 (
i 51

N

(
j 51

`

8 V~r i j !5
1

2 (
i 51

N

(
j 51

N

8 Ve~r i j !1
N

2
Uper,

~4!
s

e

-

s

it

-

with r i j 5r i2r j . The dash at thej sum excludes the termj
5 i . Ve(r ) is an effective interaction potential between tw
vortices inside one periodicity cell including the interactio
with the ‘‘image lines’’ positioned atr i1R whereR5Rmn
5(mLx1nLy) (m,n integer! are the vectors of the ‘‘super
lattice.’’ This effective interaction is periodic and may thu
be expressed as a Fourier series,

Ve~r !5(
R

V~r1R!5E d2k

4p2Ṽ~k!eik–r(
R

eik–R

5
1

A(
K

Ṽ~K ! cosK–r5
2p

A (
K

cosK–r

K21l22
. ~5!

HereK5Kmn are the reciprocal lattice vectors of the supe
lattice, e.g.,Kmn52p(m/Lx ,n/Ly) for the rectangular basic
cell of areaA5LxLy . In Eq. ~5! we have used a genera
formula for 2D lattices with cell areaA,

(
R

eik–R5
4p2

A (
K

d2~k2K !, ~6!

whered2(x,y) is the 2D delta function and the infinite sum
run over all real~R! and reciprocal~K ! lattice vectors.

The constantNUper/2 in Eq. ~4! originates from the inter-
action of each vortex with its own ‘‘images,’’ which ha
dropped out from the first sum in Eq.~4! when the termsj
5 i were omitted. This term doesnot depend on the vortex
positions, such as the vortex self-energies, which are
omitted in the interaction energy~4!. However, sinceNUper
depends on the periodicity lengthsLx and Ly , this term is
important when the energies of periodicity cells of vario
shape or size are compared. In particular, whenUper is dis-
regarded, then the interaction-energy per vortexUN /N of the
infinitely large ideal FLLartificially depends on the choic
of the periodicity area, see Table II in Ref. 7. Explicitly on
has

Uper5 (
RÞ0

V~R!5E d2k

4p2Ṽ~k!S (
K

eiK–r21D 5
1

A(
K

Ṽ~K !

2E d2k

4p2Ṽ~k!'
2p

A (
K<K1

1

K21l22
2

1

2
ln~11K1

2l2!.

~7!

The cutoff radiusK1 in the last line of Eq.~7! should be
chosen so large that the sum contains many terms,
104

•••105. The logarithm in this line results from integratio
of Ṽ(k), Eq. ~3a!, over the circular areak<K1. The approxi-
mation ~7! means that forK>K1 the sum is replaced by a
integral; the two integrals over the outer regionk>K1 then
cancel.

Equation~4! is easily checked by considering the intera
tion energy of one vortex with all other vortices in an infini
ideally periodic lattice. This energy is twice the binding e
ergy UB5UN /N of a vortex; it is the same for all vortices
and it does not depend on the choice of the supercell.
factors 1/2 in Eq.~4! appear since in the infinite sums all pa
interactions were counted twice. Finally, the termUper/2 is
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the same for ideal and defective lattices since it does
depend on the vortex positionsr i but only on the size and
shape of the periodicity cell.

The energy of ideal periodic vortex lattices may be eas
computed by a single sum over the interactions}K0(R/l).
If l is very large one may transform this infinite sum ov
ideal lattice pointsR into an expression of the form~7!,
where now theR and K are interpreted as the vectors a
reciprocal vectors of the vortex lattice. The precision of t
computation is considerably enhanced if the sum is not
off abruptly atK5K1 but smoothly, e.g., by multiplying the
terms of the sum by a factor12 1 1

2 tanh@1.9(K12K)/Kmin#
~the factor 1.9 was found to optimize the accuracy!, e.g.,
choosingK15400Kmin and summing overK<410Kmin with
Kmin the shortestK. In this way we get for the binding en
ergy of the triangular FLL withKmn

2 5(16p2/3a2)(m21mn
1n2) (m,n integer!

UB~a/l!5
UN

ideal

N
5

1

2 (
RÞ0

K0~R/l!5
2p

A3

l2

a2 2
1

2
ln

l

a

2a~l/a!, ~8!

where the constanta is found numerically asa50.754486
for l/a→` and a50.884512, 0.792504, 0.76442
0.757000, 0.754890, 0.754587, 0.754512, 0.7544
0.754487, 0.754486 forl/a50.25, 0.5, 1, 2, 5, 10, 20, 50
100, 1000. UsingE05F0

2/(2pm0l2) and B52F0 /A3a2,
one finds from Eq.~8! in the limit l@a the energy density o
the ideal FLL (B/F0)E0UB5B2/2m0 as it should be.

C. Definition of defect energies

The energy of a superlattice of defects which do n
change the numberN of vortices in the periodicity area
naturally is defined as the difference between the energie
the defective and the ideal vortex lattices per periodicity c

Ud5UN
defect2UN

ideal. ~9!

Examples for such defects are one vacancy and one inte
tial per supercell~of areaA5LxLy) or a pair of edge dislo-
cations.

Defects which change the number of vortices in the
percell, e.g., one vacancy or one interstitial, should be c
sidered at constant vortex densityN/A5B/F0. This defini-
tion has the additional advantage that the self-energy of

vortex lines drops out,Uself'
1
2 E0ln k ~for k@1). For ex-

ample, generating a vacancy means that one removes
vortex and rebuilds it into the ideal vortex lattice; this
easily possible for large systems with many vacancies. F
finite supercell, the concrete procedure to add the remo
vortex again without generating a new defect, is less ob
ous. But ifN@1 is not too small, one may replace this pr
cess by a subsequent linear elastic uniform compres
which restores the original average vortex spacinga.17

The energy of a superlattice of vacancies in our infin
vortex lattice is conveniently computed as follows. The e
ergy per vacancy, or per supercell withN21 vortices and
areaA, is defined by
ot

y

r

s
ut

0,

t

of
l,

ti-

-
n-

e

ne

a
ed
i-

on

-

Uvac5UN21
vac 2UN21

ideal5UN21
vac 2

N22

N
UN

ideal1Ucorr
vac .

~10!

The second line in Eq.~10! was written such thatUcorr
vac is a

small correction of the order ofUB /N5UN
ideal/N2. The sec-

ond line in Eq.~10! allows us to compute the ideal-lattic
energyUN

ideal by the same numerical method used also for
energy of the defective lattice~since the index isN, not N
21). This means near compensation~in a small difference
of large terms! of the inaccuracies which may originate fro
the approximate potential~3b! and its numerical calculation
or interpolation.

As stated above, the ideal binding energyUB , Eq. ~8!,
depends only on the ratioaN /l where aN5(2A/A3N)1/2

}N21/2 is the ideal vortex spacing at constant supercell a
A5LxLy . Thus one may write

Ucorr
vac5

N22

N
UN

ideal2UN21
ideal5~N22!UB~aN!

2~N21!UB~aN21!. ~11!

Since Ucorr
vac is small, it may be calculated from the exa

binding energyUB(a/l) as described above Eq.~8!, even
though the remaining terms inUvac, Eq. ~10!, are computed
using the approximate potential~3b!. This consideration is
important since the vacancy energy after relaxation is
pected to be very small, requiring high precision~or identical
approximations! in the calculation of the large terms in th
difference, Eq.~10!. In the limit l@a, one has from Eq.~8!
UB5(2p/A3)(l/a)2. Inserting this into Eq.~11! one ob-
tains

Ucorr
vac'

2p

A3

l2

aN
2 FN222

~N21!2

N G'2UB /N52UN
ideal/N2.

~12!

Similarly, one finds for a superlattice of interstitials th
energy per supercell,

U int5UN11
int 2UN11

ideal5UN11
int 2

N12

N
UN

ideal1Ucorr
int ,

~13!

with the small correction

Ucorr
int 5

N12

N
UN

ideal2UN11
ideal5~N12!UB~aN!

2~N11!UB~aN11!. ~14!

In the limit l@a this gives

Ucorr
int '

2p

A3

l2

aN
2 FN122

~N11!2

N G'2UB /N52UN
ideal/N2

'Ucorr
vac . ~15!

Thus, forl@a the two small correctionsUcorr
vac andUcorr

int are
equal. Note that in the definitions and results~10!–~15! it
was not assumed thatN is large. These formulas apply
therefore, to arbitrary order in 1/N.
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TABLE I. Energies of point defects at constant line densityB/F0 for several sizes of the periodicity ce
(Lx ,Ly)5(5,6A3/2)ta with t51, 2, 3, 4, 5. Listed are the self-energies of vacanices (Uvac) and interstitials
(U int) for various symmetries, see text, for three ranges of the vortex interactionl/a5100, 1, and 0.25. The
energy unit isE05F0

2/(2pm0l2).

l/a5100
t Uvac

V6 Uvac
V3 Uvac

V2 U int
EI U int

CI

1 0.10484 0.10235 0.07152 0.07174
2 0.12382 0.10768 0.10507 0.07354 0.07265
3 0.12411 0.10801 0.10571 0.07387 0.07286
4 0.12421 0.10811 0.10594 0.07398 0.07296
5 0.12425 0.10815 0.10606 0.07403 0.07300

l/a51
t Uvac

V6 Uvac
V3 Uvac

V2 U int
EI U int

CI

1 0.09422 0.09230 0.06533 0.06536
2 0.11148 0.09701 0.09489 0.06703 0.06603
3 0.11179 0.09735 0.09548 0.06730 0.06620
4 0.11190 0.09746 0.09569 0.06739 0.06628
5 0.11195 0.09751 0.09578 0.06743 0.06632

l/a50.25
t Uvac

V6 Uvac
V3 Uvac

V2
Uvac

V28 U int
EI U int

CI

1 0.02433 0.02450 0.02454 0.02072 0.020
2 0.02767 0.02560 0.02557 0.02555 0.02079 0.020
3 0.02788 0.02580 0.02578 0.02573 0.02078 0.020
4 0.02796 0.02587 0.02584 0.02579 0.02078 0.020
5 0.02801 0.02591 0.02587 0.02581 0.02078 0.020
gn

-

in
-
d

n

ould
tion
tion

rsti-

tic

te
When N@l2/a2 is large, consideration of the term
1
2 ln(l/a) in UB , Eq. ~8!, contributes toUcorr, a constant (N
independent! term that dominates whena2!l2!Lx

2'a2N.
In this limit one finds from Eqs.~11! and ~14!

Ucorr
vac, int'6

1

2S ln
l

a
2

1

2D . ~16!

In this case these two correction terms have different si
for vacancy (.0) and interstitial (,0), but they are still
much smaller in magnitude than the binding energyUB
'3.6(l/a)2@1. For our computations below we shall com
pute the correction term from the exact Eqs.~11! and ~14!,
using for UB the algorithm described above Eq.~8! when
l/a@1, or from the sum over modified Bessel functions
Eq. ~8! when l/a'1. Inclusion of this correction term al
lows the precise computation of defect energies, which
pend on the size and shape of the supercell.

Generalizing the expressions~10!–~16! to defects withn
vortices added to the supercell~e.g.,n522, 21, 1, 2, re-
spectively, for double vacancy, vacancy, interstitial, a
double interstitial! we find the energy per defect

Udef5UN1n
def 2UN1n

ideal5UN1n
def 2

N12n

N
UN

ideal1Ucorr
def ,

~17!

with the small correction
s

e-

d

Ucorr
def 5

N12n

N
UN

ideal2UN1n
ideal

5~N12n!UB~aN!2~N1n!UB~aN1n! ~18!

'
2p

A3

l2

aN
2

n2

N
2

n

2S ln
l

a
2

1

2D ~l@a!.

~19!

One can show that this defect energy vanishes as it sh
be, when the defect disappears, i.e., when during relaxa
the vortices rearrange to an ideal lattice again. The correc
~18! also vanishes in the trivial casen50, i.e., when the
defect consists of an equal number of vacancies and inte
tials, see Sec. III D.

III. RESULTS

A. Computations

The lattice relaxation was performed by a quasista
method using the effective interaction potentialVe(x,y), Eq.
~5!, with Fourier transform~3b!,

Ve~r !5
2p

LxLy
(
K

cosK•r

K21l22

exp~2r 0
2K2/4!

11r 0
2/4l2 ~20!

in energy unitsE05F0
2/(2pm0l2) and with r 05a/20, a

5(2F0 /A3B)1/2. To accelerate the computation we tabula
Ve(x,y) and its three derivativesVx , Vy , andVxy5Vyx on a
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dense two-dimensional grid, from which we interpola
Ve(x,y) rapidly using the bicubic routine of Ref. 21.

We used two different routines to minimize the total e
ergyUN , Eq. ~4!. The first routine is the standard conjugat
gradient method described in detail in Ref. 21. In our sec
minimization method the componentsxi andyi of the vortex
positions are changed by a displacement proportional to
ratio of the first and second partial derivatives of the ene
UN with respect to this component, e.g.,

xi :5xi2p
]UN /]xi

]2UN /]xi
2 . ~21!

The proportionality coefficientp in Eq. ~21! is chosen asp
,1, and sometimesp!1, which guarantees good conve
gence and stability of the method~‘‘under-relaxation’’!. This
relaxation method is symmetric since the 2N coordinates of
the N vortices are all changed simultaneously within t
same step after the 2N first and 2N second partial derivative
have been calculated. This second method approximately
scribes the relaxation of vortices which experience a visc
drag force proportional to their velocity. Since the curvatu
]2UN /]xi

2']2UN /]yi
2 are roughly constant for all vortice

( i 51 . . .N), the effective viscosity is approximately con
stant and proportional to 1/p.

Whereas the conjugate-gradient method may trap the
tem in one of the metastable states, the second method
cessively visits several metastable states. Any metast
state found by this second method and then inserted a
input configuration into the conjugate-gradient method, w
then observed to be ‘‘stable.’’ We shall compare our resu
with those obtained by Freyet al.,7 which were computed by
methods adapted from molecular-dynamics simulations
using an Ewald sum technique.

To calculate the interaction between periodically arrang
point defects we consider periodicity cells of various siz
The number of independent positions of flux lines isN
530t2, contained within a rectangular basic cell of si

TABLE II. Energy of vacancy-interstitial pairsUpair at constant
line density. The periodicity cell sizes are (Lx ,Ly)5(5,6A3/2)ta
with t51, 2, 3, 4, 5. The symmetry of each point defect in the p
is also listed.

l/a5100
t Upair Defect symmetries

1 0.12555 V2 and CI8
2 0.17468 V2 and CI8
3 0.17802 V2 and CI8
4 0.17880 V2 and CI8
5 0.17910 V2 and CI

l/a50.25
t Upair Defect symmetries

1 0.03432 V2 and CI8
2 0.04517 V2 and CI8
3 0.04581 V2 and CI8
4 0.04591 V28 and CI
5 0.04592 V28 and CI
-
-
d

he
y

e-
s

s

s-
uc-
le
an
s
s

d

d
.

(Lx ,Ly)5(5,6A3/2)ta, wheret51, . . . ,5 is aninteger and
a the lattice spacing. These numbers were chosen such
the rectangular box approximates a square to within 4
Similar almost quadratic periodicity cells also where chos
in Refs. 7,22.

We present here numerical calculations for three differ
ratios of the magnetic penetration depthl to the ideal vortex
spacinga, namely,l/a5100, 1, and 0.25. As discussed b
low Eq. ~3b!, j/a'r 0 /a51/20 was held constant in ou
computations, thusB/Bc2'(4p/A3)/202'0.02, and our
l/a values meank'l/j'2000, 20, and 5; thus one alway
has k@1 and B!Bc2, which means the London theory i
applicable. SinceB/Bc1'(10/lnk)(l/a)2, our valuesl/a cor-
respond to reduced inductionsB/Bc1'1.33104, 3.4, and
0.4. From our results below one sees that the casel/a
5100 is the extreme London limitk@1 with strongly over-
lapping vortex fields, and even the casel/a51 differs little
from this limit. Our results forl/a>1 should thus be com
pared to those of Ref. 7, which considers the limitl→`. In
our third example,l/a50.25, the vortices interact only with
a few nearest neighbors.

B. Vacancies

To create a superlattice of vacancies we start from
ideal triangular lattice and remove one flux line per sup
cell. After relaxation we then find four different equilibrium
configurations exhibiting sixfold, fourfold, threefold, an
twofold axial symmetry around the vacancy~V6, V4, V3,
V2!, see Fig. 1 for examples. One can see that the cente
symmetry of all these configurations is the initial vacan
position. The fourfold symmetry will not be considered fu
ther in the following since it is supposed to be an artifact d
to our rectangular periodicity cell. The sixfold symmet
configuration for the smallest box size (Lx ,Ly)
5(5,6A3/2)a, i.e., for t51, also will not be considered fur
ther since it was not found to be a metastable state for
small box size. The other vacancy types were metastabl
the sense that our ‘‘viscous’’ relaxation method remain
stationary at these configurations during many iteration st
before it continued to find a configuration with lower energ

The vacancy energy was computed from Eqs.~10! and
~11!. Our results are displayed in Fig. 2 and Table I. We fi
that for all threel/a ratios the lower the symmetry is, th
lower is the final vacancy energy. Our periodic bounda
conditions mean that we have a rectangular superlattice
defects. Since we change only the size of the periodicity
and not its shape, i.e.,Lx /Ly50.96, the total energy of suc
a superlattice of defects should exhibit qualitatively the sa
distance dependence as the interaction between two s
defects in a large periodicity cell. In particular, if the inte
action between two point defects at a distancer follows a
power lawU'r 2a, the energy of a superlattice of such d
fects will follow the same power law and our method giv
the correct exponenta.

For each type of vacancy we find that the defect ene
increases with increasing sizeLx3Ly of the periodicity cell.
From this we conclude thatthe interaction between two va
cancies is attractivewhatever their symmetry is. This con
clusion is in contradiction with the findings of a repulsiv
interaction between twofold symmetric vacancies in Ref.

r
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FIG. 1. Different metastable configurations o
single vacancies in the vortex lattice with per
odic boundary conditions using a large superc
(Lx ,Ly)5(5,6A3/2)ta with t55, containingN
525330 vortices. Shown is only the central re
gion 10a310a of the periodicity cell. To create a
vacancy one vortex is removed from the center
the central hexagon. Starting from this configur
tion ~hollow circles!, several metastable states a
observed after relaxation~filled circles!: ~a! six-
fold symmetric configuration V6,~b! threefold
symmetric configuration V3, and~c! twofold
symmetric configuration V2. The dotted lines in
dicate the mirror planes of the relaxed configur
tion. The small deviations from ideal mirror sym
metry originate from the rectangular periodicit
cell. In all three configurations the initial vacanc
position remains the center of symmetry. Show
is the casel/a5100, but the lowerl/a>0.25
gave the same pictures.
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With the lowest value ofl/a, a qualitatively new result
appears, see Fig. 2~c!. Now we find that the lower energ
does no longer correspond to the vacancy V2 which ha
twofold symmetry axis through the initial vacancy positio
but to a new configuration V28 with a twofold symmetry axis
through a vortex position as shown in Fig. 3. Starting w
this new configuration V28, we have observed its metastab
ity also for l>1. In these cases, the energy of this config
ration is very close to the energy of the vacancy V2 b
slightly higher.

C. Interstitials

Starting from the ideal triangular lattice, we added o
flux line per supercell to create a superlattice of interstitia
a
,

-
t

e
.

Two different types of interstitials were investigated: t
centered interstitial~CI! positioned in the center of a triangl
formed by three neighboring flux lines, and the edge int
stitial ~EI! which sits in the middle between two flux lines

After relaxation both types of interstitials keep their orig
nal symmetry, see Fig. 4 for examples of such configu
tions. This means that the CI remains in the center o
triangle and hence has threefold symmetry. In the case of
EI, the relaxation of the surrounding flux lines procee
mainly in one of the nearest-neighbor directions of the id
triangular lattice. Thus the original twofold symmetry is pr
served. The interstitial energies are computed from Eqs.~13!
and ~14!. In Fig. 5 we plot the energies for both types
interstitials versus the linear sizeLx of the basic box, see als
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Table I. One can see that the CI always has a lower ene
than the EI. Thus, in contrast to the vacancies, the higher
symmetry of the interstitial is, the lower is the final defe
energy.

FIG. 2. Supercell-size~or distance! dependence of the defec
energies for the sixfold symmetric vacancy V6~dashed line!, three-
fold symmetric vacancy V3~dash-dotted line!, and twofold sym-
metric vacancy V2~solid line!. The energy in units ofE0 is plotted
versusLx /a whereLx andLy51.04Lx are the sides of the rectan
gular periodicity box anda is the lattice spacing. Results are pr
sented for~a! l/a5100,~b! l/a51, and~c! l/a50.25. The lower
the symmetry is, the lower is the vacancy energy. In the casel/a
50.25 a new configuration V28 is reached~see Fig. 3! which has
lower energy~dotted line! than V2. For all threel/a values the
interaction between vacancies~whatever their symmetry! is attrac-
tive for distancesLx.5a.
gy
he
t

The energies of the CI and EI interstitials increase w
increasing size of the basic box forl/a>1. This implies
attractive interactionsfor both EI and CI at distances large
than five lattice spacingsa. But for l/a50.25 the situation
is different. In this case, the CI shows arepulsive interaction
at distancesLx.5a. For the EI, we observe arepulsive in-
teraction for distancesLx.10a. But for smaller distances
the energy decreases with decreasing size of the period
cell, which means anattractive interactionof such intersti-
tials at distances between five and ten lattice spacings.

Finally, one can notice that the self energies of the int
stitial are lower than those of the vacancies. Hence, as
ready found by Freyet al.,7 the interstitials, rather than th
vacancies, are energetically favored, and among them
centered interstitial has the lower energy.

D. Vacancy-interstitial pairs

As a third case, we considered vortex configurations w
one vacancy and one interstitial per periodicity cell, choos
l/a5100 andl/a50.25 as above. In Secs. III B and III C
we have shown that the lower energy configurations for
isolated vacancy correspond to a twofold symmetry~either
V2 for l/a5100 andl/a51 or V28 for l/a50.25), and for
an isolated interstitial to a threefold symmetry~centered in-
terstitial CI for all values ofl/a). In the present subsectio
we investigate the interaction between these point def
and describe how the twofold and threefold local symmetr
of the vacancies and interstitials change when the dista
between them becomes finite.

FIG. 3. The new vacancy configuration V28 obtained for the
box size (Lx ,Ly)5(5,6A3/2)ta with t55, presented as in Fig. 1
In the casel/a50.25 this new vacancy type has a lower ener
than the vacancy V2 shown in Fig. 1~c!. One can see that the tw
mirror planes~dotted lines! cross at a flux line and not at the initia
vacancy position. Thus, the initial vacancy position is no longer
center of symmetry.
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13 868 57ENRICK OLIVE AND ERNST HELMUT BRANDT
As in the previous subsections, we consider here per
icity cells of different sizes, which now contain one vacan
and one interstitial. The vacancy, which we choose as ori
is created in one corner of the periodicity cell and the int

FIG. 4. The interstitial configurations obtained for the rectan
lar box size (Lx ,Ly)5(5,6A3/2)ta with t55, presented as in Fig
1. To create a superlattice of interstitials in the triangular vor
lattice, one flux line per supercell is inserted either~a! in the center
of a triangle to create a centered interstitial CI, or~b! in the middle
between two flux lines to create an edge interstitial EI. Start
from these situations~hollow circles!, the relaxed configurations
~filled circles! keep their original symmetry. The dotted lines sho
the mirror planes of these configurations. In both cases, the in
stitial is the center of symmetry.
d-

n,
-

stitial is created as close as possible to the center of the
Thus, our periodic boundary conditions yield two interlac
superlattices of vacancies and interstitials. For each siz
the periodicity cell (Lx ,Ly), the closest distance between

-

x

g

r-

FIG. 5. Supercell size dependence of the defect energies fo
centered interstitial~solid line! and for the edge interstitial~dash-
dotted line!. The energy in units ofE0 is plotted versusLx /a where
Lx is one side of the~almost quadratic! periodicity box anda is the
lattice spacing. Results are presented for~a! l/a5100, ~b! l/a
51, and~c! l/a50.25. For all threel/a values the centered inter
stitial has a lower energy than the edge interstitial. Thus the hig
symmetry now has the lower energy. Furthermore, forl/a>1 the
interaction between centered or edge interstitials is attractive
distances larger than five lattice spacings. But forl/a50.25, the
interaction between centered interstitials becomes repulsive for
tancesLx.5a. For the edge interstitial, we observe an attract
interaction at distancesLx,10a, and a repulsive interaction atLx

.10a.



e
ce
tio
la

-
h
c

t
re
is

ob

in
he

i
th
ti

th
ll

still

wo
ion

e-
ob-

tial

ller

ac-
and
t
for
s

d
ies

nd

rac-
d in
is

-
s to

l
l
tio
ti
f t
ur

stic

city
er of

ach

zes
-
with

57 13 869POINT DEFECTS IN THE FLUX-LINE LATTICE OF . . .
vacancy and an interstitial is thend'Lx /A2 and the vector
connecting them forms an anglea'p/4 with thex direction
of our periodicity cell, which coincides with one of the thre
nearest-neighbor directions of the ideal triangular latti
Since the number of vortices is not changed by the crea
of vacancy-interstitial pairs, the total energy of this super
tice of defect pairs is computed from Eq.~9! @i.e., the cor-
rection term in Eq.~17! is zero#. Before we present the en
ergy of the vacancy-interstitial pair, we discuss how t
structure of the two point defects changes with their distan

For l/a5100 and infinite distanced between the two
defects we expect the configuration with lower energy
consist of a twofold symmetric vacancy V2 and a cente
interstitial CI as described in Secs. III B and III C. This
indeed observed for distancesd'Lx /A2 down tod'17.7a,
i.e., to the periodicity cell size (Lx ,Ly)5(5,6A3/2)5a. But
when d is decreased further, qualitative changes are
served. Atd'14.1a, i.e., for (Lx ,Ly)5(5,6A3/2)4a, the
vacancy V2 remains unchanged but the symmetry of the
terstitial switches from threefold to twofold, see Fig. 6. T
center of symmetry now is no longer at the interstitial as
was for the centered and edge interstitials, but at one of
corners of the initial triangle centered at the original inters
tial. We denote this new centered interstitial by CI8. The
symmetry change of the interstitial may be ascribed to
elastic interaction between these point defects. At sma
distancesd'10.6a, d'7.1a, and d'3.5a, i.e., for super-

FIG. 6. The new centered interstitial configuration CI8 obtained
for the box size (Lx ,Ly)5(5,6A3/2)4a. Shown is only the centra
region 6a36a of the periodicity cell. The symmetry of the origina
centered interstitial is threefold, see Fig. 4. Whereas the interac
between interstitials does not change this symmetry, the interac
between a vacancy and an interstitial changes the symmetry o
interstitial, which becomes twofold. This symmetry change occ
in both casesl/a5100 andl/a50.25 atd<14.1a andd<10.6a,
respectively.
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cell-sizes (Lx ,Ly)5(5,6A3/2)ta with t53, 2, 1, no further
deformation is observed, i.e., the relaxed configurations
contain a vacancy V2 and an interstitial CI8.

For l/a50.25 and when the distance between the t
defects is infinite, we expect the lower energy configurat
to be formed by a twofold symmetric vacancy V28 and a
centered interstitial CI, see Secs. III B and III C. When d
creasing the distance between the point defects we again
serve the appearance of the twofold symmetric intersti
CI8 shown in Fig. 6, which we observed also forl/a5100.
But this new interstitial symmetry now appears at sma
distances than in the case ofl/a5100. This might have been
expected, since withl/a50.25 the flux lines interact only
with a few neighbor shells, thus the direct magnetic inter
tion between the point defects becomes of short range
only the indirect elastic interaction matters. For this shorl
value we observe this symmetry change of the interstitial
d'10.6a. At the same distanced, the vacancy also change
its symmetry, namely, it switches from the V28 symmetry,
observed at larged, to the V2 symmetry commonly observe
for l/a5100. For isolated vacancies these two symmetr
V28 and V2 have very close energies, see Fig. 2~c!. The
coexistence between a twofold symmetric vacancy V2 a
the twofold symmetric interstitial CI8 is also observed at the
smaller distancesd'7.1a andd'3.5a.

These symmetry changes induced by the elastic inte
tion between a vacancy and an interstitial are summarize
Fig. 7. The energy of the vacancy-interstitial superlattice
plotted in Fig. 8 versus the cell widthLx for interaction
rangesl/a5100 andl/a50.25, see also Table II. We ex
pect the total energy of such a superlattice of defect pair

n
on
he
s

FIG. 7. The various symmetry changes caused by the ela
interaction between a vacancy and an interstitial forl/a5100 and
l/a50.25. The vacancy is created in one corner of the periodi
cell and the interstitial is created as close as possible to the cent
the cell. The plotted axis gives the distanced'Lx /A2 between the
vacancy and the interstitial in units of the lattice spacing. For e
value of l five distances d have been computed (d/a
'17.7,14.1,10.6,7.1,3.5) corresponding to periodicity cell si
(Lx ,Ly)5(5,6A3/2)ta with t55,4,3,2,1, respectively. The sym
metry of the vacancy and interstitial are indicated for each case
the notations defined in the text.
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exhibit qualitatively the same distance dependence a
single defect pair. From the observed increase of the de
pair energy with increasing cell sizeLx3Ly we thus con-
clude thatthe interaction between a vacancy and an inters
tial in the vortex lattice is attractive. Thus, vacancies attrac
both other vacancies and interstitials.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we computed the arrangement of vorti
around various point defects, and the corresponding de
energies, in an infinite lattice of long parallel Abrikosov vo
tices in type-II superconductors, using London theory a
periodic boundary conditions. In the limit of large Londo
penetration depthl part of our results should also apply
the short vortices in thin films of thicknessd!l in perpen-
dicular magnetic field. These films exhibit an effective pe
etration depthL52l2/d that may become much larger tha
the vortex spacinga. For distancesr !L the interaction be-
tween such flat vortices is logarithmic,23,24 V(r )} ln(L/r), as
the interaction between parallel Abrikosov vortices at sh
distancesV(r )}K0(r /l)' ln(l/r) is for r !l, cf. Eq. ~1!. In
the case of long-range interactionl@a, the self-energies o
vacancies and interstitials, defined at constant average vo
densityB/F0, are very small compared to the binding ener
of one vortex, and the interaction between point defect
even smaller.7,17 Our computations confirm this prediction.

We find that vacancies and interstitials of various symm
tries may occur during the relaxation of the vortex lattic
Such a configuration may be called a metastable state if
relaxation procedure remains quasistationary during a la

FIG. 8. Supercell size dependence of the energies of the su
lattice formed by vacancy-interstitial pairs, forl/a5100 ~solid
line! andl/a50.25 ~dash-dotted line!. The energies in units ofE0

are plotted versusLx /a whereLx is one side of the~almost qua-
dratic! periodicity box anda the lattice spacing. The increasin
curves in the range 5<Lx /a<25 show that the interaction betwee
a vacancy and an interstitial is attractive for distances larger t
d'Lx /A2'3.5a and smaller thand'Lx /A2'17.7a
a
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number of iteration steps, but then the relaxation proceed
a different configuration with lower energy. In particular, w
confirm the result of Freyet al.7 that the vacancy configura
tion with sixfold rotational symmetry, considered in Ref
5,6, does not have the lowest energy. This vacancy w
highest symmetry is metastable, another vacancy with th
fold rotational symmetry has somewhat lower energy, an
vacancy with only twofold symmetry has the lowest ener
of these vacancy configurations.

In contrast to this, for the interstitials the configuratio
with higher ~threefold! symmetry has lower energy than th
interstitial with twofold symmetry. The centered threefo
symmetric interstitial has the lowest energy of all point d
fects, also lower than all vacancy energies. These results
ply to the range of interaction lengths 0.25<l/a<100. A
further interesting finding is that the symmetry of an inters
tial may change when a vacancy is added even at a la
distance of 14.1a.

For point defect interactions, we find that the interacti
between two vacancies is attractive whatever their symm
is. This contradicts the repulsive interaction between twof
symmetric vacancies found in Ref. 7. We also obtain an
tractive interaction between two interstitials forl/a51 and
100. But forl/a50.25, we find that two interstitials repe
each other at distances larger than ten lattice spacings.

As can be seen from Figs. 2, 5, and 8, the defect energU
changes only little with increasing distanced between the
point defects forming a superlattice. We find that for not t
small d in all considered cases these energies approxima
follow power lawsU(d)}d2a with various exponents 1.3
<a<4.4. Note that this implies that the interaction betwe
two isolated point defects of distancer follows the same
power law, i.e.V(r )}r 2a. The accuracy of the exponentsa
obtained by fitting our numerically obtained interaction e
ergies is not very high. Since we were interested mainly
large distances, we exluded the case of smallest cell
from this fitting. Somea values obtained in this way ar
listed in Table III. One can see that for the interaction b
tween vacancies and edge interstitials the exponenta is ap-
proximately 2, but when centered interstitials are involve
exponents between 1.3 and 4.4 are observed in our com

TABLE III. The exponentsa of power lawsU5A1Bd2a

which fit the energy of a superlattice of point defects of spacingd
by three parametersA, B, anda. The notations for the defect sym
metries are given in the text. The exponentsa were obtained from
the data in Figs. 2, 5, and 8 and in Tables I and II, excluding
case with shortestd. No a is listed in cases when the numeric
accuracy did not allow for a fit.

Defect symmetries l/a50.25 l/a51 l/a5100

V6–V6 1.5 2.0 2.1
V3–V3 1.8 2.2 2.4
V2–V2 2.4 2.0 1.8

V28–V28 2.3
EI–EI 2.1 2.1
CI–CI 3.0 1.3 1.5
V2–CI 3.1
V28–CI 4.4
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tations. This finding indicates that at the considered distan
between 10 and 25 flux-line spacingsa, and in the consid-
ered direction, the exponenta of the observed power-law
interaction between point defects is not determined by th
symmetry alone, in contrast to what is expected at very la
distances in isotropic media.7
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