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Abstract

Motivation: Network inference provides a global view of the relations existing between gene expression
in a given transcriptomic experiment (often only for a restricted list of chosen genes). However, it is still
a challenging problem: even if the cost of sequencing techniques has decreased over the last years, the
number of samples in a given experiment is still (very) small compared to the number of genes.
Results: We propose a method to increase the reliability of the inference when RNA-seq expression
data have been measured together with an auxiliary dataset that can provide external information on gene
expression similarity between samples. Our statistical approach, hd-MI, is based on imputation for samples
without available RNA-seq data that are considered as missing data but are observed on the secondary
dataset. hd-MI can improve the reliability of the inference for missing rates up to 30% and provides more
stable networks with a smaller number of false positive edges. On a biological point of view, hd-MI was
also found relevant to infer networks from RNA-seq data acquired in adipose tissue during a nutritional
intervention in obese individuals. In these networks, novel links between genes were highlighted, as well
as an improved comparability between the two steps of the nutritional intervention.
Availability: Software and sample data are available as an R package, RNAseqNet, that can be
downloaded from the Comprehensive R Archive Network (CRAN).
Contact: Alyssa Imbert - alyssa.imbert@inra.fr

1 Introduction
In the last decades, biology and medicine have been profoundly renovated
by the access to a large amount of molecular information, at various
’omics levels. Among high-throughput sequencing techniques, RNA-
seq measures the expression of several thousands of genes for a given
tissue. The large amount of generated data has created a need for multiple
bioinformatics and statistical post-processing of the raw experimental data.
In particular, a great deal of attention has been granted to the search of

various types of relations between the genes (co-expression or regulation)
(Zhang and Mallick (2013); Montastier et al. (2015), among others): better
understanding those relations gives an insight on the global functioning
of the cell in given environments and is a key point to reveal signaling
pathways and to identify target genes for a given biological problem.
Moreover, network visualization facilitates global analysis of the datasets.

RNA-seq expression data are count data and are thus discrete so
standard GGM models usually used for network inferrence and that are
based on Gaussianity assumption are not suited to such data. Recent works
have considered using a generalized linear model (GLM) based on the
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Poisson distribution (log-linear graphical model Allen and Liu (2012) or
hierarchical Poisson log-normal model Gallopin et al. (2013)). In such
methods, edge selection is handled by a L1 penalty as in the continuous
case. However, network inference is still a difficult issue as explained in
Verzelen (2012), since the number of available samples (n) is generally
much lower than the number of parameters to estimate (that scales as
p2, where p is the number of genes). Second, network inference can be
very sensitive to missing individuals in key genes (Picheny et al., 2014)
or to the presence of “influential” individuals. Having a large number of
observations is thus a key point for ensuring reliable results in statistical
analyses of RNA-seq data Liu et al. (2014).

In this paper, we propose a method to increase the reliability of the
inference when RNA-seq expression data have been measured together
with other biological data closely related to the phenomenon under study.
One typical case for such studies is the one in which RNA-seq measures
have been performed on the same individuals simultaneously to another
expression experiment using another (less costly) technique (e.g., RT-
qPCR). Another case is the one in which two RNA-seq experiments have
been performed on two different tissues on the same individuals. It is
relevant to try to use the external information brought by the auxiliary
dataset in order to improve the quality of inference: when the acquisition
cost is lower or when the ability to collect samples is easier, the number
of samples acquired on the auxiliary dataset can be much larger. It thus
provides additional information on relations between individuals and on
biological variability.

We have designed an approach based on imputation in which
individuals which are not observed in RNA-seq dataset but are observed on
the secondary dataset are considered as missing data. It is called hd-MI and
is presented in Section 2). A wide variety of methods falls under the general
heading of imputation (Enders, 2010; Little and Rubin, 2002) but most of
them impute missing values from different variables independently, based
on the (non missing) values of the other variables for the same individual.
Here, two additional issues are to be faced: first, entire individuals are
considered as missing (unit non-responses case) means that entire rows
are missing in X̃ and second, for network inference, the correlation
structure between variables must be preserved during the imputation and
the standard methods described above do not fulfill this need.

hd-MI is based on hot-deck and addresses both of these issues. In
addition, the part of the uncertainty in the final result that comes from the
imputation process is assessed using the general framework of multiple
imputation (Rubin, 1987; Schafer, 1999; Rubin, 2012). This method has
the additional benefit of providing more stable results and only assumes that
the secondary dataset provides useful information about the resemblance
between individuals and not about the network inference itself. The
approach is assessed on two real RNA-seq datasets: one coming from
a study on human tissue gene expression and the other coming from a
longitudinal study on adipose tissue: the datasets and the methodology
used to evaluate the method are presented in Section 3. Results are given
and discussed in Section 4.

2 Methods

2.1 Background and notations

In the sequel, X will denote the RNA-seq expression dataset with n1

rows (individuals) and p columns (genes). xij is the count of gene j,
j ∈ {1, ..., p}, for individual i. Additionally, an auxiliary dataset
is available, which will be denoted by Y. Y is supposed to have q
columns and n > n1 rows, including rows corresponding to the same
n1 individuals already observed in X. Without loss of generality, the
common individuals between X and Y are supposed to correspond to

the first n1 rows of Y. yij will denote the observation of variable j,
j ∈ {1, ..., q}, for individual i. As already stated in the introduction,
the above problem can be viewed as a missing value problem in the
matrix [X̃,Y] with dimensions n × (p + q) for which row number

i is x̃i =

{
xi if i ≤ n1

missing otherwise
. Such a framework is called “unit

non-responses”, because missing values correspond to the absence of a
complete individual. (see Supplementary Figure 1).

In this paper, missing individuals i ∈ {n1 + 1, ..., n} in the RNA-
seq dataset are supposed to be Missing Completely At Random. This is
a standard assumption if individuals have not been chosen according to a
specific feature within {1, . . . , n} but because of a random choice or of
technical constrains such as failed experiments or lack of tissue or to cost
constrains if individual data are expensive or difficult to acquire.

2.2 hd-MI

“hot-deck” imputation is often used to impute non-response in surveys
Andridge and Little (2010). It is based on the concept of “donors”: if a
respondent, i, called “recipient”, has a missing value, x̃ij , a set of similar
individuals (donors) are pulled from {i′ : i′ 6= i st x̃i′j is not missing}.
This set of donors usually depends on the respondent itself. It is called
donor pool and is denoted byD(i). One of the donors is finally randomly
selected withinD(i) to provide its value x̃i′j for imputing x̃ij . Hot-deck
imputation generally preserves the univariate distributions of the data and
does not attenuate the variability of the filled-in data to the same extent as
other imputation methods (Enders, 2010).

However, in basic hot-deck imputation, the correlation structure
between variables is still modified during the imputation because the
imputation of the different variables for an individual i are performed
independently. To address this issue in the case of unit non-response
problems, Voillet et al. (2016) proposed to impute simultaneously all
variables (x̃ij)j=1,...,p by the values coming from a single donor i′ ∈
D(i) for a ’omic data integration problem.

Our approach, hd-MI (see Figure 1) is closely related to the method
described in Voillet et al. (2016). It is adapted to the case of network
inference with an auxiliary dataset. A multiple hot-deck imputation
is performed, in which the imputation step is performed as described
below:

1. firstly, for all missing individuals in X̃, i = n1 + 1, . . . , n,
the pool of donors D(i) is created and contains all individuals
i′ ≤ n1 which are “similar” to i. To estimate the similarity between
individuals, the auxiliary dataset Y is used and different similarities
can be calculated between individuals based on this dataset. Among
them, we propose to use an affinity score, as in Cranmer and
Gill (2012). This affinity score is computed for all individuals j
by s(i, i′) = 1

q

∑q
j=1 I{|yij−yi′j |<σ}, in which σ is a fixed

threshold. The pool of donors is then obtained as D(i) = {i′ :

s(i, i′) = maxl=1, ..., n1
s(i, i′)}. This score is the average number

of observed variables for which the individuals i and i′ are “close”;
2. in a second step, an individual, i′ is picked at random inD(i) and the

entire row i of X̃ is imputed with row i′ of X̃. This step is repeated
for all i = n1 + 1, . . . , n to produce a complete case dataset X∗.

In the framework of multiple imputation, the whole procedure is
repeated M times independently to obtain M complete case datasets
X∗,m. The second step of the analysis consists in inferring the network
for all these complete case datasets, using the model proposed in Allen
and Liu (2012) (LLGM). The M networks are finally combined by
studying the number of times an edge is predicted among theM networks:

r(e) =
number of times the edge e is predicted

M
. A reliability threshold,

r0 is finally chosen and the final network is composed of the edges e such
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Incomplete
dataset

X̃

M duplicates
of X̃

M imputed
datasets, X∗,m

M inferred
networks

Final network

Imputation
hot-deck

Network inference
LLGM + StARS

Combination
edge frequency and threshold r0

Fig. 1: Overview of hd-MI. The original dataset (X̃, left) is duplicated M times (second column). For every duplicate, each missing row is imputed by
hot-deck (third column, X∗,m). A network is inferred from each imputed dataset (fourth column), with LLGM (StARS is used to choose the regularization
parameter, λ, in the method). Finally the networks are combined into a single network using a threshold r0 for edge frequency among the M networks
(fifth column).

that r(e) ≥ r0. This approach is similar to the stability criterion described
in Meinshausen and Bühlmann (2006).

The uncertainty of the imputation is thus handled in a way that is similar
to standard approaches for improving the quality of network inference
(Allouche et al., 2013; Ballouz et al., 2015), which use averaged weights
or averaged ranks between multiple networks coming from different
bootstrap resampling or from independent experiments.

Finally hd-MI does not require to tune many hyperparameters: only a
parameter for the definition of the pool of donors (σ) and the number M
of repeats are required. The combination step of multiple imputation also
requires to fix the reliability threshold r0 and network inference requires
to tune a regularization parameter. Sound choices for these parameters are
discussed in Supplementary Section 1.

3 Implementation and evaluation

3.1 Data description

To evaluate the performance of hd-MI, two real datasets were used coming
from 2 distinct projects:

• GTEx (Lonsdale et al., 2013), in which RNA-seq expression were
acquired on several human tissues. We confined our analysis to two
tissues: lung and thyroid. Lung expression dataset was used as primary
dataset, X0, and thyroid expression dataset was used as the auxiliary
dataset, Y;

• DiOGenes (Larsen et al., 2010), in which RNA-seq expression were
acquired simultaneously to the measure of gene expression with
another technique (RT-qPCR), on the same human tissue (adipose
tissue) at two different time steps (CID1 and CID2) of a dietary
intervention (before and after a 8 week low calorie diet). For n = 189

individuals, RNA-seq expression data were acquired at both CID1 and
CID2 but for other individuals, either CID1 or CID2 data only were

acquired (see Supplementary Figure 2 for a Venn Diagramm of data
acquisition).

Further details on datasets are provided in Supplementary Section 2.
The relevance of the method was assessed in two different types of
analyses:

1. firstly, common samples between the primary and auxiliary datasets
were kept to form the complete case dataset. The selected datasets do
not contain missing individual. Artificially removing individuals from
the primary dataset, these datasets are used as a reference to evaluate
hd-MI and to compare it with other methods (Section 3.2);

2. secondly, all individuals from the DiOGenes project (CID1 and
CID2, both common samples and CID specific samples) were used
to infer one network for each CID (Section 3.3). These networks
were further investigated and evaluated by comparison to previously
inferred networks, obtained from different datasets.

The difference between evaluation and application on DiOGenes dataset
is illustrated in Supplementary Figure 3.

3.2 Evaluation and comparison with existing methods

For each case, only common samples between two RNA-seq datasets (n =

221, for GTEx) or between two expression datasets (RNA-seq and RT-
qPCR) and two time steps (n = 189 for DiOGenes) were kept to form the
complete case dataset, used as a reference. p = 100 and q = 50 genes
were selected for being the most variable in GTEx and p = 317 genes
were selected for biological reasons for DiOGenes. The selected datasets
do not contain missing individual and will be denoted by X0 in the sequel.

Datasets with missing individuals were then generated by randomly
removing some samples in X0. More precisely, starting from a complete
dataset X0, a given percentage f of rows were randomly removed (with
f ∈ {10%, 20%, 30%, 40%}) to produce a dataset X̃ with missing
values. The corresponding complete case dataset is again denoted by X.
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Imputation was then performed using hd-MI and two alternative methods:
1/ a simple imputation method, i.e., imputation by the mean and 2/ a
state-of-the-art imputation method, Multiple Imputation by PCA (MIPCA)
(Josse et al., 2011). This led us to infer networks from:

• the full dataset X0: the obtained network is referred as reference in
the result section. It is used as a gold standard for our comparison;

• datasets with varying rates of missing individuals with no imputation
(hence the networks were inferred from the complete case dataset X).
These networks are referred as missing (possibly followed by a missing
rate) in the result section. They are used as the worse case scenario;

• datasets with values imputed by the mean. These networks are referred
as mean (possibly followed by a missing rate) in the result section;

• M datasets with values imputed by MIPCA, in which the dataset
[X̃,Y] is used as an input. For DiOGenes, Y (RT-qPCR expression)
were scaled before affinity computation. Negative imputations (if any)
were replaced by 0. These networks are referred as MIPCA (possibly
followed by a missing rate) in the result section;

• M datasets with values imputed by our approach (using either the
affinity score or the k-NN approach to define the donor sets). These
networks are referred as hd-MI, possibly followed by a missing rate
and, for the second case, by a number indicating the value of k.

For all the datasets described above, networks were inferred as follow:

• for the cases in which a single inference is performed (all datasets
except the ones in which multiple imputation is used), the model
described in Section 2.2 is performed with a full regularization path for
the regularization parameter of the sparse penalty, λ. For each dataset
we thus obtained a network for every value of λ in the regularization
path. We also computed the StARS criterion to obtain the value of λ
related to the most stable network along the path;

• for the cases of multiple imputation, a single network was inferred
from every imputed dataset X∗,m, using the regularization parameter
λ selected by the StARS criterion. This led us to obtain M networks
which were combined with varying reliability rates r0: a final network
was obtained for every value of r0.

The detailed evaluation process is illustrated in Supplementary
Figure 4. The results obtained with these different methods were assessed
through global comparison of the network structures and through more
local comparisons that were generally computed using reference as a
gold-standard. In addition, for the DiOGenes datasets, 20 replicates of
the whole evaluation procedure were obtained, so as to assess the stability
of our findings.

3.3 Illustration of the interest on complete DiOGenes data

Finally, two networks (one for CID1 and one for CID2) were inferred
using all individuals from RNA-seq datasets for the inference and RT-qPCR
datasets as the auxiliary dataset. Supplementary Figure 3 provides the flow
chart of the DiOGenes dataset processing, distinguishing the evaluation
(Section 3.2) from the application for network inference (current section).

All experiments have been performed using R, version 3.2.2 (R Core
Team, 2016). Details about which packages have been used are given in
Supplementary Section 3. The R package RNAseqNet provides functions
to perform hd-MI and network inference using the model of Allen and
Liu (2012). Facilities for choosing hyperparameters are also provided.

4 Results and discussion

4.1 Evaluation and comparison with existing methods

The distribution of the appearance of an edge in theM (M = 100) inferred
networks from datasets imputed by hd-MI is provided in Supplementary

Figures 5 and 6, respectively for GTEx and DiOGenes datasets. A large
proportion of edges are present in less than 10% of networks: these edges
are not stable and show the sensitivity of network inference to some
individuals. However, a small proportion of edges are very stable and
inferred in more than 90% of theM imputed datasets. When evaluating the
goodness of networks, the value r0 = 0.9 was then chosen. In addition,
Supplementary Tables 1 and 2 provide the global characteristics of the
inferred networks and show that hd-MI network is in line with reference
with respect to these measures, even if the number of inferred edges is
slightly less than for networks reference, missing and mean.

Precision / Recall (PR) curves, as compared to network reference, are
displayed in Figure 2. PR curves for mean and missing are obtained for
varying values ofλ and PR curves for MIPCA and hd-MI are obtained for
varying values of r0. Top figures show the results obtained for DiOGenes
CID1 (left) and GTEx (right) for 20% of missing individuals and bottom
figures show the effect of varying the rate of missing individuals for
DiOGenes CID1. missing and mean have similar curves, which shows
that naive imputation method as mean does not perform better, in this
framework, than simply using complete case datasets. On the contrary,
hd-MI has the best recall for the highest precision rates. Since real
biological networks are known to be sparse, the first few edges are the
most important to recover: highest precisions have to be favored over
recall for these applications. In the best case (DiOGenes), the precision
is much larger than for the naive approaches. In the worst case (GTEx),
naive methods do only slightly worse than hd-MI but with no indication
on the reliability associated to each edge and on its sensitivity to missing
values, contrary to hd-MI.

MIPCA shows poor performance: for all precision rates, MIPCA has
the worse precision/recall curve for both GTEx and DiOGenes. hd-MI
is much better adapted to the case of network inference than other state-
of-the-art approach, such as MIPCA. The reason is twofold: firstly, as
already stated before, by imputed missing values in different variables
independently from each other, MIPCA does not preserve the correlation
structure between variables. Secondly, as shown on this real data problem,
MIPCA does not constrain the range of imputed values to be the same
than the range of observed values. Sometimes, irrelevant values (e.g., here
negative values) are imputed and can strongly affect the results. Naive
approaches do not have these drawbacks. Their performances can thus be
more similar to those of our method.

For the other rates of missing individuals, the results remain very
similar even though the global performances of all methods are deteriorated
by an increasing rate of missing individuals (as expected) and if the
differences between methods tend to slightly decrease when the rate of
missing individuals increases.

To assess the stability of our results, the whole simulation procedure
was repeated 20 times for the DiOGenes dataset, at CID1 with 20% of
missing individuals. Results show that only hd-MI is consistently able
to reach a good recall for the highest precision rates: missing and mean
manage to reach the precision rate of 85% for 18 curves over 20 and never
manage to reach a 90% of precision rates. MIPCA always reaches the
targeted precision rate but with very poor recalls. Statistics (i.e., minimum,
maximum and mean) of the recall for these two target precision rates are
given in Table 1. They confirm this conclusion by exhibiting a much lower
variability of the results obtained for hd-MI and a better recall (in average),
as compared to the other methods.

Supplementary Section 5 provides additional results that are similar
to the ones presented in the present section. Choices of σ for hd-MI are
illustrated in Supplementary 5.1.1 and 5.2.1., respectively for GTEx and for
DiOGenes, CID1 (20% of missing individuals). Supplementary material
also contains results obtained for CID2 of DiOGenes (Supplementary
Section 5.2.2), results obtained with different rates of missing individuals
(for both datasets in Supplementary Sections 5.1.2 and 5.2.3).
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(a) DiOGenes - 20% (b) GTEx - 20%

(c) DiOGenes - 10% (d) DiOGenes - 30% (e) DiOGenes - 40%

Fig. 2: PR curves, for every method and both datasets. Top figures show the results obtained for DiOGenes CID1 (left) and GTEx (right) for 20% of
missing individuals and bottom figures show the effect of varying the rate of missing individuals for DiOGenes CID1. hd-MI provides an improved recall
at highest precision rates, especially for DiOGenes and the smallest rates of missing individuals.

Table 1. Recall statistics for precision rates of 85% (left) and 90% (right).
For 85% precision rate, the recalls of the two cases where missing and mean
did not reach the targeted precision rate were replaced by the recall for the
highest precision.

method min mean max

missing 0.352 0.649 0.746
mean 0.487 0.641 0.733
MIPCA 0.324 0.355 0.397
hd-MI 0.580 0.658 0.729

method min mean max

MIPCA 0.227 0.277 0.310
hd-MI 0.545 0.593 0.655

In addition, the impact of different methods to create a pool of donors
have been tested. More precisely, we have compared our affinity based
approach with an affinity performed on scaled data and with different types
of k-NN imputations, respectively performed with Euclidean distance,
Mahalanobis distance (so as to avoid the effect of different scales and
strong correlations between variables) and a method similar to the one
described in (Crookston and Finley, 2008) based on ridge regularized
CCA (Vinod, 1976). The results prove that all these imputation methods

perform very similarly with no visible changes in the inferred network (see
Supplementary Section 5.2.4).

As explained in (de Smet and Marchal, 2010; Villa-Vialaneix et al.,
2013), gene networks are more relevant to identify groups of related genes
(gene modules) than to study pairwise relationships between genes. To
evaluate the preservation of gene modules, node clustering was performed
by maximizing the modularity quality criterion (Newman and Girvan,
2004) in reference and in all inferred networks. To avoid an irrelevant
number of clusters, clustering was performed only on the largest connected
component of the graph. The resemblance between the module structure
in reference and in the other inferred networks was assessed using the
normalized mutual information (NMI, Danon et al. (2005)). NMI is a
quality criterion ranging from 0 to 1, with a maximum equal to 1 when the
two sets of clusters (modules) are identical. NMI was computed restricted
to the genes in the intersection of the two largest connected components of
the two networks (the reference network and the inferred network under
study).

The number of gene modules and NMI values for network clustering
are given in Supplementary Tables 3 and 4 for GTEx and DiOGenes CID1,
respectively. Usually, gene modules are better recovered by hd-MI for
GTEx dataset than for all the other methods for all missingness rates but this
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(a) CID1 (b) CID2

Fig. 3: Module 1 for (resp.) CID1 (a) and CID2 (b) as obtained after clustering nodes in the two networks obtained with hd-MI. These modules show
direct links between TWIST1 and MLX1PL (a and b) and a novel link of TWIST1 to SIRT1 via SLC19A2 at CID2 (b).

is not the case for DiOGenes. For the latter case, this is explained by the fact
that hd-MI has closer performances to missing and mean than in GTEx
and the resemblance with the modules of reference is artificially favored
by the network selection. Indeed, final network selection is performed
by StARS in missing, mean and reference and by r0 thresholding in
hd-MI: this corresponds to two different precision levels in PR curves.
However, even in this case, modules in hd-MI network are rather similar
to reference, illustrating the good preservation of network structure.

4.2 Analysis of networks inferred for complete DiOGenes
data

We applied hd-MI to adipose tissue gene expression data obtained using
RNA-seq during a dietary intervention. Gene modules were extracted
using modularity optimization, as described above. Eight and 7 gene
modules were found at CID1 and CID2, respectively (Supplementary
Section 6). Because calorie restriction is known to promote body fat
loss and alleviate insulin resistance, correlations between gene expression
within each module with fat mass or the insulin resistance index, HOMA-
IR, were computed and GO term enrichment analysis was performed for
each module (Supplementary Section 7).

Some features were common to CID1 and CID2. For example,
MLX1PL and TWIST1 showed persistent link between module 1 at CID1
and at CID2 (Figure 3).

As a hallmark of the effects of calorie restriction, CID1 and
CID2 shown differential signatures. The human TWIST1 gene encodes
a transcription factor abundantly expressed in adipocytes from lean
individuals that is positively correlated to insulin sensitivity and is potential
regulator of adipose tissue remodeling (Pettersson et al., 2011). At CID1,
TWIST1 was connected to MLX1PL and PNPLA2. At CID2, it was
connected to MLX1PL and to SLC19A2, which was linked to SIRT1.
The SLC19A2 gene encodes hTHTR-1, a transporter of thiamine, that
plays an essential role in glycolysis. SLC19A2 is one of the 41 strongest
candidate gene regions associated to positive natural selection that are
involved in nutrient metabolism (Sabeti et al., 2007). The SIRT1 gene
encodes a deacetylase that regulates various metabolic pathways (Cao
et al., 2016). Calorie restriction is known to promote histone deacetylase
expression. MLX1PL encodes the transcription factor ChREBP, whose
activity is induced by glucose (Filhoulaud et al., 2013). Together with

TWIST1 and SIRT1 after calorie restriction it may function as glucose
sensor and insulin sensitizer.

Inferred networks were found coherent with previous findings on these
genes, which indicates that hd-MI data imputation does not induce a
distortion in the relationship between gene expression (as described in
Supplementary Section 6). The DiOGenes adipose tissue RNA samples
have been previously analyzed using RT-qPCR (Viguerie et al., 2012;
Montastier et al., 2015) and recently using RNA-seq (Armenise et al.,
2017). Network analyses were performed using RT-qPCR data on men
and women (Viguerie et al., 2012) or a subset of women (Montastier et al.,
2015). Several features were common to both studies and were also present
in our networks. In particular, a module containing the same group of
correlated genes which encode enzymes involved in lipogenesis including
FADS1, FADS2 and AACS was found in all CID1 networks (either inferred
on women and on men). More interestingly, the links between FADS1
and AACS and between FADS2 and AACS persisted at CID2 only for our
inferred network (Supplementary Figure 17). This persistence might be a
positive effect of our imputation method, that provides a more comparable
basis for CID1 and CID2 because it imputes missing individuals in one of
the two CID.

By contrast to our previous network analyses that used a priori selected
genes, the present study, by using RNA-seq data, revealed novel features.
Especially, a persistent link was found between two transcription factors
involved in insulin sensitivity, TWIST1 and MLX1PL (this latter gene was
not available in the previous analyses) and connections to novel genes,
such as SIRT1 and SLC19A2, appeared after calorie restriction.

5 Conclusion
We have designed a method to improve network inference from RNA-seq
data from additional information about gene expression similarity between
individuals. The method hd-MI is based on multiple hot-deck imputation
and preserves the correlation structure between variables in a unit non-
response framework (using the hot-deck approach) while estimating the
uncertainty linked to the imputation (with a multiple imputation approach).

hd-MI shows a better precision for edge detection than complete case
or naive imputation methods, with the additional advantage to provide
information about the reliability of the edge and its sensitivity to missing
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individuals. hd-MI has been used in a real world application related to
the impact of a low calorie diet on adipose tissue expression. It succeeded
in providing relevant networks that were similar to previously inferred
networks, based on different dataset and different subsets of individuals.
It also predicted the persistence of the links between AACS, FADS1 and
FADS2 at CID2 and enlightened adipose tissue SLC19A2 as novel partner
in glucose homeostasis, besides TWIST1 and MLX1PL. Its precise role as
transporter or undiscovered function is still to be investigated.
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