
HAL Id: hal-01794520
https://hal.science/hal-01794520

Preprint submitted on 17 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised Perception Model for UAVs Landing
Target Detection and Recognition
Eric Bazan, Petr Dokládal, Eva Dokladalova

To cite this version:
Eric Bazan, Petr Dokládal, Eva Dokladalova. Unsupervised Perception Model for UAVs Landing
Target Detection and Recognition. 2018. �hal-01794520�

https://hal.science/hal-01794520
https://hal.archives-ouvertes.fr


Unsupervised Perception Model for UAVs
Landing Target Detection and Recognition

Eric Bazán1, Petr Dokládal1, and Eva Dokládalová2
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Abstract. Today, unmanned aerial vehicles (UAV) play an interesting
role in the so-called Industry 4.0. One of many problems studied by
companies and research groups are the sensing of the environment intel-
ligently. In this context, we tackle the problem of autonomous landing,
and more precisely, the robust detection and recognition of a unique
landing target in an outdoor environment. The challenge is how to deal
with images under non-controlled light conditions impacted by shadows,
change of scale, perspective, vibrations, noise, blur, among others. In this
paper, we introduce a robust unsupervised model allowing to detect and
recognize a target, in a perceptual-inspired manner, using the Gestalt
principles of non-accidentalness and grouping. Our model extracts the
landing target contours as outliers using the RX anomaly detector and
computing proximity and a similarity measure. Finally, we show the use
of error correction Hamming code to reduce the recognition errors.

Keywords: UAV, landing target, perception model, object detection,
precision landing

1 Introduction

In this paper, we present a novel method for the detection of landing targets
for the UAV vision aided landing. We propose to model the landing target by
taking into account the principles of the human perception. The methodology
presented works in an unsupervised mode, i.e., no need to adjust parameters.

In outdoor environments, many variables affect the vision-based landing tar-
get detection. The main problems to face are: the non-controlled light changes
that generate shadowing, reflectance and saturation on the surfaces; the per-
spective and distance of the camera that deforms the objects; the motions and
vibrations that blur the images and; the noise generation by a low-quality sensor.

The detection of the landing target can be viewed as an image segmentation
problem, where there is a wide range of developed methods. The variational



framework [13], offers an optimal general method for image segmentation; how-
ever, its mathematical complexity and the constant selection of fidelity and a
regularization parameters makes its use complex. Also, the number of iterations
needed to find the optimal solution avoid having results in real-time. Conversely,
thresholding methods have been used for the detection of landing targets [8][9]
for its ease of use. However, for a good detection, its use is limited to indoor
spaces, where the light conditions are controlled [1].

Recently, convolutional neural networks (CNN) techniques offer the possibil-
ity of detecting an object from a large set of classes with a high-reliability [3].
Nevertheless, these methods must have been trained with a database containing
the object classes in a wide range of situations and, in case of changes in the
object or the scene, the database must be rebuilt [19][6]. Besides, in some cases,
the computation is carried out off-board the drone, which implies the need for
network infrastructure and limitation of autonomy [10].

Humans can carry out the process of perception in a natural way [14]. We
identify meaningful features and exciting events in a scene (such as points, lines,
edges, textures, colors, movement) and with the help of our memory and the
learning capacity we can recognize and classify objects. The primitives identi-
fication is a consequence of their non-accidental apparition, i.e., they are not
generated randomly [2]. The Gestalt theory [17] states that we can build a
whole (gestalt) through the grouping of non-accidental detected primitives. In
this work, we explore the above ideas and propose a novel approach to detect a
landing target in the same way as humans do, imitating the human perception
process.

The work is organized as follows. In section 2 we develop the perception
model. Specifically, subsection 2.2 describes how to retrieve image contours as
meaningful primitives and subsection 2.3 describes how to group the contours
to detect a landing target perceptually. Later, in section 3 we present the land-
ing target design and the technique used for the methodology implementation;
the results obtained are discussed in subsection 3.2. Finally, we present some
conclusion and perspectives in section 4.

2 The Unsupervised Perception Model

2.1 Outset Presentation

The algorithm uses the contours as image primitives to obtain information about
the scene. For the detection and recognition of landing targets, the algorithm is
divided into three major stages. The first, localize all the image contours and
extract meaningful contours using the non-accidentalness principle. The second
stage computes some feature contours and, based on them, group the meaningful
contours through the Gestalt laws. The last stage performs the target recognition
using a decoding technique described in section 3. Figure 1 shows the three major
stages and its subtasks.



Fig. 1: Diagram of the phases for the landing target detection and recognition

2.2 Non-accidentalness Estimation

We aim to detect object contours in natural images where none, one or more
landing targets can be present. Due to its real-time capacity, it is tempting to use
a thresholding method to detect the contours of a binary image. We implemented
several thresholding methods analyzed in [16], however, given the conditions
where a landing target can be found, no method was found robust enough to
variations in non-controlled outdoor environments. Figure 2a shows a landing
target in an outdoor environment; we also show his histogram to highlight the
levels of saturation in the scene. As a comparison, we take one representative
method of each class of the taxonomy proposed in [16] to extract the contours
of the image; clustering-based (fig. 2d), entropy-based (fig. 2e), spacial (fig. 2f)
and local (fig. 2g) thresholding methods. Namely, there is no guarantee that the
contours found by thresholding are present and continuous alongside the object
borders.

Contour Detection Instead of using a thresholding method, we obtain the
image without fixing any parameter. The use of the Marr-Hildreth [12] operator
guarantees to find continuous and closed contours eliminating the possible noise
in the image, while the contours of objects remain unchanged in the presence of
shadows. This technique convolves the intensity image f with the 2-D Laplacian
of Gaussian operator ∇2G(x, y, σ) and generates an image,

lσ = ∇2G(σ) ∗ f (1)

in which we localize the zero-crossings.
The parameter σ in eq. (1) permits to control the amount of image smoothing,

but also acts as scale parameter, that when varies, it generates different scale-
space images. Since no single filter can be optimal simultaneously at all scales
[12], we use a multi-scale analysis [18] to detect the zero-crossings in lσ at differ-
ent scale-spaces to minimize the risk that some contour of interest is not detected.



(a) Input image
(b) Histogram of input
image

(c) Zoom (d) Otsu (e) Li (f) Gauss (g) Sauvola

Fig. 2: Landing target under non-controlled illumination conditions and the con-
trous obtained with some thresholding methods

The image lσ from eq. (1) contains a set of contours Lσ = {Lσi , i = 0, 1, . . . , N}
for a given scale σ. Then,

L =
⋃
σ

Lσ (2)

represents all the contours of an image obtained at different scale-spaces. Figure
3d shows the set of contours L found for σ = [1, 2, 3]. Besides, it is also appreci-
ated that at a fine scale (Fig. 3a) we can see more characteristics of the objects,
i.e., there are more contours. Conversely, in coarse scales (Fig. 3c), due to the
smoothing, there is a spatial distortion, and fewer contours appear. However,
those contours that had already appeared at a coarse scale, will not disappear.
Then, exist the probability that those contours that spatially coincide on two or
more scales belong to a change of intensity generated by the border of an object.

Multi-feature Space The Helmholtz principle states that meaningful charac-
teristics appear as large deviations from randomness and that is how the human
perception automatically works to identify an object [2]. The a contrario model
proposed in [4], formulates this principle statistically by setting the number of
false alarms (NFA) below some acceptable level; however, this method cannot be
easily extended to more complex shapes. Instead of setting the NFA, we use the
RX detector [15] to detect outliers. Initially called the constant false alarms rate
detection algorithm (CFAR) it can detect the presence of a know signal pattern
in several signal-plus-noise channels. For that, it uses a N × Q multi-variable
space Z = [Z1, . . . , ZQ] with Q observation vectors of dimension N . In our ap-
proach, the primitive is a closed contour. We build the multi-variable space with



(a) Lσ for σ = 1 (b) Lσ for σ = 2

(c) Lσ for σ = 3 (d) Set L for σ = [1, 2, 3]

Fig. 3: The image contours found at three different scales joined in the set L

observations based on internal (geometrical features, e.g., circularity, roundness,
area, perimeter) and external (e.g., mean gradient intensity, intensity inner area)
properties of the contours.

Let Li ∈ L be a contour, Ai its area and Pi its perimeter; we compute the
circularity eq.(3) and the mean gradient intensity eq. (4) to build the multi-
variable space Z = [Z1, Z2].

Z1 =

[
4πAi
P 2
i

, i = 0, . . . , N

]T
, N = card(L) (3)

Z2 =

 1

Pi

∑
x∈Li

| ∇f(x) |, Li ∈ L

T (4)

RX Detector The RX anomaly detector [15] is commonly used to detect out-
liers on such data. The space Z models the set of contours L with Q = 2 feature
vectors describing the circularity eq. (3) and the mean gradient intensity eq.(4).
The RX detector gives an anomaly score to each contour taking into account
the mean of the distribution and covariance between the Q-features through the
Mahalanobis distance,

yi = (zi − µZ)TΣ−1
Z (zi − µZ) (5)

where µZ = [E[z1], . . . ,E[zN ]]T is the observations mean vector and Σ−1
Z the N×

Q covariance matrix of the data. If the data have normal random distribution,



then the score vector Y = [yi, . . . , yN ] follows a chi-square distribution χ2
Q(ϕ)

with Q degrees of freedom, where ϕ is a confidence level [11]. The value of
χ2
Q(ϕ) with a confidence value ϕ = 99.9% operates as a threshold to identify all

contours that behave as outliers in the multi-variable distribution. In our case,
the contours belonging to a landing target appear as outliers in the vast majority
of random contours belonging to the background.

With the previous strategy we preserve the anomalous contours having a
value of mean gradient and circularity deviating from the principal mode of
the distribution in the set L̃ = {Li | yi > χ2

Q(ϕ)}. χ2
Q(ϕ) is the value of the

cumulative distribution at the confidence level ϕ and L̃ ⊂ L. It is essential to
mention the importance of multi-scale contour detection of section 2.2; because
it increases the number of samples in Z, allowing to build a richer multi-variable
space.

In the set L̃ some contours make not part of a landing target. For example, in
the figure 4, we can see that the paper sheet contours remain because they have
a high value of circularity. The same occurs with the contours of those objects
with an important value of mean gradient, as the number 4 at the top-left of the
sheet or the rock textures of the background.

Fig. 4: The contours from Fig. 3d that behave as outliers in the multi-feature
space Z with a confidence value of ϕ = 99.9%

2.3 Gestalt Laws of Grouping

We use the Gestalt theory [17] to group the meaningful contours Li ∈ L̃ and
detect landing targets.

Goodness of Shape Since the landing targets have only circular contours,
we evaluate the resemblance with an ellipse (to deal with the perspective de-
formation) of all contours. Considering an ellipse ei that fits one gray contour
Li in Fig. 5a, we recover the centroid Ci, the rotational angle ρ, the semi-
major axis αi, the semi-minor axis βi and the coordinates Fi and F ′i of the
ellipse’s foci. Then, the sum of the distances from any point of ellipse xj ∈ ei
to the foci is xjFi + xjF ′i = 2αi. If the contour Li is an ellipse, the value

di =
∣∣∣(xjFi + xjF ′i )− 2αi

∣∣∣ must be zero or negligible ∀xj ∈ Li.



(a) Affinity of a fit ωi (b) Difference of area ∆Ai

Fig. 5: Visual description of affinity of ellipse and difference of area

Based on the form of the landing target we estimate the the similarity using
two measures,

ωi = exp−
d2i
2σ2 the affinity of the fit and, (6)

∆Ai = 1− |Aei −Ai|
max(Aei , Ai)

the difference of area. (7)

The affinity ωi → 1 for contours closed to an ellipsoidal shape. However, if
the contour Li is a croissant shape (as in fig. 5b) then, the eq. (6) also has a
high value (near to 1) but the contour is from being an ellipse. The variable in
eq. (7) complements the affinity ωi taking into account the area of the ellipse
Aei and the area of the contour Ai. To calculate the similarity to an ellipse, we
use the harmonic mean of both.

κi = H(ωi, ∆Ai), κi ∈ (0, 1) (8)

where κi → 1 for contours ressembling to an ellipse and κi → 0 otherwise. H

denotes the harmonic mean H = N

(
N∑
i=1

ξ−1
i

)−1

.

Proximity Measure The Gestalt law of proximity states that we group those
meaningful elements if they are spatially close to each other. In the case of
contours, we take the coordinates of their centers Ci to measure their spatial
proximity.

Affinity Clustering The normalized coordinates of the centroid Ci and the
ellipse similarity κi map the contour Li ∈ L̃ into the 3-D space (0, 1) ∈ R3. We
use the affinity propagation clustering method [5] to group the contours using the
matrix X = [Ci, κi]. This technique yields a set of clusters CK ∈ C(X). Because
the landing target has ten different contours (see section 3), the clusters with
card(CK) ≥ 10 and an important similarity value H(κi) ≥ 0.8, represent the
candidate contours of a landing target.



(a) Clusters obtained by
affinity propagation

(b) Clusters projected on
the image domain

(c) Target candidate clus-
ter

Fig. 6: Clusters of contour from Fig. 4

The affinity propagation technique groups in K = 12 clusters the image
contours from figure 4. In a 3D plot (fig. 6a), we see the influence of κi at
clustering process. Projecting the clusters in a 2-D plane (fig. 6b), we notice
that even if the contours are nearby, it can form a new cluster if there is a
distant κ. A clear example is the clusters 0 and 4 (blue and purple, respectively)
that correspond to the contour centers of the landing target and the center of
the sheet of paper, they are close to each other but the similarity not. Applying
the threshold values card(CK) ≥ 10 and H(κi) ≥ 0.8 we obtain the candidate
clusters to form a landing target (see fig. 6c).

Heretofore, we have built a model based on perceptual characteristics for the
landing target detection. However, there could be false detections if there are
circular objects with concentric borders in the image. We code an ID number in
the target design to differentiate a landing target from an object with concentric
circular edges. The coding of information allows discriminating between several
landing targets and circular objects. The following section describes the landing
target design as well as the coding and decoding technique.

3 Implementation

3.1 Landing target description

The landing target is formed by a set of black and white circles (see Fig. 7) that
generate contours when stacked. Two of the circles (ø9 and ø10) have a constant
diameter and form the ring that defines the target. The black circle (ø11) is an
orientation reference and has the same diameter as the smallest circle, ø11 = ø1.
The other circles ø1, . . . , ø8 are coding circles.

Landing Target ID Encoding Let Ø = (ø1, ø2, . . . , øn) denote the nominal
diameters of the coding circles. We can set the nominal diameters, e.g., øi = i

nøn
for a target without the encoding capability. To encode a number in the target
form, we modify the nominal diameters Ø to obtain Ø′ =

(
ø′1, ø

′
2, . . . , ø

′
n

)
by



Fig. 7: Landing target design and description

adding/subtracting a positive constant ∆h

ø′i =

{
øi +∆h, if wi = 1

øi −∆h, otherwise
(9)

and obtain a binary message W = [w1, . . . , wn]. The message W is protected
from errors by Hamming error-correction code [7]. It provides a set of different
codewords W = D×M of size n = k+m, where D is useful data, M = [Ik | 1−Ik]
the generator matrix and Ik is the k× k the identity matrix. The data vector D
comes from the decimal to binary conversion of the landing target ID∗ number.
In our representation, we have experimented with n = 8 coding circles allowing
to have four rings and n = 8 contours ø1, . . . , ø8. This allows us to use the
extended [n, k] Hamming code with k = 4 data bits and m = 4 parity bits to
generate 24 = 16 landing targets.

Landing Target ID Decoding After the clustering stage of section 2.3, we
rank by size the ellipses’ major axes αi by size and normalize them w.r.t. the
largest value α10 to obtain α = ø10

α10
(α1, . . . , α10)

We compare the received and normalized axis α with the nominal diameters
of the coding circles Ø and transform them into a binary vector Ŵ ;

Ŵ =

{
1, if αi − øi > 0

0, otherwise
∀i = 1, . . . , n (10)

The Hamming syndrome vector S = Ŵ × HT (with H = [1 − Ik | Ik] as the
parity-check matrix) indicates whether an error has occurred. The syndrome is a

null vector S = 0 when no error has occurred, otherwise, S 6= 0 and Ŵ = W+E.
The element ei = 0 of the error vector E = HT − S indicates an error at the
position i. The [8, 4] Hamming code can find up to two erroneous bits and correct

one. Once the algorithm corrects the error (if there is), the vector Ŵ is decoded

by using the modulo 2 of the product D̂ = Ŵ ×MT .

∗Identification number



3.2 Validation and tests

The presented strategy was validated on landing target images under simulated
and real situations. We tested the algorithm in a synthetic image database
which simulates four image degradations: noise, shadows, target deformation
and change of size. For the real situations, we carried out several tests in indoor
and outdoor scenarios. Figure 8 shows three interesting experiments and the
output image of each stage of section 2.
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Fig. 8: Algorithm validation: (a) Target under simulated degradations, (b) The
16 targets in an indoor environment, (c) Five targets in an outdoor scenario
under non-controlled image degradations

The first experiment (Fig. 8a) shows the four synthetic degradations together
on landing target ID 14. In this context, the synthetic image represents the values
of degradation maximum that the algorithm supports. Second experiment (Fig.



8b) was done in an indoor space to show the sixteen possible landing targets.
In the scene there are no other objects. Finally, the last experiment (Fig. 8c)
shows five landing targets in a more complex outdoor environment. Notice the
presence of other objects, different background textures, irregular shadows and
perspective deformation and change of scale of the landing targets.

In the three experiments, i) the non-accidentalness estimation stage elimi-
nates the contours generated by noise with low circularity and mean gradient
values; ii) the grouping stage filters random contours generated by intensity
changes like shadows to keep contours with an important value of similarity and
proximity. The compilation of the experiments carried out under real conditions
can be seen in https://youtu.be/igsQc7VEF2c.

4 Conclusion and Future Extensions

We have described the procedure for the landing target detection and recog-
nition based on a perception model. The algorithm is based on the Helmholtz
non-accidentalness principle and the Gestalt theory. The non-accidentalness esti-
mation is performed in a multi-feature object space built from the image contours
at different scales. This approach allows us to obtain scene information avoiding
the loss of information because of the objects’ change of size or the presence
of shadows and noise. We have used the similarity and proximity Gestalt laws
to group the contours and build a perceptual object and the Hamming error
codes to perform the landing target recognition. The experiments show that
the proposed methodology for the detection of landing targets is robust to un-
controlled light conditions and other images degradations existing in complex
environments.

For this particular work, the objective was to detect a landing target, a
circular object (basic geometric shape) with concentric borders; however, the
presented methodology has a wide extension capacity. At the moment we use only
the image contours to measure the circularity and the mean intensity gradient. A
future extension could include the use of other image primitives, such as points,
regions, texture or color, and other object features. Similarly with the grouping
laws, we explored only the proximity and similarity laws; however, it is possible
to use other laws such as alignment, symmetry or continuity. These ideas will
allow creating new descriptive feature spaces of scenes and objects in an image;
with the possibility of make combinations between grouping laws, features and
image primitives to detect some particular object.

Finally, our contribution proposes a perception model that utilizes the a
contrario theory but avoids the mathematical complexity of setting the NFA to
adjust threshold values or parameters in specific situations.
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