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A B S T R A C T

Air quality has significantly improved in Europe over the past few decades. Nonetheless we still find high
concentrations in measurements mainly in specific regions or cities. This dimensional shift, from EU-wide to hot-
spot exceedances, calls for a novel approach to regional air quality management (to complement EU-wide ex-
isting policies). The SHERPA (Screening for High Emission Reduction Potentials on Air quality) modelling tool
was developed in this context. It provides an additional tool to be used in support to regional/local decision
makers responsible for the design of air quality plans. It is therefore important to evaluate the quality of the
SHERPA model, and its behavior in the face of various kinds of uncertainty. Uncertainty and sensitivity analysis
techniques can be used for this purpose. They both reveal the links between assumptions and forecasts, help in-
model simplification and may highlight unexpected relationships between inputs and outputs.

Thus, a policy steered SHERPA module - predicting air quality improvement linked to emission reduction
scenarios - was evaluated by means of (1) uncertainty analysis (UA) to quantify uncertainty in the model output,
and (2) by sensitivity analysis (SA) to identify the most influential input sources of this uncertainty. The results
of this study provide relevant information about the key variables driving the SHERPA output uncertainty, and
advise policy-makers and modellers where to place their efforts for an improved decision-making process.

1. Introduction

Air quality has significantly improved in Europe over the past few
decades (EEA, 2017), but exceedances of the legislative limit values still
persist, mainly for pollutants such as ozone (O3), nitrogen dioxide
(NO2) and particulate matter (PM10 and PM2.5)1. While, in the past
years, these exceedances were wide-spread across Europe, they now
tend to concentrate in specific regions or cities (Kiesewetter et al.,
2015). This new and changed situation calls for a novel approach tai-
lored to local air quality management (to complement EU-wide existing
policies).

There is a long standing tradition of using modelling techniques in
supporting the design of air quality policies. A first set of techniques
consists of three dimensional numerical models that simulate transport,
chemistry, emissions, and deposition in the atmosphere (Mailler et al.,
2016; Pernigotti et al., 2013). Given their complexity and demanding/
onerous requirements (in terms of data preparation, scientific/technical

knowledge and computing time), these models are mainly used for
scientific research. For such models, state-of-the art approaches are
available to compute sensitivity coefficients measuring how the con-
centrations predicted by the model depend on input data and model
parameters. These approaches vary from conceptually simple ones, as
the brute-force (varying the input parameters one by one in separate
model simulations and evaluating the change in predicted concentra-
tions) to more complex, as decoupled direct method and the adjoint
method (Dunker et al., 2002; Sandu et al., 2003; Kelly et al., 2015). All
these methods are usually applied to a fully-fledged air quality model,
to perform its local sensitivity analysis.

In addition to three dimensional numerical models, another set of
approaches has been developed, mainly to deal with the ‘science-to-
policy’ interface. These approaches are referred to as “Integrated
Assessment Models”, as they integrate various dimensions: policy costs,
benefits, etc … in one single approach. In such type of approaches, the
air quality component is not based on the full air quality model
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previously mentioned (that would be too time consuming to be simu-
lated) but usually it is implemented as a “surrogate” of the full air
quality model. A valuable example of “Integrated Assessment Model” is
the GAINS-EU (Greenhouse Gas - Air Pollution Interactions and
Synergies) integrated assessment model (Amann et al., 2011), which is
based on linear source-receptor relationships to link emissions to con-
centrations, and has frequently been used to choose optimal emission
reductions per country, in order to achieve environmental improve-
ments at a minimum cost. In the last years, given the current situation
marked by regional and/or local (city) hot spots, the EU integrated
assessment modelling tools have also been complemented/aided by
both regional and local approaches. This has been done in recent years
using national versions of GAINS based on finer scale modelling (as in
GAINS-Italy, D'Elia et al., 2009), or with regional tools (as RIAT, the
Regional Integrated Assessment Tool, Carnevale et al., 2012, Carnevale
et al., 2014, Pisoni et al., 2010). These efforts have already supported
the implementation of regional/local plans, but it is important to bear
in mind that their application heavily relies on the availability of de-
tailed local data and of complex scientific/technical know-how, not
always readily available on a local scale.

Recently, the SHERPA (Screening for High Emission Reduction
Potentials on Air quality) modelling tool was developed (Clappier et al.,
2015; Thunis et al., 2016; Pisoni et al., 2017) to provide an alternative
approach. SHERPA, which is based on a “surrogate model” replicating
the behavior of a fully-fledged air quality model, serves as a tool to
support regional/local decision makers responsible for the design of air
quality plans. It is distributed with default data that covers the whole
Europe and enables decision-makers to work on their own regional
domain. It can be used without the need to perform prior complex
scientific/technical tasks. SHERPA supports decision-makers who need
to plan air quality policies by implementing modules such as “source
allocation” (to apportion air pollution in terms of sectors and precursors
of origin), “governance” (to identify the key geographical entities
contributing to the pollution in one specific area), “scenario” (to test the
effect on air quality of a given sector-specific emission abatement sce-
nario). As the tool will be used in the policy arena, it is of utmost im-
portance to evaluate the robustness of the model predictions with re-
gards to various sources of uncertainty.

Uncertainties can be particularly influential in policy context. It is
widely known that model and data are uncertain and that uncertainties
may be very significant. It is therefore important to know how model
outputs, namely potential policy impacts are affected by these un-
certainties. The uncertainty quantification process helps to understand
whether models are “fit for the purpose” and/or apt to be used in the
field of policy making. Complementary to this, sensitivity analysis (SA)
should also be applied. While the uncertainty analysis (UA) aims at
quantifying uncertainty in the model output, sensitivity analysis in-
vestigates the dependency of the model output from various sources of
uncertainty in the model inputs (Saltelli et al., 2008). Sensitivity ana-
lysis is an important ingredient in the quality assurance of models used
for evidence-based policy and, because it reveals the links between
assumptions and predictions, it helps in model simplification (i.e. not
relevant input can be identified) and model calibration (i.e. optimal
parameters setting). It can highlight unexpected relationships between
inputs and outputs, helping to identify regions of the input space which
are responsible for critical values of the output.

In this paper, we perform the uncertainty and sensitivity analysis of
the SHERPA “scenario” module (Thunis et al., 2016). This module al-
lows for the estimation of how concentrations change due to various
given emission-reduction scenarios. It is used as a basis for all SHERPA
modules and is therefore the key element to be tested. As SHERPA is a
model characterized by spatially-varying coefficients and inputs, the
Uncertainty and Sensitivity Analysis (UA-SA) have been performed on a
few selected cities (Helsinki, Constanța, London, and Milan, see Fig. 1),
representative of different meteorological and of varying emission in-
ventory conditions (the same analysis is presented in Albrecht et al.,

2018 on an extended set of cities, showing similar conclusions; so here,
for lack of space, we focus on a smaller number of cities). This analysis
focuses on two main issues: (1) what is the robustness level of the
SHERPA results in terms of uncertainty of the model response (un-
certainty analysis) and (2) how the model output is influenced by each
model input – parameters, precursors, and policy choices (sensitivity
analysis).

In this study we answer these research questions within a Global
Sensitivity Analysis (GSA) variance-based framework. As opposed to
local sensitivity analysis (i.e. with brute-force, decoupled direct and
adjoint methods, previously discussed), GSA measures the relative im-
portance of the model inputs by exploring the entire input space. In
particular, GSA has been carried out using the popular methods de-
scribed in Saltelli et al. (2010). The results provide information about
the key variables driving the SHERPA output uncertainty. This paper is
organized as follows: In Section 2, we briefly introduce the SHERPA
model and the sensitivity analysis method employed to analyze it. In
Section 3, we define the model input uncertainties. Furthermore, we
discuss the results in Section 4 before reaching our conclusion in Sec-
tion 5.

2. Materials and methods

In this chapter the SHERPA model (both formalization and its as-
sumptions/caveats) and the technique used to evaluate uncertainty and
sensitivity analysis are presented.

2.1. The Sherpa model

SHERPA has been developed to provide a speedy modelling ap-
proach to calculate concentration fields resulting from emission re-
duction scenarios, mimicking the behavior of a full Chemical Transport
Model (CTM). CTMs provide pollutant concentration fields that account
for the complex transport, diffusion and chemical processes occurring
in the atmosphere. The aim of SHERPA is to mimic CTMs’ behavior with
a simpler relationship/equation derived from a set of full CTM simu-
lations built with various emission reduction scenarios. This set of
scenarios should be sufficiently varied (in terms of concentration
changes, responses to emission changes) to provide the SHERPA
training phase with sufficient data variability.

In SHERPA, concentration changes due to an emission reduction
scenario are computed on a cell by cell basis according to the following
equation:

∑ ∑= ∀ ∈n NΔC a ΔE , [1, ]celln
p

N

m

N

n,p,m p,m

prec cell

(1)

where the delta concentration ΔCn (change of concentration in com-
parison to the base case) in a receptor grid cell “n” is expressed as a
linear combination of the emissions delta ΔEp,m (variation in emission
when compared to the base case), for each source cell “m” and pollutant
(i.e. precursor) “p”. The an,p,m coefficients act as weighting factors
which apportion the amount of emission variation ΔEp,m of precursor p
stemming from cell m and reaching cell n. As the correlation between
ΔCn (at receptor cell n) and ΔEp,m (at all sources cell m) decreases with
the distance between the cells, it has been assumed that the coefficients
an,p,m in the previous equation can be approximated by the following
distance-function:

= + −a α (1 d )n,p,m n,p n,m
ωn,p

(2)

where dn,m is the distance between cells n and m and the two unknowns
α and ω for each precursor p and each grid cell n were estimated from
CTM simulation results (see Pisoni et al., 2017 for more details).

Even though the previous equations remain the same/unvaried ev-
erywhere in the whole calculation domain, the values of α and ω are
grid-cell specific. The parameter α is related to the amplitude of the
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function and provides information about the relative importance of an
emission precursor with respect to another, whereas ω provides in-
formation on the speed of decrease of the emissions impact with dis-
tance. The ω parameter depends on meteorological conditions, espe-
cially wind speed, and is also precursor specific (some emission
precursors have longer lifetime spans in the atmosphere). Both α and ω
were identified through a least-square estimation, using data provided
by CTM simulations. This identification process also provided con-
fidence intervals for these coefficients. More details on the procedure
can be found in Clappier et al. (2015), Thunis et al. (2016), and Pisoni
et al. (2017).

After α and ω have been computed, SHERPA can be used to evaluate
concentration changes resulting from any emission reduction scenario.
But because these coefficients were obtained with confidence intervals,
it is important to account for the impact of these uncertainties on
SHERPA's outputs. The current SHERPA implementation (Pisoni et al.,
2017), which is able to simulate PM10, PM25 and NO2 yearly averages,
will be used to perform the uncertainty and sensitivity analysis pre-
sented in this paper, in particular, focusing on PM2.5.

2.2. Caveats about the SHERPA model

On top of the uncertainty and sensitivity analysis performed in the
next sections, there are a number of assumptions/caveats in the
SHERPA model. These should be taken into account when evaluating
the model results, as they can affect the quality of the results.

2.2.1. Link with the full air quality model
The SHERPA results strongly depend on the air quality model used

to define its coefficients, in the training and validation phases. In the
configuration presented in this paper, SHERPA is based on the
CHIMERE model results. Although the CHIMERE CTM base case sce-
nario, in a similar configuration, has been extensively validated against
observations (Bessagnet et al., 2016), it is not possible to validate CTMs
for model-responses to emission changes. This is the reason why CTMs
are regularly tested in the frame of inter-comparison exercises (Cuvelier
et al., 2007). This process of inter-comparison is on-going, to increase
the reliability and robustness of the whole approach.

2.2.2. Spatial resolution
The CHIMERE simulations within SHERPA are run with a 7 km

spatial resolution. Schaap et al. (2015) showed that this resolution was

Fig. 1. Map of Europe, showing the location of the four selected cities.
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accurate enough to capture urban background concentrations, the focus
of this work. This spatial resolution however limits the analysis to urban
background pollution, and so prevent the model to be used e.g. for
reproducing traffic station behavior.

2.2.3. Meteorological variability
The results presented in this article are based on a single meteor-

ological year (2009). Although this year is thought to be representative
of average meteorological conditions, the current set-up does not ac-
count for inter-annual variability.

2.2.4. Linearity assumption
The relationship between emission and concentration used in

SHERPA is assumed as linear. Given the non-linear chemical processes
leading to the formation of secondary PM, we expect non-linear re-
lationships between PM concentrations and their precursor emissions.
In their work, Thunis et al. (2015) have shown that these relationships
can be assumed linear when concentrations are averaged over long
periods (seasonal or annual averages). It is important to note, however,
that these tests were performed for emission reductions not exceeding
50% reduction. Beyond these levels, non-linearity might become more
important, limiting the range of application of the approach.

2.2.5. The “bell-shape” assumption
A simple “bell shape” function spatially linking emission and con-

centration changes is used in SHERPA. Statistical analysis shows that
the correlations between PM concentrations and their precursor emis-
sions decrease with distance following a “bell shape” function (Pisoni
et al., 2017). So, this “bell shape” function is used to express the
coefficients of the SRR as a function of the distance between sources
and receptors. This simple “bell shape” function is precursor and grid
cell specific. These assumptions (with the linearity one previously
presented) have been assessed through a validation process, which
covered test cases in many EU cities, regions and countries. This vali-
dation highlighted the good agreement between the SHERPA SRR and
the full CHIMERE model (Pisoni et al., 2017).

2.2.6. Point sources and area sources treatment
SHERPA distinguishes sectoral impacts, but point sources (for which

the release height becomes an important element) and surface sources
are treated similarly. This might introduce some uncertainty in the
model behavior (i.e. model inadequacy) when both low- and high-level
emission sources are present in the same sector.

2.3. Variance –based sensitivity indices

In this section we briefly explained the indicators for sensitivity
analysis used in this paper.

Historically, UA-SA studies were firstly conducted by using local
approaches. In the local analysis, inputs (or model parameters) are
varied ‘One at A Time’ (OAT) while the others are maintained fixed.
This kind of approach implies calculation or estimation of partial (often
normalized) derivatives of the model output at a given point in the
input space. The local techniques are computationally cheap, however,
(i) they are not fit for non-linear models, and (ii) the possible effects
deriving from the interactions between different model inputs are ig-
nored. Therefore, local SA is definitely perfunctory (Saltelli and Annoni,
2010) and not recommended when models are not linear and/or not
merely additive (Campolongo and Saltelli, 1997).

Global sensitivity analysis overcomes the drawback of the OAT
approach making use of methods based on the simultaneous explora-
tion of all uncertain inputs and thus being able to capture nonlinearities
and interactions among model inputs. GSA allows for full exploration of
the input space, in order to exhaustively assess any output uncertainty.
Furthermore, compared with derivative-based SA, GSA is more effective

at protecting against type II errors2 and provides more insight into the
model input-output relationship. However, often GSA requires many
model runs.

Since the early 90s, GSA has been developing in, and applying to a
wide range of domains (i.e. Environment, Engineering, Medicine,
Chemistry, …), showing itself to be central in contributing to modelling
(Tarantola et al., 2002). Different methods are available to conduct
sensitivity analysis nowadays (Sobol, 2001; Borgonovo, 2007; Liu and
Homma, 2009; Saltelli et al., 2010; Mara and Tarantola, 2012;
Kucherenko et al., 2012; Plischke et al., 2013). Among them, var-
iance–based methods are very popular and often considered the most
powerful.

Variance–based techniques (used in this paper) rely on the decom-
position of the total variance of the model output Y= f(X) into the sum
of partial variances due to/resulting from the uncertain model inputs
X=(X1,…,Xd) (Sobol, 1993). The model inputs are treated as in-
dependent random variables, each of them defined by their marginal
probability distribution. The method of Sobol (1993) enables the
computing of the terms in the variance decomposition in a quite in-
tuitive way by estimation of a multidimensional integral via Monte
Carlo techniques:

∑ ∑= + + ⋯+
= >

…V Y( ) V V V
i 1

d

i
j i

d

i,j 1, ,d
(3)

where V(Y) is the total variance of the model output Y. This equation is
the so-called ANOVA decomposition that casts the total variance of the
model response onto summands of all the possible effects, which are the
first-order effects Vi, the second-order effects Vij that measure the
joint effect of the pair (Xi, Xj) on Y, and the higher order interactions
V1,2, …,d.

It can be shown that the variance of the conditional expectation
V(E(Y|X ))i is equal to the partial variance Vi. This statistic is known as
the first-order, or main effect of model input Xi on the model output Y.
It corresponds to the contribution of Xi by itself to the total variance of
Y. This partial variance, divided by the total variance of the model
output, produces a normalized value, which defines the sensitivity
index of Xi, called first-order index of the input Xi:

=S V(E(Y X ))
V(Y)i

i

(4)

where E(. . ) stands for the conditional expectation operator.
Si is, by definition, a number between 0 and 1. A high value of Si

denotes an influential input, in the sense that the uncertainty of the
input Xi has a considerable effect on the uncertainty of the model
output Y.

By noting that an input can contribute solely or by interactions with
other inputs, Homma and Saltelli (1996) introduce the total sensitivity
index of a model input as the sum of all the terms of any order involving
that input. Being the sum of all possible partial variances equal to V(Y)
(see Eq. (3)), the difference between V(Y) and ∼XV(E(Y ))i - which
expresses all terms of any order that do not include input Xi (∼i in-
dicates all terms but i) - represents the total effect of input Xi. Therefore,
the total sensitivity index is defined as follows:

= − ∼XT 1 V(E(Y ))
V(Y)

i
i

(5)

Further, given the law of total variance:

= +V(Y) E (V( Y| X )) V (E( Y|X ))i i (6)

the total sensitivity index of Xi can also be defined as:

= ∼XT E(V(Y ))
V(Y)

i
i

(7)

2 The risk of declaring non important an input which is actually important.

E. Pisoni et al. Atmospheric Environment 183 (2018) 84–93

87



There are several numerical methods proposed in the literature to
estimate the first-order and total sensitivity indices (to name a few,
Saltelli et al., 1999; Sobol, 2001; Saltelli, 2002; Buzzard and Xiu, 2011;
Shao et al., 2017, Blatman and Sudret, 2010). In the present study, we
use the sampling-based strategy proposed in Saltelli (2002). This
method requires generating two independent samples A and B of X.
These samples represent two matrices of size N by d that contain in
their ith column random draws of Xi sampled from its marginal dis-
tribution. Thus, each row of A and B is employed to carry out Monte
Carlo runs of the model. This provides two vectors of model responses
f A( )j and f B( )j , j= 1, …,N from which the total variance can be es-
timated (denoted V̂Y). Furthermore, d additional Monte Carlo samples
AB,i with i= 1,…,d, are also required. The sample AB,i is equal to A
except the ith column replaced by the ith column of B. These samples d
are also propagated throughout the model to obtain f A( )B

j
,i . Finally, the

variance-based sensitivity indices are estimated as follows:

=
∑ −

=
f f fB A A

Ŝ
( )[ ( ) ( )]

V̂

B

i

1
N j 1

N
j j

,i
j

Y (8)

=
∑ −

=
f fA A

T̂
[ ( ) ( )]

V̂

B

i

1
2N j 1

N
j

,i
j

2

Y (9)

These definitions and procedures related to sensitivity indices were
applied to our study of the SHERPA model.

3. Characterization of sources of uncertainty

3.1. The general setting

To study the uncertainty affecting the model, we take all quantifi-
able uncertainties into account, and as derived from each input of the
model. Generally speaking, these uncertainties might be estimated
starting from the probability distributions of the variables involved.

Given our particular case, it is necessary to identify all the terms
affecting the air quality modelled at a city level (as aforementioned
earlier, PM2.5 yearly averages), that are:

- The model coefficients: four values for α and four values for ω,
defining the link between precursor emissions (NOX nitrogen oxides,
NH3 ammonia, PPM primary particulate matter, SO2 sulphur di-
oxide) and concentrations;

- The precursor emission inputs (again, related to NOX, NH3, PPM,
and SO2);

- The selected policy option, or level of ambition to improve air
quality, in terms of emission reductions: in this paper we refer to
four of the policies considered in the Air Quality Package Review
(Amann et al., 2014), that will be expanded on at a later stage.

SHERPA is based on spatially dependent coefficients but it is not our
place here to discuss the results on every grid cell. Instead, we restricted
our uncertainty and sensitivity analysis to specific locations, namely

four cities: Helsinki, Constanța, London, and Milan. These cities have
been selected as they represent examples of different EU meteorological
and emission inventory conditions. As stated, in this paper we refer to
the SHERPA model linking emission reduction scenarios to average
yearly/annual concentrations of PM2.5.

3.2. Uncertainties of the SHERPA coefficients

The implementation of SHERPA is based on data produced by the
CHIMERE CTM model (Menut et al., 2013). In particular, the CTM has
been used across the whole European territory with a spatial resolution
of roughly 7× 7 km2. The anthropogenic emissions underlying the
model simulations are based on the MACC-TNO emission inventory
(Monitoring Atmospheric Composition and Climate data, produced by
the TNO research institute) (Kuenen et al., 2014), with residential
sector emissions modified to account for the enhanced wood con-
sumption at extremely low temperatures (Terrenoire et al., 2015). The
meteorological input data is based on IFS (Integrated Forecasting
System from the European Centre for Medium-Range Weather Fore-
casts) for the year 2009. A set of CTM simulations in which emissions
are reduced over the entire modelling domain are used to derive the α
and ω coefficients. These are required in the simplified SHERPA
equation, for each grid cell and precursor. An additional set of simu-
lations, with reductions over specific areas, provide data for the
method's validation. More details on the whole procedure can be found
in Thunis et al. (2016), and Pisoni et al. (2017). The identification
process previously described led to assign a normal distribution to each
α and ω coefficients. The characteristics of the normal distributions are
reported in Table 1 for the cities studied.

3.3. Uncertainties of the emissions and policies

The emissions of NOX, NH3, PPM, and SO2, expressed in Ktons/year
are assumed to be uniformly distributed around their respective nom-
inal value, as no better assumptions can be derived on the shape of
these Probability Distribution Functions. While nominal values come
from the considered SHERPA emission inventory, uncertainties (range
of variability) have been derived from scientific literature (Nielsen
et al., 2014; Kuenen et al., 2014), and considered the same for all city
cases. For example: NOX varies of an amount of± 30% around its
nominal value as indicated in Table 2.

Finally, four policy options have been selected for this study, to

Table 1
Mean and standard deviations (Std) of the normal distributions associated with the coefficients α and ω for different cities.

Coefficient Helsinki Constanța London Milan

Mean Std Mean Std Mean Std Mean Std

ω_NOx 1.8681 0.0104 1.9728 0.0221 1.8681 0.0104 1.9728 0.0221
ω_NH3 1.6201 0.0094 1.6005 0.0202 1.6201 0.0094 1.6005 0.0202
ω_ppm 2.5056 0.0066 2.3294 0.0173 2.5056 0.0066 2.3294 0.0173
ω_SO2 1.3761 0.0105 1.3397 0.0091 1.3761 0.0105 1.3397 0.0091
α_NOx 0.0032 0.0004 0.0494 0.0041 0.0109 0.0006 0.0497 0.0050
α_NH3 0.1365 0.0054 0.0680 0.0039 0.0704 0.0031 0.0679 0.0133
α_ppm 0.4994 0.0087 0.5332 0.0133 0.2804 0.0338 1.9693 0.0422
α_SO2 0.0026 0.0004 0.0065 0.0004 0.0023 0.0005 0.0123 0.0048

Table 2
Precursors uniform distribution range.

Precursors Range

NOX [ −0.3, +0.3 ]
NH3 [ −0.5, +0.5 ]
PPM [ −0.5, +0.5 ]
SO2 [ −0.1, +0.1]
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represent different levels of ambition in trying to improve air quality
between the CLE (Current Legislation) and the MFR (Maximum Feasible
Reductions3). In particular, the four policies considered in this study
represent air quality improvement at 25%, 50%, 75% (between CLE
and MFR), and at 100% (that is to say, MFR).4 It is important to note
that here we use an “EU wide” definition of CLE and MFR, so that the
policy adhered to in this paper is the same for all the cities considered.

4. Results and discussion

4.1. Uncertainty analysis results

The uncertainty analysis is performed to evaluate the range of
variability of the output (reduction of PM2.5 concentrations), due to the
model input uncertainties. This requires propagation of the input un-
certainties into the output of interest (i.e. yearly average concentrations
of PM2.5). This propagation is performed using Monte Carlo simula-
tions of SHERPA. For this purpose, a Monte Carlo sample of the input
variables has been generated. This sample is a “2N x d” matrix
(N= 1024, d= 13) each column containing the values of each input
sampling from their probability density function (see Section 3). Each
row of the matrix represents a set of model input values that is used to
run SHERPA. Running SHERPA for each row of input values provide the
vector of model responses with the size of 2N=2048. Note that, in
reference to Eqs. (8) and (9), the sample is composed of the two input
samples A and B each of size N. We grouped the uncertainty analysis on
the basis of the four different policies selected, that is to say considering
air quality improvement at 25%, 50%, 75%, and 100% (as said, be-
tween Current LEgislation and Maximum Feasible Reductions).

Regarding the four cities of Helsinki, Constanța, London, and Milan
(Fig. 2), we report, for each policy, the density distributions of the
percentage change of concentration (with respect to the base case) as
resulting from the input uncertainties. They were obtained, from the
Monte Carlo simulations of SHERPA, by using the kernel density esti-
mation algorithm of Botev et al. (2010). In particular, the x-axis re-
presents the percentage change in concentrations of PM2.5 yearly
average, and the y-axis represents the probability density value.

In general, we note that similar results are observed for the in-
vestigated cities. In particular, the more ambitious the policy applied,
the more the estimated probability density function is shifted towards
higher pollutant concentration reduction (Fig. 2).

This shift is accompanied with an increase of the predicted un-
certainty ranges which means that the more ambitious is the chosen
policy, the less certain is the predicted PM2.5 yearly average. Notably,
the distributions spread over a larger range (i.e. [15, 80] %) for the city
of Milan. This indicates that Milan represents the highest potential of
pollutant concentration reduction. This makes sense as the area of
Milan is known to be more polluted than the other three cities men-
tioned.

In the case of Milan (Fig. 2d), we can infer that by applying policy
25%, according to SHERPA, one would expect an abatement of between
[15, 50] % while by applying a more ambitious policy, say the 50%
policy, the predicted reduction lies within [18, 60] %. Given that the

application of these two different policies, in an uncertain context,
provides ranges that largely overlap, it may be questioned whether it is
worthy applying a 50% policy (more ambitious and so much more
expensive) instead of 25% policy. This overlapping of the estimated
PDFs is concurrent with their flattening (and enlargement) which
means that the predictions prove to be more uncertain with ambitious
policies.

In the context of policy decision-making, we are facing this chal-
lenge in an uncertain framework. Because of the uncertainties attached
to the model, there is no evidence that by choosing one policy over
another that any significant improvement will be achieved when
compared with the choice of a less ambitious policy. This is particularly
relevant when the former is more expensive to apply than the latter. We
can confidently say that, under the present circumstances, decision
making suffers from a lack of robustness. Such a lack of robustness
would not occur if we had obtained non-overlapping and narrower
predicted uncertainties. Therefore, it is crucial to identify the uncertain
inputs which are responsible for the predicted uncertainties. This would
lead the way to where to place future efforts in order to reduce un-
certainties in SHERPA's predictions and eventually be able to make a
reliable choice from the different policy options.

The uncertainty analysis is not able to apportion the total output
variability to the different variable input factors (input and model
coefficient). To do so, it is necessary to perform sensitivity analysis,
which quantifies output uncertainty caused by the different model in-
puts, and identifies the main sources of uncertainty linked to higher
sensitivity indices.

4.2. Sensitivity indices

An initial sensitivity analysis is made considering all together the 13
uncertain variables, namely the four α coefficients, the four ω coeffi-
cients, the four emissions (NOX, NH3, PPM, and SO2), and the policy
options. This was achieved with an extra cost of 13×1024 runs of the
SHERPA model accordingly with the methods described at the end of
Section 2.2 (see Eqs. (8) and (9)). For all inputs explored, results in
terms of first-order indices and total order indices are very similar,
proving that interactions among model inputs are virtually absent. As a
result, we only report and discuss the total order indices Ti (particularly
relevant with regards to sensitivity analysis).

The total sensitivity indices estimates are reported in Fig. 3 for the
first analysis (with uncertain policy options) and Fig. 4 (for a fixed
policy choice). More in details, the different terms in the x-axis re-
present:

- ω_{NOx, NH3, ppm, SO2} and α_{ NOx, NH3, ppm, SO2}: the model
coefficient;

- NOx, NH3, PPM, and SO2: the input of the model (emission);
- ‘Policy’: the selected ‘ambition’ level for the analysis;

while in the y-axis the total sensitivity index values are indicated.
The results for all cities show the input “policy option” as a pre-

dominant contributor to the accuracy of the model results. This is de-
finitely the case for the most important source of uncertainty in three
cases (Helsinki, Constanța, and London), and the second most im-
portant input for Milan (about 44% of output uncertainty postulated by
the policy option whereas the PPM has a total sensitivity index of 53%).
This means that the choice of policy heavily influences the predicted
concentration reductions.

In this case, the first action is on the policy makers who should
discuss upon what is the best policy to put in place. Later on, once the
policy has been agreed upon, and the uncertainty reduced, the focus
could be moved to the other inputs. However, the city of Milan is rather
particular, because of the considerably high emissions of PPMs, even of
more importance than the choice of policy. This fact suggests that it
would be wise not to strictly embark in discussions about the optimal

3 The ‘Maximum feasible reduction’ (MFR) scenario simulates how much of the emis-
sions of the various substances could be further reduced beyond the current legislation,
through the application of all available technical measures, without changes in the energy
structures and without behavioral changes of consumers. The MFR considered is defined
as in Amann et al. (2013).

4 The percentage reductions considered in this paper have been chosen to analyze the
full span of possible variability of the model, so to test thoroughly its behavior. Also, note
that 100% of MFR does not mean a reduction of 100% of a pollutant, but of the total
amount of emissions that can be reduced if all available technologies would be chosen
(100% MFR i.e. means 59% emission reductions for PPM, 34% reductions for ammonia,
etc.). Finally, “MFR extreme cases” (75% or 100% reductions) allow also to evaluate how
the model would behave in case of “energy structure” changes, that are not included in
the MFR and that could potentially strongly reduce emissions.
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Fig. 2. Estimated probability density functions of predicted PM2.5 yearly average concentration reduction for different policies and different cities.

Fig. 3. Total sensitivity indices of model coefficients, emissions, and policy option.
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policy to pursue, but, first (or at the same time/simultaneously), to try
to improve the evidence based on the emissions of PPMs.

In all cases, the inputs related to α and ω have quite a negligible
influence on concentration reductions. This means that the modeler and
the analyst do not need to spend time and efforts in further reducing the
uncertainty of such inputs, because the value of the concentration re-
ductions will not show any noticeable improvement in terms of accu-
racy and the results of such efforts would not be useful for the policy.

In the second analysis, we assume that a given policy has been se-
lected (say, the one at 50% air quality improvement). As a result, being
fixed, this model input is no longer a source of uncertainty. As a second
step, a new sensitivity analysis has been carried out in order to see
which inputs, among the 12 remaining, are those which mostly con-
tribute to the uncertainty in the concentration reduction. Note that this
has been achieved without additional runs of the model. The results are
reported in Fig. 4.

First we note that except for the city of London (Fig. 4c), the most
significant input is by far the emission of PPMs. It explains around 80%
of the total variance for the city Helsinki (Fig. 4a), 60% for Constanța
(Fig. 4b), and 90% of response variances for Milan (Fig. 4d). In the
latter case, a more accurate estimation of the emission concentration of
PPM is crucial. The second most significant uncertain input is the
emission concentration of NH3 especially with relation to the cities of
Helsinki and Constanța. In the case of Constanța, the uncertainty on the
emission of NOX contributes equally with NH3 (about 10%). The effects
of the other inputs are negligible for these three cities. Note that when
we consider NH3 (as also the other precursor emissions), we are not
considering the emission of the city as such, but the emission of the
whole domain ‘weighted’ as shown in Equation (1). So when referring

to the uncertainty of one precursor, we are referring to the ‘general’
uncertainty of the emission inventory.

In the case of London (Fig. 4c), four sources of uncertainty are re-
sponsible for the response total variance, namely, NH3, NOX, PPM, and
α_SO2 (by order of importance). We find that emission of NOX and
emission of NH3 are the most important inputs (sensitivity indices are
0.30 and 0.43 respectively). This means that these two model inputs
are, now, the main contributors to the model output uncertainty for the
city of London. Therefore, if we want to improve the accuracy of con-
centration reductions, and also in this way, the evidence for policy-
decision making, we should concert our efforts towards reducing the
uncertainty on the emissions of NOX and NH3. PPM and α_SO2 follow,
and contribute as a whole to explain approximately 18% of model
output uncertainty.

Apart for α_SO2, the model coefficients (α and ω) and emission SO2

are less influential contributors, even if, in general, the α coefficients
appear as being more significant than the ω ones. Thus, actions related
to these model inputs would not contribute significantly to concentra-
tion reductions. However, the relative importance of α_SO2 (in the case,
not given here, where only α and ω uncertainty are considered) also
indicates that the modeler should pay attention to the coefficient α_SO2

linking emissions of SO2 (usually point sources) to concentrations. The
α_SO2 coefficient is currently estimated but without specifying the
height in which emissions of SO2 occur. Indeed, it is the authors’ belief
that the model could be improved by taking the vertical level (height)
of SO2 emission into account. This is not the case in the current version
of SHERPA.

Fig. 4. Total sensitivity indices of model coefficients and emissions for policy 50%.
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5. Conclusions

In this paper, we address the application of uncertainty and sensi-
tivity analysis techniques on a simplified air quality model. As, in
Europe, we are moving to a situation in which exceedances of air
quality legislation thresholds are mainly measured in specific regions or
cities, the focus of the paper has been on performing uncertainty and
sensitivity analysis on a modelling tool specifically designed for these
geographical scales. The considered modelling tool, SHERPA, has been
developed to support regional/local decision makers to design plans for
better air quality. In particular, SHERPA is used in this paper to predict
air quality improvement linked to emission reduction scenarios. The
SHERPA model output (in terms of yearly concentrations of PM2.5) has
been evaluated through uncertainty analysis (to quantify variability in
the model output) and sensitivity analysis (to identify the most influ-
ential inputs) with respect to four EU cities (Helsinki, Constanța,
London, and Milan) representative of different EU meteorological and
emission inventory conditions.

The UA-SA was performed taking into consideration uncertainties in
the SHERPA model coefficients, in the emissions of precursors of PM2.5
concentrations, and considering four alternative policy options.
Through the UA, it is found that the model response uncertainty in
terms of PM2.5 concentration abatement is substantially high for the
cities in question. In this framework, sensitivity analysis can help to
identify the uncertain inputs responsible for high uncertainty in the
prediction for PM2.5 concentration abatement. Such information is
crucial for future research purposes.

The SA shows that the most influential inputs are by far the policy
selection (in this case, the level of ambition to be considered in the
design of the air quality plan) and the emissions, in particular of PPM,
NOX, and NH3. The model coefficients (α and ω) are the least influential
inputs, even if the α coefficients are more significant than the ω ones. In
particular, policy option is a key aspect. In fact, in 3 out of 4 cases
(Helsinki, Constanța, and London) the choice of policy has the highest
sensitivity index, showing that the impact of this variable is more in-
fluential than all other model inputs. As a result this means that, in
using the model, the first action should be for the policy makers, who
should discuss upon what is the best policy to put in place. Later on,
once the policy has been agreed, discussion could move on as to how to
reduce uncertainty of the input and model coefficients, while con-
sidering the most relevant ones (identified by significant sensitivity
indices). In Milan, contrary to the other cities, the uncertainty in the
emissions of PPMs is the main contributor to the accuracy of the model
results. For this city, the suggestion is to spend resources in order to
obtain better knowledge of PPMs emissions, before (or at the same
time) moving in the policy arena context. All other sources of un-
certainty are quite irrelevant with regards to Milan.
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