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TIME FRACTIONAL SCHRÖDINGER EQUATION

HASSAN EMAMIRAD AND ARNAUD ROUGIREL

Abstract. We propose a time fractional extension of the Schrödinger equation
that keeps the main mechanical and quantum properties of the classical Schrödinger
equation. This extension is shown to be equivalent to another well identified time
first order PDE with fractional hamiltonian.

1. Introduction

We would like to address the issue of what are suitable time fractional extensions of
the Schrödinger equation. Our approach consists in, first, selecting some (important)
properties of the Schrödinger equation; secondly, finding a time fractional equation
which conserves these properties.

We have selected two properties: (i) the conservation of the L2-norm of wave func-
tions. That point is central w.r.t. the probabilistic character of quantum mechanics
objects. (ii) The dynamics of the Schrödinger equation, i.e. the time reversibility of
solutions which is related to the fact that the related solution operator is a group.
Indeed, in any reasonable mechanical theory, trajectories of autonomous systems
must be described by equations generating a group.

It is clear that the use of time fractional operators as Dα
0,t, do not allow to match

the above requirements. We refer to Remark 4.1 below for details, and to [Die10] or
[SKM93] for more information on fractional derivatives. Regarding the dynamics of
time fractional equations, we refer to [ER17].

In this paper, the real number α is always supposed to range between 0 and 1.
In order to recover the above properties, we consider time fractional operators

with lower bound −∞, i.e. Dα
−∞,t. More precisely, if, for simplicity, we restrict our

attention to the Hamiltonian Ĥ := −∆, then we will show that the problem

Dα
−∞,tu = −iα∆u, u(0) = v, (1.1)

admits a unique solution u in some suitable function space. Theorem 4.1 states that
the solution to (1.1) is given by

u(t) = eit(−∆)1/αv,

hence the L2-norm of u is conserved and the solution operator of (1.1) is a group.
Then, according to Corollary 4.3, (1.1) is equivalent to

d

dt
u = i(−∆)1/αu, u(0) = v. (1.2)

The coefficient iα in (1.1) is not surprising since we know from the work of Naber,
in [Nab04], that the operator D0,t + i∆ has a parabolic behavior (see Remark 4.1).
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In this paper, we consider more generally abstract time fractional Schrödinger
equations of the form

d

dt
u = iαAu, (1.3)

where A is a positive self-adjoint operator.
The outline is as follows. The forcoming section is dedicated to preliminaries

regarding fractional derivatives, in particular time fractional weak derivatives. In
section 3, we solve (1.3) in the case where the underlying Hilbert space in R. That
turns out to be the corner stone of our work since, in section 4, we solve (1.3) by
diagonalisation using spectral theory.

2. Fractional derivatives with lower bound −∞

We start with the convolution of functions defined on R, with the fractional kernel,
whose definition is as follow.

Definition 2.1. For β ∈ (0,∞), let us denote by gβ the function of L1
loc([0,∞))

defined for a.e. t > 0 by

gβ(t) =
1

Γ(β)
tβ−1.

Let X be a complex Banach space with norm ‖ · ‖.

Proposition 2.1. Let α ∈ (0, 1) and u ∈ L1(R;X)∩L∞(R;X). Then, for all t ∈ R,
the function

(−∞, t)→ X, y 7→ gα(t− y)u(y)

is integrable on (−∞, t) and

sup
t∈R

∫ t

−∞
gα(t− y)‖u(y)‖dy <∞.

Proof. For all t ∈ R, we have∫ t

−∞
gα(t− y)‖u(y)‖dy ≤

∫ t−1

−∞
gα(t− y)‖u(y)‖dy +

∫ t

t−1

gα(t− y)‖u(y)‖dy

≤ gα(1)‖u‖L1(R;X) + gα+1(1)‖u‖L∞(R;X).

�

Under the assumptions and notation of Proposition 2.1, we put, for all t ∈ R,

gα ∗ u(t) :=

∫ t

−∞
gα(t− y)u(y)dy =

∫ ∞
0

gα(y)u(t− y)dy.

Also, we define

gα ∗′ u(t) :=

∫ ∞
t

gα(y − t)u(y)dy =

∫ ∞
0

gα(y)u(t+ y)dy.

In some sense, these convolutions are adjoints. More precisely, we have the following
result, whose easy proof is left to the reader.

Proposition 2.2. Let α ∈ (0, 1), u ∈ L1(R;X)∩L∞(R;X) and ψ ∈ L1(R)∩L∞(R).
Then ∫

R
gα ∗ u(t)ψ(t) dt =

∫
R
u(t) gα ∗′ ψ(t) dt. (2.1)
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Then we may give the following definition of fractional derivatives.

Definition 2.2. Let α ∈ (0, 1) and u ∈ L1(R;X)∩L∞(R;X). We say that u admits
a (forward) derivative of order α in L∞(R;X) if

g1−α ∗ u ∈ W 1,∞(R;X).

In this case, its (forward) derivative of order α is the function of L∞(R;X) defined
by

Dα
−∞,tu :=

d

dt

{
g1−α ∗ u

}
.

Definition 2.3. Let α ∈ (0, 1) and u ∈ W 1,1(R;X) ∩ W 1,∞(R;X). Then we say
that u admits a backward derivative of order α in L∞(R;X) if

g1−α ∗′
d

dt
u ∈ L∞(R;X).

In this case, its backward derivative of order α is the function of L∞(R;X) defined
by

Dα
t,∞u := g1−α ∗′

d

dt
u.

Let S(R) denote the Schwartz space of rapidly decreasing complex functions de-
fined on R.

Proposition 2.3. Let α ∈ (0, 1), u ∈ L1(R;X) ∩ L∞(R;X) and ϕ ∈ S(R). Assume
that u admits a fractional derivative of order α in L∞(R;X). Then∫

R
Dα
−∞,tu(t)ϕ(t) dt = −

∫
R
u(t)Dα

t,∞ϕ(t) dt. (2.2)

Proof. Integrate by parts and use Proposition 2.2. �

We will now introduce fractional derivatives in the sense of distributions. The
following result makes possible such a definition.

Proposition 2.4. Let α ∈ (0, 1) and ϕ ∈ S(R). Then Dα
t,∞ϕ ∈ L1(R) and

‖Dα
t,∞ϕ‖L1(R) ≤ C

(
‖ϕ‖L1(R) + ‖ϕ′‖L1(R)

)
, (2.3)

where ϕ′ := d
dt
ϕ and the constant C depends only on α.

Proof. For any fixed time t in R, let v(y) := ϕ(y+ t)−ϕ(t). Integrating by part, we
get

α

∫ ∞
0

y−α−1v(y)dy =

∫ ∞
0

y−αϕ′(y + t)dy.

Hence

Dα
t,∞ϕ(t) =

1

|Γ(−α)|

∫ ∞
0

y−α−1
(
ϕ(y + t)− ϕ(t)

)
dy,

and

|Γ(−α)Dα
t,∞ϕ(t)| ≤

∫ 1

0

y−α
∣∣ϕ(y + t)− ϕ(t)

y

∣∣dy +

∫ ∞
1

y−α−1|ϕ(y + t)− ϕ(t)|dy

=: I1(t) + I2(t),

with obvious notation for I1(t) and I2(t).
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Let us show that I1 is integrable on R. For, since
ϕ(y + t)− ϕ(t)

y
=

∫ 1

0

ϕ′(ys+ t) ds, ∀y ∈ (0, 1],

we derive ∫
R
|I1(t)| dt ≤

∫ 1

0

y−αdy

∫ 1

0

ds

∫
R
|ϕ′(ys+ t)| dt =

‖ϕ′‖L1(R)

1− α
.

Regarding I2(t), we have∫
R
|I2(t)| dt ≤

∫ ∞
1

y−α−1

∫
R
|ϕ(y + t)|+ |ϕ(t)| dt

=
2

α
‖ϕ‖L1(R).

�

That estimate allows us to define fractional derivatives in the sense of distributions.
Indeed, (2.3) shows that, for each u ∈ L∞(R;X), the linear map

S(R)→ X, ϕ 7→ −
∫
R
u(t)Dα

t,∞ϕ(t) dt

is a tempered distribution. The set of tempered distributions with values in X is
denoted by S ′(R;X). That allows us to set the following definition.

Definition 2.4. Let α ∈ (0, 1), X be a complex Banach space and u ∈ L∞(R;X).
Then the weak derivative of u is the X-valued tempered distribution, denoted by
Dα
−∞,tu, and defined, for all ϕ ∈ S(R), by

〈Dα
−∞,tu, ϕ〉 = −

∫
R
u(t)Dα

t,∞ϕ(t) dt.

If we want to highlight the duality taking place in the above bracket, we will write

〈Dα
−∞,tu, ϕ〉S′(R;X),S(R) or 〈Dα

−∞,tu, ϕ〉S′(R;X)

instead of 〈Dα
−∞,tu, ϕ〉.

In this paper, we will need to compute Dα
−∞,tu for bounded functions u. For such

functions, the integral ∫ t

−∞
g1−α(t− y)u(y)dy

is, in general, not absolutely convergent. That point turns out to be a major draw-
back; and we will explain the reason in the sequel.

Works on fractional calculus with lower terminal −∞ and not absolutely conver-
gent integrals, go back, at least to 1938 with the smart paper [Lov38]. The difficulties
when dealing with non absolutely convergent integral are illustrated by Theorem 5
in [Lov38], which states, roughly speaking that each u ∈ L∞(R) such that

sup
t∈R

∣∣ ∫ t

0

u(y)dy
∣∣ <∞, (2.4)

satisfies, for all t ∈ R, the following (hard to prove) identity

g1−α ∗ (gα ∗ u)(t) = g1−α ∗ (gα ∗ u)(0) +

∫ t

0

u(y)dy.
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That result is quiet surprising since, extending gα by 0 outside of (0,∞), we have

g1−α ∗ gα(t) =

{
1 if t > 0

0 if t < 0
;

so that the convolution

(g1−α ∗ gα) ∗ u(t) =

∫ t

−∞
u(y)dy

is not defined in general.
In this paper, we deal with bounded functions satisfying typically (2.4). However,

Love’s approach (see also [BMRST16]) allowed us to obtain only partial results. That
is, we must assume that α = 1/n for some positive integer n.

3. Time fractional equations in R

We will use the framework of Section 2 with X = C. For a ∈ R and α ∈ (0, 1), we
consider this equation: {

Find u ∈ L∞(R) such that
Dα
−∞,tu = (ia)αu, in S ′(R).

(3.1)

Of course, in (3.1), Dα
−∞,tu is understood in the sense of Definition 2.4.

For ψ ∈ L2(Rd), we denote by Fψ or ψ̂ its Fourier transform. More precisely, for
ϕ ∈ L1(R), we have

ϕ̂(σ) = cF

∫
R

e−iσtϕ(t) dt, F−1ϕ(t) = cF−1

∫
R

eitσϕ(σ) dσ, (3.2)

where cF , cF−1 denote reader’s favorite constants of normalization, whose product
equals 1

2π
.

Remark 3.1. Solving the fractional equation

Dα
−∞,tu = (ia)αu (3.3)

is a touchy business.
First, it is known that the function u1 : t 7→ exp(iat) satisfies∫ ∞

0

g1−α(y)u1(t− y)dy = (ia)α−1u1(t).

Thus, u1 solves (3.3) in some “classical sense”. However, the above integral is not
absolutely convergent. Thus it is not clear how to get uniqueness for (3.3) in a
space containing u1 (typically Cb(R)). This is the reason why we use time fractional
derivatives in the sense of distributions to solve (3.3).

But then, existence for (3.1) is tricky since, we have not been able to show directly
that u1 solves (3.1). Indeed, Fubini’s Theorem being not applicable, the path from∫

R
eiatDα

t,∞ϕ(t) dt =

∫
R

eiat

∫ ∞
t

g1−α(y − t)ϕ′(y)dy

to ∫
R
ϕ′(y)dy

∫ y

−∞
eiatg1−α(y − t) dt

is not clear. We overcome this difficulty by using Fourier transforms.
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The last difficulty is technical and concerns the use of Fourier transforms. More
precisely, starting from (3.3), we obtain formally by Fourier transform,

(iσ)αû = (ia)αû.

However, if u = u1 then
(iσ)αû = 1

cF−1
(iσ)αδa,

which has no meaning since the function σ 7→ (iσ)α, being not smooth at σ = 0,
cannot multiply δa, the Dirac mass at the point a.

In order to overcome this difficulty, we first determine the support of û, which turns
out to be discrete, as expected; and then compute u by inverse Fourier transform.

Theorem 3.1. Let a ∈ R, α ∈ (0, 1) and u ∈ L∞(R). Then u is a solution of (3.1)
iff there exists k ∈ C such that

u(t) = k exp(iat), a.e. t ∈ R.

The following lemma will be usefull in the proof of Theorem 3.1.

Lemma 3.2. Let ϕ ∈ S(R). Then, for all σ ∈ R,

F
(
Dα
−∞,tϕ

)
(σ) = (iσ)αϕ̂(σ) (3.4)

Dα
σ,∞ϕ̂(σ) = −F

(
(it)αϕ

)
(σ). (3.5)

Proof. For the proof of (3.4), we refer to [SKM93, Section 7.1]. We establish (3.5)
by a duality argument. Indeed, for all ϕ and ψ in S(R), there holds, by Proposition
2.3, ∫

R
Dα
σ,∞ϕ̂(σ)ψ(σ) dσ = −

∫
R
ϕ̂(σ)Dα

−∞,σ ψ(σ) dσ

= −
∫
R
ϕ(σ)F

(
Dα
−∞,t ψ

)
(σ) dσ,

by Plancherel’s formula. Thus with (3.4) and Plancherel’s formula once again, we
get ∫

R
Dα
σ,∞ϕ̂(σ)ψ(σ) dσ = −

∫
R
ϕ(σ)(iσ)αψ̂(σ) dσ

= −
∫
R
F
(
(it)αϕ

)
(σ)ψ(σ) dσ.

That proves (3.5).
�

Proof of Theorem 3.1. (i) Let us show that the function u : t 7→ eiat is solution to
(3.1). For, we compute

〈F
(
Dα
−∞,tu

)
, ϕ〉S′(R),S(R) = 〈Dα

−∞,tu, ϕ̂〉

= −
∫
R
u(σ)Dα

σ,∞ϕ̂(σ) dσ

=

∫
R

eiaσF
(
(it)αϕ

)
(σ) dσ,
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by (3.5). Besides, the Fourier transform of t 7→ (it)αϕ(t) belongs to L1(R) by (3.5)
and Proposition 2.4. Then the latter integral is equal, by inverse Fourier transform
(see (3.2)), to

1

cF−1

(ia)αϕ(a) = (ia)α〈 δa
cF−1

, ϕ〉 = (ia)α〈F
(
eiat
)
, ϕ〉

= (ia)α〈Fu, ϕ〉.

Thus by invertibility of the Fourier transform in S ′(R), we deduce that t 7→ eiat is
solution to (3.1).

(ii) Conversely, let us show that each solution u to (3.1) is proportional to some
exponential function. Computing as above, we get, for each test-function ϕ in S(R),

〈F
(
Dα
−∞,tu

)
, ϕ〉S′(R),S(R) =

∫
R
u(σ)F

(
(it)αϕ

)
(σ) dσ.

Thus, since u solves (3.1),

0 =

∫
R
u(σ)F

(
{(it)α − (ia)α}ϕ

)
(σ) dσ.

Now, set

Ia :=

{
{0} if a = 0

{0, a} if a 6= 0
.

Then, for each ψ ∈ S(R) with support, denoted by suppψ, in R \ Ia, we may find a
function ϕ ∈ S(R) so that

ψ(t) =
(
(it)α − (ia)α

)
ϕ(t), ∀t ∈ suppψ.

There results that
〈û, ψ〉S′(R),S(R) = 0.

Thus the support of the distribution û lies in Ia. By standard results in the theory
of distributions, we infer that there exist some integer n ≥ 0 and ck, dk ∈ C (k =
0, . . . , n) such that

û =
n∑
k=0

ckδ
(k)
0 + dkδ

(k)
a ,

where δa denotes the Dirac mass at a. Hence, for other constants still labeled ck and
dk,

u(t) =
n∑
k=0

ckt
k + dkt

keiat, ∀t ∈ R.

Since u is bounded, u(t) = c0 + d0eiat. Finally, according to the existence part (i) of
this proof, we have

Dα
−∞,t(c0 + d0eiat) = d0(ia)αeiat in S ′(R).

On the other hand, since u solves (3.1), there holds

Dα
−∞,t(c0 + d0eiat) = (ia)α(c0 + d0eiat).

Thus, for all t ∈ R, we have u(t) = d0 exp(iat). �
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4. Time fractional Schrödinger equation

Let α ∈ (0, 1), d ≥ 1 be an integer and A : D(A) ⊆ L2(Rd) → L2(Rd) be a
unbounded operator on L2(Rd) with domain D(A). For each v ∈ D(A), we consider
the following Time Fractional Schrödinger Equation

Find u ∈ Cb

(
R, D(A)

)
such that

Dα
−∞,tu = iαAu, in S ′(R, L2(Rd))

u(0) = v.

(4.1)

In (4.1), Cb

(
R, D(A)

)
is the space of bounded and continuous functions defined on

R with values in D(A).

Remark 4.1. There are many ways to extend the free Schrödinger equation, i.e.
d

dt
u = −i∆u, (4.2)

into a time fractional equation (see for instance [Nab04], [Las02], [Luc13]). First, we
may consider

Dα
0,tu = −i∆u.

However, as pointed out in [ER18], that equation has regularizing effect and dissi-
pative properties, in a great contrast with (4.2). In order to recover a hyperbolic
behavior, it is better to extend (4.2) by

Dα
0,tu = −iα∆u. (4.3)

Indeed, according to [ER18, Theorem 4.4 & Example 4.6], this equation has no
regularizing effect and possesses an asymptotic conservation law. The drawback of
(4.3) regarding the dynamics, is that it does not generate a semi-group. However,
(4.1) does, as we will show in the sequel.

Remark 4.2. The equation of (4.1) holds equivalently in Cb

(
R, L2(Rd)

)
. In any case,

Dα
−∞,tu is understood in the sense of Definition 2.4.

Theorem 4.1. Let α ∈ (0, 1), A : D(A) ⊆ L2(Rd) → L2(Rd) be a positive self
adjoint operator on L2(Rd) and v ∈ D(A). Then (4.1) has a unique solution u.
Moreover, for all t ∈ R,

u(t) = eitA1/α

v, in D(A). (4.4)

Before to prove this theorem, let us precise the meaning of (4.4). According to
the Spectral Theorem in multiplication form (see [RS80, Theorem VIII.4] or [Hal13,
Theorem 10.10]), there exist a measure space (X,µ) with finite measure µ, a unitary
map U : L2(Rd)→ L2(X,µ) and a measurable real-valued function h on X which is
finite µ-a.e., such that

U
(
D(A)

)
=
{
ψ ∈ L2(X,µ) | hψ ∈ L2(X,µ)

}
(4.5)

and
UAU−1(ψ) = hψ, ∀ψ ∈ U

(
D(A)

)
. (4.6)

Under the assumption of Theorem 4.1, we claim that

h ≥ 0 µ-a.e. on X. (4.7)
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Indeed, let us denote by (·, ·)L2(X,µ) the standard inner product of L2(X,µ). We put,
for each positive integer n,

Xn :=
{
ξ ∈ X | − n < h(ξ) < 0

}
,

and denote by 1IXn the indicator function ofXn (i.e. 1IXn = 1 onXn and 0 elsewhere).
Then h1IXn lies in L2(X,µ) since µ is finite. Hence(

h1IXn , 1IXn
)
L2(X,µ)

=
(
UAU−1(1IXn), 1IXn

)
L2(X,µ)

(by (4.6))

=
(
AU−1(1IXn),U−1(1IXn)

)
L2(Rd)

(since U is unitary)

≥ 0 (since A is positive).

Thus, µ(Xn) = 0; and since h is finite µ-a.e., we obtain (4.7).
We are now in position to define the operator eitA1/α . For each t ∈ R, denote by

ft, the function
ft : [0,∞)→ C, x 7→ eitx1/α .

Then eitA1/α is defined through bounded functional calculus for self adjoint operators
(see [RS80, Theorem VIII.5] or [Kow09, Corollary 4.43]), by

eitA1/α

:= ft(A) := U−1Mft◦hU , (4.8)

where Mft◦h : L2(X,µ)→ L2(X,µ) is the multiplication operator defined by

Mft◦hψ = ft(h)ψ, ∀ψ ∈ L2(X,µ).

Proof of Theorem 4.1. (i) Uniqueness of the solution u. By linearity, it is enough to
show that v = 0 in (4.1) implies u = 0. For each ϕ ∈ S(R), one has

U
(
〈Dα
−∞,tu, ϕ〉S′(R;L2(Rd))

)
= −U

( ∫
R
u(t)Dα

t,∞ϕ(t) dt
)

(by Definition 2.4)

= −
∫
R
U
(
u(t)

)
Dα
t,∞ϕ(t) dt (by [ABHN11, Prop. 1.1.6])

= 〈Dα
−∞,tû, ϕ〉S′(R;L2(X,µ)) in L2(X,µ),

according to Definition 2.4 and with the notation û(t) := U(u(t)).
On the other hand,

U
(
〈iαAu, ϕ〉S′(R;L2(Rd))

)
= U

( ∫
R

iαAu(t)ϕ(t) dt
)

=

∫
R

iαhû(t)ϕ(t) dt (since UA(u(t)) = hû(t) by (4.6))

= 〈iαhû, ϕ〉S′(R;L2(X,µ)).

Since u solves (4.1), we get

Dα
−∞,tû = iαhû, in S ′

(
R;L2(X,µ)

)
.

In particular, for µ-a.e. ξ ∈ X, there holds h(ξ) ≥ 0 and

Dα
−∞,tû(·, ξ) = iαh(ξ)û(·, ξ), in S ′(R). (4.9)

Besides, û(0, ξ) = U(u(0))(ξ) = 0 for µ-a.e. ξ in X. Thus Theorem 3.1 leads to
û(·, ξ) = 0; so that u = 0. That completes the uniqueness part of the proof.
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(ii) Existence. Let us show that the function

u : t 7→ eitA1/α

v

solves (4.1). For, let t ∈ R. With the notation ŵ := U(w) for w ∈ L2(Rd), we get in
view of (4.8)

û(t) = ft(h)v̂. (4.10)
Since ft is bounded µ-a.e. on X, we deduce that û belongs to L∞(R;L2(X,µ)).

Then, thanks to Definition 2.4, we infer

〈Dα
−∞,tû, ϕ〉S′(R;L2(X,µ)) = −

∫
R
û(t)Dα

t,∞ϕ(t) dt, in L2(X,µ).

Thus for µ-a.e. ξ in X,

〈Dα
−∞,tû, ϕ〉S′(R;L2(X,µ))(ξ) = −

∫
R
ft
(
h(ξ)

)
v̂(ξ)Dα

t,∞ϕ(t) dt (by (4.10))

=
〈
Dα
−∞,t

{
ft
(
h(ξ)

)
v̂(ξ)

}
, ϕ
〉
S′(R)

= 〈iαh(ξ)û(·, ξ), ϕ〉S′(R) (by Th. 3.1).

Hence we have proved that, for µ-a.e. ξ in X,

Dα
−∞,tû(·, ξ) = iαh(ξ)û(·, ξ), in S ′(R). (4.11)

Moreover, by (4.10),

‖hû(t, ·)‖2
L2(X,µ) =

∫
X

h2|v̂|2 dµ <∞,

since v̂ lies in U(D(A))− see (4.5). Hence t 7→ hû(t) belongs to L∞(R, L2(X,µ)); so
that, with (4.11), we derive that

Dα
−∞,tû = iαhû, in S ′(R, L2(X,µ)). (4.12)

Let us go back in the direct space L2(Rd) and write down the expected equation
for u. In view of (4.6), we have

hû(t) = UAu(t), in L2(X,µ).

Also (see above, the uniqueness part of the proof)

Dα
−∞,tû = U

(
Dα
−∞,tu

)
, in S ′(R, L2(X,µ)).

Thus, with (4.12)
Dα
−∞,tu = iαAu, in S ′(R;L2(Rd)).

Finally, û(0) = v̂, thus u(0) = v. Hence u is solution to (4.1), which completes the
proof of the theorem. �

Theorem 4.1 allows us to define the solution operator associated to (4.1). Indeed,
under the assumptions of that theorem, for each t in R, we put

Sα(t) := eitA1/α

. (4.13)

Then, for each v in D(A), t 7→ Sα(t)v is the solution to (4.1), according to Theorem
4.1. Thus, by definition, Sα is the solution operator associated to (4.1).

With these notation, we may give some properties of Sα.
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Theorem 4.2. Let α ∈ (0, 1) and A be a positive self adjoint operator on L2(Rd).
Then Sα defined by (4.13), is a strongly continuous unitary group on L2(Rd). More-
over, its infinitesimal generator is iA1/α.

Above, A1/α is defined through unbounded functional calculus. More precisely,
denoting by L(L2(Rd)) the space of linear and continuous maps from L2(Rd) into
itself, Theorem 10.4 in [Hal13] states that there exists a unique projection-valued
measure µA on [0,∞) with values in L(L2(Rd)) such that∫ ∞

0

λ dµA = A.

Then
A1/α :=

∫ ∞
0

λ1/α dµA.

The domain of A1/α is

D(A1/α) :=
{
v ∈ L2(Rd) |

∫ ∞
0

λ2/α dµAv (λ) <∞
}
, (4.14)

where µAv is the Borel measure on [0,∞) defined for each Borel set E ⊆ [0,∞) by

µAv (E) =
(
v, µA(E)v)L2(Rd). (4.15)

We recall that µA(E) is an orthogonal projection of L2(Rd).

Proof of Theorem 4.2. Recalling that ft(x) := eitx1/α , it is clear from (4.8) that Sα(t)
is bounded on L2(Rd). Also, Sα(0) is equal to IdL2(Rd), the identity operator of
L2(Rd). Moreover, for each real numbers t, s, the properties of the functional calculus
featured in [RS80, Theorem VIII.5] lead to

Sα(t)Sα(s) = ft(A)fs(A) = ft+s(A) = Sα(t+ s).

Let us show that Sα(t) is unitary. For, again by functional calculus, we have

Sα(t)Sα(t)∗ = ft(A)ft(A) = |ft|2(A)

= IdL2(Rd),

since |ft(x)| = 1 for x ≥ 0. In the same way, there holds Sα(t)∗Sα(t) = IdL2(Rd), so
that Sα(t) is unitary.

Furthermore, by (4.6) and (4.8), for each v in L2(Rd),

‖Sα(t)v − v‖2
L2(Rd) = ‖Mft◦hv̂ − v̂‖2

L2(X,µ)

=

∫
X

∣∣eith(ξ)1/α − 1
∣∣2|v̂(ξ)|2 dµ(ξ) −−→

t→0
0,

by the Lebesgue dominated convergence theorem. Hence, Sα is strongly continuous.
Finally, let us compute its infinitesimal generator. According to [RS80, Theorem

VIII.6], there holds

Sα(t) =

∫ ∞
0

ft(λ) dµA.

Hence, for each v in D(A1/α), Theorem 5.9 in [Sch12, Chap 5] leads to∥∥∥Sα(t)v − v
t

− iA1/αv
∥∥∥2

L2(Rd)
=

∫ ∞
0

∣∣∣eitλ1/α − 1

t
− iλ1/α

∣∣∣2 dµAv (λ).
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Using the fact that λ 7→ λ2/α lies in L1(0,∞;µAv ) (by (4.14)), we obtain with the
dominated convergence theorem, that the latter integral goes to zero as t→ 0. That
is to say iA1/α is the infinitesimal generator of Sα. �

The next result states that the time fractional problem (4.1) may be reduced to a
time first order PDE. Notice that the latter PDE is obtained formally by raising the
differential operators involved in (4.1) to the power 1/α.

Corollary 4.3. Let α ∈ (0, 1), A be a positive self adjoint operator on L2(Rd) and
v ∈ D(A1/α). Then (4.1) is equivalent to the following problem

Find u ∈ C1
(
R, L2(Rd)

)
∩ C

(
R, D(A1/α)

)
such that

d

dt
u = iA1/αu, in C

(
R, L2(Rd)

)
u(0) = v.

(4.16)

Proof. If u solves (4.1) then u(t) = exp(itA1/α)v by Theorem 4.1. Then u is solution
to (4.16) according to Theorem 4.2. Moreover, functional calculus tells us that A1/α

is self adjoint on L2(Rd). Thus (see for instance [Sch12, Proposition 6.5]), (4.16) has
a unique solution. Consequently, (4.1) and (4.16) are equivalent. �

Finally, as an example, let us consider the case

A := −∆ + V,

where V ∈ L∞(Rd) is non negative a.e. on Rd, and D(A) = H2(Rd). Then, for
α ∈ (0, 1) and v in H2(Rd), the time fractional Schrödinger problem

Dα
−∞,tu = iα(−∆ + V )u, u(0) = v,

has a unique solution u, according to Theorem 4.1. Moreover,

u(t) = Sα(t)v = eit(−∆+V )1/αv, ∀t ∈ R. (4.17)

The requirements given in the introduction are satisfied, namely (i) the L2-norm
of u(t) is conserved, i.e.

‖u(t)‖L2(Rd) = ‖v‖L2(Rd), ∀t ∈ R,
and (ii) Sα is a group, i.e.

Sα(t)Sα(s) = Sα(t+ s), ∀t, s ∈ R.
Also, if v belongs to the domain of (−∆ + V )1/α then Corollary 4.3 yields that u

given by (4.17) is the unique solution to
d

dt
u = i(−∆ + V )1/αu, u(0) = v.
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