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Abstract

The logic of Conditional Beliefs has been introduced by Board, Baltag and Smets to
reason about knowledge and revisable beliefs in a multi-agent setting. It is shown
that the semantics of this logic, defined in terms of plausibility models, can be equiv-
alently formulated in terms of neighbourhood models, a multi-agent generalisation of
Lewis’ spheres models. On the base of this new semantics, a labelled sequent calcu-
lus for this logic is developed. The calculus has strong proof-theoretic properties, in
particular cut and contraction are admissible and that the calculus provides a direct
decision procedure for this logic. Further, its semantic completeness is used to obtain
a constructive proof of the finite model property of the logic.

Keywords: Epistemic logic, conditional logic, neighbourhood semantics, sequent
calculus, decision procedure
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1 Introduction

Modal epistemic logic has been studied for a long time in formal epistemol-
ogy, computer science, and notably in artificial intelligence. In this logic, to
each agent i is associated a knowledge modality Ki, so that the formula KiA
expresses that “the agent i knows A.”Through agent-indexed modal opera-
tors, epistemic logic can be used to reason about the mutual knowledge of a
set of agents. The logic has been further extended by other modalities to en-
code various types of combined knowledge of agents (e.g. common knowledge).
However, knowledge is not the only propositional attitude, and belief is equally
significant to reason about epistemic interaction among agents. Board [5], and
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2 The Logic of Conditional Beliefs: Neighbourhood Semantics and Sequent Calculus

then Baltag and Smets [2], [3], [4] have proposed a logic called CDL (Condi-
tional Doxastic Logic) for modelling both belief and knowledge in a multi-agent
setting. The essential feature of beliefs is that they are revisable whenever the
agent learns new information. To capture the revisable nature of beliefs, CDL
contains the conditional belief operator Bel i(C|B), the meaning of which is
that agent i believes C if she learnt B. Thus the conditional belief has a hy-
pothetical meaning: if agent i learnt B, she would believe that C was true
in the state of the world before the act of learning B. For this reason Baltag
and Smets qualify this logic as “static”in contrast to “dynamic”epistemic logic,
where the very act of learning (by some form of announcement) may change
the agent’s beliefs. The logic CDL in itself is used as the basic formalism
to study further dynamic extensions of epistemic logics, determined by several
kinds of epistemic/doxastic actions. Notice that both unconditional beliefs and
knowledge can be defined in CDL: Bel iB (agent i believe B) as Bel i(B|>), KiB
(agent i knows B) as Bel(⊥|¬B) the latter meaning that i considers impossible
(inconsistent) to learn ¬B.

To exemplify the language, consider a variant of the three-wise-men puzzle,
where agent amay initially believes that she has a white hat, BelaWa. However,
if a learns that agent b knows the colour of the hat b herself wears, she might
change her beliefs and be convinced that she is wearing a black hat instead,
Bela(Ba|Kb(Wb ∧ Bb)). The example shows that the conditional operator is
non-monotonic in the sense that Bel i(C|A) does not entail Bel i(C|A∧B) (here
A = >).

The axiomatization of the operator Bel i in CDL internalises the well-known
AGM postulates of belief revision (however, we cannot mention here the vast
literature on the relation between belief revision, conditional logics, the Ramsey
Test, and Gärdenfors Triviality Result).

The semantic interpretation of CDL is defined in terms of so-called epis-
temic plausibility models. In these models, each agent i is associated with an
equivalence relation ∼i, used to interpret knowledge, and a well-founded pre-
order �i on worlds. The relation �i assesses the relative plausibility of worlds
according to an agent i and it is used to interpret conditional beliefs: i believes
B conditionally on A in a world x if B holds in the most plausible worlds ac-
cessible from x in which A holds, the “most plausible worlds” for an agent i
being the �i-minimal ones. This semantic approach has been dominant in the
studies of CDL; in addition to [5] and [3] we mention works by Pacuit [14], Van
Ditmarsch et al. [15] and Demay [6].

In this paper, we first provide an alternative semantics based on neighbour-
hood models for CDL. These models are often used in the interpretation of
non-normal modal logics. In the present setting they can be seen as a multi-
agent generalization of Lewis’ spheres models for counterfactual logics. In these
models to each world x and agent i is associated a set Ii(x) of nested sets of
worlds; each set α ∈ Ii(x) represents, so to say, a relevant piece of information
that can be used to establish the truth of an epistemic/doxastic statement. The
interpretation of the conditional belief operator Bel i then coincides with Lewis’
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semantics of the counterfactual operator. The equivalence between plausibility
models and neighbourhood models does not come as totally unexpected: for
the mono-agent case, it was suggested or stated without proof by Board [5],
Pacuit [14], Marti et al [8], and it is based on an old result about the correspon-
dence between partial orders and Alexandroff topologies [1]. We will detail the
correspondence for the multi-agent case.

We believe that neighbourhood models provide by themselves a terse in-
terpretation of the epistemic and doxastic modalities, abstracting away the
relational information specified in plausibility models. Moreover, it is worth
noticing that in these models the interpretation of unconditional beliefs and
knowledge results in the standard universal/existential neighbourhood modal-
ities.

Up to this moment, the logic CDL has been studied only from a semantic
point of view, and no proof-system or calculus is known for it. Our main goal is
to provide one. On the basis of neighbourhood semantics we develop a labelled
sequent calculus called G3CDL. We follow the general methodology of [9] to
develop labelled calculi for modal logics. Similarly to [11], the calculus G3CDL
makes use of world and neighbourhood labels, thereby importing the seman-
tics, limited to the essential, into the syntax. In G3CDL, each connective
is handled by symmetric left/right rules, whereas the properties of neighbour-
hood models are handled by additional rules independent of the language of
CDL. The resulting calculus is analytical and enjoys strong proof-theoretical
properties, the most important being admissibility of cut and contraction that
we prove syntactically. Through the adoption of a standard strategy, we show
that the calculus G3CDL provides a decision procedure for CDL. We will also
prove the semantic completeness of the calculus: it is possible to extract from
a failed derivation a finite countermodel of the initial formula. This result
combined with the soundness of the calculus yields a constructive proof of the
finite model property of CDL 2 .

2 The logic of conditional beliefs: Axiomatization and
semantics

The language of CDL is defined from a denumerable set of atoms Atm by means
of propositional connectives and the conditional operator Bel i, where i ranges
in a set of agents A. In the following, P denotes an atom and i an agent. The
formulas of the language are generated according to the following definition:

A := P | ⊥ | ¬A | A ∧A | A ∨A | A ⊃ A | Bel i(A|A)

The conditional belief operator Bel i(C|B) is read “agent i believes B, given
C.”As mentioned in the introduction, we may define unconditional belief and
the knowledge operator in terms of conditional belief as follows:

Bel iA =def Bel i(A|>) (belief)
KiA =def Bel i(⊥|¬A) (knowledge)

2 Full proofs can be found in http://www.helsinki.fi/~negri/conbel_aiml16.pdf

http://www.helsinki.fi/~negri/conbel_aiml16.pdf
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An axiomatization of CDL has been discussed in [5], [14], [3]. We present below
Board’s axiomatization, which is formulated using only the conditional belief
operator. Equivalent axiomatizations that make also use of the belief operator
and the knowledge operator have been given by Baltag and Smets [2], [4], [3],
and Pacuit [14]. The axiomatization of CDL extends the classical propositional
calculus by the following axioms and rules:

(1) If ` B, then ` Beli(B|A) (6) ¬Beli(¬B|A) ⊃
(2) If ` A ⊃⊂ B, then ` Beli(C|A) ⊃⊂ Beli(C|B) (Beli(C|A ∧B) ⊃⊂ Beli(B ⊃ C|A))
(3) (Beli(B|A) ∧ Beli(B ⊃ C|A)) ⊃ Beli(C|A) (7) Beli(B|A) ⊃ Beli(Beli(B|A)|C)
(4) Beli(A|A) (8) ¬Beli(B|A) ⊃ Beli(¬Beli(B|A)|C)
(5) Beli(B|A) ⊃⊂ (Beli(C|A ∧B) ⊃ Beli(C|A)) (9)A ⊃ ¬Beli(⊥|A)

In terms of Belief Revision, the above axioms may be understood as a sort of
epistemic and internalized version of the AGM postulates. Some quick remarks
(refer to [5] for a deeper discussion): The distribution axiom (3) and the epis-
temization rule (2) express deductive closure of beliefs. The success axiom (4)
ensures that the learned information is included in the set of beliefs. Axioms
(5) and (6) encode the minimal change principle, a basic assumption of belief
revision (see the correspondence with AGM postulates K*7 and K*8). Axiom
(9) ensures that learning a true information cannot lead to inconsistent beliefs
(it roughly corresponds to AGM K*5). (7) and (8) are the axioms of positive
and negative introspection for belief. Observe that from the above axioms, it
is possible to derive the standard S5 characterization of knowledge:

KiA ⊃ A KiA ⊃ KiKiA ¬KiA ⊃ Ki¬KiA

The semantics of CDL is defined in terms of epistemic plausibility models (P -
models for short; they were originally called Belief Revision Structures by
Board). These are Kripke structures that comprise both an equivalence rela-
tion for each agent over worlds for defining knowledge (as in standard epistemic
models) and a plausibility relation for each agent, which is used to define be-
liefs. The intuition is that the beliefs of an agent are the propositions that hold
in the worlds that the agent considers the most plausible ones.

A pre-order � over a set W is a reflexive and transitive relation over W .
Given S ⊆ W , � is connected over S if for all x, y ∈ S either x � y or
y � x. An infinite descending �-chain over W is a sequence of elements of
W {xn}n≥0 such that for all n, xn+1 � xn but xn 6� xn+1. We say that �
is well-founded over W if there are no infinite descending �-chains over W .
Given S ⊆ W , let Min�(S) ≡ {u ∈ S | ∀z ∈ S(z � u implies u � z}. Observe
that whenever � is connected over S the definition Min�(S) can be simplified
to Min�(S) = {u ∈ S | ∀z ∈ S u � z}. Finally, the well-foundedness property
can be equivalently stated as: for each S ⊆W if S 6= ∅ then Min�(S) 6= ∅.

Definition 2.1 Let A be a set of agents; an epistemic plausibility model M =
〈W, {∼i}i∈A, {�i}i∈A, J K〉 consists of a nonempty set W of elements called
“worlds”or “states”; for each i ∈ A, an equivalence relation ∼i over W (with
[x]∼i

≡ {w | w ∼i x}); for each i ∈ A, a well founded pre-order �i over W ; a
valuation function J K : Atm → P(W ). We assume �i to satisfy the following
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properties:

• Plausibility implies possibility : If w �i v then w ∼i v
• Local connectedness: If w ∼i v then w �i v or v �i w (in other words, �i

is connected over every equivalence class of ∼i).
The truth conditions for formulas of the language are given by inductively
extending the evaluation function J K as follows:

• For the Boolean case we have the standard clauses, JA ∧BK ≡ JAK ∩ JBK,
J¬AK ≡W − JAK, etc.

• JBel i(B|A)K ≡ {x ∈W |Min�i
([x]∼i

∩ JAK) ⊆ JBK}.
We say that a formula A is valid in a modelM if JAK = W and that A is valid
in the class of epistemic plausibility models if A is valid in every epistemic
plausibility model.
Notational convention: We often write M, x  A to mean x ∈ JAK. The
notation is further shortened to x  A whenever M is unambiguous.

The axiomatization of CDL is sound and complete w.r.t. EP -models [5].

Theorem 2.2 (Completeness of the axiomatization) A formula A is a
theorem of CDL if and only if it is valid in the class of epistemic plausibility
models.

The following proposition, proved by unfolding the definitions, gives an equiv-
alent formulation of the truth condition of the conditional operator Bel i given
in Definition 2.1. From now on, we shall use this formulation.

Proposition 2.3 Given any P-model M = 〈W, {∼i}i∈A, {�i}i∈A, J K〉, with
x ∈ W we have that M, x  Bel i(B|A) iff: either for all y, y ∼i x implies
y  ¬A or there is y with y ∼i x such that y  A and ∀z, z �i y implies
z  A ⊃ B.

We introduce an alternative semantics based on neighbourhood models (or N -
models for short). As explained in the introduction, these are a multi-agent
version of spheres models introduced by Lewis for counterfactual logic.

Definition 2.4 Let A be a set of agents; a multi-agent neighbourhood model
has the form M = 〈W, {I}i∈A, J K〉 where:
W is a non empty set of elements called worlds; for each i ∈ A, Ii : W →
P(P(W )); J K : Atm→ P(W ) is the propositional evaluation.
For i ∈ A, x ∈W , Ii satisfies the following properties:

• Non-emptiness: ∀α ∈ Ii(x), α 6= ∅
• Nesting : ∀α, β ∈ Ii(x), α ⊆ β or β ⊆ α
• Total reflexivity : 3 ∃α ∈ Ii(x) such that x ∈ α
• Local absoluteness: If α ∈ Ii(x) and y ∈ α then Ii(x) = Ii(y)
• Closure under intersection: If S ⊆ Ii(x) and S 6= ∅ then

⋂
S ∈ S.

3 Total reflexivity entails ∀x ∈W, Ii(x) 6= ∅.
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The truth conditions for Boolean combinations of formulas are the standard
ones (like in P -models), for conditional belief we have:

x ∈ JBel i(B|A)K iff ∀α ∈ Ii(x)α∩JAK = ∅ or ∃β ∈ Ii(x) such that β∩JAJ 6= ∅
and β ⊆ JA ⊃ BK

A formula A is valid in M if JAK = W . We say that A is valid in the class of
neighbourhood models if A is valid in every neighbourhood M.

Observe that closure under intersection always holds in finite models, because
of non-emptiness and nesting. To simplify the notation, we use the local forcing
relations introduced in [10]:

α ∀ A iff (∀y ∈ α, y  A) and α ∃ A iff (∃y ∈ α, y  A)

With this notation, the truth condition of conditional belief Bel i becomes:
x  Bel i(B|A) iff (∀α ∈ Ii(x), α ∀ ¬A) or (∃β ∈ Ii(x), β ∃ A and
β ∀ A ⊃ B)
It is worth noticing that with the notation just introduced, the semantic defini-
tion of unconditional belief and knowledge operators can be stated as follows:

x  Bel iB iff ∃β ∈ Ii(x), β ∀ B and x  KiB iff ∀β ∈ Ii(x), β ∀ B

The operators of unconditional belief and knowledge correspond to standard
modalities in neighbourhood models.

We now show the equivalence between neighbourhood models and epistemic
plausibility models. The proofs make use of the basic correspondence between
partial orders and topologies recalled in Marti and Pinosio [8] and Pacuit [13]
that dates back to Alexandroff [1]. However, the result must be adapted to the
present setting of multi-agent epistemic and neighbourhood models.

Theorem 2.5 A formula A is valid in the class P-models if and only if it is
valid in the class of multi-agent N-models.

Proof. We first define the measure of weight of a CDL formula as follows:
w(P ) = w(⊥) = 1; w(A ◦ B) = w(A) + w(B) + 1 for ◦ = {∧,∨,⊃};
w(Beli(B|A)) = w(A) + w(B) + 3 (cf. Definition 3.2).
[only if] Given a N -model MN we build an P -model MP and we show that
for any formula A, if A is valid in MP then A is valid in MN .
Let MN = 〈W, {I}i∈A, [ ]〉 be a multi-agent N -model. We construct an P -
model MP = 〈W, {∼i}i∈A, {�i}i∈A, [ ]〉, by stipulating:

• x ∼i y iff ∃α ∈ Ii(x), y ∈ α
• x �i y iff ∀α ∈ Ii(y), if y ∈ α then x ∈ α.

We can easily show that ∼i is an equivalence relation and that �i satisfies prop-
erties of reflexivity, transitivity, and plausibility implies possibility. Properties
of local connectedness and well-foundedness for �i require some additional
work. Local connectedness: suppose that x ∼i y but neither x �i y nor y �i x
hold. By definition of �i we have for some β ∈ Ii(y), y ∈ β and x /∈ β and for
some γ ∈ Ii(x), x ∈ γ and y /∈ γ. Since x ∼i y, by reflexivity ∃α ∈ Ii(x), y ∈ α,
whence by local absoluteness Ii(y) = Ii(x). Thus both β, γ ∈ Ii(x) and by
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nesting β ⊆ γ or γ ⊆ β holds. If the former holds we get y ∈ γ, if the latter
holds x ∈ β, in both cases we have a contradiction.

Well-foundedness: If MN is finite there is nothing to prove. Suppose then
thatMN is infinite. Suppose that there is an infinite descending chain: {zk}k≥0

wrt. �i, with all zk ∈ W , so that for all k it holds that zk+1 �i zk and
zk 6�i zk+1. Observe that by definition of �i, plausibility implies possibility
and local absoluteness we obtain that for all k, h ≥ 0, it holds Ii(zk) = Ii(zh) =
. . . = Ii(z0). Thus by definition of �i, for all k ≥ 0 since zk 6�i zk+1, we get
that for all zk ∈ {zk}k≥0 there exists βzk+1

∈ Ii(z0) such that: (∗)zk+1 ∈ βzk+1

and zk 6∈ βzk+1
. Consider the set T = {βzk+1

|zk ∈ {zk}k≥0}. T is non-empty;
thus by closure under intersection it follows that

⋂
T ∈ T , and also

⋂
T 6= ∅.

Obviously, we have that (∗∗) for all β ∈ T ,
⋂
T ⊆ β. Since

⋂
T ∈ T it must be⋂

T = βzt+1
for some zt ∈ {zk}k≥0. But by using (∗) twice (namely for zt+1

and for zt+2) we have zt+1 ∈ βzt+1
and zt+1 6∈ βzt+2

, thus
⋂
T = βzt+1

6⊆ βzt+2

against (∗∗).
We now prove that for any x ∈W and formula A it holds that (a)MN , x 

A iff MP , x  A. We proceed by induction on the weight of A. The base case
(A atomic) holds by definition, since J K is the same in the two models. For the
inductive propositional cases, A = B ∧C,B ∨C,B ⊃ C, statement (a) follows
easily by inductive hypothesis. We consider only the case A = Bel i(C|B).
To simplify notation we write u P B instead of MP , u  B and u N B
instead of MN , u  B. Direction [⇒] of statement (a) easily follows from the
definitions. As for the opposite direction, suppose that x P Bel i(C|B) holds.
This means that either ∀y y ∼i x implies y P ¬B or there exists w such that
w ∼i x and w P B and ∀z, z �i w implies z P B ⊃ C.

There are two cases to consider. If the first disjunct holds, by definition and
by inductive hypothesis statement (a) is met. We explicitly prove the case in
which the second disjunct holds. Suppose that there exists w such that w ∼i x
and w P B and ∀z, z �i w implies z P B ⊃ C. From w ∼i x (hypothesis) it
follows by definition that ∃α ∈ I(x), w ∈ α. By local absoluteness, I(x) = I(w).
Now consider the set S = {β ∈ I(x)|w ∈ β}. It holds that α ∈ S, and that
S 6= ∅. Let γ = ∩S. By closure under intersection, γ ∈ S ⊆ Ii(x), thus
γ ∈ Ii(x). But w ∈ γ and since we have w P B, we also have w N B by
inductive hypothesis. We have obtained that γ ∃ B. We still have to prove
that γ ∀ B ⊃ C. Given u ∈ γ, we wa! nt to prove that u N B ⊃ C. We
first show that u �i w. To this purpose (by definition of �i), let δ ∈ I(w) with
w ∈ δ we have to show that u ∈ δ: since I(x) = I(w), also δ ∈ I(x), whence,
δ ∈ S, so that γ ⊆ δ, and therefore u ∈ δ. Since u �i w by the hypothesis we
have u P B ⊃ C and finally by induction hypothesis u N B ⊃ C.
Next, we show that if A is valid in MP then A is also valid in MN . Suppose
that A is valid in MP , this means that for all w ∈ W , we have w P A, thus
by (a) we have also w N A for all w ∈ W , which means that A is valid in
MN . Finally, let A be valid in the class of P -models. We want to show that
A is also valid in the class of N -models. Given a N -model MN , we build an
P -modelMP as above. By hypothesis A is valid inMP and for what we have
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just shown A is valid in MN .

[If] Given an P -model MP we build an N -model MN and we show that for
any A, if A is valid in MN then A is valid in MP . Let MP = 〈W, {∼i
}i∈A, {�i}i∈A, J K〉 be an P -model. We build an N -model MN as follows.
Let u ∈ W , and define its downward closed set ↓�i u according to �i as
↓�i u = {v ∈ W |v �i u}. We now define the model MN = 〈W, {I}i∈A, J K〉,
where the neighbourhood for any x ∈W is Ii(x) = {↓�i u|u ∼i x}.

It can be easily proved thatMN satisfies all the properties of an N -model;
we show only the case of closure under intersection. In the finite case, this
property immediately follows from properties of non-emptiness and nesting.
Let us consider the infinite case. Let S ⊆ Ii(x), S 6= ∅, with S countable so that
S = {αh|h > 0} where αh =↓�i xh for xh ∼i x. We prove that (∗) ∃αh ∈ S such
that ∀αk ∈ S, αh ⊆ αk. If (∗) holds then αh =

⋂
S and αh ∈ S and the proof

is over. Suppose by contradiction that (∗) does not hold. This means that 1)
∀αh ∈ S ∃αk ∈ S, αh * αk. Thus, by the property of spheres nesting 2) ∀αh ∈
S ∃αk ∈ S, αk ⊂ αh. From 2), by denumerable dependent choice we build an
infinite (strictly decreasing) chain of neighbourhoods α1 ⊃ α2 ⊃ α3 ⊃ . . . . For
every n ≥ 1 we have by definition that αn =↓�i un. Let vn ∈ αn − αn+1,
vn+1 ∈ αn+1 − αn+2, etc. We have vn+1 �i un+1 by construction and it is
enough to prove that un+1 �i vn to conclude by transitivity that vn+1 �i vn.
By construction, we have vn �i un+1 and therefore by local connectedness,
un+1 �i vn. Moreover by vn �i un+1 it also follows that vn �i vn+1. We
have thus an infinitely descending �i-chain of worlds {vn}n≥1, against the
assumption of well-foundedness of W . We reached a contradiction from the
negation of (∗); therefore, (∗) holds.

We now have to prove that for any x ∈ W and formula A, it holds that
(b) MP , x  A iff MN , x  A. The proof strategy is the same as employed in
the previous case; then, as above, we show that if A is valid in MN then A is
also valid in MP . Finally, let A be valid in the class of N -models. We want
to show that A is also valid in the class of P -models. Given an P -model MP ,
we build an N -model MN as above. By hypothesis A is valid in MN and by
what we have just shown A is valid in MP .

2

Corollary 2.6 A formula A is a theorem of CDL if and only if it is valid in
the class of neighbourhood models.

3 Sequent calculus

The labelled sequent calculus G3CDL displays two kinds of labels: labels for
worlds x, y. . . . and labels for neighbourhoods a, b . . . , as in the ground calculus
for neighbourhood semantics introduced in [10].
The meaning of the expressions employed in the calculus is defined as follows:

a ∃ A ≡ ∃x(x ∈ a ∧ x  A); a ∀ A ≡ ∀x(x ∈ a ⊃ x  A)
x i B|A ≡ ∃c(c ∈ Ii(x), c ∃ A, c ∀ A ⊃ B)
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x : Bel i(B|A) ≡ ∀a ∈ Ii(x)(a ∀ ¬A) or ∃b ∈ Ii(x)(b ∃ A, b ∀ A ⊃ B)

Here  denotes the forcing condition of relational semantics; to distinguish
the semantic notion and its syntactic counterpart and for the sake of a more
compact notation, we use a colon in the labelled calculus. The propositional
rules of G3CDL, the basic labelled modal system, are as in [9] and the rules
for the local forcing relation are as in [10].

Initial sequents

x : P,Γ⇒ ∆, x : P

Rules for local forcing

x ∈ a,Γ⇒ ∆, x : A

Γ⇒ ∆, a ∀ A
R∀ (x fresh)

x : A, x ∈ a, a ∀ A,Γ⇒ ∆

x ∈ a, a ∀ A,Γ⇒ ∆
L∀

x ∈ a,Γ⇒ ∆, x : A, a ∃ A

x ∈ a,Γ⇒ ∆, a ∃ A
R∃

x ∈ a, x : A,Γ⇒ ∆

a ∃ A,Γ⇒ ∆
L∃ (x fresh)

Propositional rules: rules of G3K

Rules for conditional belief

a ∈ Ii(x), a ∃ A,Γ⇒ ∆, x i B|A
Γ⇒ ∆, x : Beli(B|A)

RB (a fresh)

a ∈ Ii(x), x : Beli(B|A),Γ⇒ ∆, a ∃ A x i B|A, a ∈ Ii(x), x : Beli(B|A),Γ⇒ ∆

a ∈ Ii(x), x : Beli(B|A),Γ⇒ ∆
LB

a ∈ Ii(x),Γ⇒ ∆, x i B|A, a ∃ A a ∈ Ii(x),Γ⇒ ∆, x i B|A, a ∀ A ⊃ B
a ∈ Ii(x),Γ⇒ ∆, x i B|A

RC

a ∈ Ii(x), a ∃ A, a ∀ A ⊃ B,Γ⇒ ∆

x i B|A,Γ⇒ ∆
LC(a fresh)

Rules for inclusion

a ⊆ a,Γ⇒ ∆

Γ⇒ ∆
Ref

c ⊆ a, c ⊆ b, b ⊆ a,Γ⇒ ∆

c ⊆ b, b ⊆ a,Γ⇒ ∆
Tr

x ∈ a, a ⊆ b, x ∈ b,Γ⇒ ∆

x ∈ a, a ⊆ b,Γ⇒ ∆
L⊆

Rules for semantic conditions

a ⊆ b, a ∈ Ii(x), b ∈ Ii(x),Γ⇒ ∆ b ⊆ a, a ∈ Ii(x), b ∈ Ii(x),Γ⇒ ∆

a ∈ Ii(x), b ∈ Ii(x),Γ⇒ ∆
S

x ∈ a, a ∈ Ii(x),Γ⇒ ∆

Γ⇒ ∆
T (a fresh)

a ∈ Ii(x), y ∈ a, b ∈ Ii(x), b ∈ Ii(y),Γ⇒ ∆

a ∈ Ii(x), y ∈ a, b ∈ Ii(x),Γ⇒ ∆
A1

a ∈ Ii(x), y ∈ a, a ∈ Ii(y),Γ⇒ ∆

a ∈ Ii(x), y ∈ a,Γ⇒ ∆
A2

Table 1

Each semantic condition on neighbourhood models (Definition 2.4) is in cor-
respondence with a rule in the calculus. Rule (S) corresponds to property of
nesting in Definition 2.4; (T ) corresponds to total reflexivity, and (A1) and
(A2)to local absoluteness 4 . As for non-emptiness, the property is expressed

4 Rule (A2) is needed in order to ensure admissibility of contraction in the case in which
b = a. Thus, the rule has a purely syntactical motivation, and it does not interfere with the
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by the rules for local forcing The property of closure under intersection needs
not be expressed, because the property holds in finite models and we show that
the logic has the finite model property.

Example 3.1 We show a derivation of the left-to-right direction of axiom
(6). We omit the derivable left premisses of rule (RC) in D and of rule (LB)
in the final derivation.

D :

y : A · · · ⇒ . . . y : A y : B · · · ⇒ . . . y : B

y : A, y : B, y ∈ b, c ∈ Ii(x), c ∃ A, b ∈ Ii(x) · · · ⇒ . . . y : A ∧ B
R∧

y : A, y : B, y ∈ b, c ∈ Ii(x), c ∃ A, b ∈ Ii(x) · · · ⇒ . . . b ∃ A ∧ B
R∃

y ∈ b, c ∈ Ii(x), c ∃ A, b ∈ Ii(x) · · · ⇒ . . . b ∃ A ∧ B, y : A ⊃ ¬B
R⊃,R¬

c ∈ Ii(x), c ∃ A, b ∈ Ii(x) · · · ⇒ . . . b ∃ A ∧ B, b ∀ A ⊃ ¬B
R∀

c ∈ Ii(x), c ∃ A, b ∈ Ii(x) · · · ⇒ . . . b ∃ A ∧ B, x i ¬B|A
RC

b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∃ A ∧ B · · · ⇒ . . . x : Beli(¬B|A), b ∃ A ∧ B
RB

E :

z : A · · · ⇒ . . . z : A z : c · · · ⇒ . . . z : C

z : A ⊃ C, z : A, z : B, z ∈ b, b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∃ A ∧ B, · · · ⇒ . . . z : C
L⊃

z : A, z : B, z ∈ b, b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∃ A ∧ B · · · ⇒ . . . z : C
L∀

z ∈ b, b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∃ A ∧ B · · · ⇒ . . . z : (A ∧ B) ⊃ C

R⊃,L∧

b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∃ A ∧ B · · · ⇒ . . . b ∀ (A ∧ B) ⊃ C
R ∀

.

.

.
D

.

.

.
E

b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∈ Ii(x), a ∃ A ∧ B, x : Beli(C|A) ⇒ x : Beli(¬B|A), x i C|A ∧ B
RC

x i C|A, a ∈ Ii(x), a ∃ A ∧ B, x : Beli(C|A) ⇒ x : Beli(¬B|A), x i C|A ∧ B
LC

a ∈ Ii(x), a ∃ A ∧ B, x : Beli(C|A) ⇒ x : Beli(¬B|A), x i C|A ∧ B
LB

x : Beli(C|A) ⇒ x : Beli(¬B|A), x : Beli(C|A ∧ B)
RB

x : ¬(Beli(¬B|A)), x : Beli(C|A) ⇒ x : Beli(C|A ∧ B)
L¬

Rules for knowledge and simple belief

The modal operators of knowledge and simple belief can be defined seman-
tically in terms of the conditional belief operator: KiA = Bel i(⊥|¬A) and
Bel iA = Bel i(A|>). By adopting these definitions, we can extend G3CDL
with the rules displayed below that correspond to the interpretation of these
two operations in the neighbourhood semantics.

Rules for knowledge and simple belief

a ∈ Ii(x),Γ⇒ ∆, a ∀ A

Γ⇒ ∆, x : KiA
LK (a new)

a ∈ Ii(x), x : KiA, a ∀ A,Γ⇒ ∆

a ∈ Ii(x), x : KiA,Γ⇒ ∆
RK

a ∈ Ii(x),Γ⇒ ∆, x : BeliA, a ∀ A

a ∈ Ii(x),Γ⇒ ∆, x : BeliA
LSB

a ∈ Ii(x), a ∀ A⇒ ∆

x : BeliA,Γ⇒ ∆
RSB (a new)

Table 2

semantics. For this reason, in the following we shall consider only rule (A1).
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These rules are admissible in G3CDL, i.e., whenever the premiss is derivable,
also the conclusion is. This is shown through a derivation that uses rules of
G3CDL and other rules (such as weakening and cut) shown admissible later.
We show just admissibility of (LK), the other rules being obtained in a similar
way. In the following derivation, we omit writing the left premiss of (RC),
a ∈ Ii(x), a ∃ ¬A,Γ⇒ ∆, x i ⊥|¬A, a ∃ ¬A that is derivable.

a ∈ Ii(x),Γ⇒ ∆, a ∀ A

a ∈ Ii(x), a ∃ ¬A,Γ⇒ ∆, x i ⊥|¬A, a ∀ A
Wk

a ∈ Ii(x), a ∃ ¬A,Γ⇒ ∆, x i ⊥|¬A
RC

Γ⇒ ∆, x : Beli(⊥|¬A)
RB

Structural properties

We define the weight of a labelled formula (cf the Appendix):

Definition 3.2 The label of formulas of the form x : A is x. The label of
formulas of the form a ∀ A and a ∃ A is a. The label of a formula F will
be denoted by l(F). The pure part of a labelled formula F is the part without
the label and without the forcing relation, either local (∃, ∀) or worldwise
(:) and will be denoted by p(F).

The weight of a labelled formula F is given by the pair (w(p(F)), w(l(F)))
where

• For all world labels x and all neighbourhood labels a, w(x) = 0 and w(a) =
1.

• w(P ) = w(⊥) = 1; w(A◦B) = w(A)+w(B)+1 for ◦ conjunction, disjunction,
or implication; w(B|A) = w(A) + w(B) + 2; w(Bel i(B|A)) = w(B|A) + 1.

Weights of labelled formulas are ordered lexicographically.

From the definition of weight it is clear that the weight gets decreased if we
move from a formula labelled by a neighbourhood label to the same formula
labelled by a world label, or if we move (regardless the label) to a formula
with a pure part of strictly smaller weight. The following lemma is proved by
induction on formula weights:

Lemma 3.3 Sequents of the following form are derivable in G3CDL for ar-
bitrary neighbourhoods labels a, b and formulas A and B:
(i) a ⊆ b,Γ⇒ ∆, a ⊆ b (ii) a ∀ A,Γ⇒ ∆, a ∀ A (iii) a ∃ A,Γ⇒ ∆, a ∃ A
(iv) x i B|A,Γ⇒ ∆, x i B|A (v) x : A,Γ⇒ ∆, x : A

The definition of substitution of labels given in [9] can be extended in an
obvious way – that need not be pedantically detailed here – to all the formulas
of our language and to neighbourhood labels. We will have, for example, (a ∃

A)(b/a) ≡ b ∃ A, and (x i B|A)(y/x) ≡ y i B|A.
We denote by `n Γ⇒ ∆ a derivation whose endsequent is Γ⇒ ∆ and which

has height n, where the height of a derivation is the number of nodes occurring
in the longest derivation path. The calculus is routinely shown to enjoy the
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property of height preserving (hp for short) substitution both of world and
neighbourhood labels:

Proposition 3.4 (i) If `n Γ⇒ ∆, then `n Γ(y/x)⇒ ∆(y/x);

(ii) If `n Γ⇒ ∆, then `n Γ(b/a)⇒ ∆(b/a).

Hp-admissibility of weakening and contraction are obtained by an easy induc-
tion on derivation height:

Proposition 3.5 The rules of left and right weakening are hp-admissible in
G3CDL.

Theorem 3.6 All the rules of G3CDL are hp-invertible, i.e. for every rule
of the form Γ′⇒∆′

Γ⇒∆ , if `n Γ ⇒ ∆ then `n Γ′ ⇒ ∆′, and for every rule of the

form Γ′⇒∆′ Γ′′⇒∆′′

Γ⇒∆ if `n Γ⇒ ∆ then `n Γ′ ⇒ ∆′ and `n Γ′′ ⇒ ∆′′.

The rules of contraction of G3CDL have the following form, where F is either
a “relational” atom of the form a ∈ I(x) or x ∈ a or a labelled formula of the
form x : A, a ∀ A, a ∃ A or a formula of the form x i B|A or x : Bel i(B|A):

F ,F ,Γ ⇒ ∆

F ,Γ ⇒ ∆
LCtr

Γ ⇒ ∆,F ,F
Γ ⇒ ∆,F RCtr

Theorem 3.7 The rules of left and right contraction are hp-admissible in
G3CDL.

Theorem 3.8 Cut is admissible in G3CDL.

Proof. By double induction, with primary induction on the weight of the
cut formula and subinduction on the sum of the heights of derivations of the
premisses of cut. The cases in which the premisses of cut are either initial
sequents or obtained through the rules for &, ∨, or ⊃ follow the treatment of
Theorem 11.9 of [12]. For the cases in which the cut formula is a side formula
in at least one rule used to derive the premisses of cut, the cut reduction is
dealt with in the usual way by permutation of cut, with possibly an application
of hp-substitution to avoid a clash with the fresh variable in rules with variable
condition. In all such cases the cut height is reduced.

For space limitations, we treat only the cases in wich the cut formula is
principal in both premisses and has the form x i B|A, x : Bel i(B|A).

1. The cut formula is x i B|A, principal in both premisses of cut

a ∈ Ii(x),Γ⇒ ∆, x i B|A, a ∃ A a ∈ Ii(x),Γ⇒ ∆, x i B|A, a ∀ A ⊃ B
a ∈ Ii(x),Γ⇒ ∆, x i B|A

RC

D
b ∈ Ii(x), b ∃ A, b ∀ A ⊃ B,Γ′ ⇒ ∆′

x i B|A,Γ′ ⇒ ∆′
LC

The conclusion of the cut is the sequent a ∈ Ii(x),Γ,Γ′ ⇒ ∆,∆′. The deriva-
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tion is converted into the following:

a ∈ Ii(x),Γ⇒ ∆, x i B|A, a ∃ A x i B|A,Γ′ ⇒ ∆′

a ∈ Ii(x),Γ,Γ′ ⇒ ∆,∆′, a ∃ A
Cut1

(1)

a ∈ Ii(x)3,Γ2,Γ′3 ⇒ ∆2,∆′3
Cut4

a ∈ Ii(x),Γ,Γ′ ⇒ ∆,∆′
Ctr∗

Here (1) is the derivation:

a ∈ Ii(x), Γ ⇒ ∆, x i B|A, a ∀ A ⊃ B x i B|A, Γ′ ⇒ ∆′

a ∈ Ii(x), Γ, Γ′ ⇒ ∆, ∆′, a ∀ A ⊃ B

Cut2
D(a/b)

a ∈ Ii(x), a ∃ A, a ∀ A ⊃ B, Γ′ ⇒ ∆′

a ∈ Ii(x)2, a ∃ A, Γ, Γ′2 ⇒ ∆, ∆′2
Cut3

Observe that all four cuts are of reduced height (Cut1 and Cut2) or reduced
weight (Cut3 and Cut4) because w(a ∃ A) < w(a ∀ A ⊃ B) < w(x i B|A).

2. The cut formula is x : Bel i(B|A), principal in both premisses of cut

D
b ∈ Ii(x), b ∃ A,Γ⇒ ∆, x i B|A

Γ⇒ ∆, x : Beli(B|A)
RB

a ∈ Ii(x), x : Beli(B|A),Γ′ ⇒ ∆′, a ∃ A a ∈ Ii(x), x i B|A, x : Beli(B|A),Γ′ ⇒ ∆′

a ∈ Ii(x), x : Beli(B|A),Γ′ ⇒ ∆′
LB

The conclusion is the sequent a ∈ Ii(x),Γ,Γ′ ⇒ ∆,∆′. The cut is converted to
four smaller cuts as follows:

Γ⇒ ∆, x : Beli(B|A) a ∈ Ii(x), x : Beli(B|A),Γ′ ⇒ ∆′, a ∃ A

a ∈ Ii(x),Γ,Γ′ ⇒ ∆,∆′, a ∃ A
Cut2

(2)

a ∈ Ii(x)3,Γ3,Γ′2 ⇒ ∆3,∆′2
Cut4

a ∈ Ii(x),Γ,Γ′ ⇒ ∆,∆′
Ctr∗

Here (2) is the derivation:

D(a/b)

a ∈ Ii(x), a ∃ A, Γ ⇒ ∆, x i B|A

Γ ⇒ ∆, x : Beli(B|A) a ∈ Ii(x), x i B|A, x : Beli(B|A), Γ′ ⇒ ∆′

a ∈ Ii(x), x i B|A, Γ, Γ′ ⇒ ∆, ∆′
Cut1

a ∈ Ii(x)2, a ∃ A, Γ2, Γ′ ⇒ ∆2, ∆′
Cut3

Cut1 and Cut2 have reduced height and the other cuts are on formulas of
reduced weight because w(a ∃ A) < w(x i B|A) < w(x : Bel i(B|A)). 2

4 Soundness, termination, and completeness

We first show the soundness of the calculus. We need to interpret labelled
sequents in neighbourhood models, and to this purpose we define the notion of
realization.

Definition 4.1 Let M = 〈W, {I}i∈A, J K〉 be a neighbourhood model, S a set
of world labels, and N a set of neighbourhood labels. An SN -realization over
M consists of a pair of functions (ρ, σ) such that

• ρ : S →W is a function that assigns to each x ∈ S an element ρ(x) = w ∈
W ;
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• σ : N → P(W ), i.e. a function that assigns to each a ∈ N an element
σ(a) ∈ I(w), for some w ∈W .

Given a sequent Γ ⇒ ∆, with S,N as above, and (ρ, σ) an SN -realization,
we say that Γ ⇒ ∆ is satisfiable in M under the SN -realization (ρ, σ) if the
following conditions hold:

• M �ρ,σ a ∈ Ii(x) if σ(a) ∈ Ii(ρ(x)) and M �ρ,σ a ⊆ b if σ(a) ⊆ σ(b);
• M �ρ,σ x : A if ρ(x)  A;
• M �ρ,σ a ∃ A if σ(a) ∃ A and M �ρ,σ a ∀ A if σ(a) ∀ A;
• M �ρ,σ x i B|A if for some c ∈ Ii(ρ(x)), c ∃ A and c ∀ A ⊃ B;
• M �ρ,σ x i Bel i(B|A) if for all a ∈ Ii(ρ(x)), a ∀ A orM �ρ,σ x i B|A;
• M �ρ,σ Γ ⇒ ∆ if either M 2ρ,σ F for some formula F ∈ Γ or M �ρ,σ G

for some formula G ∈ ∆.

Then, defineM � Γ⇒ ∆ iffM �ρ,σ Γ⇒ ∆ for every SN- realization (ρ, σ). A
sequent Γ⇒ ∆ is said to be valid ifM � Γ⇒ ∆ holds for every neighbourhood
model M, i.e. if Γ ⇒ ∆ is satisfied for every model M and for every SN -
realization (ρ, σ).

Theorem 4.2 (Soundness) If a sequent Γ ⇒ ∆ is derivable in the calculus,
then it is valid in the class of multi-agent neighbourhood models.

We now show that, by adopting a suitable proof search strategy, the calcu-
lus yields a decision procedure for CDL. We also prove the completeness of
the calculus under the same strategy. The adoption of the strategy is not
strictly necessary for completeness, but it ensures that we can extract a finite-
countermodel from an open or failed derivation branch. Although the termi-
nation proof has some similarity with the one in [11], for G3CDL it is more
difficult because of specific semantic rules, in particular local absoluteness.

As often happens with labelled calculi, the calculus G3CDL in itself is
non-terminating in the sense that a root-first (i.e. upwards) construction of a
derivation may generate infinite branches. Here below is an example (we omit
writing the derivable left premisses of LB):

.

.

.
c ∈ Ii(x), c ∃ A, c ∀ A ⊃ B...x : Beli(B|A)⇒ x i C|A

x i B|A, b ∈ Ii(x), b ∃ A, b ∀ A ⊃ B, a ∈ Ii(x), a ∃ A, x : Beli(B|A)⇒ x i C|A
LC

b ∈ Ii(x), b ∃ A, b ∀ A ⊃ B, a ∈ Ii(x), a ∃ A, x : Beli(B|A)⇒ x i C|A
LB

x i B|A, a ∈ Ii(x), a ∃ A, x : Beli(B|A)⇒ x i C|A
LC

a ∈ Ii(x), a ∃ A, x : Beli(B|A)⇒ x i C|A
LB

x : Beli(B|A)⇒ x : Beli(C|A)
RB

The loop is generated by the application of rules (LB) and (LC). Our aim is
to specify a strategy which ensures termination by preventing any kind of loop.
The main point is to avoid redundant (backwards) applications of rules. To
precisely define this notion we need saturation conditions associated to each
rule.

Definition 4.3 Given a derivation branch B of the form Γ0 ⇒ ∆0, ...,Γk ⇒
∆k,Γk+1 ⇒ ∆k+1, ... where Γ0 ⇒ ∆0 is the sequent ⇒ x0 : A, let ↓ Γk/ ↓ ∆k
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denote the union of the antecedents/succedents occurring in the branch from
the root Γ0 ⇒ ∆0 up to Γk ⇒ ∆k.

We say that a sequent Γ ⇒ ∆ satisfies the saturation condition for a rule
(R) if, whenever Γ⇒ ∆ contains the principal formulas in the denominator of
(R), then it also contains the formulas introduced by one of the premisses of
(R). We report the specific conditions for each rule.

For rule (L∧), if x : A ∧B ∈ Γ, then x : A ∈↓ Γ and x : B ∈↓ Γ. The other
propositional conditions are similar, and can be found in [11]. Conditions for
the other rules are the following: (Rf) if a is in Γ, ∆ then a ⊆ a is in Γ; (Tr) if
a ⊆ b and b ⊆ c are in Γ, then a ⊆ c is in Γ; (L ⊆) if x ∈ a and a ⊆ b are in Γ,
then x ∈ b is in Γ; (R ∀) if a ∀ A is in ↓ ∆, then for some x there is x ∈ a
in Γ and x : A in ↓ ∆; (L ∀) if x ∈ a and a ∀ A are in Γ, then x : A is in
Γ; (R ∃) if x ∈ a is in Γ and a ∃ A is in ∆, then x : A is in ↓ ∆; (L ∃) if
a ∃ A is in ↓ Γ, then for some x there is x ∈ a in Γ and x : A is in ↓ Γ; (RB)
if x : Bel i(B|A) is in ↓ ∆, then for some i ∈ A and for some a, a ∈ Ii(x) is in
Γ, a ∃ A is in ↓ Γ and x i B|A is in ↓ ∆; (LB) if a ∈ Ii(x) and x : Bel i(B|A)
are in Γ, then either a ∃ A is in ↓ ∆ or x i B|A is in ↓ Γ; (RC) if a ∈ Ii(x)
is in Γ and x i B|A is in ∆, then either a ∃ A or a ∀ A ⊃ B are in ↓ ∆;
(LC) if x i B|A is in ↓ Γ, then for some i ∈ A and for some a, a ∈ Ii(x) is in
Γ, a ∃ A and a ∀ A ⊃ B are in ↓ Γ; (T) for all x occurring in ↓ Γ∪ ↓ ∆, for
all i ∈ A there is an a such that a ∈ Ii(x) and x ∈ a are in Γ; (S) If a ∈ Ii(x)
and b ∈ Ii(x) are in Γ, then a ⊆ b or b ⊆ a are in Γ; (A) If a ∈ Ii(x) and y ∈ a
are in Γ, then if b ∈ Ii(x) is in Γ also b ∈ Ii(y) is in Γ; If b ∈ Ii(y) is in Γ also
b ∈ Ii(x) is in Γ.
Furthermore, Γ⇒ ∆ is saturated if

(Init) There is no x : P in Γ ∩∆;
(L⊥) there is no x : ⊥ in Γ;
Γ⇒ ∆ satisfies all saturation conditions (listed in the Appendix).

To analyse the interdependencies between labels in a sequent we introduce the
following:

Definition 4.4 Given a branch B as in Definition 4.3, let a be neighbourhood
label and x, y be world labels all occurring in ↓ Γk, we define:

• k(x) = min{t | x occurs in Γt}; we similarly define k(a).
• x →g a (read “x generates a”) if for some t ≤ k and i ∈ A, k(a) = t and
a ∈ Ii(x) occurs in Γt.

• a →g x (read “a generates x”) if for some t ≤ k and i ∈ A, k(x) = t and
x ∈ a occurs in Γt.

• x
w→ y (read “x generates y”) if for some a it holds that x →g a and

a→g y.

Lemma 4.5 Given a branch B as in Definition 4.3, we have that (a) the rela-

tion
w→ is acyclic and forms a tree with root x0 and (b) all world labels occurring

in B are nodes of the tree, that is letting
w→
∗

be the transitive closure of
w→, if

u occurs in ↓ Γk, then x0
w→
∗
u.
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Proof. (a) immediately follows from the definition of relation →g and from
the sequent calculus rules, (b) easily proven by induction on k(u) 6 k. 2

We can now define the proof-search strategy. A rule (R) is said to be applicable
to a world label x if R is applicable to a labelled formula with label x occurring
in the denominator of a rule. In case of rule (A) of local absoluteness, we say
the rule is applied to x (rather than to y).

Definition 4.6 When constructing root-first a derivation tree for a sequent
⇒ x0 : A, apply the following strategy:

(i) No rule can be applied to an initial sequent;
(ii) If k(x) < k(y) all rules applicable to x are applied before any rule appli-

cable to y.
(iii) Rule (T ) is applied as the first one to each world label x.
(iv) Rules which do not introduce a new label (static rules) are applied be-

fore the rules which do introduce new labels (dynamic rules), with the
exception of (T ), as in the previous item;

(v) Rule (RB) is applied before rule (LC);
(vi) A rule (R) cannot be applied to a sequent Γi ⇒ ∆i if ↓ Γi and / or ↓ ∆i

satisfy the saturation condition associated to (R).

It follows from the strategy that if x
w→ y, if every rule applicable to x is applied

before any every rule applicable to y. In the example above, the loop would
have been stopped at the second application (root-first) of (LB), because the
application of (LB) would violate condition (vi): the branch already satisfies
the saturation condition for (LB), because x i B|A is already in ↓ Γ.
As an easy consequence of conditions (ii) and (iv) of the strategy, we have:

Lemma 4.7 Let us consider a branch B as in Definition 4.3 and two labels x, y

such that x
w→
∗
y. Then for all b, if b ∈ Ii(x) ∈ Γk then also b ∈ Ii(y) ∈ Γk.

As usual, the size of a formula A, denoted by |A|, is the number of symbols
occurring in A. The size of a sequent Γ⇒ ∆ is the sum of all the sizes of the
formulas occurring in it.

Lemma 4.8 Given a branch B as in Definition 4.3 and a world label x, we
define N(x) = {a | x→g a} as the set of neighbourhood labels generated by x,

and W (x) = {y | x w→ y} as the set of world labels generated by x. The size of
N(x) and W (x) is finite, more precisely: |N(x)| = O(n) and |W (x)| = O(n2).

Proof. We first prove that |N(x)| = O(n). By definition, a ∈ N(x) iff x→g a,
i.e. if there exists t and there exists i ∈ A such that a does not occur in Γs for all
s 6 t and a ∈ Ii(x) belongs to Γt. This means that label a has been introduced
either by (RB) or by (LC). Therefore x may create as many neighbourhood
labels a as there are formulas x : Bel i(B|C) occur in ↓ Γk∪ ↓ ∆k (plus 1
neighbourhood introduced by (T ) total reflexivity) and the number of these
formulas is O(n).

We now prove |W (x)| = O(n2). By definition y ∈ W (x) iff x
w→ y, i.e. iff

for some b it holds that x→g b and b→g y. We have just shown that for each
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x, the number of neighbourhood labels generated by x is O(n). Let us consider
b →g y. By definition, this means that there exists t < k, and there exists an
i ∈ A, such that y does not occur in Γs for s 6 t and y ∈ b occurs in Γt+1.
There are several ways in which a formula y ∈ b can be introduced:

Case 1. y ∈ b is introduced by a formula b ∃ C belonging to ↓ Γk by
application of rule (L ∃). There are two subcases, according to how formula
b ∃ C has been derived: (a) b ∃ C has been introduced by (RB) applied to a
formula x : Bel i(D|C) belonging to ↓ ∆k and (b) b ∃ C has been introduced by
(LC) applied to a formula x i (D|C) belonging to ↓ Γk. In turn, this formula
has been introduced by (LB) applied to a formula x : Bel i(D|C) belonging to
↓ Γk. In case (a), we notice again that (RB) can be applied only once to each
formula x : Bel i(D|C) occurring in the consequent, and it generates exactly one
new neighbourhood label b and one formula b ∃ C. Similarly in case (b) (LC)
can be applied only once to x i D|C generating one new neighbourhood label
b and one formula b ∃ C. But each formula x i D|C in turn is introduced
by (LB) applied only once to one formula x : Bel i(D|C) occurring in ↓ Γk.
Now each rule (L ∃) generates exactly one new world label for each b ∃ C
occurring in ↓ Γk and, as we have just shown the number of such formulas is
bounded by the number of formulas of type x : Bel i(D|C) occurring in ↓ Γk
which is O(n). Therefore we can conclude that the! number of new world labels
introduced in this case is O(n).

Case 2. y ∈ b is introduced by a formula b ∀ C belonging to ↓ ∆k by
application of rule (R ∀). But a formula b ∀ C may be introduced only by
an application of (RC) to a formula u i F |E, where C = E ⊃ F ∈↓ ∆k. In
turn, a formula of type u i F |E may be introduced only by an application
of (RB). Let us consider the set Sb of formulas C such that Sb = {C ‖b ∀
C belongs to ↓ ∆k}. It holds that:

Sb = {C | b ∀ C belongs to ↓ ∆k}
= {E ⊃ F | ∃u∃i. u i F |E belongs to ↓ ∆k}
= {E ⊃ F | ∃u∃i. u : Bel i(F |E) belongs to ↓ ∆k}
= {Bel i(F |E) | ∃u. u : Bel i(F |E) belongs to ↓ ∆k}

We obtain that for each b ∈ W (x), |Sb| = O(n). Thus in this case, each
b ∈W (x) generates O(n) labels.
Putting together the two results, since |N(x)| = O(n) we finally get that
|W (x)| = O(n2).

2

Proposition 4.9 Any derivation branch B = Γ0 ⇒ ∆0, ...,Γk ⇒ ∆k,Γk+1 ⇒
∆k+1, ... of a derivation that starts from Γ0 ⇒ ∆0 where Γ0 is empty, ∆0

consists of x0 : A0, and which is built in accordance with the Strategy is finite.

Proof. Let us consider a branch B. Suppose by contradiction that B is not
finite, let Γ∗ =

⋃
k Γk and ∆∗ =

⋃
k ∆k. Then Γ∗ is infinite. All formulas

occurring with a label in Γ∗ are subformulas of A0, but the subformulas of
A0 are finitely many (namely they are O(n), where n is the length of A0).
Thus Γ∗ must contain infinitely many labels. In the light of Lemma 4.8, in



18 The Logic of Conditional Beliefs: Neighbourhood Semantics and Sequent Calculus

particular Γ∗ must contain infinitely many world labels, since each world label
x generates only O(n) neighbourhood labels. Let us consider now the tree

determined by the relation
w→
∗

with root x0. By Lemma 4.5, each label in

any Γk occurs in that tree, therefore the tree determined by
w→
∗

is infinite.
But by previous lemma, every label in the tree has O(n2) successors, thus
a finite number. By König’s lemma, the tree must contain an infinite path:
x0

w→ x1
w→ . . .

w→ xt
w→ xt+1 . . ., with all xt being different. We observe

that (a) infinitely many xt must be generated by dynamic rules using some
subformulas of A0, but (b) these formulas are finitely many, thus there must
be a subformula of A0 which is used infinitely many times to “generate” world
labels (or better to generate a neighbourhood label from which a further world
label is generated). There are two cases: this subformula is of type Bel i(D|C)
occurring in ∆∗ or it is of type i B|A occurring in Γ∗ (in this latter case it is
not properly a subformulas of A0 but it comes from one of them). In the first
case the situation is the following, for some xt we have that xt : Bel i(D|C)
occurs in some ∆s(xt) and for some a, such that k(a) = s(xt) + 1, we have

that a ∈ Ii(xt), a ∃ C ∈ Γs(xt)+1 and xt i D|C ∈ ∆s(xt)+1. Moreover, we
have a →g xt+1. But at the same time there must be in the sequence an xr
with r > t, such that xr : Bel i(D|C) occurs in some ∆s(xr) and for a new b,

that is with k(b) = s(xr) + 1, we have that (∗) b ∈ Ii(xr), b ∃ C ∈ Γs(xr)+1

and xr i D|C ∈ ∆s(xr)+1 and b →g xt+1. By Lemma 4.7, we have that
a ∈ Ii(xr), thus a itself fulfils the saturation condition for (RB) applied to
xr : Bel i(D|C) ∈ ∆s(xr), thus step (∗) violates the strategy and we get a
contradiction.

In the second case the situation is similar: for some t, xt i D|C occurs in
some Γs(xt) and for a new a, with k(a) = s(xt)+1, we have that a ∈ Ii(xt), a ∃
C ∈ Γs(xt)+1 and a ∀ C ⊃ D ∈ Γs(xt)+1. Moreover, we have that a→g xt+1.
Similarly there must be an xr in the sequence with r > t, such that xr i D|C
occurs in some Γs(xr) and for a new b, with k(b) = s(xr) + 1, we have that we

have that (∗∗) b ∈ Ii(xr), b ∃ C ∈ Γs(xr)+1 and b ∀ C ⊃ D ∈ Γs(xr)+1. By
Lemma 4.7, we have that a ∈ Ii(xr), thus a itself fulfils the saturation condition
for (LC) applied to xr i D|C ∈ Γs(xr), so that step (∗∗) violates the strategy.
In both cases we get a contradiction.

2

Termination of proof search under the strategy is then an obvious consequence:

Theorem 4.10 Proof search for any sequent of the form ⇒ x0 : A always
comes to an end after a finite number of steps. Furthermore, each sequent that
occurs as a leaf of the derivation tree is either an initial sequent or a saturated
sequent.

The above provides a decision procedure for CDL. Even without a precise
analysis of its complexity, it is easy to see that each proof branch may have
an exponential size, depending on the size of the formula A0 at the root of
the derivation. The exact complexity of logic CDL has not been determined.
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However, since S5n, the multi-agent version of S5, is embeddable in CDL via
the definition of the knowledge operator Ki, by the results in [7] we get that
PSPACE is a lower bound for the complexity of CDL. We strongly conjecture
that this is also its upper bound. This will be the object of future research,
together with a strategy to obtain from G3CDL an optimal decision procedure
for CDL.
The calculus is complete under the terminating strategy.

Theorem 4.11 Let Γ ⇒ ∆ be the upper sequent of a saturated branch B in
a derivation tree. Then there exists a finite countermodel M to Γ ⇒ ∆ that
satisfies all formulas in ↓ Γ and falsifies all formulas in ↓ ∆.

Proof. Let Γ⇒ ∆ be the upper sequent of a saturated branch B, by theorem
4.10 B is finite. We construct a modelMB and an SNB-realization (ρ, σ), and
show that it satisfies all formulas in ↓ Γ and falsifies all formulas in ↓ ∆.
Let SB = {x |x ∈ (↓ Γ∪ ↓ ∆)} and NB = {a | a ∈ (↓ Γ∪ ↓ ∆)}. Then,
associate to each a ∈ NB a neighbourhood αa, such that αa = {y ∈ SB|y ∈
a belongs to Γ}, thus αa ⊆ SB. We define a neighbourhood model MB =
〈W, Ii, J K〉 as

• W = SB, i.e. the set W consists of all the labels occurring in the saturated
branch B;

• For each x ∈W , Ii(x) = {αa|a ∈ Ii(x) belongs to ↓ Γ};
• For P atomic, JP K = {x ∈W |x : P belongs to ↓ Γ}.

By the saturation conditions we can easily prove that if a ⊆ b belongs to Γ, then
αa ⊆ βb and that MB satisfies all properties of a multi-agent neighbourhood
model, namely non-emptiness, total reflexivity, nesting, and local absoluteness
(closure under intersection then follows from finiteness). Define a realization
(ρ, σ) such that ρ(x) = x and σ(a) = αa. We now prove that [Claim 1] if F
is in ↓ Γ, then MB � F and [Claim 2] If F is in ↓ ∆, then MB 2 F , where
F denotes any formula of the language, i.e. F = a ∈ Ii(x), x ∈ A, a ⊆ b, x ∀

A, x ∃ A, x i B|A, x : A. The two claim are proved by cases, by induction
on the weight of the formula F . All cases are prove easily by the definition of
the model, the fact that Γ⇒ ∆ is saturated and by the induction hypothesis,
whenever needed.

2

The completeness of the calculus is an obvious consequence:

Theorem 4.12 If A is valid then it is provable in G3CDL.

Theorem 4.11 together with the soundness of G3CDL provides a constructive
proof of the finite model property of the CDL: if A is satisfiable in a model (=
¬A is not valid), then by the soundness of G3CDL ¬A, is not provable, thus
by 4.11 we can build a finite countermodel that falsifies ¬A, i.e., that satisfies
A.
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5 Conclusions and further research

We have proposed an alternative semantics for the logic CDL of doxastic
conditional beliefs, based on neighbourhood models, a multi-agent version of
Lewis’ spheres models. On the basis of the neighbourhood semantics, following
the methodology of [9], [10], [11], we developed the labelled sequent calculus
G3CDL for it. The calculus G3CDL is analytical and enjoys cut elimination
and admissibility of the other structural rules as well as invertibility of all its
rules. Moreover, on the basis of this calculus, we obtain a decision procedure
for the logic under a natural strategy of proof search. The completeness of
the calculus is proved by a finite countermodel construction extracted from a
failed (or open) branch of a derivation. The finite countermodel construction
provides in itself a constructive proof of the finite model property of the logic.
A number of issues are open to further investigation. On the semantical side,
other doxastic operators have been considered in the literature, such as safe
belief and strong belief [3]. We conjecture that also these operators can be
naturally interpreted in neighbourhood models and consequently captured by
extensions of the calculus G3CDL. Furthermore, CDL is the “static” logic
that underlies dynamic extensions by doxastic actions [3]. It should be worth
studying if our calculus can be extended to deal also with the dynamic exten-
sions. Finally, from a computational side, to the best of our knowledge the
exact complexity of CDL is not known. We conjecture its upper bound to
be PSPACE; however, further investigations are needed to confirm this result.
Moreover, some optimization of the search strategy is possible, in particular to
reduce the number of labels generated in a derivation. We aim to deal with all
these topics in future research.
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