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Abstract—A time series issued from modern synthetic aperture
radar satellite imaging sensors is a huge dataset composed by
many hundreds of million pixels when observing large-scale earth
structures such as big forests or glaciers. A concise monitoring
of these large scale structures for anomaly spotting thus requires
loading and analyzing huge spatio/polarimetric multi-temporal
image series. The contributions of the present paper for the sake
of parsimonious analysis of such huge datasets are associated
with a framework having two main processing stages. The first
stage is the derivation of an index called geometric multi-wavelet
total variation for fast and robust anomaly spotting. This index
is useful for identifying significant abnormal patterns appearing
as geo-spatial non-stationarities in multi-wavelet total variation
map. The second stage consists in the proposal of a concise
asymmetric multi-date change information matrix on regions
associated with significant multi-wavelet total variations. This
stage is necessary for a fine characterization of change impacts
on existing geo-spatial structures. Experimental tests based on
Sentinel-1 data show relevant results on a wide Amazonian forest
surrounding the Franco-Brazilian Oyapock Bridge.

Index Terms—Multi-Wavelets ; Information fusion ; Geometric
differencing ; Multivariate Synthetic Aperture Radar; Image Time Series.

I. INTRODUCTION

INFORMATION retrieval from long-time series of huge
spatial Synthetic Aperture Radar (SAR) images associated

with several polarization modalities requires identifying statis-
tics and similarity measures that can lead to fast and robust
computations over billions of pixels. Among the standard
statistics/measures adapted to this issue, ratio operators are
the most straightforward change indicators and are known to
be relevant on intensities or amplitudes of SAR multiplicative
scatterings.

When the SAR sensor resolution is not high enough1,
recent literature has investigated some refinements of log-ratio
change measure by:

The work was supported by PHOENIX ANR-15-CE23-0012 grant of the
French National Agency of Research.

1This is the case for the recent Sentinel imaging constellation, among other
on-board satellite SAR sensors.

• filtering data before applying log-ratio measure [1] ;
• filtering log-ratio measures (by using mean operators in

[2], [3] or by using wavelet transforms in [4], the issue
here is obtaining a finer wavelet based approximation2) ;

• log-ratio over non-necessarily connected pixels by means
of graph theory [5] or spectrally invariant keypoints [6].

Other results such as [7], [8] concern the analysis of log-ratio
statistical properties in order to ease selection of detection
threshold, segmentation or classification.

Despite its relevancy, the ratio measure can fail in detecting
changes when several errors affect data at different levels
(diffusion of scatterers, calibration and registration errors, etc.)
whereas filtering the data (prior to computing the ratio) can
blur change information, especially for the coarse resolution
offered by public-level satellite data.

For deriving a robust, generalized ratio-like measure with as
straightforward implementation as the standard ratio operator,
one can first remark that the latter is a particular case of
geometric wavelet operators [9]. he second remark is that dif-
ferent of such geometric wavelet filters can lead to alternative
ratio operators that can balance the possible mis-detections of
the standard ratio operator, in addition to offering multi-scale
ratioing.

The first issue addressed in this paper is then fusing multiple
evaluations from several classes of geometric wavelet filters,
including the one corresponding to the standard ratio operator,
in order to obtain robustness of the measure while keeping a
fast and easy implementation. The index proposed from such
several geometric wavelet operators for the sake of pixel-level
anomaly spotting will be the aggregation (Total Variation,
TV) of mono-wavelet measures and will be called multi-
wavelet TV. This index stands out from standard wavelet
transform based fusion techniques [10], [11], [12] in the sense
that it applies only on difference/ratio measures (temporal

2Note that this approximation is a regularized version where the scaling
function of the standard wavelet transform plays a major role.



trends/approximations are not considered as change informa-
tion).

From this index, pixels having abnormal dynamics will
be associated with large multi-wavelet TVs. In addition, a
recursive regularization framework addressed in the paper
allows for spotting the surrounding abnormal change area. This
recursive regularization is adapted from [13] in order to take
multivariate images into account.

Finally, when pixels with large multi-wavelet TV are located
in a dynamic neighborhood, we propose a focus on the sur-
rounding area with the sake of multiple change detection and
evolution monitoring. Since the surrounding area is expected
to be small in practice (not as huge as the entire image),
then a relevant feature for region based texture similarity
evaluation is provided in terms of Multi-Date Divergence
Matrices (MDDM) introduced in [14]. The MDDM will be
computed with respect to divergence information upon proba-
bilistic features attached to a multiscale wavelet representation
of the area with significant multi-wavelet TV. In contrast with
[14], the MDDM proposed in this paper will be asymmetric to
encompass dual-polarimetric dissimilarities in the information
matrix.

The paper is organized as follows. Section II proposes the
geometric multi-wavelet total variation dynamicity measure
and addresses the identification of dynamic pixels and their
surrounding areas in time series of images. Section III pro-
poses, for the surrounding areas affected by high dynamicity
TV measures, asymmetric MDDMs computed from geometric
wavelet transforms for highlighting abrupt and progressive
changes, as well as multiple changes in the series of im-
ages. Section IV addresses experimental results on a Franco-
Brazilian test site which is part of the Amazonian forest.
Section V concludes the work. A summary of the framework
proposed in the paper for handling long image time series of
huge spatial sizes is given by Figure 1.

II. STAGE 1: IDENTIFICATION OF AREAS WITH LARGE
WAVELET TOTAL VARIATION

A. Notation

In what follows, I = {Ik}k=1,...,M is a Polarimetric SAR
(PolSAR) Image Time Series (ITS) composed by M co-
registered images of the same scene and such that Ik = I[tk],
where k/tk refers to the acquisition date. The pixel IPk (x, y)
is with spatial location (x, y), sampling date k and polarization
information P . Polarimetry information P can be provided in
terms of one among the following features:

• Scattering matrix (P , S, where symbol , stands for no-
tation convention): we have ISk (x, y) = S[tk](x, y) , S
where

S =

(
S1,1 S1,2

S2,1 S2,2

)
when omitting variables tk, (x, y) and by assuming
that the scattering information is associated with quad
polarimetry SAR acquisition modalities (in this case,

Sp,q is the SAR response with respect to signal trans-
mission/receive operating at polarization configurations3

p/q).
• Covariance matrix (P , C): ICk (x, y) = C[tk](x, y) , C

with:
C =

|S1,1|2
S1,1(S1,2 + S2,1)∗√

2
S1,1S

∗
2,2

(S1,2 + S2,1)S∗1,1√
2

|S1,2 + S2,1|2

2

(S1,2 + S2,1)S∗2,2√
2

S2,2S
∗
1,1

S2,2(S1,2 + S2,1)∗√
2

|S2,2|2


This matrix is obtained from equation C = k3Lk

∗
3L where

k3L =

 S1,1

(S1,2 + S2,1) /
√

2
S2,2


is the lexicographic vector associated with scattering
matrix S.

• Coherency matrix (P , T ): ITk (x, y) = T [tk](x, y) , T
with:

T = k3Pk
∗
3P

where k3P is the Pauli vector defined by:

k3P =
1√
2

S1,1 + S2,2

S1,1 − S2,2

S1,2 + S2,1


Expansion of T with respect to scattering coefficients is
omitted due to its large size. But it is worth noting that
coefficients of T are associated to the so-called Huynen
parameters A0, B0, B1, C, D, E, F, G, H through the
relation:

T , k3Pk
∗
3P =

 2A0 C− iD H + iG
C + iD B0 + B1 E + iF
H− iG E− iF B0 −B1


When only dual-polarimetry information are available,

then we consider a 3-variate dual-PolSAR RGB4 vector
IVk (x, y) = V[tk](x, y) , V in terms of the following scatter-
ing compositions (case SLC5), respectively covariance magni-
tude compositions (case GRD6):

VSLC =

 S2,2

S2,1

S2,2/S2,1

 wwwww VSLC =

 S1,1

S1,2

S1,1/S1,2


VGDR =

 |S2,2|2
|S2,1|2

|S2,2/S2,1|2

 wwwww VGDR =

 |S1,1|2
|S1,2|2

|S1,1/S1,2|2


depending on the pair available among scattering coefficients
(S2,2, S2,1) and (S1,1, S1,2), where symbol ‖ refers to ex-
clusive “or” operator. Notation P , V applies for the latter
acquisition specificities.

3In general: horizontal and/or vertical radar configurations.
4RGB : color model associated with Red, Green and Blue.
5SLC: Single Look Complex valued SAR products.
6GRD: Ground Range Detected, real valued post-processed SAR products.



Fig. 1. Diagram of ITS analysis. WTV are computed at pixel levels over huge spatial areas. Regions with large WTV are then analyzed by MDDMs
(sub-image/patch levels).

B. Geometric Wavelet Total Variation

Assume that spatial variables (x, y) cover a huge area. We
need a fast and efficient pre-processing that makes the identifi-
cation of areas affected by significant events/changes/evolution
possible. In particular, both abrupt and slow range progressive
changes must result in high alarm responses for a relevant
pre-processing.

A convenient solution is the temporal Wavelet Total Varia-
tion (WTV) index defined here as the sum of magnitudes of
wavelet7 coefficients when the wavelet transform apply with
respect to the time axis.

Moreover, since using different wavelets can lead to a richer
framework for capturing a wide class of non-stationarities,
we consider from now on, a set of J temporal causal8

geometric wavelet transforms (Wj)16j6J that deliver a set
of PolSAR variability features where, for any given P , the
spatial sequence of coefficients at date k is obtained for every
(x, y) by the following multiplicative fusion operator:

[WjI]
P

[k](x, y) =

Lj−1∏
`=0

(
IPk−`(x, y)

)Wj [`] (1)

In this equation, causal implementation means that we have
considered shifted versions of the wavelet impulse response
so that W has effective support: {0, 1, 2, . . . , Lj − 1}.

7A wavelet function is assumed to admit at least one vanishing moment in
order to be considered as a generalized differential operator.

8Causality is imposed here for operational purpose and easy-to-update
analysis schemes.

For instance, we will use the following wavelet transforms,
where variables P and (x, y) are omitted for the sake of
readability:
• Level-1 Haar (notation Haar-1 hereafter) geometric

wavelet transform of I:

[W1I] [k] = [WHaar-1I] [k] = I
1
2

k I
− 1

2

k−1 (2)

• Biorthogonal (notation Bi-⊥ hereafter) geometric wavelet
transform of I:

[W2I] [k] = [WBi⊥I] [k] = I
1
3

k I
− 2

3

k−1I
1
3

k−2 (3)

• Level-2 Haar (notation Haar-2 hereafter) geometric
wavelet transform of I:

[W3I] [k] = [WHaar-2I] [k] = I
1
4

k I
1
4

k−1I
− 1

4

k−2I
− 1

4

k−3 (4)

In these equations,
∑
`Wj [`] = 0 to ensure vanishing mo-

ment condition. As a consequence, any [WjI] is a geometric
differencing (ratioing) operator. Quantity [WjI] [k] is thus an
indicator of the amount/number of geometric changes obtained
at date k and computed with respect to the Lj − 1 foregoing
dates, where Lj is the length of the wavelet support.

Remark 1 (Terminology): We will say that system:
• {Haar-1, Haar-2} is mono-wavelet but multi-scale (scales

21 for Haar-1 and 22 for Haar-2) ;
• {Haar-1, Bi-⊥} is multi-wavelet but mono-scale (scale

21 for both Haar-1 and Bi-⊥ wavelets) ;
• {Haar-1, Bi-⊥, Haar-2} is multi-scale multi-wavelet.



We will consider either the multi-scale multi-wavelet sys-
tem {Haar-1, Bi-⊥, Haar-2} or the mono-wavelet multi-scale
system {Haar-1, Haar-2, Haar-3} where Haar-3 is derived
similarly with respect to Haar-1 and Haar-2.

Let us define the Geometric WTV9 (GWTV) observed in
the M -length time series I by using Wj as:

Θj,M =

M∑
k=Lj

∣∣∣ log
∣∣ [WjI] [k]

∣∣∣∣∣ (5)

The use of log in GWTV given by Eq. (5) is required
mainly for the sake of displaying the multiplicative increments
into additive scales. The absolute value operating on the log
allows to keep all magnitudes detected over time: without
this absolute value, positive and negative change responses
over time can annihilate in the sum, resulting in an inaccurate
“stability” decision.

Remark 2 (GWTV of complex valued features): Transform
WjI of Eq. (1) involves:
• only real numbers when I = VGDR or
• complex and real numbers when I = S/C/T /VSLC.

In the latter case, Wj implementation involves ratios of
PolSAR moduli weighted by complex exponentials (associated
with wavelet based differences of phase information). How-
ever, Eq. (5) remains real, non-negative, because it applies on
the moduli of the complex wavelet coefficients obtained by
using Eq. (1).

Remark 3 (Updating GWTV): For huge data processing in
operational multi-temporal context, it is important to be able
to update GWTV of Eq. (5) without significant computational
load when a new observation is available. Note that the
updating process only requires:
• retrieval of image IM+1 ;
• computation of the wavelet based image coefficients

[WjI] [M + 1] by using one among Eqs. (2), (3), (4) or
both of these equations, this computation involves loading
only the Lj − 1 foregoing images (for instance loading
{IM}, {IM , IM−1} or {IM , IM−1, IM−2} respectively
when considering Haar-1, Bi-⊥ or Haar-2 wavelets) ;

• computation of

Θj,M+1 = Θj,M +
∣∣∣ log

∣∣ [WjI] [M + 1]
∣∣∣∣∣

Thus, the overall update processing is with low data-load and
small computational-complexity.

9When using standard (arithmetic) wavelet transforms, we have defined
(see the beginning of section II-B), the WTV as:

Θj,M =

M∑
k=Lj

∣∣ [WjI] [k]
∣∣

In practice, only the so-called “detail” wavelet coefficients have to be taken
into account in the above sum: when using a standard wavelet decomposition,
it is necessary to discard approximation coefficients from this sum because
they are associated with a scaling (not a wavelet) function.

Finally, with the sake of taking advantage of diversities
induced by the use of different wavelet shapes, we define
the Geometric Multi-Wavelet10 WTV (GMWTV) for the M
length ITS I as the following additive fusion of geometric
mono-wavelet integrals:

ΘM =
∑
j

αjΘj,M (6)

where j ranges over a set of wavelet indices (or scale pa-
rameters) and sequence (αj)j , satisfying

∑
j αj = 1, is a

sequence of weights associated with wavelet relevancy for
discriminating a given type of change/evolution.

C. Regularization of WTV

Despite the doubly additive and multiplicative fusions
involved in GMWTV, the rationale is to admit that
anomaly/evolution information contained in any GWTV (thus
GMWTV) can be slightly affected by errors issued from
upstream SAR pre-processing steps (imperfect calibration,
inconsistent geometric projectors in case of terrain correction
and co-registration errors). To enforce regularity in presence
of spatial dynamics, the following proposes regularization of
WTV as a spatial/polarimetric processing of temporal change
information. Given a WTV Θj,M , this regularization, inspired
by [13], applies from the following algorithm:
• Step 1: ΘJpI

j,M ← Θj,M , where← denotes the assignment
symbol.

• Step 2: Compute the continuous Hilbert-Peano space
filling curve associated with spatial image indices: the
outputs are two reshaped vectors U and V and the
univoque transform:

ΘJpI
j,M (U(z), V (z)) = ΘJpI

j,M (x, y)

which provides the one-dimensional path (single variable
z) making a continuous move through the image spatial
coordinates possible.

• Step 3: For z ranging from 1 to the end of the 2D Hilbert-
Peano path, extract the set11:

Sj,M,z[η1, η2] =

ΘJpI
j,M (U(z)− c− 1 + η1, V (z)− c− 1 + η2)

for 1 6 η1, η2 6 2c + 1, then overwrite the value
ΘJpI
j,M (U(z), V (z)) as follows:

ΘJpI
j,M (U(z), V (z))← ζ (7)

where

ζ = arg min
w∈Sj,M,z

2c+1∑
η1,η2=1

‖Sj,M,z[η1, η2]− w‖p`p (8)

10Same terminology for either or both multi-scale/multi-wavelet since
multi-scale can be seen as a particular case of multi-wavelet.

11Depending on the data type in P , the set Sj,M,z may be composed by
scalars, vectors or matrices.



before computing Sj,M,z+1, followed by the calculus of
ΘJpI
j,M (U(z+ 1), V (z+ 1)), . . ., loop until the end of the

Hilbert-Peano path.
This regularization, with efficiency proven in [13] for scalar

images among which SAR intensity data, allows for penalizing
spatial neighbors with small `p norm while enhancing pixels
associated with large change responses. When p = 1, this
corresponds to a recursive median computation that purges
outliers with a segmentation-like effect.

Remark 4 (Joint versus independent spatio/polarimetric
regularization): In Eq. (8), the `p norm can apply:
• to spatial variable only, for any given polarimetric infor-

mation, that is: Sj,M,z is a series of scalar data (reshaped
spatial neighborhood),

• to both spatio-polarimetric variables: Sj,M,z is a series
of multivariate PolSAR data associated with the given
spatial neighborhood and vector/matrix `p norms are
under consideration.

In the former case, regularization concerns polarimetry chan-
nels independently whereas in the latter case, all available
polarimetry information are integrated in the `p norm. In
practice, from several tests on data associated with different
sensors, we can conclude that: for systems delivering lower
(S1,2, S2,1) scattering responses than (S1,1, S2,2), the marginal
(channel independent processing) is more relevant. Otherwise,
the joint spatio-polarimetric neighborhood leads to a more
PolSAR discriminant regularization.

Remark 5 (Regularization before of after multi-wavelet fu-
sion): Alternatively, rather than regularizing the GWTV given
by Eq. (5) for any j, one may consider regularizing the fused
GMWTV (defined by Eq. (6)) directly. In practice, as long
as the number of wavelets is larger than 2, we observe that
it is more convenient to consider the latter for obtaining a
good compromise in terms of computational complexity and
performance.

III. STAGE 2: MULTI-DATE INFORMATION RETRIEVAL
FOR AREAS WITH LARGE GMWTV

The analysis proposed in this section concerns an area or a
region with large GMWTV. We keep the same notation I for
the image/region/area/subimage/patch whatever the spatial size
of interest. MDDMs proposed in [14] for mono-channel SAR
images are tools for visualizing several categories of changes
that can affect an ITS. The MDDM is composed by change
information between pairwise observations Im and I` for all
available couples of dates (m, `). It corresponds to the matrix:

K = (K(Im, I`))16m,`6M
where K is an appropriate dissimilarity measure, for instance
the symmetric Kullback-Leibler divergence:

K(X1, X2) = K(X1||X2) +K(X2||X1) (9)

where K(X1||X2) is given by:

K(Xi||Xj) =

∫
R
fXi(x) log

fXi(x)

fXj (x)
dx, i, j = 1, 2 (10)

with fX1
and fX2

being the PDFs (Probability Distribution
Functions) of random variables X1 and X2 respectively.

A. Case of dual-PolSAR ITS
For dual PolSAR data, we consider the first two components

of the feature vector VGRD (or VSLC) introduced in Section
II-A. The PolSAR variables can be noted P = (Pε,P1−ε),
for ε ∈ {0, 1}, with: (Pε,P1−ε) = (VV,VH) or (HH,HV)
for Sentinel-1 data, where H/V refers to Horizontal/Vertical
polarizations.

We define the dual-PolSAR MDDM as:

KP =(
K(IPεm , IPε` )1l{m6`} +K(IP1−ε

m , IP1−ε
` )1l{m>`}

)
16m,`6M

From this definition and when (Pε,P1−ε) = (VV,VH), then
the upper triangular divergence matrix represents VV-based
dissimilarity measurements and the lower triangular diver-
gence matrix provides VH-based dissimilarity measurements.

As a consequence, the corresponding MDDM is a non-
necessarily symmetric change information matrix highlighting
both VV and VH PolSAR dissimilarities over time: depending
on the ground scatterer imaged, changes may be observable
either on the lower (respectively upper) matrix components or
on both parts of this matrix. The goal is to clearly emphasize
a discriminant dual-PolSAR change information.

For any given ε ∈ {0, 1}, the K(IPεm , IPε` ) dissimilarity
will be computed upon the coefficients of a spatial12 stan-
dard Stationary Wavelet Transform (SWT) W for evaluating
between-date texture features:

K
(
IPεm , IPε`

)
, K

(
W<

J,0

[
IPεm

]
,W<

J,0

[
IPε`

])
+ K

(
W=

J,0

[
IPεm

]
,W=

J,0

[
IPε`

])
(11)

+
∑

j∈{1,2...,J}
n∈{1,2,3}

K
(∣∣Wj,n

[
IPεm

]∣∣ , ∣∣∣Wj,n

[
IPε`

]∣∣∣)

where Wj,n[IPεm ], Wj,n[IPε` ] are the level (j, n) SWT coef-
ficients of IPεm , IPε` respectively and </= are real/imaginary
parts of a complex number. The direct sum used in Eq. (11) as-
sumes that for any given date m, the variables

(
Wj,n[IPεm ]

)
j,n

are approximately independent. This is a property of wavelet
transforms that is known to depend on: (i) the input random
process and (ii) the wavelet filter properties.

B. Case of quad-PolSAR ITS
For quad-PolSAR time series, we are concerned by one

of the matrix features S, C, T described in Section II-A. The
number of variables being large, we can distinguish two issues:
either using a discriminant analysis per polarimetry channel
(which leads to one MDDM per channel), or deriving a
single MDDM. The latter is more parsimonious for fine quad-
PolSAR13 since the scatterer responses are expected to be

12Texture-level analysis, in contrast with the first stage analysis operating
at pixel-level.

13RADARSAT-2 satellite offers such possibility, other sources being air-
borne SAR imaging systems.



significant in any PolSAR channel. In this case, we define
the MDDM from fused divergences:

K
(
IPm, IP`

)
=
∑
p

∑
q

K
(
IPp,qm , IPp,q`

)
where

K
(
IPp,qm , IPp,q`

)
, K

(
W<

J,0

[
IPp,qm

]
,W<

J,0

[
IPp,q`

])
+ K

(
W=

J,0

[
IPp,qm

]
,W=

J,0

[
IPp,q`

])
(12)

+
∑

j∈{1,2...,J}
n∈{1,2,3}

K
(∣∣Wj,n

[
IPp,qm

]∣∣ , ∣∣∣Wj,n

[
IPp,q`

]∣∣∣)

As in Section III-A above, the sum in Eq. (12) assumes that
wavelet contributions are approximately independent. Other-
wise, a weighted sum can be investigated.

To conclude this section, it is worth mentioning that the
divergence expressed by Eq. (10) requires either a parametric
PDF model or a non-parametric estimate of the PDF. Hereafter,
we take again advantage of the regularization operated by
wavelets on random processes for associating, with a prelim-
inary validation stage:
• Generalized Gaussian (GG) models to real/imaginary

parts of approximation coefficients and
• Weibull (WBL) models to magnitudes of wavelet details.

Therefore, on the one hand, we will associate to PolSAR
spatial approximation coefficients, the scale α and shape β of a
GG distribution: if X1 = W

</=
J,0 [IPεm ] and X2 = W

</=
J,0 [IPε` ]

are the corresponding GG variables, then the symmetric diver-
gence of Eq. (9) has the following form [15]:

K(X1, X2) =

(
α1

α2

)β2 Γ
(

1+β2

β1

)
Γ(1/β1)

+

(
α2

α1

)β1 Γ
(

1+β1

β2

)
Γ(1/β2)

− β1 + β2
β1β2

(13)

where Γ is the special Gamma function.
On the other hand, the magnitudes of the PolSAR spatial

wavelet detail coefficients are modeled by WBL scale param-
eter a > 0 and shape parameter b > 0 so that if X1 =∣∣Wj,n[IPεm ]

∣∣ and X2 =
∣∣∣Wj,n[IPε` ]

∣∣∣ are the corresponding
WBL variables, then the symmetric divergence of Eq. (9) has
the following form [16]:

K(X1, X2) =

(
λ1
λ2

)k2
Γ

(
1 +

k2
k1

)
+

(
λ2
λ1

)k1
Γ

(
1 +

k1
k2

)
+ e

(
k1
k2

+
k2
k1
− 2

)
− 2 + (k1 − k2) log

λ1
λ2

(14)

where e is the Euler-Mascheroni constant.

IV. APPLICATION

This section is dedicated to experimental results on a multi-
temporal Sentinel-1-A/B SAR time series acquired from 2015-
12-05 to 2017-12-09 (87 dual-PolSAR GRD images). The
latitudes of the test site range from 03◦33’ to 04◦26’ whereas

TABLE I
GEO-SPATIAL COORDINATES OF SOME AREAS WITH SUSPICIOUS GMWTV
BEHAVIORS. THE ROI RADIUS IS GIVEN IN PIXELS, THE PIXEL SIZE BEING

APPROXIMATELY 150 m2 .

ROI label Center point coordinates Radius
01 03◦58’44.55”N - 5143’30.57”W 10
02 03◦58’28.18”N - 5145’31.59”W 16
03 03◦53’04.31”N - 5145’09.66”W 09
04 03◦51’47.29”N - 5146’23.26”W 28
05 03◦50’59.68”N - 5145’09.50”W 11
06 03◦50’53.64”N - 5144’36.93”W 12
07 03◦50’45.14”N - 5146’12.23”W 06
08 03◦50’44.44”N - 5145’11.21”W 30
09 03◦50’04.76”N - 5145’44.71”W 10
10 03◦48’21.54”N - 5145’17.95”W 10
11 03◦45’46.39”N - 5145’26.45”W 16
12 03◦45’28.00”N - 5145’11.81”W 11
13 03◦38’55.02”N - 5135’08.28”W 99

Fig. 2. Image sub-selection showing 12 ROIs among the 13 studied (see
Table I for center pixel coordinates). The 13th ROI is located far at southeast
of ROI #12. The display omits the latter because otherwise, the paper size
leads to over-stretching all ROIs.

its longitudes range from 51◦04’ to 51◦54’. We follow the
block diagram of Figure 1 for the analysis.

We select weights associated with the fused GMWTV of
Eq. (6) from wavelet filter specifications. By imposing comple-
mentarity in the Fourier domain (high and band-pass filters),
in addition with a significant attenuation of low frequencies
(very slow variations in the time domain) we derive α2 = 1/2
and α1 = α3 = 1/4.

GMWTV measures are then computed over pixel time series
of the test site and the derived map highlights several types
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Fig. 3. 128× 128 sub-selections of WTVs Θ•,87 and GMWTV Θ87 around the areas with abnormal behaviors presented in Table I.

of dynamics. The large size of the site does not allow fine
displays on a limited length paper. Thus, we focus hereafter
on 13 specific areas leading to large GMWTV: the coordinates
of the centers for these 13 areas are given in Table I. Twelve
among these areas are located in a tight neighborhood, close
to the Oyapock river and are displayed in Figure 2.

GMWTV of the 13 areas described in Table I are given in

Figure 3. As it can be seen on this figure, the central pixels
associated with the 13 areas have abnormal behaviors (bright
colors). We also provide the size of the region surrounding
any suspicious pixel behavior as a circular Region-Of-Interest
(ROI) with radii specified in Table I.

Figure 3 shows that GMWTV Θ87 is noisy, as expected.
Its `2 regularized version ΘJ2I

87 is more informative, but
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Test site

Fig. 4. MDDMs K for areas with suspicious behaviors given by Table I and for the test site.

less homogeneous than the recursive `1 based regularization
(compare columns associated with ΘJ1I

87 and ΘJ2I
87 ). In ad-

dition, GMWTV ΘJ1I
87 (multi-wavelets) is more discriminant

than any single wavelet GWTV: compare column associated
with ΘJ1I

87 to the columns associated respectively to Haar-1
(ΘJ1I

Haar-1,87), Bi-⊥ (ΘJ1I
Bi-⊥,87) and Haar-2 (ΘJ1I

Haar-2,87) GWTVs.
Finally, asymmetric (VH, VV) MDDMs are derived for the

13 ROIs and displayed in Figure 4. The interpretation of these
MDDMs according to color variations in rows, columns and
diagonals let us derive the following conclusions:
• ROIs associated with a single change point are:

– Label 01 (abrupt change with seasonal variability);
– Label 02 (progressive changes with almost no visible

seasonal variability).
• ROIs associated with multiple change points are:

– Labels 04, 06, 08, 09, 12, 13 (with visible seasonal
variability);

– Labels 03, 05, 07, 10, 11 (no visible seasonality).
The MDDM of the whole test site is also given in Figure
4 for the sake of comparison: at this scale (more than 108

pixels), this MDDM is dominated by seasonal changes mainly.
This MDDM shows for instance that VH is more sensitive to
seasonal variability than VV.

V. CONCLUSION

We have proposed SAR ITS analysis from a two stage
information fusion. The first stage is a fusion of geometric
wavelet operators in order to spot abnormal temporal scattering
behaviors (high wavelet total variations that may issue from
some abrupt change or cumulative seasonal effects). The sec-
ond stage is a fusion of wavelet spatial multiscale divergences
for capturing texture variations over time. The asymmetric
MDDM proposed for the latter stage keeps available in a single
matrix, both VV and VH PolSAR variabilities. It follows that
certain changes/evolution are more visible on either VV or VH
whereas others concern both (VV, VH) channels.
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