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Abstract Voice command in multi-room smart homes for assisting people
in loss of autonomy in their daily activities faces several challenges, one of
them being the distant condition which impacts ASR performance. This pa-
per presents an overview of multiple techniques for fusion of multi-source audio
(pre, middle, post fusion) for automatic speech recognition for in-home voice
command. The robustness of the models of speech is obtained by adaptation
to the environment and to the task. Experiments are based on several publicly
available realistic datasets with participants enacting activities of daily life.
The corpora were recorded in natural condition, meaning background noise
is sporadic, so there is no extensive background noise in the data. The smart
home is equipped with one or two microphones in each room, the distance
between them being larger than 1 meter. An evaluation of the most suited
techniques improves voice command recognition at the decoding level, by us-
ing multiple sources and model adaptation. Although Word Error Rate (WER)
is between 26% and 40%, Domotic Error Rate (identical to the WER, but at
the level of the voice command) is less than 5.8% for deep neural network mod-
els, the method using Feature space Maximum Likelihood Linear Regression
(fMLLR) with speaker adaptation training and Subspace Gaussian Mixture
Model (SGMM) exhibits comparable results.
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1 Introduction

In beginning of the twenty-first century, most of the countries, whatever their
gross domestic product, are undergoing a major demographic transition which
will bring the large amount of baby boomers from full-time workers to full-
time pensioners. This progressive ageing of most of the world population will
be correlated with an increase of people with disabilities (World Health Or-
ganization, 2003). Some of these people will be incapacitated to the point at
which they can no longer live independently in their own homes. However, one
of the first wishes of this population is to live in their own home as cosy and
safe as possible even if their autonomy decreases. Anticipating and responding
to the needs of persons with loss of autonomy with Information and Commu-
nications Technology (ICT) is known as Ambient Assisted Living (AAL). In
this domain, the development of smart homes is seen as a promising way of
achieving in-home daily assistance (Chan et al, 2008; Peetoom et al, 2014).
However, given the diverse profiles of the users (e.g., low/high technical skill,
disabilities, etc.), complex interfaces should be avoided. Nowadays, one of the
best interfaces, is the Voice-User Interface (VUI), whose technology is ma-
ture and provides interaction using natural language so that the user does not
have to learn complex computing procedures (Portet et al, 2013; Vacher et al,
2015a). Moreover, it is well adapted to people with reduced mobility and to
some emergency situations (hands-free and distant interaction).

VUI in domestic environments recently gained interest in the speech pro-
cessing community as exemplified by the rising number of smart home projects
that consider Automatic Speech Recognition (ASR) in their design (Char-
alampos and Maglogiannis, 2008; Popescu et al, 2008; Badii and Boudy, 2009;
Hamill et al, 2009; Filho and Moir, 2010; Lecouteux et al, 2011; Ons et al,
2014; Christensen et al, 2013; Cristoforetti et al, 2014; Vacher et al, 2015a).
However, though VUIs are frequently used in smart-phones there are still
important challenges to overcome before implementing VUT at home (Vacher
et al, 2011). Indeed, the task imposes several constraints to the speech technol-
ogy: 1) distant speech condition, 2) cheap, 3) real-time, 4) respect of privacy®.
Moreover, such technology must be validated in real situations (i.e. real smart
homes and users). Another very important challenge is the ability to per-
form automatic speech processing in domestic condition with small quantity
of data. Indeed, real life acoustic environment can be composed of a variety of
highly dynamic background noise, interleaving speech and reverberation that
is highly challenging for an ASR system. To address this challenge there has
been a recent serie of effort to foster research in distant speech ASR in noisy
condition as exemplified by the CHiIME challenge (Vincent et al, 2013). In
this challenge, a data set was synthesised from a set of read utterance mixed
with a background noise (composed of real-life domestic background noise)
using a binaural room impulse responses. The Word Error Rate (WER) rate

1 Note that as any assistive technology, the intrusiveness of an ICT can be accepted if the
benefit is worth it.



shows a trend from 40% in -9dB condition to 15% in 9dB condition. To move
from these somewhat artificial data the challenge to more realistic conditions,
CHIME 2014 (Barker et al, 2015) has recorded speech in real noisy conditions
(rather than artificiality mixed) but close talking and microphones (6 micro-
phones attached ion a tablet). In this context an impressive WER of 5.8% has
been reached (Yoshioka et al, 2015). However, it is difficult to project these
results in a non-read distant speech multiroom real-time ASR setting with
distributed microphone signals that contain low redundancy. Moreover the
baseline of these challenges are difficult to compare for non-English languages
and other recording conditions.

In this context, this paper presents the results of an ASR development
and evaluation for a VUI intended for elderly people and people with visual
impairment in a multiroom smart home with distributed microphones (several
meters apart, i.e. no array of microphones). This research supplement our early
developments made in the context of the SWEET-HOME project in which state-
of-the-art HMM-GMM systems with multi channel were developed and evalu-
ated with target users in a real smart home (Vacher et al, 2015a), and whose
corpora were made available (Vacher et al, 2014). In this particular paper we
extend our previous research in a number of ways. First, we developed new
ASR systems based on the current state-of-the-art acoustic modeling namely
HMM-DNN and S-GMM. In particular, these models were compared in term
of accuracy and dependency to the amount of speech material available before
hand which is a real constraint for the application (e.g. the adaptation to each
new home and users)?. Second, we present various techniques to benefit from
the available set of microphones with low a priori knowledge (i.e. only the in-
formation about the room in which each microphone is set). This constraint is
due to the fact that the installation of a home automation system must be kept
as simple as possible with minimal restrictions on the material to be bought
and on where it should be placed. Third, this multichannel ASR system has
be evaluated using both standard measures (such as WER) and using task ori-
ented measures (such as DER : Domotic Error Rate) and from manually and
automatically segmented speech signal. This last condition is compulsory for
any hands-free ASR system for real-life application since ASR performance
depends on the Voice Activity Detection (VAD) accuracy. The experiments
have been based on several datasets we have collected in our smart home with
participants enacting activities of daily life. The corpora were recorded in re-
alistic condition with the consequence that background noise is sporadic. For
this reason the paper focuses on achieving robust real-time ASR, using multi-
source ASR rather than using sound source localization, and separation which
would not be adapted to a distributed microphone setting where microphones
are mono and their locations are subject to change.

This study is part of a system which provides voice command in a multi-
room smart home for seniors and people with visual impairment. In our ap-
proach, we address the problem by using several mono-microphones set in

2 See (Zhang et al, 2014) for an interesting study on these matters.



the ceiling, selecting the “best” sources and employing ASR decoding and
voice command matching. This approach has been chosen against noise source
separation which can be highly computational expensive, is sensitive to sam-
ple synchronization problem (which cannot be assumed with non professional
devices) and is still not solved in real uncontrolled condition. Hands-free in-
teraction is ensured by constant keyword detection. Indeed, the user must be
able to command the environment without having to wear a specific device for
physical interaction (e.g. a remote control too far from the user when needed).
Though microphones in a home is a real breach of privacy, by contrast to
current smart-phones, we address the problem using an in-home ASR engine
rather than a cloud based one (private conversations do not go outside the
home). Moreover, the limited vocabulary ensures that only relevant speech for
the command of the home is correctly decoded. Finally, another strength of
the approach is to have been evaluated with real users in realistic uncontrolled
conditions.

The paper is organized as follow. After a short introduction to the related
work in Section 2, the overall system and the different ASR strategies are
described in Section 3. These strategies are experimented in Section 4, and
the results of the off-line experiments are presented in Section 5. The results
of the proposed methods are discussed in Section 6.

2 Related works

As stated in the introduction, several challenges are to be addressed to make
distant speech recognition in Smart Homes performing well enough to provide
speech based services to the dweller (Vacher et al, 2011). ASR systems obtain
acceptable performances with clean close talking microphones, but the per-
formances are significantly lower when the microphone is far from the mouth
of the speaker. This deterioration is due to a broad variety of effects includ-
ing reverberation and presence of undetermined background noise. Moreover,
many speech controlled smart home projects are focused on AAL (Ambient
Assisted Living), that adds the challenge of dealing with atypical voice. In the
following, we briefly introduce some of the these challenges focusing on the
literature addressing these issues by using ASR.

2.1 Diversity of speakers and situations

If ASR has reached good performance for typical users, a large field of appli-
cation in speech based assistive technology in the home aims at supporting
daily life of atypical users (Portet et al, 2015). Potential users are elderly and
all people who may acquire a disability which affects communication. This dis-
ability can result from both motor and cognitive impairments (i.e. paralysis,
hearing or visual impairment, brain injury, Alzheimer...). In speech recogni-
tion, the challenges are related to the recognition of speech uttered by elderly,
dysarthric or cognitively impaired speakers.



For instance, aged voice is characterized by some specific features such as
imprecise production of consonants, tremors, hesitations and slower articu-
lation (Ryan and Burk, 1974). Some studies have shown age-related degen-
eration with atrophy of voice cords, calcification of laryngeal cartilages, and
changes in muscles of larynx (Takeda et al, 2000)(Mueller et al, 1984). For
these reasons, some authors highlight that ASR performance decreases with
elderly voice. This phenomenon has been observed in the case of English, Euro-
pean Portuguese, Japanese and French (Vipperla et al, 2009)(Pellegrini et al,
2012)(Baba et al, 2004)(Aman et al, 2013). Vipperla et al (Vipperla et al,
2008) showed that speaker adaptation can get closer to the scores of non-aged
speakers but this implies that the ASR must be adapted to each speaker.

Regarding speech impaired users, various ASR systems have been pro-
posed in the literature. In (Potamianos and Neti, 2001; Rudzicz, 2011) speaker-
independent acoustic models were adapted to speaker so that recognition of
user-specific voiceisations was improved. Another way to improve ASR per-
formance for dysarthric speakers was to train the consistency of the speakers’
pronunciations using the recognition likelihood of the uttered words (Parker
et al, 2006). Thus, it is the user who adapts itself to the ASR system. Other
studies include the design of phoneme HMM topologies more suited to the
speaker (Caballero-Morales and Trujillo-Romero, 2014) or user customizable
isolated word recognition systems (Hwang et al, 2012).

Moreover, speech signal contains linguistic information but it may be in-
fluenced by the health, the social status and the emotional state (Audibert
et al, 2005)(Vlasenko et al, 2011). Recent studies suggest that ASR perfor-
mance decreases in case of emotional speech (Vlasenko et al, 2012), however
it is still an under-researched area. In their study, Vlasenko et al (Vlasenko
et al, 2012) demonstrated that acoustic models trained on read speech samples
and adapted to acted emotional speech could provide better performance for
spontaneous emotional speech recognition.

In voice based controlled home environments, the approach is mainly to
use ASR models together with a speaker adaptation procedure to improve
ASR performance for specific speakers. For instance, in the SWEET-HOME
(Vacher et al, 2015a) and CIRDO (Bouakaz et al, 2014), projects that aimed
at providing voice based assistive technology in the home for elderly and
disabled people, Maximum Likelihood Linear Regression (MLLR) and Fea-
ture space MLLR (fIMMLR) speaker adaptation was used to adapt an on-line
speaker-independent ASR system. In the HomeService project (Christensen
et al, 2013), Maximum a posteriori (MAP) adaptation was used for speaker
adaptation. Another approach was presented in the ALADIN project (Ons
et al, 2014), in which a VUI model is learned from the speech and actions of
the user without transcription. The speech of the user and the user’s action on
a device (home automation command) are two sources of information that are
combined using Non-negative Matrix Factorization (NMF) so that the VUI
can learn co-occurring patterns from two information sources. Although this
approach requires few examples to learn, it is unclear how it can generalize to
unseen situation and how the model can be reused.



Apart from acoustic modeling, language modeling is also an important issue
in order to minimize the ambiguity in the decoding. For small vocabulary
systems, the language model must be adapted to the speaker since even in
limited vocabulary task, the user tends to deviate from the system syntax
(Vacher et al, 2015a).

2.2 Reverberation

In real multi-room home it is frequent to observe the reverberation phe-
nomenon that can alter source speech. Distorted signals can be treated in ASR
either at the acoustic model level or at the input (feature) level (Wolfel and
McDonough, 2009). (Deng et al, 2000) showed that feature adaptation methods
provide better performances than those obtained with systems trained with
data with the same distortion as the target environment (e.g. acoustic mod-
els learned with distorted data) for both stationary and non stationary noise
conditions. Moreover, when the reverberation time is above 500ms, ASR per-
formances are not significantly improved when the acoustic models are trained
on distorted data (Baba et al, 2002). In our study, the home environment into
consideration presents minimal reverberation . Given the small dimensions of
the flat we can assume that the reverberation time stays below 500ms. There-
fore, the reverberation problem will not be addressed in this paper, but this
needs to be taken into account for a final system.

2.3 Background noise

The biggest obstacle to the development of distant speech based applications
in domestic environment is probably the wide variety of sound events and
background noise that can alter or hide the useful speech signal. For instance,
to operate in real homes, an ASR system must deal with competing noise
from televisions or radio, vacuum cleaners, door slamming etc., making real
domestic environments characterized by highly dynamic background noise.
In recent years, the research community showed an increased interest in the
analysis of acoustic signals in noisy conditions and organized several challenges
to deal with these extreme but realistic acoustic situations specifically for
speech enhancement such as the CHiME challenge (Barker et al, 2013, 2015)
or for acoustic events or background noise recognition such as the D-case
challenges (Stowell et al, 2015). That means aiming at discovering, learning
and detecting the hidden structure of acoustic events in these complex and
seemingly unpredictable signals.

Although these challenges address very important issues to reach a generic
solution, there are cases in which the state-of-the-art approaches might be sat-
isfactory. For instance, for noise-robust ASR systems, some noise can be filtered
out, or the combination of noise and speech sources can be directly modeled so
as to separate them. In practice, when the noise source perturbing the signal of



interest is known, various noise removal techniques can be employed (Michaut
and Bellanger, 2005). It is then possible to dedicate a microphone to record
the noise source and to estimate the impulse response of the room acoustic
in order to cancel the noise (Valin, 2006). This impulse response can be esti-
mated through Least Mean Square or Recursive Least Square methods. In a
previous experiment in a real smart home, these methods showed promising
results when the noise was composed of speech or classical music (Vacher et al,
2012). However, in case of unknown noise sources, such as washing machine
or blender noise, Blind Source Separation (BSS) techniques seem more suited.
However, as showed by the ChiME challenge, noise separation in real smart
home conditions remains an open challenge.

In this paper, the intended application is to provide a voice controlled mul-
tiroom smart home as an assistive technology, mainly towards the elderly pop-
ulation. For this reason, the paper focuses on achieving robust real-time ASR,
using efficient adaptive VAD and multisource ASR, rather than using sound
source localization and separation. Also, the particular acoustic background
noise of the home is taken into account in the acoustic modeling by including
speech uttered in the same conditions as in the test conditions. Learning or
adapting acoustic models to particular acoustic environment has proven to be
effective when the home is known a priori (Ravanelli and Omologo, 2015). The
source separation stage might be added to the system once a solution would
have reached adequate performance in term of accuracy, computing perfor-
mance (real-time constraint), cost (array of microphone, computing poser)
and resilience (in case of a broken or moved microphone).

The CHiME-3 (Barker et al, 2015) challenge propose to use the WSJ 5k
task to evaluate multi-microphone ASR in noisy settings with close microphone
(40cm). This challenge has highlighted the importance of carefully engineered
multi-channel enhancement. But the best systems required complex multi-pass
strategies that may not be practical in real applications.

2.4 Multisource ASR

To enhance the speech signal, localize or separate sources, multisource au-
dio processing has become the major focus of most research directions. In
sound source enhancement, acoustic beamforming is usually performed to en-
hance signal in specific directions and to diminish it in others (Brandstein and
Ward, 2001). Its limited complexity makes real time applications possible, it
is still subject to many localization errors and is highly dependent on array of
microphones. Another approach is to model acoustic sources using source lo-
calization. This second approach has proven to be more efficient than the first
one but for a higher computing complexity (Thiemann and Vincent, 2013).
Probably, the less complex and close to real-time approaches to deal with
multisource acoustic processing is to perform source selection or parallel de-
coding. In (Lecouteux et al, 2011), several methods for multisource ASR were
compared, showing that fusion of decoding graphs from the sources with higher



SNR is more promising than late fusion (ROVER) and early fusion (beamform-
ing). However, this study was not considering state-of-the-art techniques for
ASR. In (Matos et al, 2014), a multisource technique is used by selecting the
best channel in a multi-room scenario based on envelope-variance measure to
reach acceptable performances.

Although most of the promising techniques to reach human-like or supe-
rior performances are based on array of microphones, many applications in
real home will need to rely on distant distributed microphones with minimal
a priori information about placement in the rooms. This is why this paper
focuses on channel selection.

2.5 Finding resources

Another challenge in multi-room multi-source distant ASR is to find a relevant
amount of data to train the models. Since most approaches are based on prob-
abilistic modeling from data, finding a sufficient amount of speech material
becomes essential. This is even more true since the emergence of “deep learn-
ing”. Moreover, such technology must be validated in real smart homes and
with potential users. At the time of writing, studies in such realistic conditions
are rare (Vacher et al, 2015a), since they are very costly and time consuming.
Thus, this is another reason why corpus collection is an important issue in this
domain. Many approaches in the literature were tested in simulated or artifi-
cially mixed data which do not permit to evaluate the same kind of situations
(controlled evaluation vs. realistic uncontrolled challenges). However, collect-
ing real data is much more expensive than simulated one. This explains the
low amount of realistic datasets in the community. In (Fleury et al, 2013), the
authors report that the collection and annotation of a thirty-tree-hour corpus
involving 21 participants in a smart home costs approximately 70k€.

In the last decade, some data collection efforts have been made to make
this kinds of resources available. For instance, in CHiME 2016 3, 1600 noisy
utterances from 4 speakers reading in different environments (Bus, street. . .)
recorded on 6 channels on one close talking microphone. The DIRHA project
(Ravanelli et al, 2015) made available a corpus including 24 English speakers
recorded in a domestic environment equipped with a large number of micro-
phones and microphone arrays in which speaker uttered different sets of pho-
netically rich sentences, newspaper articles, conversational speech, keywords,
and commands.

In many available corpora, the main focus is on typical English speakers
(note though that DTIRHA includes Italian, German, Greek and Portuguese)
and they do not contain any atypical users such as elderly speaker. This is
why we will use the SWEET-HOME corpus (Vacher et al, 2014) which has been
acquired in a 4-room smart home, including typical and atypical users uttering
sentences for voice controlled home automation.

3 http://spandh.dcs.shef.ac.uk/chime_challenge/



3 Methods
3.1 Application

This study is being done in the context of voice command for home automation
or call for help by a person living alone. The smart home is fit with one
or two microphones in the ceiling of each room. The distance between each
microphone, its nearest neighbour and the speaker is greater than 1 meter
making the speech processing in distant speech conditions.

3.1.1 DOMUS smart home

The DOMUS smart home, build by the LIG laboratory, has been used in the
study. This 35 m? flat is shown Figure 1. DOMUS is fully functional and
equipped with sensors, such as energy and water consumption, temperature,
hygrometer. Actuators are able to control lighting, shutters, multimedia diffu-
sion (distributed in the kitchen, the bedroom, the office and the bathroom). A
independent control room permits to observe experiments in real-time (with
cameras) and to collect sensors and actuator data. This flat also contains 7 ra-
dio microphones set into the ceiling that can be recorded in real-time thanks
to a dedicated software that records simultaneously the audio channels. As
displayed on Figure 1, two microphones are set up in each room (only one in
the bathroom) and the distance between each microphone is at least 1 meter.

Study Bedroom Bathroom Kitchen
~ \ ]
° o 3
o
o
e w
Q8
=
i 5
d ° 8
i
F Switch ® Door switch © PID IR ® Microphone Window
X Actuator

Fig. 1: DOMUS Smart Home.

3.2 Scenarios and records used for test

An experiment was conducted with users interacting with the Sweet-Home
system to evaluate the accuracy of a voice command system (Chahuara et al,
2017) in realistic conditions. The possible voice commands were defined using
a dedicated simple grammar described in section 4.2.1. Three categories of
commands were defined: initiate command, stop command and emergency call.
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Except for the emergency call, every command started with a unique keyword
that permits to know whether the person is talking to the smart home or not.
The grammar was built after a user study was done that showed that targeted
users would prefer precise short sentences over more natural long sentences
(Portet et al, 2013). Each participant had to use voice commands to make
the light on or off, open or close blinds, ask about temperature and ask to
call his or her relative. The instruction was given to the participants to repeat
the command up to 3 times in case of failure. After 3 times, a wizard of Oz
technique was used to make the correct decision.

As shown on Figure 2, the SWEET-HOME system performed real-time voice
command recognition anywhere in the home thanks to the PATSH software
(Vacher et al, 2015a). After recognition of the command, the Intelligent Con-
troller interpreted the available information to make decision about which
command should be sent to the home automation system (Chahuara et al,
2017). The audio streams were continuously recorded during each experiment
for further analysis.

— : Intelli
i | 1 ntelligent .
7 microphones { _ PATSH —> ASR ¢ Home automation
i 1 1

Controller network

[ )
USER /9

B

Recorder

Fig. 2: SWEET-HOME system and records.

The experiments consisted in following a scenario of activities without con-
straint about the duration or the way of performing the activities: (1) Sleep-
ing; (2) Resting: listening to the radio; (3) Feeding: preparing and having a
meal; and (4) Communicating: having a talk with a relative thanks to the spe-
cialised communication device e-lio of the Technosens* company. Before the
experiment, a visit was organized so that the participants find all the items
necessary to perform the activities. Many decisions were to be made by the
decision module such as answering commands related to giving the time or
closing the blinds. Moreover, two situations related to forgetting to close a
window or the front door where included in the scenario. Each time these sit-
uation were recognised, a warning message was generated thanks to a speech
synthesizer. Therefore, this experiment allowed us to process realistic and rep-
resentative audio events in conditions which are directly linked to usual daily
living activities. Speech was transcribed manually using Transcriber (Barras
et al, 2001).

4 http://www.technosens.fr/
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3.3 Experimental conditions

We assumed that during the experiment the participant was alone in the smart
home, but the speech synthesizer part of the home automation system was op-
erating and transmitted messages in case of risky situations (e.g., door no
locked when the person is going to bed) or when the person asked it (about
the time, etc.). The distance from the participant to the closest microphone
was more than one meter and the person never spoke in the axis of the micro-
phone because microphones were directed to the floor. Recording were on the
7 channels simultaneously, the Signal to Noise Ratio (SNR) being processed
for each identified sentence on each channel.

3.4 Global architecture of the analysis system

The architecture of the audio analysis system is presented on Figure 3. Several
audio event sources (in our case 7) are processed to estimate the SNR of each
speech events. Depending on the applied method, the sources are either, fused
at the signal level, fused at the ASR decoding level or fuse after the ASR has
been run on several concurrent speech signals (a posteriori fusion). The last
processing step is related to the identification of the voice command.

Selection | L .| aposteriori” combination
/ — ASR — / »

multiwave
Fusion

Home automation Voice command hypothesis
command recognition [ > *'Nestor monte store""

Annotated

Consensus

Signal
quality
estimation

Fig. 3: Global architecture of the audio analysis system.

3.4.1 Beamforming

At the acoustic level, it may be interesting to fuse the different channels in
order to enhance the signal. However, a simple sum of signals would result
in a worse single channel with echoes. That is why a beamforming algorithm
(Anguera et al, 2007) was used to merge all channels in a single one to feed
an ASR system. Beamforming involves low computational cost and combines
efficiently acoustic streams to build an enhanced acoustic signal.

The acoustic beamforming algorithm is based on the weighted & sum micro-
phone array theory. Given M microphones, the signal output y[t] is computed
by

ylt] = > Wnlt] |t = DDt &)

m=1
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Stream
SNR 1

2 = Z
Nestor ouvre heu le les stores
——Domotic order module ——

Stream
SNR 2

Nestor OLYVTE le store

Fig. 4: Multi-channel fusion: voice commands are recognized from the union
of the two streams lattices: “Nestor open the blind’.

where W, [t] is the weight for microphone m at time ¢, x,,[t] is the signal of
the m'" channel and D("™7¢/)[t] is the delay between the m!”* channel and the
reference channel. The weights W, [t] must satisfy an\le Wn[t] = 1. In our
experiments, the reference channel was the one with the highest SNR overall
and the 7 signals were entirely combined for each speaker rather than doing a
sentences based combination. Once the new signal y is computed, it can feed
a monosource ASR stage.

3.4.2 Fusion of lattices

Previously, we presented at the decoding level, a novel version of the Driven
Decoding Algorithm allowing to guide a channel by another one (Lecouteux
et al, 2013). In this work, we propose to combine channels using the FST
framework. This multi-channel system is showed in Figure 4. After the decod-
ing, the channel lattices are combined using Minimum Bayes Risk decoding as
proposed in (Xu et al, 2011). The relative contribution of individual lattices
is weighted according the SNR (70% for the best channel: log of the weight is
subtracted from the total backward score). This method allows one to merge
the information from the two streams at graph level. The applied strategy
used a dynamic selection by using the two best channels for each utterance to
decode (i.e. having the highest SNR).

3.4.3 Rover

ROVER can be used to combine ASR results obtained from each channel
(Fiscus, 1997); it is expected to improve the recognition results by providing
the best agreement between the most reliable sources. It combines systems
output into a single word transition network. Then, each branching point is
evaluated with a vote scheme. The word with the best score is selected (number
of votes weighted by confidence measures). This approach necessitates high
computational resources when several sources need to be combined and real
time is needed (in our case, 7 ASR systems must operate concurrently).

A baseline ROVER is using all available channels without a priori knowl-
edge. In a second time, an a priori confidence measure based on SNR can be
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used: for each decoded segment s; from the i** ASR system, the associated
confidence score ¢(s;) is computed by

7
$(si) = 2800 /7 2f) (2)
j=1

where R() is the function computing the SNR of a segment and s; is the
segment generated by the i ASR system. The SNR is evaluated as:

Zne[speech S[n]2 ZnGIm S[n]Q
‘Ispeech| |Isil|

R(S) = 10.log( / ) 3)

Given that channels with lowest SNR contain few and redundant informa-
tion, it is possible to reach satisfactory results with reasonable computational
cost thanks to a ROVER using only the three best SNR channels.

3.4.4 Voice command detection

We propose to transcribe each voice command and ASR output into a phoneme
graph in which each path corresponds to a variant of pronunciation. For each
phonetized ASR output T, every voice commands H is aligned to T using
Levenshtein distance. The deletion, insertion and substitution costs were com-
puted empirically while the cumulative distance (4, j) between H; and T; is
given by Equation 4.

The distance function d() is biased according to the likelihood of phoneme
confusion.

The voice command with the aligned symbols score is then selected for
decision according to a detection threshold. This approach takes into account
some recognition errors such as word endings or light variations. Moreover, in
a lot of cases, a miss-decoded word is phonetically close to the good one (due
to the close pronunciation).

4 Experiments

The experiments presented here are based on our previous study which in-
cluded beamforming, ROVER and a old version of the Driven Decoding algo-
rithm (Lecouteux et al, 2011) on a different dataset. We re-run the experiment
using two new corpora: Interaction and User specific. Moreover, another major
difference apart from the more adequate corpora, is that we focus the exper-
iment on state-of-the-art and competing models: Subspace Gaussian Mixture
Model (SGMM) and Deep Neural Networks (DNNs). Corpora are presented at
the beginning of this section before model generation and evaluation metrics.
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[ Subset [ Duration [ Number of files ]
Multimodal 2607 1785
Home Automation Speech 10845 5340
Cirdo set 945 414
Voix Détresse 1127 1164
All 15524 8703
(4h 18mn 44s)

Table 1: Size of the different parts of the training corpus

4.1 Corpora

The used corpora are extracted from different subsets recorded in the DoMUs
smart home described in Section 3.1.1. Two corpora are mono channel, Cirdo
and Voix Détresse, they were chosen because they are made of expressive
speech and then more representative of speech uttered in realistic conditions
in a smart home. Regarding the other one, they are made of read speech
and audio records are available for all channels, they are manually annotated
thanks to Transcriber software (Barras et al, 2001) and the SNR was calculated
for each channel for the purpose of selecting the 2 best channels.

The recording way of each of them and their composition are described
in the appendix A whereas their repartition in the training, development and
test parts are described in the following sections 4.1.1 and 4.1.2.

4.1.1 Training subset

For training, we used 4h 18mn 44s of data, Table 1 resumes their principal
characteristics. They are extracted from the following corpora:

1. the speech part of the Multimodal subset of the SWEET-HOME corpus
(Vacher et al, 2014) (see Table 5a), sentences are read by the participants
when they operate an Activity of Daily Living (bathing, dressing, eating
and preparing a meal);

2. the non noisy part of the Home Automation Speech subset of the SWEET-
HoOME corpus (Vacher et al, 2014) (see Table 6a), sentences are read by the
participant in each room, sentences are following the grammar necessary
for activating the intelligent controller;

3. the Cirdo set corpus (Vacher et al, 2016) (see Table 5b), which is made of
call for uttered by people when they fell on the carpet or when they sited
on the sofa and can not go up due to a blocking hip;

4. and the Voiz Détresse corpus (Aman et al, 2016) (see Table 6b), which is
made of neutral and expressive sentences.

Unlike the other sets, the two lasts are not read and are made of expressive
speech because the participants were calling for help in a distress situation.
All corpora except the last one were recorded in distant speech condition.
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[ Subset [ Duration (seconde) [ Number of files ]
Interaction 21 mn 28s 803
User Specific 17mn 48s 549

Table 2: Size of the different parts of the development/test corpus

4.1.2 Developing and testing subset

For testing, we used the Interaction and User Specific subsets of the SWEET-
HOME corpus (Vacher et al, 2014) recorded in realistic conditions. They are
described Table 2. During the recording of these datasets, typical participants
(for the first one) and elderly/visually impaired participants (for the second
one) had to use voice commands to interact with the home automation system
(cf. Sec. 3.2). These two corpora were recorded in distant speech condition on
7 channels. More details about these corpora are given Tables 7 and 8.

4.2 Automatic Speech Recognition System

The Kaldi speech recognition toolkit (Povey et al, 2011b) was chosen as unique
ASR system. Kaldi is an open-source state-of-the-art ASR system with a high
number of tools and a strong support from the community. This choice was
made based on experiments we undertook with several state-of-the-art ASR
systems and on the fact that DDA can be easily implemented in it.

4.2.1 Grammar and Language Models

In SWEET-HOME, the actions the intelligent controller could make were the
following:

— turn on/off the light, radio

— close/open the blinds, curtains

— give the temperature, time

— warn about open windows, unlocked door

— command the e-lio system to call a specific number or to send out an
emergency call.

These actions constitute a subset of a larger set of possible actions resulting
from a previous user study (Portet et al, 2013). Of course, this set of actions
must be adapted in the future to every user and home, but this predefined list
was useful for the evaluation of the system.

Possible voice commands were defined using a very simple grammar as
shown on Figure 5. Each command belongs to one of three categories: initiate
command, stop command and emergency call. Except for the emergency call,
every command starts with a unique key-word that permits to know whether
the person is talking to the smart home or not. In the following, we will use
‘Nestor’ as keyword:
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basicCmd = key initiateCommand object |
key stopCommand [object] |
key emergencyCommand

key = "Nestor" | "maison"

stopCommand = "stop" | "arréte"

initiateCommand = "ouvre" | "ferme" | "baisse" | "éteins" | "monte" |
"allume" | "descend" | "appelle" " | "donne"

emergencyCommand = "au secours" | "& 1’aide"

object = [determiner] ( device | person | organisation)

determiner = "mon" | "ma" | "1°" | "le" | "la" | "les" | "un" | "des" |
du n

device = "lumiére" | "store" | "rideau" | "télé" | "télévision" |
"radio" | "heure" | "température"

person = "fille" | "fils" | "femme" | "mari" | "infirmiére" |
"médecin" | "docteur"

organisation = "samu" | "secours" | "pompiers" | "supérette" | "supermarché"

Fig. 5: Excerpt of the grammar of the voice command (terminal symbols are
in French)

set an actuator on:  (e.g. Nestor ferme fendtre)
key initiateCommand object

stop an actuator: (e.g. Nestor arréte)
key stopCommand [object]
emergency call: (e.g. Nestor au secours)

A 3-gram Language Model (LM) with a 10K words lexicon was used. It
results from the interpolation of a generic LM (weight 10%) and a domain
LM (weight 90%). The generic LM was estimated on about 1000M of words
from the French newspapers Le Monde and Gigaword. The domain LM was
trained on the sentences generated using the grammar of the application (see
Figure 5). The LM combination biases the decoding towards the domain LM,
but still allows decoding of out-of-domain sentences. A probabilistic model was
preferred over using strictly the grammar because it makes it possible to use
uncertain hypotheses in a fusion process for more robustness.

4.2.2 Acoustic Model adaptation : fMLLR+SAT baseline system

Acoustic modeling was implemented with the Kaldi framework (Povey et al,
2011b). GMMs were trained on 40 dimensional MFCC (Mel Frequency Cep-
stral Coefficients) feature vectors (including first and second delta components
and energy). Cepstral mean and variance normalisation (CMVN) were also
performed. The position-independant triphone GMM trained with Kaldi con-
sisted in 15.000 states Hidden Markov Models (HMMs) with a total of 150.000
Gaussians and 3-state phone-silence model and the number of phones was 40.

The parameters of the acoustic model were estimated via Viterbi training
by aligning the audio to the reference transcript with the most current acoustic
model. The models were trained on features, spliced across 3 frames before and
3 frames after and processed with linear discriminant analysis and maximum
likelihood linear transformation. Speaker adaptive training was also performed
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by adapting to each specific speaker with a particular data transform. Features
were then adapted with feature-space MLLR in both training and test time.

4.2.83 Acoustic Model adaptation : Subspace GMM Acoustic Modelling

The GMM and Subspace GMM (SGMM) both model emission probability of
each HMM state with a Gaussian mixture model, but in the SGMM approach,
the Gaussian means and the mixture component weights are generated from
the phonetic and speaker subspaces along with a set of weight projections.

The SGMM model (Povey et al, 2011a) is described in the following equa-
tions:

M; I

p(x[4) = X2 Cim D WimiN (X5 fjmis Bi),
m=1 i=1

Himi = Miij,

Wimi =

where x denotes the feature vector, j € {1..J} is the HMM state, 4 is the Gaus-
sian index, m is the substate and c;,, is the substate weight. Each state j is
associated to a vector v, € R¥ (S is the phonetic subspace dimension) which
derives the means, ft;,,; and mixture weights, w;m,; and it has a shared number
of Gaussians, I. The phonetic subspace M;, weight projections w! and co-
variance matrices X;, i.e. the globally shared parameters ®; = {M,, wﬂ i}
are common across all states. These parameters can be shared and estimated
over multiple record conditions.

A generic mixture of I gaussians, denoted as Universal Background Model
(UBM), models all the speech training data for the initialisation of the SGMM.

Our experiments aims at obtaining SGMM shared parameters using both
SWEET-HOME data (7h) and clean data (ESTER+REPERE 500h). Regard-
ing the GMM part, the three training datasets were merged in a single one.
Povey et al (2011a) showed that the model is also effective with large amounts
of training data. Therefore, two UBMs were trained respectively on SWEET-
HoME data and clean data. These two UBMs contained 1K gaussians and were
merged into a single one mixed down to 1K gaussians (closest Gaussians pairs
were merged (Zouari and Chollet, 2006)). The aim was to bias specifically the
acoustic model with the smart home and expressive speech conditions.

4.2.4 Acoustic Model adaptation : DNN

In a DNN-HMM hybrid system, the Deep Neural Network (DNN ) is trained
to provide posterior probability estimates for the HMM states. For an obser-
vation corresponding to time ¢ in utterance, the output of the DNN for the
HMM state is obtained using the softmax activation function. The networks
are trained to optimize a given training objective function using the standard
error back-propagation procedure (Rumelhart et al, 1986). In our experiments
cross-entropy is used as the objective and the optimization is done through
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stochastic gradient descent. For any given objective, the important quantity
to calculate is its gradient with respect to the activations at the output layer.
The gradients for all the parameters of the network can be derived from this
one quantity based on the propagation procedure.

DNN for ASR is a feed-forward neural network with hidden layers. Opti-
mizing hidden layers can be done by pretraining using Restricted Boltzmann
Machines (RBM). The generative pretraining strategy builds stacks of RBMs
corresponding to the number of desired hidden layers and provides better start-
ing point (weights) for DNN fine-tuning through backpropagation algorithm.
Pretraining a DNN can be carried out in a unsupervised manner because it
does not involve specific knowledge. Only the softmax layer is sensitive to the
target data. It is added on top of the hidden layers during fine-tuning and
its output corresponds to the HMM states. Finally, we built specific DNN
for acoustic environment by fine-tuning the hidden layers from clean data
on sweethome training data. We use a DNN system in order to adapt speaker
features from the GMM system, (after a first pass of GMM decoding and adap-
tation). The 40-dimensional features from GMM are spliced across 4 frames
of context before and 4 frames of context after and used as input to the DNN.
The DNNs are trained on the same LDA+FMLLR features as the GMM-HMM
baselines, except that the features are globally normalized to have zero mean
and unit variance. The fMLLR transforms are the same as those estimated for
the GMM-HMM system during training and testing. We use a p-norm DNN
(Zhang et al, 2014) with 4 hidden layers and p-norm (input, output) dimen-
sions of (4000, 400) respectively. We use 8000 sub-classes, and the number
of parameters is 15.5 million. It is trained for 12 epochs with learning rate
varying from 0.02 to 0.004 (the optimization terminates when the frame accu-
racy increases by less than 0.1%). The frames are presented in a randomized
order while training both of these networks using Stochastic Gradient Descent
(SGD) to minimize the cross-entropy between the labels and network output.
We use minibatches of 128 frames.

4.3 Evaluation metrics

In our application framework, ASR performances can’t be the unique criterion
for system evaluation. Correct recognition of voice commands and short pro-
cessing time are very important too, therefore these 3 metrics are considered.

4.8.1 Word Error Rate

Performance of the ASR system is evaluated through the Word Error Rate
(WER), which is a common evaluation metric and analyzed in McCowan et al
(2005):
S+D+1
WER = ——F7— 5
S+D+C (5)
where S is the number of substitutions, D the number of deletions, I the number

of insertions and C the number of the corrects.
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4.8.2 voice command recognition and distress detection

It is important to recognize voice commands or distress calls and to not miss
any of them. We define the DER (Domotic Error Rate i.e. home automation
error rate) as:

Missed + False Alarms

Voice Commandssyntactically correct

DER (6)

For the DER, the ground truth is the number of uttered voice commands
respecting the grammar; i.e. the utterances where the person’s intention was
to utter a command but was not following the voice command syntax were not
considered as true voice commands. The “Missed” correspond to the true voice
commands not recognized and the “False Alarms” to sound events incorrectly
classified as voice commands. This metric is inspired by information retrieval
metrics as presented in McCowan et al (2005).

4.3.83 Decoding time

The Decoding Time Rate (DTR) is simply evaluated as the ratio of the de-
coding time of the entire corpus to the corpus duration:

Decoding time

DTR = (7)

Corpus duration

5 Results

Results on manually annotated data are given Table ?7. The most important
performance measures are the WER of the overall decoded speech and those
of the specific voice commands as well as the DER. Most of the improvement
is due to fMLLR and adapted data to the acoustic environment. However,
adaptation techniques based on SGMM and DNN significantly improve the
WER.

For the WER measure SGMMSs generate better results than DNN. SGMM
has a relatively small amount of parameters tied to the acoustic state, with
many of the model parameters being globally shared. This make it possible to
train models on less in-domain data (in our case, SWEET-HOME data quantity
is very low) than would otherwise be necessary for heavy data consuming
approaches such as DNN. By contrast, if DER is observed, the DNN models
are slightly better.

All proposed SNR-based approaches benefited from the multiple available
microphones. Beamforming shows a little improvement. The lattice fusion
method showed the best improvement by using the SNR with a very high
stability. Finally, the SNR-based ROVER obtains results similar to the Beam-
forming approach.

Regardless of the models used, the fusion of two channels improves the ini-
tial results. This means that the information provided by the different channels
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GMM-HMM + | SGMM-HMM DNN-HMM
fMLLR+SAT
[ WER/DER [ DEV [ TEST [ DEV [ TEST [ DEV [ TEST ]

WER Interaction SNR1 35.00 30.95 30.65 | 27.86 | 29.78 | 29.11
WER Interaction SNR2 30.65 34.21 26.52 | 31.75 | 27.83 | 31.31
WER Interaction Beamforming 29.60 30.10 26.20 29.12 27.83 | 28.49
WER Interaction ROVER 28.70 30.10 26.33 | 28.22 | 27.83 | 28.49
WER Interaction SNR1&2 27.61 29.83 26.04 | 27.22 | 26.83 | 27.49
WER User specific SNR1 28.16 39.79 29.99 | 34.88 | 28.55 | 37.95
WER User specific SNR2 36.77 39.96 38.98 | 38.34 | 35.98 | 39.01
WER User specific Beamiforming | 27.95 38.63 30.10 | 35.42 | 26.01 37.31
WER User specific ROVER 27.57 38.57 28.90 | 35.00 | 28.21 | 37.51
WER User specific SNR1&2 27.47 37.56 28.94 | 34.38 | 27.81 | 37.11
DER Interaction SNR1 6.98 4.75 5.43 3.86 6.20 5.93
DER Interaction SNR2 6.20 5.93 3.10 5.79 5.43 5.49
DER Interaction Beamforming 6.20 5.00 3.10 4.56 5.43 5.64
DER Interaction ROVER 5.43 5.00 3.30 3.86 5.43 5.64
DER Interaction SNR1&2 3.88 4.15 2.65 3.86 3.88 5.03
DER User specific SNR1 2.19 2.19 1.09 1.91 1.09 1.91
DER User specific SNR2 4.92 4.10 3.83 3.28 3.28 2.46
DER User specific Beamforming 2.00 2.10 1.29 1.91 2.00 1.78
DER User specific ROVER 1.8 2.19 1.09 1.91 1.75 1.78
DER User specific SNR1&2 1.64 1.37 1.09 1.73 1.09 1.37

Table 3: DER and WER results on the Interaction and User Specific cor-
pora using different channel combinations and acoustic models. We report the
results for “interaction” and “user specific” corpora using three main acous-
tic models : feature MLLR with speaker adaptation training (fMLLR+SAT),
SGMM and(DNN). We compare 5 decoding methods: SNR1 means using only
the best SNR channel, SNR2 is using only the second best SNR channel, beam-
forming is based on 7 channels, ROVER is based on 7 channels and SNR1&2
is the combination at the graph level between SNR1 and SNR2.

Table 4: DTR for the Interaction corpus

GMM-HMM + fMLLR+4SAT | SGMM-HMM | DNN-HMM
1.86 4.1 2.8

are complementary. Finally, using DNN and channel fusion, a DER of 1.37%
for User specific and 5% for interaction corpora is obtained. The WER is high
on the speech portions that do not correspond to home automation commands
but almost perfect for home automation orders.

Results regarding Decoding Time Rate are given in Table 4 for the Interac-
tion corpus. Although the best decoding time is reasonable, it is still too long
for use in a real application in home automation. For example, if duration is
1s, the system could not operate before 1.86s after the end of the order in the
case of IMLLR+SAT, that may not be acceptable by the user.
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6 Conclusion

In this paper, the multichannel ASR part of a voice command system in a smart
home is presented. Since voice based smart homes is perturbed by the distant
speech condition, an overview of multiple techniques for fusion of multi-source
audio signal for automatic speech recognition is presented and evaluated on
two corpora collected in a real smart home with typical, senior and visually im-
paired participants enacting activities of daily life. The corpora were recorded
in realistic conditions, meaning background noise is sporadic so there is not
an extensive background noise in the data. The smart home is equipped with
two microphones in each room, the distance between each of them and with
the user is larger than 1 meter.

Three state-of-the-art methods were implemented to fuse speech events
from different channels. The proposed approaches were acting at the three
main levels of the ASR task: acoustic, decoding and hypothesis selection.
They were: beamforming (earl fusion), ASR lattice fusion (middle fusion)
and ROVER (late fusion). Regarding the ASR, three acoustic models with
model adaptation were used: classical HMM-GMM with fMLLR+SAT, Sub-
space GMM (SGMM) and DNN.

The results of the fusion techniques do not reveal a definite superiority for
any of them. Beamforming and ROVER are competitive but when ASR lattice
fusion is the best (which is frequent) it is by a larger gap than the two others.
Beamforming improved the WER, however its performance was very close to
the baseline one. ROVER also improved the WER but never beat the ASR
lattice fusion. This may be due to the fact that the seven microphones are
too far apart from each other to contain enough redundancy for an enhanced
acoustic signal or ASR hypotheses. The lattice fusion gave the best perfor-
mance with only two channels, while ROVER, (using 7 ASR systems) perform
similar results. Moreover, since the ASR lattice fusion only uses 2 channels
against 7 for the two other methods, it can be concluded that ASR lattice
fusion is the most adequate method for the task.

Regarding the acoustic models of the ASR, their robustness is achieved by
adaptation to the environment and the task. This adaptation is performed at
the learning level by including corpora recorded in the same conditions as the
evaluation corpora as well as using model adaptation techniques during the
decoding. Although the overall WER is between 26% and 40%, DER is always
less than 6%. This confirms the interest of using of the Levenshtein distance
at the phonetic level. The fMLLR4SAT model never gives the best WER and
DER. The SGMM models gives the best WER for almost all the conditions
and the best DER for the Interaction corpus. The DNN model has the best
DER for the User Specific corpus. Thus, although DNN models have brought
a substantial performance improvement in speech processing and other fields,
SGMM are still competitive in case of a low amount of training data. However,
DNN models were far quicker in processing data than the SGMM ones.

These results obtained in realistic conditions give a fairly accurate idea
of the performances that can be achieved with state-of-the-art ASR systems.
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As stated above, obtained results are not sufficient to allow the system to be
uses in real conditions and we plan to focus on three challenges to address.
Firstly, the processing time of the ASR system must be improved. We plan to
work on concurrent speech decoding and on-line decoding. On-line decoding
consists in processing speech frames as they arrive to the ASR system rather
when the entire signal is acquired. This make it possible to process the speech
signal as soon as it is detected. Secondly, distant speech recognition should
be able to be performed in noisy conditions (television, sound of water) thus
future work include the use of speech enhancement. We are currently working
with source separation specialists in the framework of the ANR VocADom
project® supported by the French national government. One of the issues for
this challenge is to be able to process noisy speech without impacting the
processing time. On-line solutions, such as noise cancellation, can be applied
when the noise source is clearly identified (Vacher et al, 2012). Thirdly, the
voice command system should be able to work with multiple users, hence
it is important to include a speaker recognition stage to manage command
privileges. Previous work has shown the feasibility of the approach but also
emphasized the challenge of speaker recognition with short signal (Vacher et al,
2015b).
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A Composition of the different corpora

All corpora were recorded in distant speech conditions with the exception of VOIX DETRESSE.
Corpora used for training are detailed in Section A.1 and those used for development and
test are in section A.2. Training corpora are made of in distant speech and multichannel
conditions with microphones each at a distance of about 1 to 2 meters of the nearest one,
and of expressive speech. Development and testing corpora were recorded in distant speech
and multichannel conditions by persons interacting with the voice command system SWEET-
HoME.

Each sentence was manually annotated on the best Signal-to-Noise Ratio (SNR) channel
using Transcriber. Moreover, regarding the USER SPECIFIC set, an automatic transcription is
available, that was obtained using the PATSH software operating line during the experiments
while participants interacted with the SWEET-HOME system. This set is important because
it would be possible, using it, to determine the performances that can be achieved using a
fully automatic system in a smart home application.

A.1 Training corpora

The detailed composition of each corpus is presented in Section A.1.1 (Table 5a) for the
Multimodal subset, in Section A.1.2 (Table 5b) for the Cirdo Set corpus, in section A.1.3
(Table 6a) for the Home Automation corpus and in Section A.1.4 (Table 6b for the Voiz
Détresse corpus).
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Speaker Age Sex | Nb. of files Size (s)
1D (year)

Mo1 32 M 83 129.9
Mo02 22 M 73 120.8
Mo03 56 F 84 126.9
Mo04 51 M 86 139.2
MO05 25 F 82 149.4
MO06 23 M 84 123.8
Mo7 50 F 91 128.0
Mo08 27 F 81 121.6
Mo09 36 M 84 137.3
M10 24 M 82 99.6
M11 38 F 89 113.9
M12 42 M 84 107.2
M13 41 M 86 115.5
M14 23 F 84 114.4
M15 62 M 85 108.8
M16 38 M 84 110.6
M17 28 M 85 136.7
M18 46 M 106 157.8
M19 63 M 86 136.2
M20 33 M 86 114.2
M21 48 F 80 115.7
All - - 1785 2607.4

N N

(a) Composition of the MULTIMODAL subset of the
SWEET-HOME corpus (7 channels, read sentences), num-
ber of files and size are related to each channel

Speaker Age Sex Nb. of files Size (s)
’ 1D (year) ‘ ‘
Co1 30 M 22 37.6
C03 24 F 16 27.5
Co4 83 F 66 92.0
C05 29 M 24 35.6
C06 64 F 23 31.2
co7 61 M 23 26.0
Co08 44 M 25 44.0
C09 16 M 32 38.2
C10 16 M 19 348.3
C11 52 M 12 18.8
C12 28 M 15 23.6
C13 66 M 24 50.4
C14 52 F 23 39.9
C15 23 M 20 29.8
C16 40 F 29 44.0
C17 40 F 24 33.5
C18 25 F 17 25.3
All - - 414 945.6
(15mn 45s)

(b) Composition of the CIRDOSET corpus (1 channel,
participants calling for help when they fall on the carpet
or when they can’t go up from the sofa)

Table 5: Multimodal and Cirdo corpora

A.1.1 Multimodal

The Multimodal subset of the SWEET-HOME corpus (Vacher et al, 2014) was recorded by 21
participants (7 females and 14 males) to train models for automatic human activity recog-
nition and location. These two types of information are crucial for context aware decision
making in smart home. For instance, a voice command such as “allume la lumiere” (turn
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on the light) cannot be handled properly without the knowledge of the user’s location. The
experiment consisted in following a scenario of activities without condition on the time spent
and the manner of achieving them (e.g. having a talk on the phone, having a breakfast, sim-
ulating a shower, getting some sleep, cleaning up the flat using the vacuum, etc.). During the
experiment, even tracks from the home automation network, audio and video sensors were
captured. Speech was recorded using 7 microphones set up in the ceiling directed towards
ground in the DoMUs smart home (see Figure 1).

In total, more than 26 hours of data have been acquired (audio, home automation
sensors and videos). The speech part is made of a telephonic conversation at the office, that
represents 1785 sentences and 43 minutes and 27 seconds of speech signal. No instruction
was given to the participants about how they should speak or in which direction.

A.1.2 Cirdo

The Cirdo corpus (Vacher et al, 2016) was recorded by 17 participants (9 men and 8 women)
with average age of 40 years old (SD 19.5). This corpus was recorded in the framework of a
project aiming at the development of a system able to recognize calls for help in the home of
seniors in order to provide reassurance and assistance. Among them 13 people were under 60
and worn a simulator which hampered their mobility and reduced their vision and hearing
to simulate aged physical conditions. The persons of the aged group (4 participants) were
between 61 and 83 years old (mean 68.5). The persons of the young group were between 16
and 52 years old.

The participants simulated five options chosen from the 28 risky situations identified
(1 slip, stumble 1, 2 falls in a stationary position and a position of hip blocked on the
sofa). These situations were selected because they were representative falling downs at home
and because they could safely be simulated by the participants. During the scenario, the
participant uttered calls for help, some of them were part of the scenario but others were
spontaneous speech. In these 414 calls or sentences were isolated, this represents 15 minutes
and 45 seconds of speech. Due to the recording conditions, this corpus is made of expressive
speech because the participants are in disturbing situations, i.e. when they fall down on the
carpet. An unique microphone was used.

The interest in use of such a corpus for training is that participants spoke in a spon-
taneous way with affects in the voice, even if sentences were learnt at the beginning of the
experiment. Therefore it is like real condition at home compared to usual corpora.

A.1.8 Home Automation

The Home Automation Speech subset of the SWEET-HOME corpus (Vacher et al, 2014) was
recorded by 23 speakers (9 females and 14 males) to develop robust automatic recognition of
voice commands in a smart home in distant conditions. The audio channels were recorded to
acquire a representative speech corpus composed of utterances of not only home automation
commands and distress calls, but also colloquial sentences in clean or noisy conditions. No
instruction was given to the participants about how they should speak or in which direction.
Speech was recorded using 7 microphones set up in the ceiling directed towards ground in
the DoMUS smart home (see Figure 1).

The home automation commands follow a more simplified grammar than one defined for
the test in section 4.2.1. The non noisy part is composed, for each speaker, of a text of 285
words for acoustic adaptation (36 minutes for 351 sentences in total for the 23 speakers),
and of 240 short sentences (2 hours and 30 minutes per channel in total for the 23 speakers).
In clean condition, 1076 voice commands and 348 distress calls were uttered. With a total
of 5340 sentences overall, this corpus is made of 3 hours and 45 seconds of speech signal.

A.1.4 Voiz Détresse

The Voix Détresse French corpus was recorded in the DOMUS smart home in order to deter-
mine if ASR performances can be affected by expressive speech (Aman et al, 2016). Firstly,
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Speaker Age Sex | Nb. of files Size (s)
1D (year)

P01 56 M 234 585.7
P02 33 M 239 576.2
P03 38 F 229 591.7
P04 26 M 229 571.2
P05 23 M 226 440.0
P06 28 F 224 491.2
Po7 30 M 224 405.5
P08 61 M 229 597.0
P10 19 F 239 373.9
P11 64 M 247 405.9
P12 57 M 237 449.7
P13 46 F 227 402.7
P14 26 M 232 425.9
P15 45 M 241 410.6
P16 23 F 233 361.1
P17 26 M 224 380.6
P18 39 F 227 395.0
P19 26 F 236 453.9
P20 57 M 223 541.4
P21 29 M 233 565.2
P22 23 M 228 608.7
P23 22 F 245 434.0
P24 25 F 234 378.2

’ All

5340 10845.4
(3h Omn 45s)

(a) Composition of the Home Automation subset (7 chan-
nels, participants reading a short text and voice com-
mands in each room of the appartment), number of files
and size are related to each channel

[ Speaker [ Age | Sex [ Nb. of files | Size (s) |

A01 84 F 80 103.9
A02 85 F 60 62.1
A03 83 F 60 60.3
A04 67 F 60 62.8
A05 73 F 60 85
Jo1 31 M 69 58.0
Jo2 30 M 83 80.5
Jo3 60 F 60 56.6
JO5 26 F 63 65.8
Jo7 26 M 84 66.1
Jog 32 M 64 59.6
J09 23 F 76 68.1
J10 25 F 74 61.2
J13 29 F 97 98.7
J14 24 F 85 71.3
J15 25 M 89 67.1
All 1164 1126.8
- - (18mn 46s)

(b) Composition of the Voiz Détresse corpus (1 chan-
nel, expressive and acted speech)

Table 6: Home Automation and Voir Détresse corpora

speakers had to read 20 distress sentences in a neutral manner, these sentences were ex-
tracted from the AD80 corpus(Vacher et al, 2006). Then, elicited emotions were recorded:
a photography showing a person in a distress situation was associated to each sentence,
the participants were asked to stand in that individuals shoes and to utter in an expressive
manner. Desired emotions were mainly negative emotions like fear, anger, sadness.
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Speaker Age Sex | Nb. of files Size (s) SNR
1D (year) (dB)
S01 24 M 31 40.5 17
S02 27 M 52 93.3 17
S03 19 M 46 96.5 19
S04 31 M 66 93.9 18
S05 33 M 39 69.3 12
S06 62 M 37 61.7 15
S07 58 F 62 102.9 25
S08 41 F 62 90.8 12
S09 29 F 74 109.1 20
S10 27 F 49 72.1 11
S11 46 M 45 78.8 14
S12 32 M 35 53.2 17
S13 27 M 34 44.5 14
S14 52 F 42 68.4 12
S15 55 F 94 158.1 14
S16 50 F 35 55.7 14
All = = 803 1285.6 =
(21mn 28s)

Table 7: Composition of the INTERACTION subset (7 channels, interaction with
the home automation system through voice commands, generic participants,
manual transcription), number of files and size are related to each channel

Speaker [ Category [ Age [ Sex [ Number of files [ Size (second) ]

S01 Aged 91 F 59 153.7
S02 Visually 66 F 71 114.6
S03 Visually 49 M 53 72.2
S04 Aged 82 | F 72 116.9
S05 Visually 66 M 45 111.6
S06 Aged 83 F 67 134.8
So7 Aged 74 F 58 103.2
S08 Visually 64 F 35 75.7
S09 Aged 7 F 45 81.0
S10 Visually 64 M 44 104.4
All — - - 549 1068
(17mn 48s)

Table 8: Composition of the USER SPECIFIC subset (7 channels, interaction
with the home automation system through voice commands, elderly and visu-
ally impaired participants, manual transcription), number of files and size are
related to each channel

This corpus was recorded using a microphone by 5 elderly speakers and 11 younger
speakers. It is made of 1164 neutral and expressive sentences, its duration is 18mn 45s. The
interest in use of such a corpus for training is that it is made of neutral and expressive
sentences. Therefore it is nearest to real record condition at home than usual corpora.

A.2 Development and testing corpora

The Interaction and User Specific subset of the SWEET-HOME corpus was recorded in realistic
conditions according to the conditions described in Section 3.2, thanks to the participation
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Speaker | Age | Sex [ Number of files | Size (second) | RSB (dB) |

S01 91 F 54 161.5 14
S02 66 F 61 134.4 14
S03 49 M 48 119.2 20
S04 82 F 68 137.6 13
S05 66 M 45 124.7 19
S06 83 F 63 184.2 25
S07 74 F 54 126.0 14
S08 64 F 35 97.2 21
S09 7 F 44 97.8 17
S10 64 M 46 165.4 18
All -1 - 518 1348.0 -
(22mn 28s)

Table 9: Automatic transcription of the USER SPECIFIC subset by PATSH (2
best channels)

of 16 people (7 female and 9 male, minimal age 19 years, maximal age 62 years) for the first
one. The experiment duration was 8h 52mn, and 993 sentences were recorded and annotated
in the same conditions that for the Training subset. The participants were in realistic life
conditions and must retrieve themselves the voice command appropriate to the situation, so
they don’t respect perfectly the grammar: particularly, the keyword was frequently omitted
or uttered a long time before the command itself. The second one implied elderly people
(5 women, minimal age 74 years, maximal age 91 years) and visually impaired people (2
women and 3 men, minimal age 49 years, maximal age 66 years), for this reason, scenarios
were a little simplified.

Development and testing corpora manually transcribed are detailed in Table 7 for the
INTERACTION corpus and in Table 8 for the USER SPECIFIC one. The number of voice com-
mands is different for each speaker because if a voice command was not correctly recognized,
the requested action was not directed by the intelligent controller (light on or off, curtains
up or down...) and thus the speaker often uttered the command two or three times.

Moreover, regarding the USER SPECIFIC set, an automatic transcription is available,
it was obtained using the PATSH software operating online during the experiments while
participants interacted with the SWEET-HOME system; this set is described in Table 9 but
was not used in the framework of this paper.

In a nutshell, two corpora recorded in realistic conditions are available for test and
development, that is 21mn 28s and 17 mn 48s of manually transcribed data and 22mn 28s
of automatically transcribed data.



