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Fractional-order variational numerical methods for

tomographic reconstruction of binary images

M. Bergounioux E. Le Pennec E. Trélat ∗

May 17, 2018

Abstract

The aim of this article is to provide and compare several numerical methods for
the tomographic reconstruction of blurred and noised binary images, based on one
single snapshot taken from an axially symmetric 3D object. This problem is moti-
vated by a physical experiment of the CEA, where a single radiography is taken during
the implosion process of some dense such object and is strongly blurred and noised.
In a previous article [3] we have provided a refined functional analysis of the Radon
operator restricted to axisymmetric functions and proved that it enjoys strong regu-
larity properties in fractional order Hilbert spaces. Based on that theoretical study,
we provide here the details of the numerical solving of a minimization problem settled
in suitable fractional order Hilbert spaces, using a numerical approximation of the
fractional Laplacian and some adapted Newton-like methods. The resulting proce-
dure happens to be very efficient, both for the execution time and for the quality of
the reconstruction. We compare this approach with two other numerical approaches:
the first one uses the Fourier transform, and the second uses a wavelet reconstruction
sofware.

Keywords: tomographic reconstruction, Radon operator, fractional Laplacian, minimiza-
tion, Fourier transform, wavelets.

1 Introduction

The goal of this article is to provide an efficient numerical method for the tomographic
reconstruction of blurred and noised binary images, based on one single radiography. This
problem is motivated by a physical experiment led at the CEA1 consisting of reconstructing
the shape of an axially symmetric 3D object at some precise moment of its implosion, using
one single X-ray radiography. Due to the experimental conditions, the snapshot is strongly
noised and blurred. Moreover it is assumed that the object is made of one homogeneous
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material and of some holes, thus is considered as being binary. It must be noted that there
exist few results or methods for such tomographic reconstruction problems.

The modelization has been done in details in [1], and we next briefly recall how the
problem can be expressed in terms of the Radon transform. We assume that the object
is quite small, and is far from the X-ray source, so that X-rays can be considered parallel
and orthogonal to the symmetry axis of the object. In these conditions, taking Cartesian
coordinates (y, z) on the radiograph, the Radon transform of the object is defined by the
projection operator

(H0u)(y, z) = 2

∫ +∞

|y|
u(r, z)

r√
r2 − y2

dr, (1.1)

for all y, z ∈ R, where the function u (with compact support) denotes the density of the
object and is expressed in cylindrical coordinates (r, z), where the z-axis corresponds to
the (vertical) symmetry axis of the object. It is understood that, since the object under
consideration is compact, the integral above is actually on a finite interval. To be more
precise, we consider density functions that are bounded variation functions defined on
R+ × R, having a compact support contained in the subset Ω = [0, a) × (−a, a) of R2,
where a > 0 is fixed, and taking their values in the binary set {0, 1}. In particular, the
upper bound of the integral in (1.1) can be set to a, and for every such density function
u, the function H0u is of compact support contained in Ω1 = (−a, a)2.

As mentioned previously, due to the experimental conditions the available (single)
radiography is strongly blurred and noised, and hence the data from the snapshot at our
disposal are of the form

vd = BH0u+ τ, (1.2)

where B is a linear operator modeling the blur2, and τ is a noise3. In the sequel, we set
H = BH0.

In practice, given observed data vd, it is our aim to provide a reconstruction u of
the density of the object which would be as accurate as possible. As is well known, this
inverse problem is very ill-posed, due to the bad-conditioning of the Radon operator H0.
Applying (formally) the inverse of H0 to vd causes significant errors and can only provide
a low-quality reconstruction of the object.

To deal with this ill-posed problem, we have first proposed in [1] a variational approach
consisting of minimizing

1

2
‖Hu− vd‖2L2(Ω1) + αΦ(u) (1.3)

over all possible bounded variation functions defined on Ω and satisfying u(x) ∈ {0, 1}
almost everywhere on Ω. Here, α > 0 is a fixed parameter to be chosen, and Φ(u) denotes
the total variation of the bounded variation function u. This minimization procedure leads
to a method of tomographic reconstruction in our problem.

To be more precise with the mathematical setting, recall that BV (Ω) is the space of
bounded variation functions, that are functions u ∈ L1(Ω) whose distributional gradient

2Usually, B is the convolution with a positive symmetric kernel K with compact support and such that∫
Kdµ = 1

3Usually, an additive Gaussian white noise of zero mean
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Du is a finite vector Radon measure, satisfying∫
Ω
udivϕdx = −〈Du,ϕ〉 = −

∫
Ω
ϕ · d(Du) = −

∫
Ω
ϕ · σu d|Du|,

for every ϕ ∈ C1
c (Ω,R2), where C1

c (Ω,R2) is the space of continuously differentiable vector
functions of compact support contained in Ω, and where σu : Ω→ R2 is a |Du|-measurable
function satisfying |σu| = 1 almost everywhere on Ω. Then, recall that the total variation
of u ∈ BV (Ω) is defined by

Φ(u) = sup

{∫
Ω
u(x) divϕ(x) dx

∣∣∣ ϕ ∈ C1
c (Ω,R2), ‖ϕ‖L∞ 6 1

}
=

∫
Ω
|Du| = |Du|(Ω).

Endowed with the norm ‖u‖BV = ‖u‖L1 + Φ(u), the space BV (Ω) is a Banach space.
Note that it has been shown in [1] that H0 extends to a linear continuous operator

from L2(Ω) to L2(Ω1), and hence minimizing (1.3) makes sense, at least provided that
vd ∈ L2(Ω1). From the practical point of view, the nonconvex binarity constraint u(x) ∈
{0, 1} a.e. is hard to tackle numerically, and in [1] a penalization procedure is proposed,
consisting in introducing a new parameter ε > 0, and minimizing rather

1

2
‖Hu− vd‖2L2(Ω1) +

1

2ε
‖u− u2‖2L2(Ω) + αΦ(u) (1.4)

over all functions u ∈ BV (Ω). This leads to an interesting numerical method that however
does not provide very satisfactory results. In [3] we made a refined study of the intrinsic
regularity properties of the projection operator, which leads to reconsider the above min-
imization procedure with a more adapted norm. It is the object of that paper to show
that, combining this theoretical study with a careful numerical implementation leads to
spectacular numerical improvements. Let us first recall, in the next section, the main
results of [3].

2 Fractional variational approach

2.1 Refined functional properties of the Radon operator

Regularity properties of the Radon transform and their applications to tomography have
been widely investigated in the literature (see e.g. [1, 2, 6, 7, 8, 9, 11]), but are generally
stated in the spaces Lp. As mentioned above, it has been shown in [1] that the use of such
norms indeed provides acceptable reconstruction processes, but they will happen to be
largely improved by taking into account stronger regularity features. A refined functional
analysis of the Radon projection operator H0 defined by (1.1) was led in [3], stating that
it enjoys strong regularity properties in fractional order Hilbert spaces. We next recall
these results. Denote by

X = L2(−a, a;BV0(0, a)) (2.1)

the set of all functions u ∈ L2(Ω) such that the function (z, r) 7→ u(r, z) belongs to
L2(−a, a;BV0(0, a)), where BV0(0, a) is the closed subset of the set of functions f ∈
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BV (0, a) vanishing at a. The total variation, which is a semi-norm, is a norm on BV0(0, a).
Hence the space X is a closed subspace of the Banach space L2(−a, a;BV (0, a)), and can
be endowed with the norm

‖u‖X =

(∫ a

−a
(|Duz|(0, a))2 dz

)1/2

=

(∫ a

−a
(ϕ(uz))

2 dz

)1/2

, (2.2)

where the notation uz stands for the function r 7→ uz(r) = u(r, z), and where the notation
ϕ(f) is used to denote the total variation of a function f ∈ BV (0, a).

For every s ∈ (0, 1), the fractional order Hilbert space Hs(−a, a) is defined as the space
of all functions f ∈ L2(−a, a) such that∫ a

−a

∫ a

−a

|f(x)− f(y)|2

|x− y|1+2s
dx dy < +∞,

endowed with the norm

‖f‖Hs(−a,a) =

(
‖f‖2L2(−a,a) +

∫ a

−a

∫ a

−a

|f(x)− f(y)|2

|x− y|1+2s
dx dy

)1/2

.

It is possible to define the Hilbert space Hs(−a, a) in other equivalent ways, in particular
with the Fourier transform or with the fractional Laplacian operator (see [3] for a survey
of equivalent definitions).

The space Hs
0(−a, a) is defined as the closure in Hs(−a, a) of the set of all smooth

functions having a compact support contained in (−a, a). Note that, for s ∈ [0, 1/2],

there holds Hs
0(−a, a) = Hs(−a, a). The Lions-Magenes space H

1/2
00 (−a, a) is the subset

of functions f ∈ H1/2(−a, a) such that ρ−1/2f ∈ L2(−a, a), where the function ρ is defined
on (−a, a) by ρ(y) = a− |y|.

For every s ∈ [0, 1) \ {1/2}, denote by

Ys = L2(−a, a;Hs
0(−a, a)) (2.3)

the set of all functions v ∈ L2(Ω1) such that the function (z, y) 7→ v(y, z) belongs to
L2(−a, a;Hs

0(−a, a)). It is a closed subspace of L2(−a, a;Hs(−a, a)), and, endowed with
the norm

‖v‖Ys =

(∫ a

−a
‖v(·, z)‖2Hs(−a,a) dz

)1/2

, (2.4)

Ys is a Hilbert space. For s = 1/2, define, similarly, the Hilbert space

Y1/2 = L2(−a, a;H
1/2
00 (−a, a)). (2.5)

Theorem 1 ([3]). For every s ∈ [0, 1), the operator H0 is linear and continuous from X
into Ys.

Note that this result holds as well for the blurred projection operator H = BH0 =
K?H0. Note also that other regularity properties have been derived in [3], but the previous
theorem is particularly useful in view of taking benefit of the Hilbert structure.
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2.2 Minimization problem in fractional Sobolev spaces

Based on the functional properties stated in Theorem 1, we have proposed in [3] to consider
the following minimization problem. Let s ∈ [0, 1), let α and β be nonnegative real
numbers, and let ε > 0. The projected image vd (observed data) is assumed to belong to
Ys. Consider the problem of minimizing

F sα,β,ε(u) =
1

2
‖Hu− vd‖2Ys + αΦ(u) +

β

2
‖u‖2X +

1

2ε
‖u− u2‖2L2(Ω) (2.6)

among all functions u ∈ X where X = X whenever α = 0, and X = BV (Ω)∩X whenever
α > 0.

Remark 1. In fact the minimimu of F sα,β,ε shoud be found among all functions u ∈ Bη
where η > 0 and

Bη := {u ∈ X | β‖u‖X + ‖u‖∞ ≤ η }.
Indeed, becasue of the lack of coercivity of the functional we need a boundness constraint
to prove existence result within the infinite dimensional framework. However, we are
allowed to choose any (large enough ) η and the solution to the orginal (non penalized)
problem exists without any additional condition. Therefore, from the pratical point of
view, this constraint will be inactive and we do not take it into account for numerical
purpose.

The parameter α is the weight of the total variation. If α > 0 then this term yields
a regularization term used in a standard way in image processing. Note here that we
introduce an alternative to this usual regularization, with the term ‖u‖2X , weighted with
β. Note that in our method it is required that α + β > 0, that is, if α = 0 then β must
be chosen positive, and conversely. Note that F sα,β,ε is not differentiable because of these
terms.

The parameter ε > 0 is a penalization parameter. The limit case ε = 0 corresponds
to the binarity constraint u(r, z) ∈ {0, 1} a.e. on Ω, and for this limit case it has been
proved in [3] that the associated minimization problem has at least one solution. It has
been proved as well that the minimization problem (2.6) is well defined and has at least
one solution whenever ε > 0, and this family of optimization problems parameterized by
ε enjoys a nice Γ-convergence property to the limit case.

First-order necessary conditions for optimality of (2.6) have been derived in [3] in the
form of an optimality system, as explained next. Although F sα,β,ε is not differentiable, the
functional defined by

Gs(u) =
1

2
‖Hu− vd‖2Ys (2.7)

is differentiable, and in what follows we denote by ∇Gs(u) its gradient for the pivot space
L2. It can be computed in several ways, in particular using a fractional Laplacian or using
the Fourier transform. This will lead to different numerical implementation methods. The
functional u 7→ 1

2ε‖u−u
2‖2L2(Ω) is differentiable as well, and its gradient for the pivot space

L2 is

qε(u) =
(u− u2)(1− 2u)

ε
. (2.8)
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Recall that X = L2(−a, a;BV0(0, a)), and thus X ′ = L2(−a, a; (BV0(0, a))′). For every
λ ∈ X ′, viewed as function of z ∈ (−a, a) of class L2 with values in (BV0(0, a))′, denote
λz = λ(z) ∈ (BV0(0, a))′, for almost every z ∈ (−a, a). The duality product between X
and X ′ is defined by

〈λ, v〉X′,X =

∫ a

−a
〈λz, vz〉BV ′0 ,BV0

dz,

for every λ ∈ X ′ and every v ∈ X. Finally, recall that the notation ϕ(f) is used to denote
the total variation of a function f ∈ BV (0, a).

Theorem 2 ([3]). Let u be a minimizer of (2.6) with the constraint u ∈ Bη. Then there
exist ρ ∈ (M(Ω)2)′, µ = −div ρ, and λ ∈ X ′, such that

∇Gs(u) + qε(u) + αµ+ βλ = 0, (2.9)

µ ∈ ∂Φ(u), (2.10)

and
λz ∈ ϕ(uz) ∂ϕ(uz), (2.11)

for almost every z ∈ (−a, a).

We use an iterative fixed-point method to compute the solution to (2.9)-(2.10)-(2.11).

3 Numerical implementation of the fractional variational
approach

3.1 The general algorithm

In this section we explain how to carry out the numerical implementation of the optimality
necessary conditions stated in Theorem 2. Notice that the method will depend on the four
parameters s, α, β, and ε. Their respective role will be explained and discussed further.
These parameters being fixed, we propose the following iterative algorithm.

Algorithm 1

Initialization : Initialization: n = 0, choose u0 = H−1
0 vd.

N∞ maximum number of iterations.
Iterations :
for 0 6 n 6 N∞ do

(a) Determine µn ∈ ∂Φ(un).
(b) Determine λnz ∈ ϕ(unz ) ∂ϕ(unz ), for every discretized value of z ∈ (−a, a).
(c) Make p fixed-point-like iterations for the solving of

∇Gs(un+1) + qε(u
n+1) + αµn + βλn = 0.

(d) Stopping criterion: |F sα,β,ε(un+1)− F sα,β,ε(un)| small enough
end for
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We next discuss the discretization process, the steps of that algorithm, and the different
implementation choices that can be done.

Discretization process. As usually, the discretized image is represented by a N × N
array. Due to the symmetry, it suffices to deal with half an image, of size N×N/2. Denote
X = RN×N and Y = X × X, endowed with the usual scalar product. For u ∈ X, the
approximation of the Radon measure Du is identified with a vector of Y of coordinates
(Du)i,j = ((Du)1

i,j , (Du)2
i,j) defined by

(Du)1
i,j =

{
ui+1,j − ui,j if i < N,
0 if i = N,

(Du)2
i,j =

{
u1,j+1 − ui,j if j < N,
0 if j = N,

and the approximation of total variation is

Φ(u) =
∑

16i,j6N

√
((Du)1

i,j)
2 + ((Du)2

i,j)
2.

The divergence operator is discretized through

(div p)i,j =


p1
i,j − p1

i−1,j if 1 < i < N

p1
i,j if i = 1

−p1
i−1,j if i = N

+


p2
i,j − p2

i,j−1 if 1 < j < N

p2
i,j if j = 1

−p2
i,j−1 if j = N

Initialization. It is natural to initialize the algorithm with u0 = H−1
0 vd, that is, by

applying the inverse of the (discretized) Radon transform to the observed data. As men-
tioned previously, the resulting image u0 cannot be expected to be a nice reconstruction
of the object (see also numerical simulations further), since it is far too much noised and
blurred, however is the most natural initial point of our iterative procedure. A random
initializations could do not lead to a satisfying reconstruction since, in some sense, our
algorithm acts as denoising and deblurring.

Subdifferential of the total variation. The choice of µ ∈ ∂Φ(u) or λz ∈ ϕ(uz) ∂ϕ(uz)
in (2.10)-(2.11) follows Chambolle’s method (see [4]). We briefly recall the idea for the
construction of µ ∈ ∂Φ(u) in the discretized setting. Recall that the Fenchel-Legendre
conjugate function Φ∗ of Φ is the indicatrix function 1K2 of

K2 = {div g | g ∈ Y, (g1
i,j)

2 + (g2
i,j)

2 6 1, ∀i, j}.

Moreover,
µ ∈ ∂Φ(u)⇔ u ∈ ∂1K2(µ)⇔ µ = ΠK2(µ+ u)

where ΠK2 denotes the orthogonal projection on K2. Therefore, µ can be computed with
the successive approximation process µk = ΠK2(µk−1 + u) or with a semi-smooth Newton
method.
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Similarly, for every discretized value of z ∈ (−a, a)., we compute λz ∈ ϕ(uz) ∂ϕ(uz) as

λz = ϕ(uz)λ̃z with λ̃z = ΠK1(λ̃z + uz)

and
K1 = {g′ |g ∈ RN × RN , (g1

i )
2 + (g2

i )
2 6 1, ∀i}.

Therefore, λ̃z can also be computed with the successive approximation process (λ̃z)k =
ΠK1((λ̃z)k−1 + uz).

The projected element v̄ := ΠKi(v) = div p̄ where p̄ = argmin { ‖ div (p)−v‖2X | |pi,j | ≤
1, i, j = 1, · · · , N }, may be computed using the point-fixed algorithm of Chambolle [4] or
a Nesterov-type algorithm described in [12, 14]. The second one is faster than the first one.
However, we have noticed that very few iterations were necessary to make the (global)
algorithm converge (practically 1 or 2) and the two methods have the same behavior.
In addition we have an estimate of the convergence rate of the Nesterov-type algorithm.
More precisely, if vk denotes the kth iterate then

0 ≤ ‖vk − v‖2X − ‖v̄ − v‖2X ≤
C

(k + 1)(k + 2)
, (3.1)

where C is a generic constant.

Fixed-point-like iterations. In order to solve the third step of the iterative loop, we
propose to implement a certain number of steps of a fixed-point-like iteration solving, as
follows. Given µn and λn, define fn(u) = ∇Gs(u) + qε(u) + αµn + βλn. The aim is to
estimate un+1 by solving the implicit nonlinear system fn(u) = 0. This is equivalent to
seeking u such that

u−Mnfn(u) = u, (3.2)

where Mn is a square (preconditioning) matrix to be chosen. We propose here to imple-
ment p steps of such a fixed-point procedure initialized at un, and the resulting solution
is defined to be un+1. In practice, it happens to be sufficient to take p = 1, that is, we
implement only one step of this fixed-point procedure.

A standard choice of preconditioner is Mn = γ Id, with γ > 0 small enough. This
is however not the choice we make. Note that one recovers the classical Newton method
whenever one chooses, at each step of the iteration, the matrix Mn to be the inverse of
the differential of fn at the current point. The classical Newton methods is a priori not
well adapted here. Indeed, on the one part the discretization of the Radon transform
is ill-conditioned, and hence the Hessian of Gs will be ill-conditioned as well, for every
possible choice of the discretization of Gs (see further for different ways of computing the
gradient of Gs). On the other part, the derivative of the function qε defined by (2.8), seen
as a function of one scalar variable, is qε(t) = 1

ε (2t−1)(t2− t), and has three zeros: 0, 0.5,
and 1. The classical Newton method for determining the zeros of that scalar function is
written as

tk+1 = tk −
qε(tk)

q′ε(tk)
.
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However the three zeros are attractive (see Figure 3.1), and in particular the attractive
zero t = 0.5 should be avoided. Although this analysis is done in dimension 1, when
transposed to imaging, a pixel coded with 0.5 is grey, exactly between 0 (black) and 1
(white), but our image is binary and this situation must be avoided. A very simple way,
that we can explain in dimension 1, is to modify the classical Newton method so as to
make the zero t = 0.5 repulsive. Due to the specific expression of the function qε(·), we
propose to modify the classical Newton method as follows:

tk+1 = tk − 2
qε(tk)

|q′ε(tk)|
. (3.3)

Let us justify this modification. Define Qε the primitive function of qε that vanishes at
t = 0. Then we look for the minima of Qε on [0, 1]. A descent method with optimal step
αk gives

tk+1 = tk − αkqε(tk);

a classical second order exansion gives

Qε(tk+1)−Qε(tk) = −αk(qε(tk))2 +
α2
k

2
(qε(tk))

2q′ε(tk) + ◦((tk+1 − tk)2) .

The first order analysis gives αk > 0 to let the functional decrease to a local minimum
(here 0 or 1). Looking for a second order scheme gives

−αk(qε(tk))2 +
α2
k

2
(qε(tk))

2q′ε(tk) = 0,

that is αkq
′
ε(tk) = 2 which is equivalent to αk = 2/|q′ε(tk)| since αk > 0.

Figure 3.1: Graph of the primitive Qε of qε: t 7→ Qε(t)

It is then obvious that, on this particular one-dimensional problem, this method is
globally convergent, whatever the initialization t0 may be (except for three particular
values). More precisely, for every t0 < 1/2 such that t0 6= 1

2 −
1

2
√

3
, the iterative sequence

(3.3) initialized at t0 converges to 0, and for every t0 > 1/2 such that t0 6= 1
2 + 1

2
√

3
, the
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iterative sequence (3.3) initialized at t0 converges to 1. The two particular values 1
2 ±

1
2
√

3

correspond to the local extrema of the function qε(·), and actually, numerically they even
do not cause the divergence of the above method. Indeed, due to the change of sign in
(3.3), and for instance in the case t0 = 1

2 + 1
2
√

3
, then numerically t1 is set to a very large

value, and then the next iterates will converge to 1, as expected.
We propose here to transpose this very simple idea to choose an adequate precondi-

tioning matrix Mn for the solving of (3.2). As explained previously, since it suffices to
work with half an image, un is a matrix of size N × N/2. Then, the matrix q′ε(u

n) is
as well of size N × N/2, the lines of which are denoted by L1(un), . . . , LN (un). Then,
guided by our one-dimensional analysis, we propose to consider as a matrix Mn, the di-
agonal N × N -matrix having as diagonal ith-coefficient the scalar 1/‖Li(un)‖ (using the
Euclidean norm). Other choices are of course possible, but this specific choice happens to
be the most relevant for our numerical simulations.

We are not able to provide a global convergence rate for Algorithm (3.1). However,
the partial computations involve second order schemes and point fixed methods with
projections. Therefore, we expect a linear convergence rate.

The previous analysis has been done with fixed parameters. In addition, we may give
error estimates for the computed solution with respect to ε and α and/or β as well. For
sake of simplicity we set β = 0. Indeed, we have noticed very small influence of β (see
next section). Following [10], we introduce the R-minimizing solution of the problem as

u† := argmin{R(u), Hu = ud },

where R(u) := Φ(u) + ‖u − u2‖2L2(Ω). As H is surjective, equation Hu = ud has at least

a solution and such a R-minimizer exists. Following Remark 4.5 of [10] and considering
that the appropriate assumptions are satisfied, we get

‖Huα − ud‖Ys ≤ Cα and Dξ∗(uα, u
†) ≤ Cα ,

where C is a generic constant, uα is a minimizer of F sα,0,1/α, ξ∗ ∈ ∂R(u†) and Dξ∗(uα, u
†)

is the Bregman-distance :

Dξ∗(uα, u
†) = R(uα)−R(u†)− < ξ∗, uα − u† > .

3.2 Computation of the fractional derivative ∇Gs

It remains to explain how to compute a good approximation of the gradient ∇Gs. This is
the most important issue of our algorithm, in the sense that all previous issues discussed
above can be modified but variants lead to quite similar results (both in quality and exe-
cution time), whereas the choice of the numerical computation of ∇Gs leads to significant
differences. Recall that the functional Gs defined by (2.7) is the square of the norm of
the fractional-order Hilbert space Ys defined by (2.3). We next propose two numerical ap-
proaches to estimate such a norm and ∇Gs. The first one uses the Fourier transform and
the second one uses an approximation of the fractional Laplacian. Whereas the first one
may be expected to be more exact, actually the second one happens to be more relevant
for the numerical simulations.
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3.2.1 Using the Fourier transform

In this section, we compute ∇Gs using the Fourier transform. First of all, observe that, for
every s ∈ [0, 1), for every u ∈ Ys, the function Hu− vd can be extended by 0 to a function
of L2(−a, a;Hs(R)), and its norm can be computed in terms of Fourier transform, by

Gs(u) =
1

2

∫ a

−a

∫
R
|Fy(Hu− vd)(ξ, z)|2(1 + ξ2)s dξ dz

=
1

2
‖Fy(Hu− vd)‖2L2(ωs)

,

where L2(ωs) denotes the weighted Hilbertian space of all complex valued functions f
defined on R × (−a, a) such that

∫
R×(−a,a) |f(ξ, z)|2ωs(ξ) dξ dz < +∞, where ωs(ξ) =

(1 + ξ2)s. Setting wd = H−1(vd), it follows that

∇Gs(u) = (FyH)∗ωs(FyH)(u− wd), (3.4)

with L2 as a pivot space. Moreover, in order to make this expression more explicit, the
Fourier transform of the blurred projection operator H can be computed as follows (see
[3]). The notation ṽ stands for the extension by 0 to R2 of any function v. Here it is
assumed that the blur is modeled by a linear operator B writing as a convolution with a
positive symmetric kernel K (in practice, a Gaussian kernel) with compact support.

Lemma 1. The Fourier transform of the blurred projection operator H = BH0 with
respect to the first variable is

(FyBH̃0u)(ξ, z) = (FyK)(ξ, ·) ?2 (FyH̃0u)(ξ, ·)(z), (3.5)

for every u ∈ L1(Ω), every ξ ∈ R and almost every z ∈ (−a, a), where the notation ?2

stands for the convolution product with respect to the second variable. Its adjoint (with L2

as a pivot space) is

((FyBH̃0
∗
v)(r, z) = (FyH̃0)∗(Fyg ?2 v)(r, z), (3.6)

for every v ∈ L1(R2), every r ∈ [0, a) and almost every z ∈ (−a, a).

3.2.2 Using the fractional Laplacian

In this section, we compute ∇Gs using the fractional Laplacian. By definition, there holds

Gs(u) =
1

2

∫ a

−a
‖(Hu− vd)(·, z)‖2Hs

0(−a,a)dz,

for every u ∈ Ys, and every s ∈ [0, 1) \ {1/2}. For s = 1/2, Hs
0(−a, a) is replaced with the

Lions-Magenes space H
1/2
00 (−a, a). This norm can actually be expressed in an equivalent

way using the fractional Laplacian operator, as follows (see [3] for the proofs). For every

f ∈ Hs
0(−a, a) whenever s ∈ [0, 1) \ {1/2}, or f ∈ H

1/2
00 (−a, a) whenever s = 1/2, the
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square of the norm of f within these spaces is equivalent to ‖f‖2L2(U) + ‖(−∆)s/2f‖2L2(Rn),

where f is extended by 0 outside (−a, a) (notice that (−∆)s/2f is not of compact support4).
Here, (−∆)α denotes the fractional Laplacian operator on Rn, defined, using the Fourier
transform Ff of f , by (−∆)αf = F−1(|ξ|2αFf). It follows that

∇Gs(u) = H∗RΩ1(id + (−∆)s)(H̃u− ṽd), (3.7)

with L2 as a pivot space, where H̃u− ṽd is the extension of Hu− vd by 0 outside (−a, a),
and RΩ1 is the restriction to Ω1.

It is very simple to approximate the operator (−∆)s. To this aim, consider any usual
approximation of the operator −∆, typically, the tridiagonal matrix

N2



2 −1 0 · · · 0

−1 2 −1
...

0 −1 2
. . . 0

...
. . .

. . . −1
0 · · · 0 −1 2


. (3.8)

Since it is a symmetric positive definite matrix, its fractional powers can be computed in
many ways, for instance it is straightforward by considering its singular value decompo-
sition (SVD). Note that this computation is done a priori and thus does not slow down
the execution of the algorithm. There are some other ways to approximate the Laplacian
operator, using higher-order centered schemes, but these variants do not lead to significant
differences in the numerical simulations.

3.3 Numerical results

We present hereafter several numerical results. Our working example, drawn on Figure
3.2, represents a synthetic object containing all standard difficulties: several disconnected
holes; a small hole located on the symmetry axis (where details are expected to be dif-
ficult to recover because the noise variance is maximal around the symmetry axis after
reconstruction); smaller details on the boundary of the top hole, serving as a test for lower
bound detection. Figure 3.2 (a) represents the shape of an object made of concentric shells
of homogeneous materials surrounding a ball of another homogeneous material containing
empty holes. It is the slice of an axially symmetric 3D object by a plane containing the
symmetry axis of that object. A rotation of the image of Figure 3.2 (a) around the z axis
must be performed in order to recover the 3D-object. We then focus on the tomographic
reconstruction of the interior of the object (Figure 3.2 (b)).

4Note that the Laplacian operator should not be confused with the operator A defined as the opposite
of the Dirichlet Laplacian on L2(−a, a), of domain D(A) = H1

0 (−a, a)∩H2(−a, a). For instance, for every

f ∈ Hs
0(−a, a) with s ∈ (0, 1) \ {1/2} (and f ∈ H1/2

00 (−a, a) for s = 1/2), one has f ∈ D(As/2) and thus
As/2f ∈ L2(−a, a) by definition, whereas (−∆)sf ∈ L2(Rn) (where f is extended by 0 outside (−a, a)) is
not even of compact support. Recall that functions of Hs

0(U) can be extended by 0 to Hs(Rn) for every

s > 0 such that s /∈ N + 1/2; for s = 1/2 for instance, functions of H
1/2
00 (U) can be extended by 0 to

H1/2(Rn).
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(a) Slice of a binary axially symmet-
ric object by a plane containing the
symmetry axis.

(b) Zoom on the interior of the ob-
ject of Figure 3.2 (a); the homoge-
neous material is drawn in black
and the holes in white.

Figure 3.2: Working example.

In our numerical simulations, we consider a Gaussian blur with standard deviation
σB = 0.12, that is, modeled by a convolution with the kernel

K(x) = Ce
− |x|

2

2σ2
B 1Ω̃(x),

where C is a normalizing constant so that
∫
Kdµ = 1. The noise is assumed to be a

Gaussian noise τ with standard deviation στ = 0.15 (the image is rescaled between 0 and
1), that is,

τ(x) =
1√

2πστ
e
− |x|

2

2σ2
τ .

We define the Signal to Noise Ratio as SNR(v) = 20 log10 (‖uo‖L2/‖uo − uc‖L2) , where
uo is the expected original image and uc is the computed one. All numerical tests have
been performed with the same data whose size was 256×256. For the noisy case (without
blur) SNR= 2.66 and the SNR corresponding to the noisy and blurred data is 2.35 .

First, we have compared the methods of subsection 3.2 to compute ∇Gs. The most
efficient is the use of the fractional laplacian. Indeed, the choice of Fourier transform leads
to numerical instability together with bad reconstruction. This comes from the fact that
the implementation of the FFT is not based on Bessel functions which are the natural
special functions associated to the Radon transform. The use of exact formulas with
Bessel functions gives better results but none was as good as the ones we obtained with
the fractional laplacian.
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(a) Original image (b) Observed image ud (c) H−1
0 (ud)

(d) Use of exact formulas with

Bessel functions

(e) Use of FFT (f) Use of fractional laplacian

Figure 3.3: Results with Fourier approach : s = 0.5, ε = 0.5, α = 5, β = 0

We have also tested the case where β 6= 0. If α = 0 then the result is not satisfactory
(see Figure 3.4). If α 6= 0 the effect of β is null.
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(a) α = 0, β = 10 - SNR= -3.02 (b) α = 5, β = 10 - SNR= -0.42 (c) α = 5, β = 5 - SNR= 0.24

(d) α = 30, β = 0- SNR= 9.62 (e) α = 30, β = 10- SNR= 9.69 (f) α = 10, β = 0- SNR= 5.54

Figure 3.4: Sensitivity with respect to β with ε = 1e− 02 and s = 0.5 - no blur (Original
SNR =2.66 )

In the sequel, we focus on the case where β = 0 and ∇Gs is computed with the
fractional Laplacian method of subesction 3.2.2.

3.3.1 Sensitivity to parameter s

In [1], similar numerical simulations were provided, corresponding to s = 0, that is, without
any refined functional analysis of the Radon operator. For s = 0, the Radon operator H0

is seen as a linear continuous operator from L2(Ω) in L2(Ω1). Numerical simulations in
this case are provided on Figure 3.5.
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(a) Observed image ud -

SNR=2.35

(b) H−1
0 (ud) - SNR=0.02 (c) ε = 0.1, α = 1 -

SNR=-2.23

(d) ε = 0.1, α = 10 -

SNR=4.23

(e) ε = 0.5, α = 1 -

SNR=3.16

(f) ε = 0.5, α = 5 -

SNR=7.19

(g) ε = 0.5, α = 10 -

SNR=7.86

(h) ε = 0.5, α = 30 -

SNR=8.39

(i) ε = 0.1, α = 10 -

SNR=4.23

(j) ε = 0.5, α = 10 -

SNR=7.86

(k) ε = 1, α = 10 -

SNR= 8.35

(l) ε = 1, α = 5 -

SNR=8.03

Figure 3.5: Blur and noise (SNR = 2.35) - s = 0 (L2 norm), simulations with different
values of ε and α

r

As expected, and as already noted in [1], the quality of the reconstruction strongly
depends on the specific choice of the parameters ε and α. Recall that α is the weight of
the total variation. As expected, if α is too large, then the resulting image is too smooth,
and if α is too small, then the image remains too much noisy. The penalization parameter
ε is associated with the binarity constraint. If ε is too large then the binary features of
the object are not well recovered and details are too much smoothened.

We next provide numerical simulations with 0 < s < 1. This is indeed the main
contribution of [3] to state that the Radon transform enjoys strong regularity properties in
fractional-order Hilbert spaces. As can be seen on next Figures, the benefit of considering
such a Hilbert space is spectacular. The reconstruction is of high quality, and moreover the
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algorithm is time-efficient. The reconstruction of Figure 3.6 is obtained with MATLAB
and 100 iterations.

(a) Original image (b) Observed image ud (c) H−1
0 (ud)

(d) s = 0 - SNR = 7.86 (e) s = 0.5 - SNR = 8.04 (f) s = 0.8 - SNR = 7.58

Figure 3.6: Reconstruction with (Hs norm), for ε = 0.5, α = 10, β = 0, nmax = 200 -
Blur and noise

s Fs,α,β (original) Fs,α,β (computed) ‖uorig − ucomputed‖ SNR CPU time (s)

0 2.082654e-01 2.257670e-01 2.716e-01 7.86 499
0.5 2.082654e-01 2.416019e-01 2.710e-01 8.04 433
0.8 2.082654e-01 2.466059e-01 2.902e-01 7.58 708

Table 1: Reconstruction with (Hs norm), for ε = 0.5, α = 10, β = 0, nmax= 200 - Blur
and noise
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(a) Original image (b) Observed image ud (c) H−1
0 (ud)

(d) s = 0 - SNR=1.32 (e) s = 0.5 - SNR=1.79 (f) s = 0.8 - SNR=1.91

Figure 3.7: Reconstruction with (Hs norm), for ε = 0.5 without any additional penaliza-
tion :α = 0, β = 0, nmax =200 - Blur and noise

Other choices of the value of s, for instance s = 0.75, lead to similar results. The most
spectacular improvement is obtained by considering a nonzero value of s (however required
to be lower than 1). Note that, when s is chosen to be too close to 1, the reconstruction
is too much smooth, as expected since the norm under consideration is close to the norm
of H1, which is not allowed in the continuous context.

3.3.2 Sensitivity with respect to the data

We have done several tests using different data.
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(a) Original image (b) Observed image 1 (c) Observed image 2 (d) Observed image 2

(e) Mean result for 50 differ-

ent data - SNR = 11.68

(f) Result 1 - SNR = 9.96 (g) Result 2 - SNR = 9.80 (h) Result 3 - SNR = 9.27

Figure 3.8: Reconstruction for s = 0.5, ε = 0.5, α = 10, β = 0, nmax=200 and different
data. The left result is the mean image over 50 computations with 50 different data.

Remark 2. It was already noticed in [1] that the functional strongly decreases within small
time and then decreases far more slowly. Actually, the image is considerably improved
only after few iterations, far from the symmetry axis. This is due to the fact that the
outermost pixels of the image carry more information than the innermost pixels. Indeed,
since the object is axially symmetric, an outer pixel generates, when rotating around the
symmetry axis z, a torus, which projects onto a strip on a plane containing the axis z.
This strip is longer for an outer pixel than for an inner one, thus carrying more weight
in the functional to be minimized in the iteration process. This is the reason why the
convergence is slow for pixels around the axis, but very fast for outermost pixels.

We end this section reporting on CPU time with respect to the size of the quoted
image. Computation avec been done with MATLAB software, so they are slow.

N 64 128 256 512 1024

CPU (s) 45.7 138.4 476.6 1172 3742
Normalized CPU 1 3 10.4 25.6 82

Table 2: CPU time sith respect to the image size N×N , for s = 0.5, ε = 0.5, α = 10, β =
0, nmax= 200 - Blur and noise
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We note that the process is not very fast. Therefore we use a wavelet approach that
is described in next section.

4 A needlet approach

In this section, we describe an approach of smoothed Fourier series type based on a SVD
type decomposition of the Radon projection operator H0.

4.1 Abel integral and Jacobi based inversion formula

Let us start by observing that the Radon projection operator H0 defined by (1.1) is related

to the classical Abel integral transform T1/2u(x) =
∫ x

0
u(t)

(x−t)1/2 dt by the relation

H0u(y, z) =

∫ 1−|y|2

0
u(
√

1− t, z) 1√
1− y2 − t

dt = T1/2uz(1− y2),

where uz(t) = u(
√

1− t, z), for every u ∈ BV (Ω).

For all (α, β) ∈ (−1,+∞)2 and every m ∈ N, let Jα,β[−1,1],m denote the n-th degree Jacobi

polynomial defined on [−1, 1], and let

Jα,βm (x) =

√
n!(2n+ α+ β + 1)Γ(n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)
Jα,β[−1,1],m(2x− 1),

for every x ∈ [0, 1]. The family (Jα,βn )m∈N is an Hilbertian basis of the (weighted) Hilbert
space L2([0, 1], (1 − x)αxβdx). In [?], the authors provide a SVD type decomposition of
the operator T1/2, showing in particular that

T1/2(J0,0
m )(x) = βmx

αJ−1/2,1/2
m (x),

for every m ∈ N and for every x ∈ [0, 1], where

βm = Γ(1/2)

√
Γ(m+ 1/2)

Γ(m+ 3/2)
∼ Γ(1/2)

(m+ 3/2)1/2
.

In terms of the Radon operator H0, it follows that

H0

(
J0,0
m (1− r2)g(z)

)
(y, z) = βm

√
1− y2J−1/2,1/2

m (1− y2)g(z)

for every function g ∈ L2(−1, 1).

Let Qn(r) = J
(0,0)
m (1− r2) and Q#

m(y) = J
(−1/2,1/2)
m (1− y2), by construction, (Qm)m∈N

and (Q#
m)m∈N are orthonormal bases of respectively L2(0, 1, 2rdr) and L2(0, 1, 2

√
1− y2dy).

Therefore any u ∈ L2(Ω, 2rdrdz) can be expanded along r as

u(r, z) =
∑
m∈N

(∫ 1

0
u(r′, z)Qm(r′)2r′dr′

)
Qm(r′)
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and thus

H0u(y, z) =
∑
m∈N

(∫ 1

0
u(r′, z)Qm(r′)2r′dr′

)
βm
√

1− y2Q#
m(y)

=
∑
m∈N

(∫ 1

0
H0u(y′, z)Q#

m(y′)2dy′
)
Qm(r′)

√
1− y2Q#

m(y).

We derive thus the following one-dimensional inversion formula:

Lemma 2. For every u ∈ L2(Ω, 2rdrdz),

u(r, z) =

+∞∑
m=0

1

βm

(∫ 1

0
(H0u)(y′, z)Q#

m(y′)2 dy′
)
Qm(r). (4.1)

For any orthonormal basis of L2(−1, 1) (Rm)m∈N, this formula yields a two-dimensional
inversion formula:

Lemma 3. For every u ∈ L2(Ω, 2rdrdz),

u(r, z) =

+∞∑
m=0

+∞∑
m′=0

1

βm

(∫ 1

−1

∫ 1

0
(H0u)(y′, z′)Q#

m(y′)Rm′(z
′)2 dy′dz′

)
Qm(r)Rm′(z). (4.2)

Although the previous formula is valid for any orthogonal basis (Rm)m∈N, we will use

in the following the choice Rm = J
(0,0)
m , i.e. the Legendre polynomial basis. This choice

may seem arbitrary and unnecessarily complex. It turns out that the Legendre polynomial
basis is nevertheless the simplest orthogonal basis of L2(−1, 1) considered as an interval
without any periodization. This polynomial basis has also, for any degree, some explicit
cubature formula, a property which will proved to be important later on. A construction
similar to the one proposed below could also be made with a Fourier basis but it suffers
from periodization artifacts that are avoided by the choice of the Legendre polynomial
basis.

4.2 Smoothed inversion and needlets

Assume now, as it is the case in practice, that we have only access to some approximations

h̃m,m′ of

hm,m′ =

∫ 1

−1

∫ 1

0
(H0u)(y′, z′)Q#

m(y′)Rm′(z
′)2 dy′dz′

for 0 6 m 6 M and 0 6 m′ 6 M ′, how to use the previous formula to reconstruc an
estimate of the function u?
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Hard truncation, and Gibbs phenomenon. The most natural answer is to use the
truncated reconstruction

P̃M,M ′u =
M∑
m=0

M ′∑
m′=0

h̃m,m′

βm
Qm(r′)Rm′(z). (4.3)

Although optimal from the quadratic risk point of view, this reconstruction however suf-
fers from well known Gibbs type artifacts. Gibbs phenomena are well known in inverse
problems and here in our tomography problem they appear to be so strong that they make
the use of such an inversion formula not suitable in the problem.

Smoothened truncation. As examplified in [5] in the Fourier case and in [13] for Jacobi
polynomials, there exists a simple method in order to cancel the Gibbs phenomenon. Let
us recall this approach and show how it can be adapted and used in our context in a
relevant way.

Let a be an arbitrary smooth nonnegative function supported in [0, 1], such that a(w) =
1 for every w ∈ [0, 1/2] and a(w) 6 1 for every w ∈ (1/2, 1]. The method consists of
replacing the hard truncation (4.3) with a soft one, by considering

P̃M,M ′u(r) =

+∞∑
m=0

+∞∑
m′=0

a
(m
M

)
a

(
m′

M ′

)
h̃m,m′

βm
Qm(r)Rm′(z). (4.4)

Note that the hard truncation would correspond to a(w) = χ[0,1](w). In Fourier series,
the Fejer kernel corresponds to the choice a(w) = max(1−w, 0) and is known to leads to
better approximation. One can understand this smoothing effect through the study of the
corresponding smoothed projector

Pa,M,M ′u =
M∑
m=0

M∑
m′=0

a
(m
M

)
a

(
m′

M ′

)
cm,m′Qm(r)Rm′(z).

with

cm,m′ =

∫ 1

0
u(r′, z′)Qm(r′)Rm′(z

′)2r′ dr′dz′

Indeed, as soon as a is smooth, say C∞, then those projectors satisfy some very nice
properties, for instance all projections are now continuous for all Lp norms.

The best insight on those smoothened projection is probably the one proposed in [13].
Following their approach, the projection is first rewritten as a convolution

Pa,M,M ′u =

∫ 1

−1
u(r′, z′)Aa,M,M ′(r, z, r

′, z′)2r′dr′dz′

with a kernel Aa,M,M ′

Aa,M,M ′(r, z, r
′, z′) =

M∑
m=0

M ′∑
m′=0

a
(m
M

)
a

(
m′

M ′

)
Qm(r)Rm′(z)Qm(r′)Rm′(z

′).
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One of the main result of this paper is to prove that if a ∈ C∞ then this kernel is well
localized spatially: for all k ∈ N,∃ck > 0 such that

|Aa,M,M ′(r, z, r
′, z′)| 6 cKMM ′

(1 +Md(1− 2r2, 1− 2r′2))K(1 +M ′d(z, z′))Kγ(M,M ′, r, z, r′, z′)

where d(u, v) = | arcos(u, v)| and

γ(M,M ′, r, z, r′, z′) =
√
w0,0(M, 1− 2r2)w0,0(M, 1− 2r′2)w0,0(M ′, z)w0,0(M ′, z′)

with wα,β(M,u) = (u+M−2)α+1/2(u− 1 +N−2)β+1/2. This result is sufficient to obtain
the Lp continuity of the projection. Furthermore, one verify the existence of c > 1 such
that∫ 1

−1

∫ 1

0

∣∣Pa,M,M ′u(r, z)− u(r, z)
∣∣p 2rdrdz

6 c inf
v∈Span{Qm(1−r2)Rm′ (z)}06m6M/2,06m′6M′/2

∫ 1

−1

∫ 1

0
|v(r, z)− u(r, z)|p 2rdrdz

It turns out that this projection can be discretized as soon as there is a quadrature
formula polynomials of finite degrees. Indeed, let Ξj be a set of quadrature point such
that for any Qn(r)Rn′(z) and Qm(r)Rm′(z) with n, n′,m and m′ smaller than 2j∫ 1

−1

∫ 1

0
Qn(r)Rn′(z)Qm(r)Rm′(z)2rdrdz

=
∑

ξ=(rξ,zξ)∈Ξ
2j

ωξQn(rξ)Rn′(zξ)Qm(rξ)Rm′(zξ),

and define

φa,aj,ξ (r, z) =
√
ωξ
∑
m∈N

∑
m′∈N

√
a
(m

2j

)
a

(
m′

2j

)
Qm(rξ)Rm′(zξ)Qm(r)Rm′(z)

then

Pa,2j ,2ju(r, z) =
∑
ξ∈Ξj

da,aj,ξ φ
a,a
j,ξ (r, z)

with

da,aj,ξ =

∫ 1

−1

∫ 1

0
u(r′, z′)φa,aj,ξ (r′, z′)2r′dr′dz′.

Finally, if the quadrature points are chosen as the zeros of Q2j+1(1− r2)R2j+1(z) then
forall k ∈ N, ∃c′k such that

|φa,aj,ξ (r, z)| 6
c′K2j

(1 + 2jd(1− 2r2, 1− 2r2
ξ ))

K(1 + 2jd(z, zξ))Kγ(2j , 2j , r, z, rξ, zξ)
.
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Furthermore, ∀p ∈ [1,+∞],∃(cp, Cp, Dp) ∈ R3
+,∗ such that

∀j ∈ N,∀ξ ∈ Ξj , cp2
j(p/2−1) 6

∫ 1

−1

∫ 1

0
|φa,aj,ξ (r, z)|p2rdrdz 6 Cp2

j(p/2−1)

∀da,aj,ξ ∈ RΞj ,

∫ 1

−1

∫ 1

0
|
∑
ξ∈Ξj

da,aj,ξ φ
a,a
j,ξ (r, z)|p2rdrdz 6 CpDp2

j(p/2−1)
∑
ξ∈Ξj

|da,aj,ξ |
p.

Needlets. The needlets corresponds to a multiscale representation associated to those
projection. More precisely, for any J > 0

Pa,2J ,2J = Pa,1,1 +
J∑
j=1

(
Pa,2j ,2j − Pa,2j−1,2j−1

)
where by construction

Pa,2j ,2j − Pa,2j−1,2j−1u =

∫ 1

−1
u(r′, z′)Ba,2j ,2j (r, z, r

′, z′)2r′dr′dz′

with

Ba,2j ,2j (r, z, r
′, z′) =

2j∑
m=0

2j∑
m′=0

(
a
(m

2j

)
a

(
m′

2j

)
− a

( m

2j−1

)
a

(
m′

2j−1

))
Qm(r)Rm′(z)Qm(r′)Rm′(z

′).

So that if we let b(w) = a(w) − a(2w) and use a(w)a(w′) = a(2w)a(2w′) + a(w)b(w′) +
b(w)a(w′) + b(w′)b(w′)

Ba,2j ,2j (r, z, r
′, z′) =

2j∑
m=0

2j∑
m′=0

a
(m

2j

)
b

(
m′

2j

)
Qm(r)Rm′(z)Qm(r′)Rm′(z

′)

+
2j∑
m=0

2j∑
m′=0

b
(m

2j

)
a

(
m′

2j

)
Qm(r)Rm′(z)Qm(r′)Rm′(z

′)

+
2j∑
m=0

2j∑
m′=0

b
(m

2j

)
b

(
m′

2j

)
Qm(r)Rm′(z)Qm(r′)Rm′(z

′).

Using the cubature Ξj and defining the needlets

ψb,aj,ξ (r, z) =
√
ωξ
∑
m∈N

∑
m′∈N

√
b
(m

2j

)
a

(
m′

2j

)
Qm(rξ)Rm′(zξ)Qm(r)Rm′(z)

ψa,bj,ξ (r, z) =
√
ωξ
∑
m∈N

∑
m′∈N

√
a
(m

2j

)
b

(
m′

2j

)
Qm(rξ)Rm′(zξ)Qm(r)Rm′(z)

ψb,bj,ξ(r, z) =
√
ωξ
∑
m∈N

∑
m′∈B

√
b
(m

2j

)
b

(
m′

2j

)
Qm(rξ)Rm′(zξ)Qm(r)Rm′(z),
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one obtains (
Pa,2J ,2J − Pa,2J−1,2J−1

)
u =

∑
o∈{(a,b),(b,a),(b,b)

∑
ξ∈ΞJ

doj,ξ)ψ
o
J,ξ

with

doj,ξ

∫ 1

−1

∫ 1

0
u(r′, z′)ψoj,ξ(r

′, z′)2r′dr′dz′.

Summing those equality over J yields

Pa,2J ,2Ju =
∑
ξ∈Ξ0

aj,ξφ
a,a
0,ξ +

∑
o∈{(a,b),(b,a),(b,b)

J∑
j=0

∑
ξ∈Ξj

doj,ξψ
a,b
j,ξ

which implies that {
φa,a1,ξ

}
ξ∈Ξ0

∪
⋃
j>0

⋃
o∈{(a,b),(b,a),(b,b)}

{
ψo2j ,ξ

}
ξ∈Ξj

is a tight frame.
Again, if the quadrature points are chosen as the zeros of Q2j+1(1− r2)R2j+1(z) then

forall k ∈ N, ∃c′k such that

|ψoj,ξ(r, z)| 6
c′K2j

(1 + 2jd(1− 2r2, 1− 2r2
ξ ))

K(1 + 2jd(z, zξ))Kγ(2j , 2j , r, z, rξ, zξ)
.

Furthermore, ∀p ∈ [1,+∞],∃(cp, Cp, Dp) ∈ R3
+,∗ such that

∀j ∈ N,∀ξ ∈ Ξj , cp2
j(p/2−1) 6

∫ 1

−1

∫ 1

0
|ψoj,ξ(r, z)|p2rdrdz 6 Cp2

j(p/2−1)

∀doj,ξ ∈ R3×Ξj ,

∫ 1

−1

∫ 1

0
|
∑
o

∑
ξ∈Ξj

doj,ξψ
o
j,ξ(r, z)|p2rdrdz 6 CpDp2

j(p/2−1)
∑
o

∑
ξ∈Ξj

|doj,ξ|p.

This implies that the Lp norm of u can be controlled through the needlet coefficients and
thus that it suffices to well estimate the needlet coefficients to well estimate the function
as shown in the companion paper.

Needlet coefficient estimation. To produce a good estimate of u, it suffices thus to
produce good estimates for the needlet coefficients:∫ 1

−1

∫ 1

0
u(r′, z′)ψoj,ξ(r

′, z′)2r′dr′dz′.
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Using the definition, one has for ψoj,ξ:

doj,ξ =

∫ 1

−1

∫ 1

0
u(r, z)ψoj,ξ(r, z)2rdrdz

=

∫ 1

−1

∫ 1

0
u(r, z)

(
√
ωξ
∑
m∈N

∑
m′∈N

√
o1

(m
2j

)
o2

(
m′

2j

)
Qm(rξ)Rm′(zξ)Qm(r)R

(0,0)
m′ (z)

)
2rdrdz′

=
√
ωξ
∑
m∈N

∑
m′∈N

√
o1

(m
2j

)
o2

(
m′

2j

)
Qm(rξ)Rm′(zξ)

(∫ 1

−1

∫ 1

0
u(r, z)Qm(r)Rm′(z)2rdrdz

)

=
√
ωξ
∑
m∈N

∑
m′∈N

√
o1

(m
2j

)
o2

(
m′

2j

)
Qm(rξ)Rm′(zξ)

hm,m′

βm
.

A natural estimate for doj,ξ is thus given by

d̃oj,ξ =
√
ωξ
∑
m∈N

∑
m′∈N

√
o1

(m
2j

)
o2

(
m′

2j

)
Qm(rξ)Rm′(zξ)

h̃m,m′

βm
.

Note that by construction

˜Pa,2J ,2Ju =
∑
ξ∈Ξ0

d̃a,a0,ξφ
a,a
0,ξ +

J∑
j=0

∑
o

∑
ξ∈Ξj

d̃oj,ξψ
0
j,xi

=
2J∑
n=0

2J∑
n′=0

a
( n

2J

)
a

(
n′

2J

)
h̃n,n′

βn
Qn(r)Rn′(z)

and thus the needlets seem not to be useful as the second formula is simpler.
It turns out that this estimate can be transformed in a better one in terms of expected

error by thresholding the estimated coefficients, i.e. replacing them by 0 when they are
small. This idea has been introduced by Donoho et al in statistics and relies on apprimation
theory. It is based on the observation that if a needlet coefficient doj,ξ of the true function

u is small with respect to the approximation error between doj,ξ and d̃oj,ξ then it is better to
replace the approximated value by 0. This idea can not be used as is as the value of doj,ξ is
unknow but it is replaced by a decision based on a comparison between the approximation
d̃oj,ξ and a threshold Tj,ξ meant as an expected error term. This yields the thresholding
estimate

ũJ =
∑
ξ∈Ξ0

d̃a,a0,ξφ
a,a
0,ξ +

J∑
j=0

∑
o

∑
ξ∈Ξj

ρTj,ξ

(
d̃oj,ξ

)
ψ0
j,xi

with ρT (x) = x if |x| > T and 0 otherwise and Tj,ξ is a family of threshold to be chosen.
For instance, in a Gaussian white noise framework, Tj,ξ is chosen as a multiple of the
expected standard deviation.
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As soon as there is some blurring, the inversion formula (4.2) does not hold anymore.
Following ideas of [?], we propose to simply apply a regularized inverse operator B−1

ρ to
the noisy observation vd = BHOu + τ and apply the thresholded needlet estimator to
B−1
ρ vd. The choice of the thresholds should be modified according to the specific inverse

used. This issue is discussed below.

Algorithm 2

Compute Id = B−1
ρ vd

For 0 6 n, n′ 6 2J , compute hn,n′ =
8

22J

N/2∑
i=1

N∑
j=1

Id[i, j]Q
#
n (2i/N)Rn′(i/N − 1)

For ξ ∈ Ξ0, compute da,a0,ξ =
h0,0

β0
Q0(rξ)R0(zξ)

For 0 6 j 6 J , for ξ ∈ Ξj , for all o, compute

d̃oj,ξ =
√
ωξ

2j∑
n=0

2j∑
n′=0

√
o1

( n
2j

)
o2

(
n′

2j

)
Qn(rξ)Rn′(zξ)

h̃n,n′

βn

and ρTj,ξ(d̃
o
j,ξ)

Set

ũTh =
∑
ξ∈Ξ0

d̃a,a0,ξφ
a,a
0,ξ +

J∑
j=0

∑
o

∑
ξ∈Ξj

ρTj,ξ

(
d̃oj,ξ

)
ψ0
j,xi

where vd[i, j] = vd(2i/N, i/N − 1).

5 Conclusion

In this article we have designed two different numerical approaches in order to solve the
tomographic reconstruction problem (1.2), where the unknown density function is binary,
axially symmetric, and the observed data are strongly blurred and noised.

Our first approach is variational and consists of minimizing a penalized functional
defined in some fractional order Hilbert spaces that are defined according to the regularity
properties of the Radon transform. We have developed an algorithm solving the first-order
optimality system by a Newton-like procedure, and the gradient of the fractional Hilbert
norm is computed using a fractional Laplacian.

Our second approach consists of designing a needlet-based inversion formula for recon-
structing the density, based on properties of the Radon transform in Jacobi polynomial
basis and on smoothing considerations in order to avoid Gibbs phenomena.
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[8] S. Helgason, Ranges of Radon transforms, Computed tomography (Cincinnati, Ohio,
1982), pp. 63–70, Proc. Sympos. Appl. Math., 27, Amer. Math. Soc., Providence,
R.I., 1982.

[9] A. Hertle, On the range of the Radon transform and its dual, Math. Ann. 267 (1984),
no. 1, 91–99.
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