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LFP beta amplitude is linked to 
mesoscopic spatio-temporal phase 
patterns
Michael Denker  1, Lyuba Zehl  1, Bjørg E. Kilavik2, Markus Diesmann 1,3,4, Thomas Brochier 2, 
Alexa Riehle 2,1,5 & Sonja Grün  1,5,6

Beta oscillations observed in motor cortical local field potentials (LFPs) recorded on separate electrodes 
of a multi-electrode array have been shown to exhibit non-zero phase shifts that organize into planar 
waves. Here, we generalize this concept to additional classes of salient patterns that fully describe 
the spatial organization of beta oscillations. During a delayed reach-to-grasp task we distinguish 
planar, synchronized, random, circular, and radial phase patterns in monkey primary motor and dorsal 
premotor cortices. We observe that patterns correlate with the beta amplitude (envelope): Coherent 
planar/radial wave propagation accelerates with growing amplitude, and synchronized patterns are 
observed at largest amplitudes. In contrast, incoherent random or circular patterns are observed 
almost exclusively when beta is strongly attenuated. The occurrence probability of a particular pattern 
modulates with behavioral epochs in the same way as beta amplitude: Coherent patterns are more 
present during movement preparation where amplitudes are large, while incoherent phase patterns 
are dominant during movement execution where amplitudes are small. Thus, we uncover a trigonal link 
between the spatial arrangement of beta phases, beta amplitude, and behavior. Together with previous 
findings, we discuss predictions on the spatio-temporal organization of precisely coordinated spiking on 
the mesoscopic scale as a function of beta power.

The local field potential (LFP) has long served as a readily available brain signal to monitor the average input 
activity that reaches the neurons in the vicinity of extracellular recording electrodes1–3. A hallmark of the 
LFP is the ubiquitous presence of oscillations in various frequency bands4 modulating in time and across dif-
ferent brain structures. These oscillations have been linked to a variety of brain processes such as attention5, 
stimulus encoding6, or memory formation7,8. These findings support the basis of modern theories con-
cerning the functional implication of oscillatory brain activities, such as feature binding9, the concept of 
communication-through-coherence10–12, the phase-of-firing coding13, or predictive coding14. In motor cortex, 
beta oscillations (in the range of 15–35 Hz) are one of the most prominent types of oscillatory activity. They have 
been linked to states of general arousal, movement preparation, or postural maintenance15,16, and are typically 
suppressed during active movement17,18.

Technological progress recently led to the development of multi-electrode arrays enabling neuroscientists 
to record massively parallel neuronal signals in a precisely identifiable spatial arrangement. Although LFP sig-
nals recorded in motor cortex from electrodes separated by up to several millimeters are typically highly corre-
lated19, the analysis of the instantaneous phase of the oscillation20 revealed a non-zero temporal shift between 
electrodes21. Such shifts may be expressed by the formation of dynamic spatial patterns propagating along pre-
ferred directions across the cortical surface, referred to as traveling waves22. Indeed, the phenomenon of traveling 
waves has been described in multiple brain areas, such as the visual cortex23–25, including voltage sensitive dye 
recordings26–30, in the turtle visual cortex31,32, the olfactory bulb33,34, the thalamus35, and in visual perception36, 
and during epilepsy37. While some studies reported waves in visual cortex as single-cycle propagation of elevated 
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activity from a central hotspot outwards, either induced by stimulation or occurring spontaneously30, others 
described planar waves in visual cortex and other sensory areas, i.e., waves traveling homogeneously along a 
defined direction. Motor cortical waves were also described so far as being unidirectional throughout the cortical 
region covered by 4 × 4 mm multi-electrode arrays. The probability of observing these planar waves may rapidly 
change as a function of behavioral context. Indeed, it was found that the average coherence of phase gradients 
across electrodes, considered as being a signature of planar wave propagation, was highest at the beginning of the 
instructed delay of a center-out reaching task22.

Such planar waves22 represent the most salient type of dynamic pattern formation, and are easily identifiable 
by the parallel arrangement of the phase gradients. However, potentially different patterns of spatial organization 
of beta oscillations outside periods of planar waves have not yet been described. It is reasonable to assume that 
oscillatory activities do exhibit other types of patterns commonly associated with theoretical systems displaying 
pattern formation38,39, such as divergences or singularities. In visual cortical area MT of the anesthetized marmo-
set monkey, for instance, a variety of such patterns in slow (delta) oscillations were described40, as well as in vis-
ually evoked activity in the range of 10–20 Hz in turtle31. However, for motor cortical beta activity, such patterns 
have not been investigated.

Moreover, the visualizations of spatio-temporal phase patterns typically do not indicate the temporally 
strongly modulated amplitude of the beta oscillation. The occurrences of motor cortical planar waves seem to 
be of short duration22, in the order of 50 ms (cf. the Supplemental Information within the reference). This is 
evocative to the finding that motor cortical beta oscillations strongly modulate their amplitude by exhibiting 
short-lasting high amplitude epochs of a few oscillatory cycles, the so-called spindles19,41. Even though an indi-
vidual beta spindle lasts far longer than the occurrence of a planar wave, their dynamic properties suggest that 
amplitude and spatial organization of beta activity are correlated. This hypothesis is further supported by the 
finding that when considering data of different trials, both traveling waves22 and beta power16 are most prominent 
during an instructed delay of a motor task. Moreover, for slow oscillations, the power of oscillations was found 
to correlate with the dynamics of activity patterns40. Hence, it is an open question in how far beta amplitude in 
motor cortex is related to the spatial arrangement of the beta phase. Such a relationship would indeed have a pro-
found impact on the interpretation of the power of beta oscillations: Rather than a mere measure of the average 
degree of neuronal synchronization in the vicinity of the recording electrode, power may represent a signature 
of synchronization between spatially separated cortical locations. Taken together with previous findings relating 
planar waves to sequential spike patterns42 and linking the phase of beta oscillations to the occurrence of precise 
synchronous events21, LFP beta power could be indicative of communication by means of activity propagation 
on the level of single spikes.

The present work has two main goals: The first goal is to explore the possible presence of wave-like 
spatio-temporal patterns other than planar waves. The second goal is to test whether or not patterns are related to 
modulations in beta amplitude, both in single trials and across trials, and to relate patterns to behavioral epochs 
in order to test their possible functional implication. Neuronal activity was recorded by using a 100-electrode 
Utah array, chronically implanted in primary motor (M1) and premotor (PM) cortices. Three monkeys were 
trained in an instructed-delay reach-to-grasp task43–45. We analyzed the spectral properties of the LFP signals 
and characterized the emergent spatio-temporal patterns based on the phase information. This analysis revealed 
a variety of spatio-temporal patterns in LFP beta oscillations that can be clearly distinguished and identified as 
five categories of phase patterns. We developed statistical measures to identify the different phase patterns and the 
periods in which each of the patterns occurred, and determined their prevalence as a function of trial progression 
and behavioral epochs. Using these findings, we were able to expose the tight link between the modulation of 
LFP beta amplitude and the formation of spatio-temporal patterns of the oscillation. Preliminary results were 
presented in abstract form46,47.

Results
Three monkeys were trained in a delayed reach-to-grasp task (Fig. 1A) in which the animal had to grasp, pull and 
hold an object using either a side grip (SG) or a precision grip (PG), and either with a low force (LF) or high force 
(HF), resulting in a total of 4 pseudo-randomly presented trial types. The monkey was first presented with a cue 
for 300 ms which provided partial prior information either about the grip type (SG or PG) in grip-first trials, or 
the amount of force (LF or HF) in force-first trials, to be used in the upcoming movement. The cue was followed 
by a preparatory delay of 1 s. The GO signal, presented at the end of the delay, provided the missing information 
about either the force (LF or HF) or the grip type (SG or PG) in grip-first and force-first trials, respectively. The 
GO signal also instructed the monkey to initiate the reach and grasp movement. Each correct trial was rewarded 
by a drop of apple sauce. Figure 1A shows the time line of the behavioral trial. The monkeys performed sessions 
of about 15 min (120–140 correct trials) in which either grip-first trials or force-first trials were requested. For a 
complete description of the behavioral task refer to the Methods.

While the monkeys performed the task, neuronal activity was recorded using a 100-electrode Utah array 
(Blackrock Microsystems, Salt Lake City, UT, USA) implanted in the contralateral primary motor (MI) and pre-
motor (PM) cortices with respect to the active arm (monkey L and N, left hemisphere, and monkey T, right hem-
isphere). The precise locations of the implanted arrays are shown in Fig. 1B,C. In this study we concentrate on 
the local field potential (LFP) signals, filtered between 0.3–250 Hz and sampled at 1 kHz. We selected for further 
analysis in each monkey 15 recording sessions from the grip-first condition, and additionally 15 sessions from 
the force-first condition in monkey L and T, respectively. In the following, we start by characterizing the spectral 
properties of the recorded LFP activity to identify its oscillatory features, before quantifying these oscillations also 
in the spatial domain.
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Figure 1. Experimental task, array positions, and spectral properties of the LFP. (A) Task design. Top: sketch 
of the monkey during the task in the anticipatory position before GO (left), and while performing a side grip 
(middle) and precision grip (right). Bottom: time line of the task. Labels indicate events (TS: trial start; WS: 
warning signal; CUE-ON/OFF: cue on/cue off; GO: GO signal; SR: switch release; OT: object touch; HS: start 
of hold period; RW: reward). Images above the time axis indicate the state of the 5 LEDs during a grip-first 
condition at WS, during the presentation of the cue (CUE-ON through CUE-OFF) and at GO. (B) Spatial 
locations of the Utah multi-electrode arrays (green squares) on the cortical surface in monkey L (left), T 
(middle) and N (right). Top and bottom graphs show the array locations with respect to anatomical features (red 
curves) estimated from the corresponding photographs shown in panel C. CS: central sulcus; AS: arcuate sulcus; 
PS: precentral sulcus. (C) Photographic image of the array locations taken during surgery. (D) Power spectrum 
of the LFP during the complete recording of one selected central electrode (id 50), averaged across all sessions 
(N = 15 per panel) in the grip-first condition of monkey L (left), T (middle), and N (right). Orange shading: 
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Spectral LFP properties. On a first glance, we observed that the LFP in all monkeys was dominated by a 
prominent oscillatory component in the beta range (about 15–35 Hz). By computing the average power spectrum 
of each monkey’s LFP, pooled for one electrode in the array center across its complete set of recordings in the 
grip-first condition (15 per monkey), we found that the frequency range of the beta oscillation varied between 
monkeys (see Fig. 1D). Based on these spectra we defined a wide frequency band (13–30 Hz) that was common 
to all monkeys and covered the peaks of the individual beta frequencies (shaded area in Fig. 1D). For better com-
parison, we applied this same filter band in the beta range to all data sets of all monkeys.

Furthermore, the observed LFP activity revealed that the trial-averaged power of the oscillatory activity was 
not stationary in time, but was strongly modulated during the time course of behavioral trials. The strength of 
the beta oscillations is visualized by the time-resolved power spectra, averaged on one electrode (same as for 
Fig. 1D) across all successful PG trials of one representative recording session of monkeys L, T and N, respectively 
(Fig. 1E). The beta power showed a characteristic temporal evolution that followed a similar trend for all three 
monkeys: the beta power was largest around the cue, and decayed gradually during the delay period and was 
strongly attenuated during movement execution. During movement, a low frequency signal was the most prom-
inent component in the LFP, corresponding to the movement-related potential43.

The inspection of single-trial LFP signals revealed, in addition to the beta power modulations observed in 
trial averages, a modulation of the instantaneous amplitude of beta activity (Fig. 2A) on a much shorter time 
scale. Such epochs of increased beta activity comprising a few oscillation cycles are commonly referred to as beta 
spindles19,41. During a single trial, LFP signals recorded in parallel from all electrodes of the Utah array exhibited 
in general a high degree of correlation (Fig. 2), and in particular spindles occurred simultaneously on all elec-
trodes19. However, across trials spindles did not reoccur at the same points in time (Fig. 2A), but instead their 
occurrence in time exhibited a strong degree of variability. Therefore, the trial-averaged temporal evolution of 
beta power (Fig. 1E) represents a measure that confounds the probability of single-trial high amplitude events, 
their average duration, and their average maximal amplitude48.

Identification of phase patterns. Having described the principle properties of the dominant beta oscilla-
tions, we are now in a position to investigate the fine spatial patterning of this activity across all electrodes of the 
array. Zooming in time into the LFP signals recorded from a few neighboring electrodes during the entire trial 
length (Fig. 2), we calculated the beta-filtered signals (Fig. 2C, red traces). We observed that despite a high degree 
of similarity, the oscillatory components express small time lags across the electrodes (compare blue markers on 
each trace indicating oscillation peaks and troughs). To understand if there is a specific spatial patterning of the 
temporal lags between the signals on the different electrodes, we decomposed the beta-filtered LFP time series of 
each electrode i into the instantaneous amplitude ai(t), corresponding to the envelope of the filtered signal, and 
phase φi(t) of the beta oscillation by calculating its analytic signal (see Methods). We then displayed these quanti-
ties as spatial maps Axy(t) and Φxy(t) for amplitude and phase, respectively, representing each electrode at its spa-
tial array position (x, y) at each time point t. Even though the oscillation amplitude Axy(t) was not the same across 
the array, its modulation was highly correlated between electrodes and showed a pattern that was changing slowly 
as compared to the time scale of the beta period (Fig. 2D and Supplemental Movie S1). This finding matches our 
observation that the occurrence of spindles is coherent across recording electrodes (Fig. 2).

In contrast, the phase snapshots Φxy(t) showed a pronounced structure that varied on a fast time scale in the 
range of milliseconds (Fig. 2D and Supplemental Movie S1). While we typically observed a smooth transition 
of maps between consecutive time points ti and ti+1 (given a sampling rate of 1 kHz), at some moments in time 
the maps changed their structure very rapidly. However, despite the rapid changes of the spatial structure of the 
maps and some discontinuities in their temporal evolution, many phase maps could clearly be classified by visual 
inspection into one of 5 distinct classes of spatial arrangements, in the following referred to as phase patterns. 
Representative examples of these classes of phase patterns and their temporal evolution over a time period of 20 
ms are shown in Fig. 3A,B. In order to better visualize and characterize these spatial structures, we here calculated 
the vector field of phase gradients Γxy(t) and its spatially smoothed version, the phase gradient coherence Λxy(t), 
and display the gradient fields along with the phase maps. In the following we will briefly describe the classes of 
phase patterns in their most salient, idealized form.

The identification of traveling waves (Fig. 3B, top row), comparable to earlier reports22, was most prominent. 
In these planar patterns, a planar wave front traveled across the array, where the spatial period was typically larger 
than the array dimensions. Second, we observed a synchronized pattern (Fig. 3B, 2nd row), in which the signals 
on all electrodes were synchronized at near-zero phase lag. Complementing this state at the other extreme, we 
observed a random pattern (Fig. 3B, 3rd row), which showed randomly distributed phases across the array, and 
therefore no apparent phase relation between electrodes. A fourth pattern, termed circular pattern (Fig. 3B, 4th 
row), was characterized by an area near the array center around which the phases revolved. Finally, we observed a 
radial pattern (Fig. 3B, bottom row) of radially inward or outward propagating waves, which was also character-
ized by a point of origin near the array center. A specific type of pattern persisted for only short time periods of 
approximately the duration of a single beta oscillation cycle. In addition, some phase maps, termed unclassified, 
could not be unambiguously attributed to one of these 5 phase patterns.

range of the applied beta band filter (cut-off frequencies). (E) Trial-averaged, time-resolved power spectrogram 
of the LFPs of one electrode in one recording session during PG trials of a grip-first recording. Trials aligned to 
TS. Color indicates logarithmic power density. Horizontal dashed lines: beta band as shown in panel D. Vertical 
dotted lines: trial events (SR, RW: mean times). Session IDs: l101013-002 (monkey L), t010910-001 (monkey T),  
and i140613-001 (monkey N) from left to right, respectively. Sketch in panel A is adapted from a detailed 
description of the experiment45.
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Following this first empirical identification of classes of phase patterns, we aimed at automatically classifying 
the sequences of phase maps into one of these classes whenever possible. To this end, we introduced a set of 6 
measures that capture features of the spatial arrangement of beta oscillations based on the phase map Φxy(t), and 
its spatial arrangement quantified by the phase gradients Γxy(t) and the gradient coherence Λxy(t) independently 
at each time point t. The details of how to construct these measures are given in the Methods. Essentially, each of 
the measures represents a feature of a given phase pattern that is characteristic for one or several of the 5 classes of 
phase patterns. In the following, we give an intuitive explanation of the features relevant for each individual pattern 
class. The planar patterns, described by a planar wave front traveling across the entire array, were characterized by 
phase gradients that were aligned in parallel across the entire array. Thus, such a pattern was composed of a wave 
front oriented perpendicularly to the gradients. The synchronized pattern was distinguished by a single phase 
value at all electrodes (i.e., the array appears in a single color in Fig. 3B) and a random direction of phase gradients 
across the array. Similarly, the random pattern showed no apparent local spatial organization of phase gradients, 
but in contrast phases were uniformly distributed. In the circular pattern, like in the synchronized pattern, phase 
gradients in all directions were observed, but in contrast the distribution of phases across the array was also uni-
form such that the visualizations in Fig. 3B contained all colors. Additionally, phase gradients were always arranged 
such that they pointed clockwise or counter-clockwise around the center of the array. And finally, the radial pattern 
exhibited phase gradients that, on a global view, pointed inward or outward from the array center. Thus, gradients 
pointed in a direction orthogonal to that of circular patterns. Common to both circular and radial patterns, all 
phase gradient directions were observed on the array and neighboring gradients on the array were similar.

Based on the 6 measures, we used a thresholding procedure (compare red dashed lines in Supplemental 
Figure S2) to assign each phase pattern at time point t to one of the 5 classes of patterns, or, if none of the com-
bined threshold criteria was met, the phase pattern was considered unclassified. Thresholds were set empirically 

Figure 2. Extraction of phase and amplitude maps. (A) LFPs (z-scored) recorded from one electrode 
during 10 consecutive successful trials (monkey L, session ID: l101015-001). Trials aligned to TS = 0 ms. 
(B) Simultaneously recorded LFPs from 10 neighboring electrodes on the Utah array during a single trial. 
(C) Blow-up of the LFPs of the 10 example electrodes shown in panel B (gray traces; blue shading in panel B 
indicates the selected time window). Red traces: beta-filtered LFP. Blue lines: locations of peaks and troughs 
in the filtered LFP, i.e., phases φ = 0 and φ = π. (D) Amplitude (top) and phase (bottom) maps (shown in 4 
ms steps) recorded during a 24 ms window (green shading in panel C). Color in each square indicates the 
amplitude and phase of the LFP at the electrode of a given position. Black squares: unconnected electrodes or 
electrodes rejected due to signal quality. The images are rotated to match the cortical position of the array as 
indicated in Fig. 1B.
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in such a way that they led to a conservative association of phase patterns with pattern classes, i.e., only clearly 
identified patterns were classified. Details of the classification process and a visualization of accepted and rejected 
classifications are provided in the Methods. Our classification procedure had some experimental limitations lead-
ing to unclassified patterns, such as the low spatial sampling of the 100 electrodes (400 μm inter-electrode dis-
tance) and the small spatial window of observation (4x4 mm) as compared to the spatial wavelengths exhibited 
by some patterns. This may affect, in particular, the radial and circular patterns in which the point of origin was 
not at the array center, making it impossible to infer the pattern unequivocally. Additionally, observed patterns 
could also have represented transient dynamics from switching between patterns or even overlaps of competing 
patterns, which could not be properly distinguished and identified. If for any of these reasons a pattern did not 
fulfill the strict criteria of one of the five pattern classes described above, we considered it ambiguous and it was 
left unclassified.

The use of our algorithm enabled us to quantitatively disambiguate the 5 phase patterns that appeared as 
salient features upon visual inspection of the phase maps. The phase patterns shown in Fig. 3B were determined 
by using this algorithm. Figure 3A shows the LFP recorded on one electrode during one single trial, in which all 
classified phase patterns are marked, including those shown in panel B. The corresponding measures and thresh-
olds used in the classification procedure are depicted in Supplemental Figure S2.

Periods of unambiguously identified phase patterns were typically of short duration and occurred interspersed 
throughout the trial. During the entire length of all selected sessions, including both the behavioral trials and the 
inter-trial intervals, we counted for each monkey the number of occurrences of continuous periods of time where 
one of the 5 phase patterns or an unclassified pattern was observed. The percentage of time points of the sampled 
LFP identified as each of the pattern classes is provided in Table 1 In addition, as a more conservative measure 
that takes into account potentially spurious patterns that were detected for very brief instances only, the number 

Figure 3. Phase patterns and their detection. (A) LFP signal (z-scored) recorded during a single trial (monkey L, 
Session ID: l101108-001, trial ID: 46) on a central electrode (gray) and superimposed beta-filtered LFP (red). Dashed 
vertical lines indicate trial events. Colored horizontal bars show time periods during which a particular type of phase 
pattern (compare color code in panel B, first column) was detected. The colored asterisks mark the time points of the 
first frame of the wave patterns shown in panel B. (B) Phase maps of one example of an automatically detected phase 
pattern for each type of phase pattern (rows, from top to bottom: planar wave, synchronized, random, circular, and 
radial). The sequence of maps in one row shows a total of 18 ms in steps of 2 ms. The pattern was initially detected in 
the first phase map of each row (corresponding time point indicated by an asterisk in panel A). Flow field indicated by 
black lines: gradient coherence map Λxy(t); white large arrows: corresponding quadrant-averaged gradient coherence 
shown for visualization. Time stamps are given relative to TS.
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of epochs of contiguous time points classified as the same pattern and lasting for at least 5 ms is displayed for the 
grip-first condition in Fig. 4A (for the force-first condition, see Supplemental Figure S3A). These results show that 
all pattern types were observed in each monkey, with planar wave patterns being among the most prominent and 
circular patterns among the least observed patterns. Only in monkey N, the random pattern was observed more 
often than the planar wave pattern. In addition, monkey N rarely exhibited a synchronized pattern as compared 
to monkeys L and T. In general, the number of phase patterns left unclassified by our conservative method was 
high in monkey N, consistent with our visual observation of predominantly ambiguous patterns. We speculate 
that this is a consequence of the more lateral array placement, and differences in the behavioral performance as 
compared to monkeys L and T.

Relation of beta amplitude and phase patterns to behavior. Given the abundance of patterns in 
the data, we asked whether there is a relationship between phase patterns and behavioral epochs of a trial. Thus, 
we investigated whether or not the occurrence of a specific phase pattern is linked to one or more behavioral 
events. We determined trial by trial and for each pattern separately its precise occurrence during the time course 
of the behavioral trial. We pooled the data from each monkey across all trials of the same condition (correct 
trials only), i.e. grip-first or force-first condition, and across all selected recording sessions, to obtain a measure 
for the probability of the occurrence of a specific pattern in time. In the following, we discuss in detail data from 
the grip-first condition, but qualitatively similar results are seen in the force-first condition (see Supplemental 
Figure S3). Figure 4B shows that monkey N had comparatively low numbers of planar and synchronized patterns 
during the trial, but a higher number of random patterns than the two other monkeys. This suggests that many of 
the planar and synchronized patterns of monkey N observed during the complete recording (Fig. 4A) occurred 
during the inter-trial intervals, and not during the trial (Fig. 4B).

In the next step, we assessed similarities in the temporal profile of the pattern occurrence probabilities during 
the behavioral trial (Fig. 4B). For each monkey, the probability of observing any pattern was strongly modulated 
over the time course of the trial. Common to all monkeys was the finding that planar patterns occurred mostly 
during the initial cue presentation and during reward, and were less prominent during movement. Synchronized 
patterns expressed a similar time course for monkey L and to a lesser degree for monkey T. Monkey N showed 
almost no synchronized pattern during the trial. In contrast, in all monkeys random patterns occurred predomi-
nantly towards the end of the delay period and during movement. Circular and radial patterns were rarely observed 
during the trial, but exhibited a clear modulation structure in time, albeit in a different way for each monkey.

The specific and consistent temporal modulation of the occurrence probability suggests that the 
spatio-temporal structure of activity is related to motor cortical processing performed during the trial. We thus 
asked, if also particularities of the trial condition were reflected in the probability. To this end, we compared 
results obtained during SG and PG conditions (Fig. 4B, black and gray, respectively). In general, the modulations 
of probability for both trial types were similar, but expressed a few notable exceptions. For planar waves, SG and 
PG deviated slightly, but significantly (indicated by dots at the bottom of each panel), during early delay (proba-
bility of observing a pattern during PG trials exceeded that of SG trials, PG < SG) and before reward (PG > SG) 
for monkey L, during late delay (PG > SG) in monkey T, and during cue presentation for monkey N (PG < SG). 
Similar, even more pronounced observations were made for synchronized patterns of monkey L and T. In addi-
tion, a tendency for a reversed effect was observed for random patterns in particular during the delay period of 
monkeys L and T.

Up to now, we concentrated on the time-resolved spatial organization of oscillatory activity on the basis of the 
phase information extracted from the time series. We next asked how these findings relate to the trial-averaged 
beta power, because we noticed that the temporal evolution of the occurrence probability of planar and synchro-
nized phase patterns was reminiscent of the evolution of the beta power (Fig. 1E). To further investigate this 
observation, we calculated the trial-averaged beta amplitude profiles a(t), i.e., the time-resolved instantaneous 
amplitude, or envelope, Axy(t), of the beta signal pooled across all electrodes (x, y), as a representative of the 
average instantaneous power of the beta oscillation. Again, data were calculated for all sessions used in Fig. 4B 
and separately for SG and PG trials (Fig. 4C). Interestingly, for all 3 monkeys the time-resolved beta amplitude 
profiles closely followed the occurrence probability of the planar phase pattern (Fig. 4B, top). For monkeys L and 
T, also the time course of synchronized patterns loosely followed that of the beta amplitude profiles. In particu-
lar, we noticed that all differences between SG and PG trials identified in the pattern occurrence probabilities 
were reflected in the beta amplitude profile. For example, in monkey L, the beta profiles obtained in SG and 
PG trials differed during the early delay (PG > SG) and before reward (PG < SG), mirrored in the occurrence 

phase pattern

Monkey

L T N

planar 28.47 42.41 5.51

synchronized 1.81 14.98 0.01

random 1.28 0.05 8.93

circular 0.01 0.01 0.02

radial 1.14 0.46 1.47

unclassified 67.28 41.65 84.06

Table 1. Percentage of time points classified as a specific phase pattern in each monkey given the conservative 
choice of thresholds used in the analysis (pooled over all grip-first and force-first conditions).
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of planar waves, and after movement onset (PG > SG), mirrored in the occurrence probability of synchronized 
patterns. Similar observations were made for the other monkeys, and in the time period after the GO signal for 
the force-first condition (Supplemental Figure S3).

Figure 4. Behavioral correlates and relation to average beta amplitude for the grip-first condition. (A) Number 
of epochs of a phase pattern detected in at least 5 consecutive time frames, i.e., 5 ms (bars from top to bottom: 
unclassified, planar wave, synchronized, random, circular, radial pattern) for monkey L (left), T (middle), and N 
(right). Data were obtained from all selected recording sessions including inter-trial intervals. (B) Time-resolved 
probability of observing a specific phase pattern (rows) during the trial. Statistics were computed across all grip-
first trials of all recording sessions for each monkey (N = 15) and smoothed with a box-car kernel of length l = 100 
ms. Trials were separated into side-grip (SG) trials (black) and precision-grip (PG) trials (gray). For monkey N, 
only very few synchronized patterns were detected during the trial. Color shading between curves and colored bars 
indicate time periods where SG and PG curves different significantly (Fisher’s exact test under the null hypothesis 
that, for any time point, the likelihood to observe a given phase pattern is independent of the trial type, p < 0.05). 
(C) Beta amplitude profile (envelope) pooled across all SG (black) and PG (gray) trials (same data as in panel B). 
The amplitude profile a(t) of a single trial is calculated as the time-resolved instantaneous amplitude Axy(t) of the 
beta-filtered LFP averaged across all electrodes (x, y), and measures the instantaneous power of the beta oscillation 
in that trial. Gray shading between curves and horizontal bars indicate time periods where SG and PG curves differ 
significantly (t-test under the null hypothesis that the distributions of electrode-averaged single trial amplitudes 
Axy(t) at each time point t are identical for SG and PG trials, respectively, p < 0.05).
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In addition to the dependence of the time course of the beta amplitude during movement preparation on the 
characteristics of the anticipated movement, it has been demonstrated that in instructed delay reaching tasks the 
movement phase is preceded by a sharp attenuation of beta amplitude49. The attenuation correlates with the onset 
of the neuronal movement-related rate response and exhibits a spatially organized dynamics across the motor 
cortical surface50. Moreover, it has been shown that for sensorimotor areas, reaction time (RT) in a visuomotor 
discrimination task is positively correlated with the magnitude of the pre-stimulus beta amplitude, hinting at 
beta activity as a mechanism for motor maintenance that prevents an early movement initiation51. Therefore, 
we speculated that also the observation of planar wave activity before the GO cue would be a signature of such a 
mechanism that is indicative of RT. In Fig. 5A we visualize the relationship of RT and the number of time points 
at which a planar wave was automatically detected during the 400 ms window before stimulus onset. Indeed, 
we found a small, but significant positive correlation in all three monkeys and for both, grip-first and force-first 
conditions. To better understand the temporal dynamics of this effect, we plotted the time course of observing 
a planar wave before the GO cue independently for the trials within the quartile with slowest RTs versus trials 
within the quartile with highest RTs (Fig. 5B). Here, quartiles were evaluated independently for each monkey and 
on a session-by-session basis to account for the strong discrepancies in the monkeys’ average RTs. In the grip-first 
condition, for all three monkeys we observed that fast RTs go along with a lower probability of observing a planar 
wave pattern in the period before the GO cue as compared to slow RTs. In contrast, in the force-first condition, 
the absence of grip-type information impeded the efficient preparation of the upcoming movement, leading to 
notably slower RTs in monkeys L and T (cf., Fig. 5A). In consequence, in this condition the observation of planar 
waves before the GO cue differed little between slow and fast RT trials, in particular around the time of stimulus 
onset. In summary, complementing previous findings51, the fast initiation of a prepared movement is in compe-
tition with a mechanism that exhibits strong beta activity organized as planar wave-like propagation across the 
motor cortical surface.

Quantification of phase patterns. Having identified the different classes of phase patterns and their 
behavioral correlates, in a next step we aimed to understand their properties in single trials. Therefore, we quan-
tified features extracted from the classification results. As classification was performed individually on single 
time points, we first calculated the durations of epochs of consecutive time points being classified as the same 
pattern. In Fig. 6A we show the resulting distributions of the durations for each of the pattern types. Naturally, 
these statistics depended on how conservative the choice of thresholds for pattern detection was set. However, 
given that thresholds were set in accordance to the observed phase pattern (cf. Methods), they served as a visually 
inspired characterization of the observed duration of a pattern. We found that, on average, planar, synchronized, 

Figure 5. Relation of planar waves to reaction time. (A) Normalized histogram (gray scale) of the number 
of trials as a function of the trial’s RT and the number of time bins (1 ms) classified as planar pattern during 
the 400 ms window before the GO signal. The dashed line shows the regression, R denotes the corresponding 
Pearson correlation coefficient (asterisk: significant at p < 0.05). The light and dark gray vertical lines in each 
plot mark the fastest and slowest 25% of the RTs averaged across sessions, respectively. (B) Time-resolved 
probability of observing a planar phase pattern during the trial for fast (RT within the 25% lowest RTs within 
a given session) and slow RTs (RT within the 25% highest RTs), denoted by light and dark gray curves, 
respectively. Curves were smoothed with a box-car kernel of length l = 100 ms. Color shading between curves 
and colored bars indicates time periods where fast and slow RT curves different significantly (Fisher’s exact test, 
p < 0.05, see Fig. 4). Statistics in A and B were computed across all grip-first and force-first trials of all recording 
sessions (N = 15) for each monkey (columns).
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and radial patterns all had longer durations than random and circular patterns (see large dots in Fig. 6A), all on 
the order of less than one cycle of the beta oscillation (≈ 40–50 ms).

In a next step we examined the preferred direction of the phase gradients of the wave patterns. Here we only 
considered planar phase patterns (Fig. 6B) for which the measure was equivalent to the direction of movement 
of the planar wave front. Planar waves in monkeys L and T were preferentially observed in the anterior-medial 
to posterior-lateral direction (see inset for cortical space), whereas waves in monkey N were observed in the 
anterior-lateral to posterior-medial direction. Noting that the array location in monkey N differed from that in 
monkeys L and T (cf. Fig. 1B,C), the observations from all three monkeys are compatible with those described 
earlier22. Even though it was possible to calculate the direction of the phase gradients of any phase pattern, we 
refrained from showing the distribution of directions for patterns other than planar patterns since their charac-
teristics do not allow a clear interpretation of wave propagation direction.

To investigate the dynamical aspect of wave propagation, we calculated the average wave velocity v(t) (cf. 
Methods) at each time point (Fig. 6C). For planar wave patterns, this was directly interpretable as the propagation 
velocity of the observed wave front. The median propagation velocities of the planar waves were v(t) = 29.1 ± 10.3 
cm/s (grip-first) and v(t) = 29.1 ± 10.4 cm/s (force-first) for monkey L, v(t) = 40.5 ± 16.2 cm/s (grip-first) and 
v(t) = 40.3 ± 19.5 cm/s (force-first) for monkey T, and v(t) = 14.2 ± 4.6 cm/s (grip-first) for monkey N (all values: 
median ± median absolute deviation). These values are in rough agreement with those previously reported22. For 
the other wave patterns, even though it was possible to calculate a velocity, it may not be directly interpreted as 
the velocity of a propagating planar wave front since phase gradients do not align across the array. Instead, it is 
a measure that captures the average velocity calculated from the local velocities across the array. Synchronized 
patterns could be considered as a special case of planar waves with a very large spatial wavelength, and as a 

Figure 6. Statistics of detected patterns. (A) Histogram of durations of epochs of consecutive time points classified 
as belonging to the same phase pattern (cf., Fig. 4A). (B–D) Distributions of the direction d(t) (panel B), phase 
velocity v(t) (panel C), and amplitude profile a(t) (panel D), as a function of the detected phase pattern. Data are 
separated (columns) according to monkey and recording condition (grip-first vs. force-first). Histograms for 
different phase patterns are plotted overlapping in the color corresponding to the legend on the right. For each 
phase pattern, a histogram entry in panels (B–D) represents the measured quantity averaged across the array 
calculated at a time point classified as that pattern. In panel B, the average direction of the phase gradient is plotted 
in brain coordinates by rotating the activity, and mirroring data along the medio-lateral axis for monkey T to 
compensate for the array placement in the opposite hemisphere as compared to L and N. Dots and dashed lines 
below indicate the medians of the corresponding distributions. (E) Joint representation of the medians of the 
distributions shown in panels A, C, and D. Each data point represents the median of one monkey in one recording 
condition for one pattern class (indicated by color).
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consequence they exhibited high (in theory, infinitely high) velocities (Fig. 6C). On the other hand, random 
and circular patterns were characterized by phase values that differed strongly between adjacent recording sites. 
Therefore, average velocities derived from the phase gradients were low. Finally, radial patterns resembled the 
planar patterns in that they could be approximated by a planar wave front at a large distance from the center of the 
radial pattern. In agreement with this interpretation, they exhibited similar phase velocities as observed for the 
planar pattern. Thus, the 5 distinct phase patterns showed clear differences in the distribution of their velocities, 
where a low v(t) corresponds to random or circular patterns, a medium v(t) relates to planar or radial patterns, 
and a high v(t) indicates the presence of a synchronized pattern. In this sense, the value of the velocity represents 
a reliable proxy for the type of the observed pattern.

After having quantified the features of the wave patterns in single trials, we come back to the question we 
originally set out to answer, namely how the beta amplitude relates to the occurrence of a wave pattern. In Fig. 6D 
we show for each monkey and behavioral condition the distribution of the beta amplitude profile (envelope) a(t) 
during each of the 5 phase patterns. We observed a clear relationship between the instantaneous magnitude of the 
beta oscillation and the spatial phase pattern. Circular and random patterns occurred at small amplitudes, planar 
and radial patterns at intermediate amplitudes, and only synchronized patterns occurred at high amplitudes.

The results shown in Fig. 6A,C and D were summarized in Fig. 6E, where for each phase pattern, monkey and 
behavioral condition the averaged data for duration, velocity and amplitude are plotted against each other. This 
representation clearly shows a clustering of collective data points for each individual phase pattern. Thus, the 5 
phase pattern classes are described by a specific combination of characteristic values for pattern duration, velocity, 
and amplitude.

Beta amplitude determines phase pattern. In the last step of our analysis, we now ask if the relation-
ship between amplitude and spatial organization holds for any time point independent of whether or not it can be 
unambiguously attributed to any of the idealized classes of phase patterns. In order to obtain such a time-resolved 
view of how the amplitude (which by itself did not exhibit a strong spatial organization, Fig. 2D) correlates with 
the temporal evolution of the patterns, we employed the phase velocity v(t) as a proxy to quantify the spatial 
organization that can be readily calculated for each individual time point (as opposed to pattern duration). In 
Fig. 7 we show the correlation between the instantaneous beta amplitude profile (envelope) a(t) and the phase 
velocity v(t) for each time point for all three monkeys, independent of the phase pattern classification, thus 
including instances during which no pattern could be classified by our conservative classification algorithm. We 
observed that the two variables were strongly positively correlated (R > 0.8 for all monkeys) and correlations were 
highly significant (p 0 001. ). Thus, an increase in amplitude goes along with an increase in phase velocity (cf. 
also Fig. 6C). As shown above, the velocity v(t) is indeed a good correlate of the perceived organization of beta 
activity on the electrode array. To more directly illustrate how the velocity measure relates to the previously 
defined classes of phase patterns, we indicate in Fig. 7 by ellipses the regions of the histograms where the individ-
ual classes of phase patterns were predominantly found (see Supplemental Figure S4 for an alternative 
visualization).

In conclusion, we find that at any point in time, the amplitude of the beta oscillation at one single recording 
site of the Utah array is correlated to the spatial organization of activity across the array, here parametrized by the 
velocity. In this sense, a given velocity may in some cases relate directly to one of the five classes of phase patterns 
(Supplemental Figure S4). In other cases, the velocity indicates a pattern that was unclassified by the rigorous 
automatic classification due to its ambiguity or the level of noise, but nonetheless typically resembles distinct 
qualitative features of one of the pattern classes, as illustrated by a gallery of randomly chosen unclassified pat-
terns grouped by their velocity (Supplemental Figure S5).

Discussion
Two main objectives guided this work. First, we aimed to obtain a more complete description of the wave-like 
spatio-temporal phase patterns exhibited in the beta range of the LFP signals in monkey motor cortex during a 
complex delayed motor task, and thereby extend reports that only included descriptions of planar wave prop-
agation22,42. Second, we asked in how far these patterns, determined solely by the phase of the oscillation, are 
related to the instantaneous modulation of the beta amplitude. Given that beta amplitude is modulated during 
the behavioral trial, we also asked how the phase patterns are related to behavioral epochs in order to determine 
their possible functional implications.

Motor cortical beta oscillations exhibit a variety of spatio-temporal patterns. By analyz-
ing the dynamics of LFP activity across multi-electrode arrays, we demonstrated that beta oscillatory activity 
shows a number of salient types of spatio-temporal patterns in addition to traveling planar waves22, namely 
quasi-synchronized, random, radial, and circular patterns. Such additional types of patterns have previously been 
predicted from theoretical considerations38, and were observed in experimental work, e.g., in slow delta activ-
ity of anesthetized marmoset monkeys40. We developed a phenomenological classification method to identify 
epochs that unambiguously exhibit one of the 5 pattern classes. Our approach detected those in a conservative 
manner in order to capture the qualitatively salient patterns that are also identified by a human observer. Indeed, 
the algorithm tends to leave a large number of time points unclassified, due to the difficulty to clearly attribute a 
pattern to one of the 5 idealized pattern types. The reason for this is two-fold: On the one side, the coarse-grained 
resolution of the Utah array provided only rough estimates of the phase gradients. On the other side, the patterns 
were often ambiguous, in particular at time points of dynamical transitions between patterns. Planar wave fronts 
were often not completely planar, but showed a slight curvature, a feature shared with radial or circular patterns. 
Furthermore, radial and circular patterns that were not necessarily centered on the array were difficult to detect. 
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Also, random states often exhibited a slight degree of correlation between activities recorded on neighboring 
electrodes, contradicting the a priori assumption of pure independence. Nevertheless, this approach of detecting 
patterns yielded reliable results in terms of their statistics (Fig. 6).

To overcome the limitation that the phenomenological classification method only detected unambiguous, 
ideal phase patterns, we tested the potential of the phase velocity as an easily accessible continuous measure to 
quantify the spatial arrangement of phases for time points where none of the ideal pattern categories matched 
the observation. Due to the fact that the velocity vector is tightly coupled to the arrangement of phase gradients 
across the array (see Fig. 6C,E), we could indeed link the distributions of velocities to the 5 specific phase patterns 
(see Fig. 6E). Thus, using the continuous measure of the phase velocity, we were able to gain a complete picture of 
the time course of pattern progression.

The instability of pattern types may suggest that some of the salient pattern types indeed underlie identical 
dynamical processes, and form a continuum: radial patterns may appear nearly planar wave-like some distance 
from the array center, and quasi-synchronized states appear at the limit of planar waves approaching infinite 
phase velocity. This similarity of phase patterns was also reflected in the statistics (Fig. 6) describing the occur-
rence of the patterns, e.g., the similar duration of radial and planar patterns, or the comparable distributions of 
velocity for planar and radial, as well as circular and random patterns. To investigate this issue in detail, record-
ings on a larger spatial scale and with a higher spatial resolution would be required.

Specific phase patterns occur at different times during movement preparation and execution.  
The probability of detecting a specific phase pattern was variable during the trial of our reach-to-grasp task. Planar 
and synchronized patterns occurred more often during the pre-cue epoch and during the delay whereas random 
patterns were more likely to occur around movement execution (Fig. 4). This observation is in line with the 
hypothesis that planar and synchronized patterns could be triggered by the arrival of visual information in motor 
cortex from adjacent cortical areas not covered by our Utah array42. In agreement with this view, the orientation 
of planar wave propagation in our data is in agreement with previous studies22. More precisely, we found orien-
tation preferentially aligned along the antero-posterior axis. The direction of planar wave propagation was more 

Figure 7. Correlation of instantaneous beta amplitude and spatial pattern of phases. Upper row: 2-D 
histograms of phase velocity v(t) and beta amplitude profile a(t) evaluated at each time point (independent of 
the detected phase pattern) shown for each monkey and behavioral condition (columns). Gray values indicate 
density of time points falling in each histogram bin, normalized to the largest entry of the histogram. The values 
of the Pearson correlation coefficients R are given in the bottom right of each panel (asterisk: significant at 
p < 0.05). Each ellipse represents the distribution of time points classified as a specific phase pattern (indicated 
by color). Center of ellipses: mean; radii of ellipses are given as 2 standard deviations in the direction of the 2 
principle components. Lower row: zoomed-in versions of the upper histograms. Left column, inset in lower 
panel and dots in red to yellow shades: Illustration of spindle dynamics by example of the spindle before 
CUE-ON presented in Fig. 3A. Inset reproduces this spindle (transition from red to yellow colors indicates 
increasing time), corresponding detected states are shown as bars above the spindle. For each time point of 
the spindle, the corresponding values of the amplitude and phase velocity are marked in the histograms using 
the identical color. Average ellipse centers: (1.4 ± 0.8, 41.5 ± 27.3 cm/s) for planar; (1.9 ± 0.8, 88.1 ± 29.4 cm/s) 
for synchronized; (0.7 ± 0.2, 6.7 ± 1.0 cm/s) for random; (0.7 ± 0.3, 8.8 ± 1.7 cm/s) for circular; (1.2 ± 0.7, 
26.8 ± 21.5 cm/s) for radial.
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anterior-medial to posterior-lateral in monkeys L and T, whereas in monkey N it pointed from anterior-lateral to 
posterior-medial. This difference could reflect the fact that the array was implanted more medially in monkeys 
L and T than in monkey N (Fig. 1). Therefore, it seems that planar waves travel toward a medial point along the 
central sulcus, probably at the level of the hand and finger representation (“nested organization”52; “horseshoe” 
structure53). This directional preference may be structured by the underlying connectivity of this cortical area52.

The predominance of random patterns during movement execution suggests that the spatio-temporal dynam-
ics of neuronal activity is strongly altered during this epoch. The spatio-temporal structure of these patterns 
characterized by their focal origin and short-range propagation could reflect that during movement, information 
processing is more local and activity propagation is spatially constrained to motor cortex. However, this hypothe-
sis can hardly be tested at the restricted spatial scale of a single Utah array. Multiple Utah arrays or optical imaging 
techniques are required to measure the neuronal dynamics at the mesoscopic scale (e.g., visual cortex30).

Wave dynamics relate to the modulation in beta amplitude. Beta amplitude is known to be strongly 
modulated by the task epoch16. Interestingly, Fig. 4 suggests that across trials, the probability of observing dif-
ferent phase patterns also follows the trial-averaged amplitude profile of the beta oscillation. Namely, planar and 
synchronized waves are present during epochs of large beta amplitudes, whereas random waves are prominent 
during epochs of small amplitudes. The relation of circular and radial patterns to the beta amplitude is more 
ambiguous. These observations would support the hypothesis that the wave dynamics is closely linked to the 
processes underlying the modulation of the amplitude of beta oscillations.

Indeed, even on the single trial level, Fig. 6 suggests that low beta amplitudes are linked to random or circular 
phase patterns with low velocities, intermediate amplitudes to planar or radial phase patterns with intermediate 
velocities, and that the highest amplitudes indeed co-occurred with quasi-synchronous phase patterns expressing 
by far the highest velocities (see especially Fig. 6E). While for small beta amplitudes it cannot be excluded that the 
random patterns arise in part through difficulties in measuring the beta phase, it remains striking that at medium 
to high beta amplitudes the observed activity is always spatially structured. The pattern statistics also show that the 
epochs during which one particular, clearly structured pattern was observed were typically of very short duration, 
in the order of 1 or 2 oscillation cycles (see Fig. 6A). This is reminiscent of the short-lasting high amplitude events of 
a few cycles of beta oscillations described by others, the so-called spindles19,41. Indeed, these observations point to a 
tight relationship between spindle dynamics describing the amplitude modulation of the LFP, and the occurrence of 
wave-like activity, as shown by the correlations in Fig. 7. In all monkeys, we observed that with growing amplitude 
wave propagation tended to accelerate. For high amplitude beta signals, the phase pattern accelerated to such high 
levels that the observed pattern became synchronous, which in the ideal case would exhibit infinite velocity.

To illustrate how this observation relates to the dynamics of a single spindle, we visualized the temporal evo-
lution of one example spindle and its pattern classification in the left column of Fig. 7 (inset) and observed the 
corresponding smooth trajectory in the space of amplitude and phase velocity (yellow-red trace). In this spindle, 
a synchronized state was detected at the spindle peak, flanked by planar patterns before and after the peak. By 
observing the trajectory of the phase velocity, we observe that the modulation of spindle activity goes along with 
wave-like activity that progressively increases in speed as the LFP beta amplitude increases. Thus, this strong 
correlation between amplitude and velocity suggests that at the spindle peak also the velocity peaks, which, for 
large spindles, corresponds to large spatial wavelengths of the phase pattern that are perceived as synchronized 
states on the spatial scale of a Utah array. In contrast, a low LFP beta amplitude, as observed between spindles, 
goes along with random or circular patterns at low velocity. A dynamic representation of how the pattern velocity 
follows beta amplitude and the evolution of spindles can be seen in the middle panels of Supplemental Movie S1.

In summary, we speculate that the formation of a structured, directed pattern, its acceleration to a 
near-synchronized appearance, followed by deceleration, and finally its breakup in a random or circular pat-
tern marks the temporal organization of the formation of a beta spindle, its peak, and its decay, respectively. 
Supporting this view, it has been shown that the maxima of LFP spindles tend to synchronize across large dis-
tances, even between cortical areas and hemispheres19,41, as expected for emergence of synchronized patterns. 
These combined observations are in line with the highly dynamic nature of pattern occurrences.

A model of brain processing that would be intrinsically affected from such a dynamic scaffold is the con-
cept of communication through coherence10,11. In this framework, the coherence and phase relationship between 
oscillations on different electrodes were taken as a measure of the ability of neurons to communicate, i.e., that 
information is best transmitted when the two communicating sites exhibit an optimal phase lag. This concept 
seems evident when considering, e.g., communication between two brain areas that exhibit distinct population 
oscillations. It is, however, unclear what this model implies on the mesoscopic scale, such as the course-grained 
recordings from a Utah array presented here, where the overall pattern of these phase lags between electrodes 
continuously changes in time. Nevertheless, we may hypothesize that if activities on different electrodes become 
increasingly synchronized with a decreasing phase lag as spindles increase their amplitude, this would lead to a 
state where information can be more easily communicated across the complete array, although possibly with less 
specificity. This would indicate that amplitude modulations, and in particular spindles, act as a time window for 
enabling cortical communication across larger distances: not just by means of the strength of synchronization 
within the local population of neurons (as indicated by the increased beta amplitude), but because this goes 
along with a wide-spread zero-lag synchronization of the oscillatory activity, i.e., synchronized patterns19,41. This 
assumption is highly consistent with the above-described results showing that synchronized and planar patterns 
are more frequent during the delay epoch and could reflect the transmission of information between distant cor-
tical sites. Conversely, the random patterns occur more often during periods of low beta amplitude and could be 
linked to the local processing of information. Radial and circular patterns occupy an intermediate position along 
this continuum and have an unclear relationship to behavior.
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This line of arguments raises the question how the patterns of phase dynamics are related to synchronization 
on the level of single neuron spiking activity. In our data, the probability of neuronal firing is modulated in time 
by the beta rhythm54. With few expeptions, the preferred phases of firing of recorded single units across the three 
monkeys are found near the trough of the LFP cycle (cf., Supplemental Figure S6). This preference is independent 
of the location of the units on the array. Assuming that this phase preference holds for the bulk of neurons in the 
vicinity of each electrode, it would lead to modulations of the population rate that closely match the temporal 
modulation of the beta phase, i.e. a higher proportion of neurons would spike during LFP troughs than during 
LFP peaks. Therefore, also the spatial organization of population rates would be expected to follow the LFP phase 
patterns. Supporting this view, it has been shown that the spiking activity synchronizes with the oscillatory spin-
dle peaks19 and the cross-correlation histograms of the spiking activity of pairs of neurons become oscillatory in 
the beta range during periods of strong beta activity55. The entrainment of single neuron spiking activity to the 
LFP oscillation increases with LFP amplitude56. Additionally, we have shown21 that at moments of precise tran-
sient spike synchronization that exceeds the expectation based on firing rate57, spikes lock more strongly to the 
LFP beta oscillation than expected by chance. This effect of particularly strong locking of significant spike coin-
cidences was observed especially during high beta amplitudes. Interpreting the occurrence of excess synchrony 
as reflecting active cell assemblies, we embedded our findings in a theoretical model that predicts that activated 
cell assemblies are entrained to the LFP oscillation at a specific phase shortly preceding the trough of the oscil-
lation58. Combining these findings, we may speculate that the modulation of the beta amplitude as a function of 
the occurrence of a beta spindle is not only indicative of the spatial phase pattern of LFP beta activity, as shown 
in this study, but that additionally beta spindles may govern the temporal structure of spike patterning observed 
across the array. Indeed, findings of spike sequences42 or synchronous spike patterns59 that align to the principle 
direction of phase gradients (Fig. 6B) support this view of a functional mechanism that underlies the generation 
of beta phase patterns.

A recent discussion30 of the functional implications of wave propagation is highly related to such an hypoth-
esis, despite the qualitative differences in their description of waves in superficial layers of visual cortex. The 
authors show that a network of excitatory and inhibitory neurons operating in the balanced regime and con-
nected by a horizontal fiber network captures the essential features of the observed wave dynamics. Thus, the 
authors speculate that the transient depolarization caused by the wave passing at a certain position creates a 
time window of increased sensitivity, i.e., spike probability, of neurons at that location. This would ensure an 
optimal integration of information as long as the incoming input is timed to the arrival of the wave. Translating 
this idea to our scenario, the continuous traveling waves we observed could play a similar role when perceived as 
reverberating waves of the single-cycle propagation30. Moreover, we propose that the synchronized patterns, and 
thus epochs of large beta amplitudes, correspond to states where the optimal time window for the integration of 
incoming inputs is no longer spatially modulated by the propagating wave dynamics, but only by the anatomical 
structure of the network.

Speculating on these observations and discussions, we put forth the hypothesis that a future joint analysis of 
LFP phase patterns and spatio-temporal precise spike patterns would exhibit a correspondence in their spatial 
orientation, such that synchronous spike patterns are observed in neurons perpendicular to the instantaneous 
phase gradients, and spike sequences are observed along the direction of the gradient with inter-spike delays 
matching the instantaneous phase difference. Moreover, we suggest that significant spike synchrony would be 
observed for neurons separated by large spatial distances more often during high beta amplitudes, when synchro-
nized phase patterns dominate, than during low amplitudes.

In summary, despite the fact that motor cortical beta oscillations show a strong correlation between signals 
recorded over large distances, the phase relationships are highly correlated to the amplitude modulation of beta 
activity, which in turn has been related to the dynamics of spike synchronization, and to behavior. Thus, we 
believe that the investigation of amplitude and phase patterns provides a novel leverage on understanding the 
coordination of activity within spiking neuronal networks.

Methods
Experimental Design. Three monkeys (Macaca mulatta) were used in these experiments, two females 
(monkeys L and T) and one male (monkey N). All animal procedures were approved by the local ethical com-
mittee (Comité National de Réflexion Ethique sur l’Experimentation Animal - no. 71 [C2EA-71]; authorization 
A1/10/12) and conformed to the European and French government regulations. Monkeys were kept in colonies of 
2–4 monkeys in a modular housing pen, with access to a central play area. They were not water-deprived during 
the experimental period. Each monkey was trained to grasp, pull and hold an object with low force (LF) or high 
force (HF) using either a side grip (SG) or a precision grip (PG). The task was programmed and controlled using 
LabView (National Instruments Corporation, Austin, TX, USA). The trial sequence was as follows. The monkey 
self-initiated each trial by pressing a switch with the hand (TS). After a start period of 400 ms a warning signal 
(WS) lighted up to focus the attention of the monkey. After another 400 ms, the cue (CUE-ON until CUE-OFF) 
informed the monkey either about the grip type (grip-first condition) or the force (force-first condition) required 
in this trial. The duration of cue presentation was 300 ms. It was followed by a preparatory delay period of 1 s. The 
subsequent GO signal completed the information about force and grip, respectively, and in parallel asked the mon-
key to perform the movement by using the correct grip type and force to pull and then hold the object in a defined 
position window for 500 ms. Further periods: reaction time (RT) between the GO signal onset until the monkey 
released the switch (SR), movement time (MT) between switch release and object touch (OT), and pull time (PT) 
between OT and reaching the correct holding position. For correct trials the monkey was rewarded (RW) at the 
end of the holding period with a drop of apple sauce. See Fig. 1A for a graphic representation of the task design.
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Figure 8. Explanation of the methodology. (A) Example phase map Φxy(t) (colors) of monkey L (session 
identifier l101013-002) with overlay of phase gradient map Γxy(t) (top left), phase direction map Δxy(t) (top 
right) and gradient coherence map Λxy(t) (bottom left) shown as black arrows per electrode. White large arrows: 
corresponding quadrant-averaged maps (B). Sketch of the 10 × 10 electrode array (squares) to illustrate the 
neighborhoods ˆ xyℵ  (light gray) and ℵxy (dark gray), and the calculation of the gradient continuity C(t) (top 
right), radial-parallel alignment R  (bottom left), and radial-orthogonal alignment R⊥ (bottom right). C(t): angle 
between the gradient (red arrow) at a chosen electrode (red square) and the gradient at the square that the red 
gradient points to (yellow arrow and square). R  and R⊥: angle between the gradient (red arrow) at a chosen 
electrode (red square) and the corresponding solid gray line (parallel to and perpendicular to a line through the 
array center and the electrode, respectively). (C) Calculated values for the 6 measures (represented by horizontal 
line markers; from left to right: σp(t), σg(t), μc(t), C(t), R , and R⊥) for artificial data modeling ideal realizations 
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Neuronal Recordings. After completed training, a 100-electrode Utah array (Blackrock Microsystems, Salt 
Lake City, UT, USA) was chronically implanted in M1 and PM, contralateral to the working hand (for location 
see Fig. 1C) and overlapping rostral M1 and the posterior end of the dorsal premotor cortex (PMd) in monkeys 
L and T. The array of monkey N was placed more laterally covering the most medial part of the ventral premotor 
cortex (PMv). The 4x4 mm silicon based array consisted of 10-by-10 Iridium-Oxide electrodes, of which 96 were 
available for recording. The length of each electrode was 1.5 mm, with a 400 μm inter-electrode spacing. With 
this electrode length, we assume that the array enabled recording between the deep cortical layer III until the 
most superficial part of layer V. The distance between any pair of electrodes can be easily determined from the 
fixed geometric structure of the array. The surgery for array implantation was described in Riehle et al. (2013) 
and is briefly summarized below. The surgery was performed under deep general anesthesia using full aseptic 
procedures. A 30 mm × 20 mm craniotomy was performed over the motor cortex and the dura was incised and 
reflected. The array was inserted into the motor cortex between the central and arcuate sulci (Fig. 1C) using a 
pneumatic inserter (Blackrock Microsystems). It was then covered by a non-absorbable artificial dura (Preclude, 
Gore-tex). Ground and reference wires were inserted into the subdural space. The dura was then sutured back and 
covered with a piece of artificial absorbable dura (Seamdura, Codman). The bone flap was put back at its original 
position and secured to the skull by a titanium strip and titanium bone screws (Codman). The array connector 
was fixed to the skull on the hemisphere opposite to the implant. The skin was sutured back over the bone flap 
and around the connector. The monkey received a full course of antibiotics and analgesics after the surgery and 
recovered for one week before the first recordings.

Neuronal data were recorded using the 128-channel Cerebus acquisition system (NSP, Blackrock 
Microsystems). The signal from each active electrode (96 out of the 100 electrodes were connected) was pre-
processed by a head stage (monkey L and T: CerePort plug to Samtec adaptor, monkey N: Patient cable, both 
Blackrock Microsystems) with unity gain and then amplified with a gain of 5000 using the Front End Amplifier 
(Blackrock Microsystems). The raw signal was obtained with 30 kHz time resolution in a range of 0.3 Hz to 7.5 
kHz. From this raw signal, two filter settings allowed us to obtain on-line two different signals by using filters 
in two different frequency bands, the local field potential (LFP, low-pass filter at 250 Hz) and spiking activity 
(high-pass filter at 250 Hz). Here, only LFPs were analyzed, which were down-sampled at 1 kHz. An in-depth 
description of the experimental design and the recording procedure is available45.

Power spectra. Power spectra were calculated using Welch’s average periodogram algorithm using the psd 
function of the Python package scipy. We used windows of length l = 1024 sample points (at 1 kHz sampling). 
Each window was tapered using a Hanning window. The time-resolved power spectra (spectrograms) were calcu-
lated using windows of length l = 512 samples and an overlap of 500 samples.

Definition of maps and vector fields. We calculated 5 different types of maps in order to visualize the 
spatial arrangement of oscillatory activity in the beta range on the array, and to provide a starting point for cal-
culating multiple measures that characterize the arrangement. In a first step, we filtered the LFP signal on each 
electrode using a third-order Butterworth filter (pass band: 13–30 Hz) in a way that preserved the phase informa-
tion (filtfilt() function of the Python package scipy). The filter setting was intentionally chosen broad such that it 
enabled us to identify the phase and the amplitude despite temporal variations of the beta oscillation amplitude 
and its center frequency. In order to compare the relative changes in amplitude between different electrodes, the 
amplitude of the LFP signal was then normalized across recording electrodes by computing the z-transform of the 
complete filtered LFP signal on an electrode-by-electrode basis.

In a next step, we calculated the instantaneous amplitude and phase of the normalized, filtered LFP time series 
xi(t) on each electrode i by first constructing the analytic signal = + X t x t j x t( ) ( ) [ ( )]i i i , where ( )⋅  repre-
sents the Hilbert transform and j2 = −1. From Xi(t), we obtained the instantaneous signal amplitude ai(t) by tak-
ing its modulo, and the instantaneous phase φi(t) by taking its argument (angle). We defined the maps 
Axy(t) = ai(t) and Φxy(t) = φi(t) by the instantaneous phases of the LFP, where x ∈ {0, …, 9} and y ∈ {0, …, 9} are 
the coordinates of the recording electrode i of the Utah array in units of the inter-electrode distance of 400 μm.

In a further step we investigated whether, locally at each electrode and at each point in time, there is a spatially 
structured arrangement of the phases Φxy(t). To this end, in the remainder of this section, we defined three addi-
tional maps that we term the phase gradient map Γxy(t), the directionality map Δxy(t), and the gradient coherence 
map Λxy(t) (cf. Fig. 8A). The local spatial phase gradient at position electrodes (x, y) was estimated based on a 
neighborhood xyℵ  of its k-nearest neighbors in the same column x or row y (see Fig. 8B for a graphical representa-
tion). For border electrodes (x ∉ {2, …, 7} or y ∉ {2, …, 7}), only existing electrodes were considered as nearest 
neighbors. In this manuscript we chose k = 2 to obtain a smooth map of the local phase gradients. Let Nxy denote 
the cardinality of the set ℵxy. We now constructed the phase gradient map as the average gradient d|φ(t)|/dx ⋅ ejα, 
between electrode (x, y) and each of its neighbors (i, j), where α denotes the angular direction between the elec-
trode locations. The result is the map of phase gradients

of the 5 phase patterns (planar wave, synchronized, random, circular, and radial). A small amount of noise was 
added to the synchronized phase pattern to avoid division by zero in calculating measures. Black markers: 
measure was used to detect the corresponding phase pattern. Dark areas indicate the range of valid values for 
that measure required for a positive classification according to the threshold criteria (cf., Table 2). Light gray 
markers: measure was not used to detect the corresponding pattern. Region of valid values for measure σp(t) for 
synchronized patterns is close sto 0.
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Based on the average frequency of the beta oscillation fβ, we can easily derive the phase velocity field 
Ψxy(t) = 2πfβ |Γxy(t)|−1, which indicates the phase velocity of a planar wave front running through the point (x, y). 
Here, fβ = 21.5 Hz was chosen as the mean frequency of the respective beta bands of the monkeys (see above). An 
estimate of the macroscopic phase velocity can be obtained by calculating the average v t t( ) ( )xy= |Ψ | across elec-
trodes. Next, we defined the phase directionality map

t t t( ) ( ) ( ) (2)xy xy xy
1Δ = |Γ | Γ−

by normalizing the the vectors of the phase gradient map Γxy(t) to unit length. It indicates only the direction of the 
local phase gradient, independent of its magnitude. Finally, we defined the gradient coherence map as an average 
of the directionality map in a neighborhood ℵ̂xy of all k-nearest neighbors of cardinality Nxy

ˆ  (cf. Fig. 8B):
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It represents a second order measure of the gradient field and serves two purposes. The direction of each entry 
in Λxy(t) provides a smoothed version of the vector field Γxy(t), which is better suited for visualization due to the 
rather sparse sampling of activity. More importantly, the magnitude of the vectors in Λxy(t) indicate whether, 
locally, phase gradients point in the same direction (independent of the magnitudes of the gradients).

Quantification of observed phase patterns. Based on the phase map Φxy(t) and the three vector fields 
Γxy(t), Δxy(t), and Λxy(t), we now introduced 6 measures that quantitatively describe the spatial arrangement of 
phases on the array at each time point. These measures will later on serve as a basis to classify the phase pattern, 
i.e. the spatial arrangement of phases in Φxy(t), in an automatized manner. In the following, let ℵ denote the set of 
all used electrodes in a given recording, and N = |ℵ| its cardinality.

Circular variance of phases. One phase pattern commonly observed is the one where all electrodes are 
fully synchronized at near-zero phase lag. Therefore, we introduced the circular variance of phases

∑σ = ∈−

∈ℵ

Φt N e( ) [0, 1]
(4)

p
i j

j t1
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( )ij

as a measure to determine the similarity of the phase across the array. Here, σp(t) = 0 indicates that an identical 
phase Φxy(t) observed at each electrode, whereas σp(t) = 1 indicates that phases are uniformly distributed across 
the array.

Circular variance of phase directionality. In order to measure the degree to which phase gradients are 
globally aligned across the grid, we introduced the circular variance of the phase directionality

t N t( ) ( ) [0, 1]
(5)

g
i j

ij
1

( , )
∑σ = Δ ∈ .−

∈ℵ

A perfect planar wave is observed if σg(t) = 0, i.e., all phase gradients point in the same direction (independent 
of the magnitude of the gradients). This measure is similar to the PGD measure22.

Local gradient coherence. In order to determine whether locally (within ℵ̂xy) phase gradients point in a 
particular direction, we considered the average length of the vectors forming the gradient coherence vector field 
Λxy(t) and defined the local gradient coherence

Phase pattern Thresholds

planar wave σg(t) < θ3

radial θ| | >R 8

synchronized σp(t) < θ1, and σg(t) ≥ θ4

circular
σp(t) ≥ θ2, σg(t) ≥ θ4,

C(t) ≥ θ6 and |R⊥| ≥ θ7

random
σp(t) ≥ θ2, σg(t) ≥ θ4,

and μc(t) ≤ θ5

Table 2. Thresholds used to classify phase patterns. A time point was classified as one of the 5 listed phase 
patterns if all corresponding threshold criteria were met. Tests were administered in the order given by the table, 
and the first match is chosen as the classification.
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It has a value of 1 if in each neighborhood all phase gradients are perfectly aligned. In particular, we note that 
σg(t) = 1 ⇒ μc(t) = 1.

Figure 9. Visual illustration and justification of thresholds used for automatic classification. For each of the 
idealized planar wave, synchronized, random, circular, and radial patterns (rows) 5 artificially generated 
realizations are shown (cf., Fig. 8): one ideal pattern (left column), two patterns with weak perturbation (weak 
additive noise) which we considered as valid representatives of that pattern type (second and third column), and 
two patterns with strong perturbation (strong additive noise) which we did not consider as valid representatives 
of that pattern type (fourth and fifth column). Absolute values of the 6 measures are shown to the right of each 
pattern (represented by horizontal bar markers; from left to right: σp(t), σg(t), μc(t), C(t), R , and R⊥). Black 
markers: measure was used to detect the corresponding phase pattern. Dark areas indicate the range of valid 
values for that measure required for a positive classification according to the threshold criteria. Light gray 
markers: measure was not used to detect the pattern treated in the corresponding row. Text above panels: result 
of automatic pattern classification. Due to the specific choice of destroying patterns by adding noise (as opposed 
to, e.g., randomizing phase gradients), not every measure is necessarily affected by increased noise levels. 
Exceptions: (i) Ideal synchronized pattern (row 2, column 1) has minimal additional noise to avoid division by 
zero when calculating measures, (ii) for random patterns (row 3), the amount of additive noise is decreased 
from left to right to drive the state from fully randomized phases towards the synchronized state.



www.nature.com/scientificreports/

1 9ScIeNtIfIc REPORTS |  (2018) 8:5200  | DOI:10.1038/s41598-018-22990-7

Gradient continuity. Along the same argument we may ask even more strictly whether phase gradients 
locally not only point in a similar direction, but whether in fact they tend to form continuous lines. To this extend 
we defined in the following the gradient continuity C(t). For each point (x, y), we determined the direction of 
the phase gradient from Δxy(t) and calculated the electrode at position (i, j) that the gradient points to. We then 
calculated the scalar product sxy = 〈Δxy(t),Δij(t)〉, which is 1 if the two lines form a continuous line, and 0 if the 
gradients are orthogonal to each other. When averaging across all electrodes we obtain

C t N s( ) [ 1, 1]
(7)i j

xy
1

( , )
∑= ∈ − .−

∈ℵ

Circular arrangements. Besides spatial phase patterns that appear either homogeneous or linear, we 
observed phase patterns that appear radial or circular with respect to the center of the array. To capture such 
spatial arrangements, we defined the two measures radial-parallel alignment R  and radial-orthogonal alignment 
R⊥. We first constructed a vector lxy normalized to length |lxy| = 1 pointing from the center of the array (i.e., at an 
imaginary electrode located at electrode coordinates (4.5, 4.5)) to each electrode at position (x, y). We then 
defined the scalar product sxy between the phase gradient Δxy(t) at (x, y) and lxy, and the scalar product ⊥sxy between 
Δxy(t) and the perpendicular direction lxyejπ/2. Then

R N s [0, 1], and
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=R 1 indicates that phase gradients point inward or outward, as observed for a radial phase pattern, whereas 
R⊥ = 1 indicates that phase gradients point in the orthogonal direction, as observed for a circular phase pattern.

Classification of spatial phase patterns. Equipped with the 6 measures defined above, we were now able 
to classify the spatial pattern observed at each point in time according to the salient patterns that were visually 
observed. The phase patterns we distinguished are termed the planar wave, synchronized, random, circular, and 
radial patterns. A detailed qualitative description of these patterns is presented in the Results.

To disambiguate the 5 phase patterns we manually define specific thresholds θ1 − θ8 on those measures that 
capture relevant characteristics of the patterns. Specifically, θ1 and θ2 are thresholds on σp(t), θ3 and θ4 on σg(t), θ5 
on μc(t), θ6 on C(t), θ7 on R⊥, and θ8 on R . The threshold conditions for each phase pattern are summarized in 
Table 2 and visualized in Fig. 8C. In the following we summarize the rationale for choosing these threshold con-
ditions. Planar wave patterns are characterized by a non-zero phase-gradient that points in the same direction at 
each electrode, and are thus well characterized by a small value of σg(t). Perfectly synchronized patterns exhibit the 
same phase at each electrode (small σp(t)), and the grid-averaged phase gradient is random (large σg(t)). Random 
patterns, on the other hand, show a random phase at each electrode (large σp(t)), and also the phase gradient is 
random not only when considering the complete grid (large σg(t)), but also locally in each neighborhood xyℵ̂  of 
an electrode (large μc(t)). Circular patterns share the feature of displaying all phases and phase gradients across 
the array with the random pattern (large σp(t) and σg(t)), however, they exhibit a high continuity of the gradient 
coherence field (high C(t)) and phase gradients are arranged in a circular fashion around the grid center (high 
R⊥). Similarly, radial patterns exhibit phase gradients that are arranged in an outward or inward pointing direc-
tion with respect to the grid center (high R ), however, in contrast to the circular pattern the distributions of 
phases and phase gradients, and the gradient continuity are less characteristic of this pattern, and therefore are 
not used. Due to the low spatial sampling, in rare cases a pattern could fulfill two conditions, e.g., a circular pat-
tern could sometimes also be viewed as random pattern. In such cases, we defined an order of administering the 
tests of the patterns (from first to last: planar, radial, synchronized, circular and random patterns) and assigned 
the pattern to the first successful classification in that order. In this study the following values were used: θ1 = 0.15, 
θ2 = 0.7, θ3 = 0.5, θ4 = 0.6, θ5 = 0.5, θ6 = 0.85, θ7 = 0.65, and θ8 = 0.65. See Fig. 9 for a visualization of accepted and 
rejected classifications based on artificial surrogate data using these parameters.
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