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Abstract. We study a regularization of the classical Saint–Venant (shallow-water)
equations, recently introduced by D. Clamond and D. Dutykh (Commun. Nonl. Sci.

Numer. Simulat. 55 (2018) 237–247). This regularization is non-dispersive and formally
conserves mass, momentum and energy. We show that for every classical shock wave, the
system admits a corresponding non-oscillatory traveling wave solution which is continuous
and piecewise smooth, having a weak singularity at a single point where energy is dissipated
as it is for the classical shock. The system also admits cusped solitary waves of both
elevation and depression.
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1. Introduction

In a recent paper, Clamond and Dutykh [4] have introduced a regularization of the
classical Saint-Venant (shallow-water) equations, which is non-dispersive, non-dissipative,
and formally conserves mass, momentum, and energy. In conservation form, these regular-
ized Saint-Venant equations (rSV) are written

h t ` ph uq x “ 0 , (1.1)

ph uq t ` ph u 2 ` 1

2
g h 2 ` εRh 2q x “ 0 , (1.2)

R
def

:“ h pu 2

x ´ u x t ´ u u xxq ´ g

ˆ

h hx x ` 1

2
h 2

x

˙

. (1.3)

Smooth solutions of these equations also satisfy a conservation law for energy, in the form

E
ε
t ` Q

ε
x “ 0 , (1.4)

where

E
ε def

:“ 1

2
h u 2 ` 1

2
g h 2 ` ε

ˆ

1

2
h 3 u 2

x ` 1

2
g h 2 h 2

x

˙

, (1.5)

Q
ε def

:“ 1

2
h u 3 ` g h 2 u ` ε

ˆˆ

1

2
h 2 u 2

x ` 1

2
g h h 2

x ` hR

˙

h u ` g h 3 hx u x

˙

.

(1.6)

The rSV equations (1.1) – (1.2) above were derived in [4] as the Euler–Lagrange equa-
tions corresponding to a least action principle for a Lagrangian of the form (see [4,
Eq. (3.2)])

L
def

:“ 1

2
h u 2 ´ 1

2
g h 2 ` ε

ˆ

1

2
h 3 u 2

x ´ 1

2
g h 2 h 2

x

˙

` ph t ` ph uq xq φ .

Here φ is a Lagrange multiplier field that enforces mass conservation. The terms propor-
tional to ε in (1.2) have a form similar to terms that appear in improved Green–Naghdi

or Serre equations that approximate shallow-water dynamics for waves of small slopes,
see [5]. (The rSV equations also admit a non-canonical Hamiltonian structure like one
known for the Green–Naghdi equations — see Section 6 below.)

The particular coefficients appearing here, however, do not yield improved accuracy for
modeling exact water-wave dispersion at long wavelengths. Instead, they are designed
to eliminate linear dispersion, resulting in a regularization that faithfully reproduces the
original shallow-water dispersion relation. The balance of terms in R ensures that the
rSV equations are non-dispersive — linearized about a constant state ph 0, u 0q , solutions
proportional to e i k x ´ iω t necessarily have

pω ´ u 0 kq 2 “ g h 0 k
2 ,

implying that phase velocity is independent of frequency.
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The presence of squared derivatives in the energy E ε indicates that the rSV equations
will not admit classical shock wave solutions with discontinuities in h and u . Numerical
experiments reported in [4] suggest, in fact, that with smooth initial data that produce
hydraulic jumps (shock wave solutions) for the shallow-water equations, one obtains front-
like solutions of the rSV equations that remain smooth and non-oscillatory, yet propagate at
the correct speed determined by classical jump conditions corresponding to limiting states
on the left and right. These solutions were computed numerically by a pseudospectral
scheme that is highly accurate for smooth solutions and fairly uncomplicated. This is a hint
that a similar approach could perhaps be taken to approximate shallow water dynamics
by non-dispersive regularization in multidimensional geometries with more complicated
topography and other physics.

At this point, a paradox arises. The energy of smooth solutions of the rSV equations
satisfies the conservation law (1.4), whereas in the case of shallow water equations, energy
is dissipated at a shock-wave discontinuity, satisfying a distributional identity of the form

E
0

t ` Q
0

x “ µ , (1.7)

where µ is a non-positive measure supported along the shock curve. How can it be that
front-like solutions of the rSV equations approximate classical shallow-water shocks well
while conserving an energy similar to the one dissipated for shallow-water shocks?

Our purpose here is to describe a novel wave-propagation mechanism that may explain
this paradox. We shall show that the regularized Saint-Venant equations (1.1) – (1.2)
admit regularized shock-wave solutions with profiles that are continuous but only piecewise

smooth, with derivatives having a weak singularity at a single point. Such a wave exists
corresponding to every classical shallow-water shock. These waves are traveling-wave weak
solutions of the rSV equations that conserve mass and momentum. They dissipate energy

at the singular point, however, at the precise rate that the corresponding classical shock
does.

We also find that the rSV equations admit weak solutions in the form of cusped solitary

waves. These waves loosely resemble the famous ‘peakon’ solutions of the Camassa–Holm

equation in the non-dispersive case [2]. One difference is that the wave slope of our cusped
solitary waves becomes infinite approaching the crest, while that of a peakon remains
finite. The rSV equations also loosely resemble various 2´component generalizations of
the Camassa–Holm equation which have appeared in the literature—for a sample see
[3, 14, 17, 18, 20]. One of the most well-studied of these is the integrable 2´component
Camassa–Holm system appearing in [3, 18, 20],

h t ` ph uq x “ 0 , (1.8)

u t ` 3 u u x ´ u t x x ´ 2 u x u xx ´ u u xxx ` g h hx “ 0 , (1.9)

which has been derived in the context of shallow-water theory by Constantin and Ivanov

[8] (also see [16]). This system admits peakon-type solutions, and as noted in [10], it admits
some degenerate front-type traveling wave solutions, which however necessarily have h Ñ 0

as either x Ñ ` 8 or ´ 8 .
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The existence of weakly singular weak solutions of the rSV equations raises many in-
teresting analytical and numerical issues that we cannot address here. For example, do
smooth solutions develop weak singularities in finite time? Do finite-energy weak solutions
exist globally in time? How can we approximate solutions well numerically despite weak
singularities? Are weakly singular shock profiles and cusped solitary waves stable? Can
similar regularization mechanisms be used to approximate shock waves in other interesting
physical systems? (E.g., the classical Saint-Venant equations are formally identical to
isentropic Euler compressible fluid equations with a particular pressure-density relation.)
It would be strange if this novel and interesting phenomenon were unique to the shallow
water equations.

2. Shock waves for the classical shallow-water system

Let us summarize some well-known basic properties of shock-wave solutions of the clas-
sical shallow-water (Airy or Saint-Venant) system for water depth h px, tq ą 0 and
average horizontal velocity u px, tq :

h t ` ph uq x “ 0 , (2.1)

ph uq t `
ˆ

h u 2 ` 1

2
g h 2

˙

x

“ 0 . (2.2)

This system has two Riemann invariants u ˘ 2
?
g h , and two characteristic speeds

λ 1 “ u ´
a

g h , λ 2 “ u `
a

g h .

2.1. Jump conditions

A piecewise smooth solution that jumps along a curve x “ X ptq is a weak solution if
and only if the Rankine–Hugoniot conditions hold at each point of the curve:

´ s rhs ` rh us “ 0 , (2.3)

´ s rh us `
„

h u 2 ` 1

2
g h 2



“ 0 . (2.4)

Here s “ 9X ptq is the jump speed and r h s def

:“ h` ´ h´ is the difference of right
and left limits at the shock location, with similar definitions for the other brackets, e.g.,

r h u s def

:“ h` u` ´ h´ u´ .
After eliminating s from the Rankine–Hugoniot conditions one finds

„

1

2
g h 2



r h s “ g ph` ` h´q
2

r h s 2 “ r h u s 2 ´ r h u 2 s r h s “ h` h´ r u s 2 ,
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so that the states ph˘, u˘q lie on the Hugoniot curves given by

u` ´ u´ “ ˘ γ ph` ´ h´q , γ
def

:“
d

g ph` ` h´q
2 h` h´

.

Correspondingly the jump speed is determined by

s “ r h u s
r h s “ u` ˘ γ h´ “ u´ ˘ γ h` . (2.5)

In these relations, the ´ sign corresponds to 1´waves and the ` sign corresponds to
2´waves. Physically meaningful shock waves satisfy the Lax shock conditions:

u´ ´
a

g h´ ą s ą u` ´
a

g h` for 1´shocks,

u´ `
a

g h´ ą s ą u` `
a

g h` for 2´shocks.
(2.6)

From (2.5) one finds that the Lax conditions hold if and only if

h´ ă h` for 1´shocks,

h´ ą h` for 2´shocks.
(2.7)

The two wave families are related via the natural spatial reflection symmetry of the shallow
water equations:

px, tq Ñ p´ x, tq , ph, uq Ñ ph, ´ uq .
Under this symmetry, 1´shocks are mapped to 2´shocks and vice versa.

2.2. Energy dissipation

The energy dissipation identity for a piecewise-smooth solution with shock curve Γ “
t px, tq : x “ X ptq u takes the form (1.7), where the measure µ is absolutely continuous
with respect to 1´dimensional Hausdorff measure (arc length measure) restricted to the
shock curve Γ . Denoting this Hausdorff measure by σ , in terms of the parametrization
x “ X ptq we can write informally that dσ “

?
1 ` s 2 dt and

D
def

:“ dµ

dt
“ ´ s r E

0 s ` r Q
0 s “

„

1

2
h pu ´ sq 3 ` g h 2 pu ´ sq



. (2.8)

One verifies this identity by expanding pu ´ sq 3 and using that

s 3 r h s “ s 2 r h u s “ s

„

h u 2 ` 1

2
g h 2



from the Rankine–Hugoniot conditions. The precise meaning of (2.8) and (1.7) is that
for any smooth test function ϕ with support in a small neighborhood of the shock curve Γ

and contained in the half-plane where x P R and t ą 0 , we have
ż 8

0

ż 8

´ 8

p´ E
0 B t ϕ ´ Q

0 B x ϕq d x d t “
ż

Γ

ϕ dµ “
ż 8

0

ϕ pX ptq, tq D ptq dt .
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The identity (2.8) is related to the Galilean invariance of the shallow-water equations
after changing to a frame moving with constant speed s frozen at some instant of time. To
conveniently compute further we introduce v “ u ´ s and write

v´ “ u´ ´ s , v` “ u` ´ s , (2.9)

and note that by the Rankine–Hugoniot conditions,

M
def

:“ h` v` “ h´ v´ , (2.10)

N
def

:“ h` v 2

` ` 1

2
g h 2

` “ h´ v 2

´ ` 1

2
g h 2

´ . (2.11)

With the same choice of sign as in (2.5) we find

M “ ¯ γ h` h´ , (2.12)

N “ M 2

h˘
` 1

2
g h 2

˘ “ 1

2
g ph 2

` ` h` h´ ` h 2

´q . (2.13)

Then using (2.12) and (2.7), we compute

D “ M 3

2

„

1

h 2



` gM r h s “ ˘ 1

4
g γ r h s 3 ă 0 , (2.14)

for both 1´shocks and 2´shocks. Note that the dissipation is of the order of the amplitude
cubed for small shocks.

3. Weakly singular shock profiles for the regularized

system

Now consider any simple piecewise-constant shock-wave solution of the shallow water
equations, in the form

ph, uq “

$

&

%

ph´, u´q x ă s t ,

ph`, u`q x ą s t ,
(3.1)

where s , h˘ , and u˘ are constants with h˘ ą 0 . Our goal in this section is to show that
the regularized Saint-Venant equations (1.1) – (1.2) admit a corresponding traveling-
wave solution having shock profile that is continuous and piecewise smooth, and dissipates
energy at the precise rate that the corresponding classical shock does.

We mention that through the time-reversal symmetry

px, tq Ñ px, ´tq , ph, uq Ñ ph, ´uq ,

the traveling waves that we obtain remain as valid weak solutions of the rSV system, which
generate energy instead of dissipating it. These solutions correspond to non-physical shocks
for the shallow-water equations that violate the Lax conditions in (2.6).
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3.1. Construction of shock profiles

Because both the rSV and shallow water equations are invariant under spatial reflection,
we may assume the shock is a 2´shock without loss of generality. Moreover, the rSV and
shallow water equations are invariant under the Galilean transformation taking

u Ñ u ` s , B t Ñ ´ s B x ` B t .

Thus it is natural to work in the frame of reference moving with the shock at speed s

and seek a steady wave profile that is smooth except at the origin x “ 0 . Adopting
the notation in (2.9) and writing v “ u ´ s for convenience, therefore we seek time-
independent functions h : R Ñ p0, 8q and v : R Ñ R such that h and v are continuous,
smooth except at x “ 0 , take the limiting values

ph, vq Ñ

$

&

%

ph´, v´q x Ñ ´8 ,

ph`, v`q x Ñ `8 ,
(3.2)

and provide a weak solution of the steady rSV equations

ph vq x “ 0 , ph v 2 ` 1

2
g h 2 ` εRh 2q x “ 0 , (3.3)

R “ h v 2

x ´ h v vxx ´ g ph hxx ` 1

2
h 2

xq . (3.4)

As is natural, we will find solutions whose derivatives approach zero as x Ñ ˘ 8 . Thus
upon integration we find that

h v “ M , (3.5)

h v 2 ` 1

2
g h 2 ` εRh 2 “ N , (3.6)

where M and N are the Rankine–Hugoniot constants defined in (2.10) and (2.11) and
are given by (2.12) and (2.13), respectively.

Let us first work on the right half-line where x ą 0 . In terms of the dimensionless
variables given by

H “ h

h`

, V “ v

v`

, z “ x

h`

,

and the squared Froude number on the right,

F` “ v 2

`

g h`
,

the equations take the form

H V “ 1 ,

FH V 2 ` 1

2
H 2 ` εFH 3 pV 2

z ´ V V z zq ´ ε pH 3H z z ` 1

2
H 2H 2

z q “ F ` 1

2
.
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(For simplicity we temporarily drop the subscript on F` here.) Eliminating V we obtain a
single equation for the dimensionless wave height H ,

F

H
` 1

2
H 2 ` εF

H
pHH z z ´ H 2

z q ´ ε pH 3H z z ` 1

2
H 2H 2

z q “ F ` 1

2
.

Dividing this equation by H 2 we can rewrite it as

F

H 3
` 1

2
` εF pH ´1H zq z H

´1 ´ ε pH 1

2 H zq z H
1

2 “ F ` 1

2

H 2
.

Further multiplying by H z one can integrate this equation to obtain

εH 2

z “ G pF, Hq def

:“ pH ´ Fq pH ´ 1q 2

H 3 ´ F
. (3.7)

Here the integration constant is determined by requiring H Ñ 1 as z Ñ 8 .
In terms of the original dimensional variables this equation takes the form

ε h 2

x “ G

ˆ

F`,
h

h`

˙

“ ph ´ h` F`q ph ´ h`q 2

h 3 ´ h 3
` F`

. (3.8)

On the left half-line where x ă 0 , a similar integration procedure yields

ε h 2

x “ G

ˆ

F´,
h

h´

˙

“ ph ´ h´ F´q ph ´ h´q 2

h 3 ´ h 3
´ F´

, (3.9)

with F´ “ v 2

´{g h´ . We note that these equations correspond to equation (29) of [4]
with the appropriate choice of integration constants.

Recalling that we are dealing with a 2´shock for which h` ă h´ , we note

h 3

` F` “ h 3

´ F´ “ M 2

g
“ 1

2
ph` ` h´q h` h´ P ph 3

`, h
3

´q . (3.10)

Therefore

F´ ă 1 ă F` ,

and furthermore, the denominators in (3.8) and (3.9) vanish at the same critical height h c

satisfying h` ă h c ă h´ , where

h 3

c “ 1

2
ph` ` h´q h` h´ “ M 2

g
. (3.11)

On the right half line where x ą 0 , note the denominator in (3.8) changes sign from
negative to positive as h increases from h` past the critical height h c , while the numerator
is negative for h` ă h ă h` F` . Because h` F` “ h 3

c {h 2

` ą h c , this means that
the right-hand side of (3.8) changes sign as h increases past h c : for h near h c we have

G

ˆ

F`,
h

h`

˙

ą 0 for h ă h c , G

ˆ

F`,
h

h`

˙

ă 0 for h ą h c .

Thus a solution of (3.8) taking values between h` and h´ can exist only as long as h ă h c .
Because we require h Ñ h`as x Ñ ` 8 , such a solution must be monotone decreasing
and satsify ?

ε hx “ ´
a

G pF`, h{h`q . (3.12)
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Actually, we have h pxq “ η` px { ?
εq for a unique continuous function η` : r0, 8q Ñ

p0, 8q which is a smooth decreasing solution of (3.12) with ε “ 1 for x ą 0 and satisfies

η` p0q “ h c , η` pxq Ñ h` as x Ñ ` 8 .

To see that this is true, one can separate variables in (3.12) and determine the solution
implicitly according to the relation

ż h c

h

dk
a

G pF`, k{h`q
“ x?

ε
, x ě 0 , h P ph`, h c s , (3.13)

since the integral converges on any interval r h, h c s Ă ph`, h c s .
On the left half line where x ă 0 , the reasoning is similar. The numerator in (3.9)

is positive for h´ ą h ą h´ F´ while the denominator changes sign from positive
to negative as h decreases past the critical height h c . The solution we seek takes values
between h´ and h c , satisfying

?
ε hx “ ´

a

G pF´, h{h´q . (3.14)

Again, we have h pxq “ η´ px { ?
εq for a unique continuous function η´ : p´8, 0 s Ñ

p0, 8q which is a smooth decreasing solution of (3.14) with ε “ 1 for x ă 0 and satisfies

η´ p0q “ h c , η´ Ñ h´ as x Ñ ´ 8 .

The solution is determined implicitly in this case according to the relation
ż h c

h

dk
a

G pF´, k{h´q
“ x?

ε
, x ă 0 , h P ph c, h´q . (3.15)

Summary. Let us summarize: Given the 2´shock solution (3.1) of the shallow water equa-
tions, our corresponding weakly singular traveling wave solution of the rSV equations sat-
isfies (3.2) and takes the form

h px, tq “

$

’

’

&

’

’

%

η`

ˆ

x ´ s t?
ε

˙

x ě s t ,

η´

ˆ

x ´ s t?
ε

˙

x ă s t ,

u px, tq “ s ` M

h
, (3.16)

where η˘ are determined by h` and h´ implicitly from (3.13) and (3.15) respectively with
ε “ 1 , using (3.10) to determine F˘ , and h c is given by (3.11).

3.2. Behavior near the singular point and infinity

The nature of the singularity at x “ s t for the solution above may be described as
follows. For the function G in (3.8), because h` F` “ h 3

c{h 2

` we have

1

G pF`, h{h`q “ ph 3 ´ h 3

cq h 2

`

ph 2
` h ´ h 3

cq ph ´ h`q 2
„ K 2

` ph c ´ hq (3.17)
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as h Ñ h c , where

K 2

` “ 3 h c h
2

`

ph 2
c ´ h 2

`q ph c ´ h`q 2
.

From this asymptotic description we infer from (3.13) that for small x ą 0 ,

h c ´ h „ c` x 2{3 , hx „ ´ 2

3
c` x´1{3 , hxx „ 2

9
c` x´4{3 , (3.18)

where c` “ p2K`

?
ε{3q ´2{3 .

A similar description holds on the other side of the singularity: From (3.9) we have

1

G pF´, h{h´q “ ph 3 ´ h 3

cq h 2

´

ph 2
´ h ´ h 3

cqph ´ h´q 2
„ K 2

´ ph ´ h cq (3.19)

as h Ñ h c , where

K 2

´ “ 3 h c h
2

´

ph 2
´ ´ h 2

cq ph c ´ h´q 2
.

So for small x ă 0 ,

h ´ h c „ c´ | x | 2{3 , hx „ ´ 2

3
c´| x |

´1{3 , hx x „ ´ 2

9
c´| x |

´4{3 , (3.20)

where c´ “ p2K´

?
ε{3q ´2{3 .

The behavior of v follows by differentiation from (3.5). Thus we see that hx and vx are
square integrable in any neighborhood of x “ 0 (and belong to L p for p ă 3), while
hx x and vxx are not integrable functions. The singularities due to second derivatives in
(3.6) cancel however (see below), to produce the constant value N . This yields a valid
distributional solution of the steady rSV equations (3.3) written in conservation form.

As x Ñ ˘8 , it is straightforward to check that the limits in (3.2) are achieved at an
exponential rate.

3.3. Distributional derivatives

Because of the blow-up of hx at the origin, the distributional derivative of hx is no
longer a classical function. Rather, it is a generalized function or a distribution which can
be computed as follows.

We write hx x to denote the distributional derivative of hx and write hxx for the classical
derivative of hx that is not defined at 0 . Let ϕ P C 8

c pRq be a test function with support
suppϕ Ă p´L, Lq . Let τ be a subtracting operator acting on functions from R to R such
that

τ ϕ pxq “ ϕ pxq ´ ϕ p0q .
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Then the distributional pairing of ϕ with the distribution hx x is

x hxx, ϕ y “ ´
ż

R

hx ϕ x dx “ ´
ż

R

hx pτ ϕq x dx

“ ´ lim
ε Ñ 0`

ˆ
ż ´ε

´L

hx pτ ϕq x dx `
ż L

ε

hx pτ ϕq x dx

˙

“ ´ hx p´Lqϕ p0q ` hx pLqϕ p0q `
ż L

´L

hxx pτ ϕq dx , (3.21)

where in the last step we use the fact that pτ ϕq pxq „ xϕ x p0q when x is small and the
fact that hxx τ ϕ is integrable near 0 . Furthermore, the above equality is true for all L
large enough, so sending L to infinity we have that

x hx x, ϕ y “
ż

R

hx x pτ ϕq dx .

Due to this result, the distribution hxx ph ´ h cq satisfies

x hxx ph ´ h cq, ϕ y “ x hx x, ph ´ h cqϕ y

“
ż

R

hxx τ pph ´ h cqϕq dx “
ż

R

hx x ph ´ h cqϕ dx

“
@

hxx ph ´ h cq, ϕ
D

where the first line is justified by the fact that hxx is a continuous linear functional on
W 1, p pRq for any p P p1, 8q . This implies that in the sense of distributions,

hxx ph ´ h cq “ hxx ph ´ h cq , (3.22)

where the right-hand side is a locally integrable function.
From this we can find a locally integrable representation of the quantity h 2 R from (3.4).

Differentiating (3.5) twice and multiplying by h 2 v , we find h 3 v 2

x “ M 2 h 2

x{h and

´ h 3 v vxvx “ M 2

ˆ

hxx ´ 2 h 2

xh

˙

.

Because M 2 “ g h 3

c , using (3.22) it follows

h 2
R “ g ph 3

c ´ h 3q hxx ´ g

2 h
p2 h 3

c ` h 3q h 2

x .

So we conclude that the singularities appearing in hxx and vx x do cancel each other in a way
that makes the stationary momentum flux locally integrable with distributional derivative
0 .

Another way to see this cancellation is that the singular terms in h 2 R sum up to give

h 3 v vx x ` g h 3 hxx “
`

h 3 v vx ` g h 3 hx

˘

x
´ ph 3 vq x vx ´ g ph 3q x hx

“
ˆ

h 3 v

ˆ

´M

h 2
hx

˙

` g h 3 hx

˙

x

´ ph 3 vq x vx ´ g ph 3q x hx

“ g
`

ph 3 ´ h 3

cq hx

˘

x
´ ph 3 vq x vx ´ g ph 3q x hx ,

in which every term is a locally integrable function.
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3.4. Energy dissipation of weakly singular waves

Here our aim is to show that the regularized shock-wave solutions of the rSV equations
that correspond to the simple shallow-water shock (3.1) satisfy the distributional identity

E
ε
t ` Q

ε
x “ µ , (3.23)

where the dissipation measure µ is a constant multiple of 1´dimensional Hausdorff

measure restricted to the simple shock curve tpx, tq : x “ s tu , satisfying

D “ dµ

dt
“ ˘ 1

4
g γ ph` ´ h´q 3 ă 0 ,

exactly the same as the simple shallow-water shock in (3.1).
Indeed, the steady solution constructed above is a smooth solution of the rSV equations

(1.1) – (1.2) on both the right and left half-lines, hence satisfies the conservation law (1.4)
except at x “ 0 . In this time-independent situation this means

Q
ε
x “ 0 , x P R z t 0 u .

Now, integration of this equation separately on the right and left half lines yields

Q
ε “

$

&

%

Q´ , x ă 0 ,

Q` , x ą 0 ,

where the constants Q˘ can be evaluated by taking x Ñ ˘ 8 in the expression for Q ε in
(1.4) and invoking the limits in (3.2). The result is that the constants Q˘ take the same
values as appear in (2.8) for the simple shallow-water shock. Namely,

Q˘ “ 1

2
h˘ v 3

˘ ` g h 2

˘ v˘ .

Therefore, by the same calculation that leads to (2.14), the weak derivative of Q ε on all of
R is a multiple of the Dirac delta measure δ 0 at x “ 0 , satisfying

Q
ε
x “ pQ` ´ Q´q δ 0 “ D δ 0 ,

where D is the same as in (2.14). By undoing the Galilean transformation to the frame
moving with the simple shock speed, we obtain (3.23) with dissipation measure µ exactly
as claimed above.

4. Cusped solitary waves for the regularized system

The construction of weakly singular shock profiles in the previous section also enables
us to describe cusped solitary waves for the rSV equations. These are weak traveling-wave
solutions whose limits as x Ñ ´ 8 are the same as those as x Ñ ` 8 .

The point is that weak solutions of the steady rSV equations (3.3)–(3.4) can be con-
structed by reflection from either piece η˘ of the 2´shock profile in the previous section.
For each of these pieces, the quantities on the left-hand sides in (3.5) and (3.6) are locally
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integrable (in total, though not term-wise) and indeed constant on R z t 0 u . Thus the
construction above yields two valid distributional solutions of the steady rSV equations
with height profiles

h px, tq “ η˘

ˆ

| x ´ s t |?
ε

˙

, (4.1)

respectively satisfying h px, tq Ñ h˘ as | x | Ñ 8 . The energy of these solitary wave
solutions satisfies the conservation law (1.4) without alteration.

4.1. Solitary waves of elevation

We note that for the solution using η` , the value of h´ has no direct interpretation in
terms of the wave shape. However, from (3.17) we see that the solitary-wave height profile

with the ` sign can be determined from any independently chosen values of h8
def

:“ h`

and h c with

0 ă h8 ă h c .

Here h c is the maximum height of the wave and h8 is the limiting value at 8 . The wave
everywhere is a wave of elevation, with h8 ă h px, tq ď h c , determined implicitly as in
(3.13) and (3.17) by

ż h c

h

ˆ

h 3

c ´ k 3

h 3
c ´ h 2

8 k

˙
1

2 h8

k ´ h8

dk “ | x ´ s t |?
ε

, x P R , h P ph8, h c s . (4.2)

It is natural for solitary waves to consider u` “ 0 to be the limiting velocity as | x | Ñ 8
in the original frame. Then by (2.5), v` “ ´ s “ ´γ h´ , whence we find using (3.11)
that γ “

?
g h c h c{ph` h´q and

s “
a

g h c

h c

h8

. (4.3)

This determines the velocity profile according to

u px, tq “ s ` M

h
“ s

ˆ

1 ´ h8

h

˙

. (4.4)

This velocity is everywhere positive, as a consequence of the fact that we started with
a 2´shock profile. We note that these solitary waves travel to the right, with speed s

that exceeds the characteristic speed
?
g h8 at the constant state ph8, 0q in this case.

The spatial reflection symmetry yields solitary waves that travel to the left instead. This
symmetry also recovers the solitary waves that can be constructed from 1´shock profiles.

4.2. Solitary waves of depression

We obtain solitary waves of depression by using η´ in (4.1) instead of η` , choosing

h8
def

:“ h´ (the wave height at 8) and h c (the minimum wave height) arbitrary subject
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to the requirement that

0 ă h c ă h8 .

Similarly to (4.2), the wave height h px, tq P rh c, h8q is determined implicitly by

ż h

h c

ˆ

k 3 ´ h 3

c

h 2
8 k ´ h 3

c

˙
1

2 h8

h8 ´ k
dk “ | x ´ s t |?

ε
, x P R , h P r h c, h8q . (4.5)

Considering u´ “ 0 to be the limiting velocity as | x | Ñ 8 , we find v´ “ ´ s “ ´ γ h`

from (2.5), whence the solitary wave speed is again given by equation (4.3), and again the
corresponding velocity profile is given by (4.4). This time, the velocity is everywhere
negative (when starting with the 2´shock profile), while the solitary wave travels to the
right (s ą 0) but with speed s less than the characteristic speed

?
g h8 of the state at

infinity. Again, spatial reflection yields waves of depression traveling to the left.

5. Parametric formulae for shock profiles and cusped

waves

Here we describe how weakly singular shock profiles and cusped waves can be determined
in a parametric form,

h “ h pξq , x “ x pξq , ξ P R ,

by a quadrature procedure that eliminates having to deal with the singularities present in
the ODEs (3.8), (3.9) and in the integrands of the implicit relations (3.13), (3.15), (4.2).
Inspired by the fact that classical solitary wave profiles of the form f pξq “ β sech 2 p1

2
ξq

(and their translates) satisfy an equation with cubic polynomial as right-hand side,

f 2

ξ “ f 2

ˆ

1 ´ f

β

˙

, (5.1)

we modify the dimensionless ODE (3.7) by replacing H 3 in the denominator by its asymp-
totic value 1 . Thus we seek the solution of (3.7) in parametric form H “ H pξq , z “ z pξq
by solving

H 2

ξ “ pH ´ Fq pH ´ 1q 2

1 ´ F
“ pH ´ 1q 2

ˆ

1 ´ H ´ 1

F ´ 1

˙

, (5.2)

z 2

ξ “ ε
H 3 ´ F

1 ´ F
. (5.3)

We require H 3 “ F when z “ 0 . It is convenient to require z p0q “ 0 . Comparing
the form of (5.2) with (5.1) we find the appropriate solution of (5.2) on either half-line
ξ ě 0 or ξ ď 0 can be written in the form

H pξq “ 1 ` pF ´ 1q sech 2

ˆ

1

2
| ξ | ` α

˙

, (5.4)
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where H p0q “ F1{3 provided

cosh 2 α “ F ´ 1

F1{3 ´ 1
.

A unique α ą 0 solving this equation exists in either case F ą 1 or 0 ă F ă 1 ,
namely

α “ ln p?
γ `

a

γ ´ 1q , γ “ F ´ 1

F1{3 ´ 1
, (5.5)

because γ ą 1 . Now z pξq is recovered by quadrature from (5.3) as

z pξq “
?
ε

ż ξ

0

ˆ

H pζq 3 ´ F

1 ´ F

˙ 1{2

dζ . (5.6)

To express this result in dimensional terms for h “ h˘ H in each case as appropriate, we
recall F˘ “ h 3

c{h 3

˘ where h c may be determined from h` , h´ by (3.11). We obtain

h pξq “ h˘ ` ph c ´ h˘q cosh 2 α˘

cosh 2 p1

2
| ξ | ` α˘q , (5.7)

x pξq “
?
ε h˘

ż ξ

0

ˆ

h pζq 3 ´ h 3

c

h 3
˘ ´ h 3

c

˙ 1{2

dζ , (5.8)

where α˘ is determined from (5.5) using F “ F˘ .
Cusped solitary waves profiles are expressed parametrically by the same formulae after

replacing h˘ with h8 .
An explicit expression for x pξq remains to be obtained. Even if this expression could

be obtained in closed form, it likely would involve special functions that may not be eas-
ily computed. In any case, it is straightforward to compute x pξq directly from the inte-
gral by an efficient quadrature method. We note, however, that Taylor expansion of
sech 2 p1

2
| ξ | ` α˘q implies that for small | ξ | ,

h pξq ´ h c

h˘ ´ h c

“ | ξ | tanh α˘ ` O p| ξ | 2q .

Consequently the integrand of (5.8) has a weak singularity at 0 , with
ˆ

h pζq 3 ´ h 3

c

h 3
˘ ´ h 3

c

˙ 1{2

“ K | ζ | 1{2 ` O p| ζ |q , K “
ˆ

3 h 2

c tanh α˘

h 2
˘ ` h˘ h c ` h 2

c

˙ 1{2

.

This singularity can be eliminated by a change of variable ζ “ ˘ y 2 — then simple
quadratures will yield accurate numerical approximations.

6. Numerical simulations

In this section we examine how the theory of weakly singular shock profiles developed in
this paper fits the smoothed shocks observed in the computations carried out in [4].
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6.1. A dynamically generated wave front

In Fig. 1 we compare a shock profile computed by the theory developed in this paper
with a solution to the rSV system computed as in [4] for “dam-break” initial data, similar to
a Riemann problem for the shallow-water system. For a recent treatment of the classical
Riemann problem for the shallow-water equations, including a discussion of analytical
properties as well as numerical techniques, see [12].

The solid line in Fig. 1 is from the numerically computed solution to the rSV system at
time t “ 15 with ε “ 0.5 and smoothed step function (“dam break”) initial data

h 0 pxq “ h´ ` 1

2
ph` ´ h´q p1 ` tanhpδ xqq

for h´ “ 1.5 , h` “ 1 , g “ 1 , δ “ 1 , as indicated in [4]. The numerical computation
was performed with a Fourier pseudospectral method as described in [9], using an Erfc-
Log filter for anti-aliasing [1] and with N “ 8192 modes on a periodic domain of length
4L with L “ 25 .

The crosses mark the shock profile solution computed parametrically using formulae (5.7)
– (5.8) of the previous section with h´ “ 1.2374 and h` “ 1 , with x shifted by 17.67 .
The bottom part of the figure is a zoom-in on the indicated region of the upper part. We
remark that the computed rSV solution in Fig. 1 corresponds directly to Fig. 3(c) of [4]
— due to a late change of notation the values of ε reported for the computations in [4]
correspond to 2 ε in the present notation.

6.2. Energy dissipation

In Fig. 2 we plot the total energy from (1.4),

E ε ptq “
ż L

´L

E
ε dx , (6.1)

as a function of time, for a solution computed as in Fig. 1 but with anti-aliasing performed
using the filter employed by Hou and Li in [15], namely

ρ p2 k {Nq “ expp ´36 | 2 k {N | 36q , k “ ´N{2, . . . , N{2 ´ 1 ,

applied on each time step. From this data, we estimate the average energy decay rate
dE ε{dt « ´ 0.00326 over the range t P r 14, 15 s . Corresponding to h´ “ 1.2374 ,
h` “ 1 , the dissipation formula (2.14) predicts dE ε{dt “ ´ 0.00318 , giving a relative
error of less than 2.6 percent.

6.3. Cusped waves

The profile of a cusped solitary wave of elevation is plotted in Fig. 3 for h8 “ h` “ 1

and maximum height h c “ 1.3 . We were not able to compute a clean isolated traveling
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Figure 1. Comparison of shock profile with dam-break computation of [4]. The

solid line is the rSV solution with ε “ 0.5 computed by a pseudospectral method.
Crosses mark the shock profile computed as in (5.7) – (5.8), shifted by 17.67 .
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Figure 2. Total energy E
ε vs. t in the smoothed dam break problem as in Fig. 1

with ε “ 0.5 .
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Figure 3. Cusped solitary wave profile for h8 “ 1 , h c “ 1.3 .
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Figure 4. Numerical solution at t “ 6 with initial height from Fig. 3, initial
velocity zero.

cusped wave by taking the numerically computed wave profile for ph, uq as initial data on a
regular grid. Indeed, there is no particular reason our pseudospectral code should work well
for such a singular solution, and anyway it may not be numerically stable. However, when
taking the h´profile in Fig. 3 as initial data with zero initial velocity, the numerical solution
develops two peaked waves traveling in opposite direction as indicated Fig. 4. While hardly
conclusive, this evidence suggests that cusped solutions may be relevant in the dynamics
of the rSV system.

The two peaks here are slightly skewed compared to the profile of a cusped solitary
wave. Our limited exploration uncovered no convincing evidence that cusped waves collide
“cleanly” enough to justify calling them ‘cuspons’ or suggest that the rSV system is formally
integrable — It may be difficult to tell, though, as perturbed cusped waves do not leave
behind a dispersive “tail” in this non-dispersive system.
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7. Discussion and outlook

Our analysis of traveling wave profiles for the rSV system proves that, as the authors of
[4] stated, the regularized system admits ‘smoothed shocks’ that propagate at exactly the
same speed as corresponding classical discontinuous shocks for the shallow water equations.
The new waves are indeed piecewise smooth and continuous, but have weak singularities
which correctly generate the same energy dissipation as the classical shocks.

This ability of the rSV system to correctly model shock wave propagation non-dispersively
without oscillations while conserving energy for smooth solutions is an interesting feature
which deserves further investigation. As demonstrated in [4], it means that a rather straight-
forward pseudospectral method (albeit one which involves careful dealiasing, and iteration
to eliminate the time derivative term in R) computes shock speeds accurately over a wide
range of values of ε , with 2 ε ranging from 0.001 to 5 in the examples treated in [4].

The comparisons made in the previous section above make it plausible that the pseu-
dospectral method used to produce Figs. 1 and 2 is computing an accurate approximation
to a solution of the rSV system which ceases to conserve energy (hence loses smoothness)
around t “ 7 or 8 , and develops afterward a traveling wave whose shape closely matches a
weakly singular shock profile. We speculate that an important source of energy dissipation
in this pseudospectral computation may be the damping of high frequency components
induced for dealiasing purposes.

How this actually happens and what it may mean with regard to the design and accuracy
of numerical approximations remains to be investigated in detail. Often, energy conserva-
tion, or preservation of some variational (Lagrangian) or symplectic (Hamiltonian)
structure, is a desirable feature of a numerical scheme designed for long-time computations
in an energy-conserving system. (See [6, 11, 21, 23] for discussion of variational and sym-
plectic integrators.) But for the rSV system considered here, exact conservation of energy
appears to be inappropriate for approximating solutions containing weakly singular shock
profiles, which dissipate energy as we have shown.

At present, the issue of preservation of symplectic structure may be moot anyways, since
we are not aware of a canonical Hamiltonian structure for the rSV system. It seems worth
mentioning, however, that the rSV system admits the following non-canonical Hamilton-

ian structure. Namely, with

H “
ż

1

2
h u 2 ` 1

2
g ph ´ h8q 2 ` ε

ˆ

1

2
h 3 u 2

x ` 1

2
g h 2 h 2

x

˙

dx ,

and m “ h u ´ ε ph 3 u xq x , the rSV system is formally equivalent to

B t

˜

m

h

¸

“ ´
˜

B xm ` m B x h B x

B xh 0

¸

¨
˜

δH{δm
δH{δh

¸

.

This is a simple variant of the Hamiltonian structure well-known for the Green–Naghdi

equations [7, 13, 19, 22], obtained by replacing the Green–Naghdi Hamiltonian with
a Hamiltonian derived from (1.5).
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Finally, as we have mentioned, quite a number of analytic questions remain for further
investigation, involving the development of weak singularities in smooth solutions of the rSV
system, the existence of solutions with weak singularities, and whether these phenomena
occur for other important models of physical systems.
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