
HAL Id: hal-01793879
https://hal.science/hal-01793879v1

Submitted on 17 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HISTAMINE NEURONAL SYSTEM AS
THERAPEUTIC TARGET FOR THE TREATMENT

OF COGNITIVE DISORDERS
Patrizio Blandina, Leonardo Munari, Patrizia Giannoni, Chiara Mariottini,

Maria Beatrice Passani

To cite this version:
Patrizio Blandina, Leonardo Munari, Patrizia Giannoni, Chiara Mariottini, Maria Beatrice Passani.
HISTAMINE NEURONAL SYSTEM AS THERAPEUTIC TARGET FOR THE TREATMENT OF
COGNITIVE DISORDERS. Future Neurology, 2010, �10.2217/fnl.10.30�. �hal-01793879�

https://hal.science/hal-01793879v1
https://hal.archives-ouvertes.fr


  1 

HISTAMINE NEURONAL SYSTEM AS THERAPEUTIC TARGET FOR THE 

TREATMENT OF COGNITIVE DISORDERS 

Patrizio Blandina1, Leonardo Munari1, Patrizia Giannoni2, Chiara Mariottini3 and 

Maria Beatrice Passani1 

 

1Dipartimento di Farmacologia Preclinica e Clinica, Universitá di Firenze, Italy. 
2Department of Pathology, New York University School of 

Medicine, New York, NY, USA 
3Department of Pharmacology and Biological Chemistry, The Mount Sinai 

School of Medicine, New York, NY, USA. 
 



  2 

HISTAMINE IS A NEUROTRANSMITTER 

The first indication of the functional importance of histamine in the CNS can 

be traced back to the 1930's, when it was observed that centrally 

penetrating histamine H1 antagonists had marked sedative properties. Yet, no 

attention was given to histamine receptors as sites of action for these 

unwanted effects (1). Indeed, histamine role as aneurotransmitter has been 

neglected for many years, in spite of early reports of its presence in the brain 

(2), and suggestions that this amine has central functions (3). The delay in 

searching for a histaminergic neuronal system, compared to the exploration 

of other aminergic neurotransmitter systems, may rest on the methods 

available for their visualization. The distribution of the catecholaminergic and 

serotonergic neurons in the brain became known using a fluorescent 

immunohistochemical analysis with o-phtalaldehyde as a tracer (4). However, 

the same method was not suitable for visualizing histamine because of a 

strong interference with the ubiquitous spermidine (5). The first direct 

evidence of the existence of histaminergic neurons came only in the 1980’s, 

with the development of immunohistochemistry using antibodies against 

histamine (6) and histidine decarboxylase (7). All histaminergic neurons are 

localized in the tuberomammillary nucleus (TMN) of the posterior 

hypothalamus (6, 7), that is also location of histidine decarboxylase 

immunoreactivity (8), an essential determinant of brain histamine levels (9, 

10). They project to almost all regions of the central nervous system (11) 

mostly unmyelinated fibers that, with the exception of the mesencephalic 

trigeminal nucleus (12), do not form synaptic contacts, but present diffuse 

varicosities containing synaptic vesicles (13, 14). This peculiarity suggests 

that histamine may act as a local hormone affecting not only neuronal, but 

also glial activity and blood vessel tone (15). Consistently, cultured 

astrocytes from rat cerebral cortex display histamine receptors identical to 

those present on neuronal cells (16, 17). This morphological feature, a 
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compact cell group with widely distributed fibers, resembles that of other 

biogenic amines systems, such as norepinephrine or serotonin, thus 

suggesting that histaminergic neurons as well may regulate several central 

functions. 

 

HISTAMINE RECEPTORS AS THERAPEUTIC DRUG TARGETS 

Histamine exerts its effect interacting with specific receptors, H1R (18), H2R 

(19), H3R (20) H4R (21), and with the polyamine-binding site on the NMDA 

receptor complex (22). All four histaminergic receptor subtypes belong to 

the rhodopsin-like family of G protein-coupled receptors (GPCR) (23, 24), and 

are functionally expressed on neurons in the mammalian central nervous 

system (5, 25). The first two members of the histamine receptor family, H1R 

and H2R are well established drug targets, and antagonists of these receptors 

have been successful as blockbuster drugs for treating allergic conditions and 

gastric ulcers. Whereas at present H4R is still waiting for a better functional 

characterization, the discovery of the H3R by Jean-Charles Schwartz and his 

group in Paris has been a real breakthrough in histamine research (20). This 

receptor is largely confined to the nervous system (26), where it acts as a 

presynaptic autoreceptor that restricts histamine release as well as synthesis 

both in vitro (20), and in vivo (27-30). The H3R is located also on 

histaminergic somata where it provides a tonic inhibition of firing (31). 

Moreover, the presence of the H3R is not restricted to histaminergic neurons 

(32-34). Accordingly, H3Rs act also as heteroreceptors modulating the 

release of other neurotransmitters, including ACh (35, 36), dopamine (37), 

noradrenaline (38) and serotonin (39, 40) from brain regions crucial for the 

maintenance of alertness or the storage of information (1). Network analyses 

of the brain and its dysfunction suggest that agents with multiple and 

complementary modes of action are more likely to show broad-based efficacy 

against core and comorbid symptoms. Thus, the regulatory role in the release 
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of histamine and other neurotransmitters makes the H3R an attractive target 

for therapies of CNS disorders, and H3R ligands are good therapeutic 

candidates for their simultaneous exploitation of multiple neuronal systems. 

Consistently with the widespread distribution throughout the entire central 

nervous system of histaminergic fibers (41, 42), brain histamine is, directly or 

indirectly, involved in a variety of basic homeostatic and higher brain 

functions, such as sleep-wake cycle, appetite, nociception, cognition and 

emotion (1, 5). H3R antagonists/inverse agonists have been shown to 

increase wakefulness, improve cognitive performances and reduce body 

weight in animal models (5). Such findings hint at the potential use of these 

compounds for the treatment of Alzheimer’s Disease and other dementias, 

ADHD, cognitive deficits in schizophrenia, obesity and sleep disorders (43-

46). Thus, it is not surprising that much effort is focused on the development 

of clinically suitable H3R antagonists/inverse agonists by academic and 

industrial laboratories (45-47). As a result, more and more H3R 

antagonists/inverse agonists (ABT-239, [4-(2-{2-[(2R)-2-

methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile; BF2.649, 1-{3-[3-(4-

Chlorophenyl)propoxy]propyl}piperidine, hydrochloride; GSK189254, 6-[(3-

Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-

pyridinecarboxamide hydrochloride; JNJ-10181457, 4-[3-(4-Piperidin-1-yl-

but-1-ynyl)-benzyl]-morpholine; MK-0249, not disclosed structure; PF-

03654746,  not disclosed structure) progress through the clinic for a variety 

of conditions, including Attention-deficit Hyperactivity Disorder (ADHD), 

Cognitive disorders, Hyperalgesia, Narcolepsy and Schizophrenia (46). 

 

CHARACTERISTICS OF THE H3R 

H3R is largely confined to the nervous system and the highest levels were 

found in the cerebral cortex, hippocampus, basal ganglia, and hypothalamus 

(33, 34). This receptor has multiple splice variants. Not all isoforms appear to 
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be functional and some of them might regulate functional isoforms by 

associating with them (48). H3Rs are members of the seven transmembrane 

receptor superfamily (49) and couple to Gi/o proteins (50). Their stimulation 

restricted the influx of calcium ions (51), inhibited adenylate cyclase (49), 

and increased extracellular signal-related kinase (ERK) phosphorylation in 

receptor-transfected cells (52). All histaminergic receptors displayed a high 

degree of constitutive (agonist–independent) activity, that occured in human, 

rat and mouse recombinant receptors expressed at physiological 

concentrations (53-56). Noteworthy, constitutive activity of native H3Rs 

seems one of the highest among GPCRs in the brain (57). Constitutively 

active H3Rs presumably regulate the release of neuronal histamine (55), 

therefore several H3R antagonists (e.g.: clobenpropit, thioperamide and 

ciproxifan) that block constitutive activity are being reclassified as inverse 

agonists, a concept that may have clinical relevance. Indeed, either inverse 

agonists or neutral antagonists may be favorable for different therapeutic 

applications. 

 

THERAPEUTIC POTENTIALS OF H3R ANTAGONISTS/INVERSE 

AGONISTS IN COGNITIVE AND EMOTIONAL DISORDERS 

Considerable interest was raised by reports that pharmacological blockade of 

H3Rs exerted procognitive effects in a variety of animal tasks analyzing 

different types of memory. In the social memory (58, 59), the five-trial 

inhibitory avoidance task (60, 61), and the five-choice, serial reaction time 

test (62), rats treated with H3R antagonists/inverse agonists performed 

better than controls. Further studies indicated that both imidazole and non-

imidazole H3R antagonists/inverse agonists exerted procognitive effects also 

in cognitively impaired animals: as observed in senescence-accelerated mice 

or scopolamine-impaired rats challenged in a passive-avoidance response (63, 

64), scopolamine-impaired rats tested in the object recognition (43, 64, 65) 
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or the elevated plus-maze paradigm (66), and MK-801-treated rats evaluated 

in the radial maze (67). Administration of non-imidazole H3R 

antagonists/inverse agonists, A-304121 or A-317920 improved cognitive 

performances also in spontaneously hypertensive rat pups, which were 

normotensive during early development, but exhibited many cognitive 

impairments (60, 61). Certainly, such a model is clinically very relevant, as 

deficits are genetic in origin and do not require pharmacological or surgical 

intervention. Although another report provided some contrasting data, as 

H3R antagonists/inverse agonists impaired object recognition in wild-type and 

Apoe-/- mice (68), these findings may be relevant to predict the potential of 

H3R antagonists/inverse agonists in ameliorating cognitive dysfunctions in 

humans(61). In this regard, it is important the demonstration that 

[3H]GSK189254 labeled H3Rs in hippocampal and cortical sections from 

patients with advanced AD (69), suggesting the persistence of H3Rs even in 

severe AD. 

If cognitive deficits are related to reduced availability of acetylcholine (ACh) 

in the synaptic cleft (70), increase of ACh release in the prefrontal cortex 

exerted by H3R antagonists/inverse agonists could account for the 

procognitive effects produced by these compounds, at least in short term 

memory paradigms with important cortical cholinergic components, such as 

object recognition (71) and a passive avoidance response (72). Indeed, H3R 

ligands modulate cortical ACh release in a bimodal fashion, and modify the 

expression of memories accordingly. Stimulation of cortical H3Rs inhibited 

local ACh release, and impaired object recognition and a passive avoidance 

response (36). Conversely, TMN perfusion with GSK189254, a non-imidazole 

H3R antagonists/inverse agonists, increased significantly the release of 

cortical ACh in freely moving rats, and counteracted amnesic effects 

produced by scopolamine administration in rats as measured in object 

recognition (65). Cortical ACh increase can be a consequence of the 
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augmentation of histamine release in the nucleus basalis magnocellularis 

(NBM) elicited by intra-TMN administration of GSK189254 (65). Indeed, 

histamine, by activating H1 receptors, depolarized the cell membrane and 

increased the tonic firing of NBM cholinergic neurons (73), that provide all 

cholinergic innervation to the cortex (74). These findings are in keeping with 

the report that perfusion of the NBM with H3R antagonists/inverse agonists 

increased cortical ACh release (75). H3R antagonists/inverse agonists also 

augmented NBM histamine release by blocking local H3-autoreceptors (65, 

76). A comparable enhancement of cortical ACh was observed also in 

response to systemic administration of several non-imidazole H3R 

antagonists/inverse agonists, such as ABT-239 (59), BF2.649 (77), or 

GSK189254 (78). Neuronal alterations associated to cognitive deficits are 

not restricted to the cholinergic systems as many neurotransmitter systems, 

including dopamine, contribute to specific aspects of cognition. Therefore, it 

is important to point out that systemic administration of ABT-239 (59), or 

BF2.649 (77) increased also the release of cortical dopamine. H3R 

antagonists/inverse agonists though failed to increase dopamine release from 

other regions such as the striatum (59) or the nucleus accumbens (65), and 

these observations may provide the rational basis for clinical indication in 

disorders like schizophrenia or ADHD. 

Interactions between the histaminergic and cholinergic systems serve as one 

of the physiological correlates for learning and remembering, however, H3Rs 

modulate ACh release with modalities that differ according to regional 

architectural constraints, to their role as auto- or hetero-receptors, and to 

the distinct actions that histamine exerts by activating different receptor 

subtypes. Noteworthy, basolateral amygdala (BLA) perfusion with H3R 

agonists increases, whereas with H3R antagonists/inverse agonists decreases 

ACh release from the BLA (79, 80). These drugs impacted presumably on 

inhibitory H3-autoreceptors, as in the BLA H3R receptor binding was strictly 
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associated with the presence of histaminergic fibers (81). Consistently, BLA 

perfusion with H3R antagonists/inverse agonists increased endogenous 

histamine release (82), which, in turn activated postsynaptic H2Rs, and 

inhibited ACh release (79). The BLA receives the most abundant 

histaminergic innervation in the brain (83), and displays both high H2R 

binding and its gene transcripts (84). Crucial neural changes mediating 

emotional memory occur in the BLA (85, 86). Emotional memory may be 

assessed with contextual fear conditioning in which experimental animals learn 

to associate a mild electrical foot-shock with the environment where they 

receive the punishment. A critical event for aversive memory consolidation is 

the activation of muscarinic receptors within the BLA (79, 80, 87). In this 

regard, it is relevant that BLA perfusion with H3R antagonists/inverse 

agonists impaired (79), whereas with H3R agonists ameliorated expression of 

this form of associative memory (80). These results contrast with the 

findings in the cortex. Nevertheless, since BLA is engaged in the development 

of mood disorders associated with extreme emotional traumas, the use of 

H3R antagonists/inverse agonists that weaken traumatic memories may be 

proposed to alleviate disorders such as post-traumatic stress syndrome 

(PTSD), panic attacks, specific phobias and generalized anxiety. 

Brain histamine affect emotional memory also eliciting ERK2 phosphorylation 

in hippocampal CA3 pyramidal cells, an event that is crucial for the 

consolidation of contextual fear memory (88). 

 

AROUSAL ELICITED BY H3R ANTAGONISTS/INVERSE AGONISTS AND 

ITS CONTRIBUTION TO PROCOGNITIVE EFFECTS 

Cognition is a complex phenomenon involving the integration of multiple 

neurological activities among which arousal is crucial (89, 90). Histamine is, 

along with orexin, one of the major wake-promoting neurotransmitters in the 

central nervous system (91), as histidine decarboxylase knock-out mice that 
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lack histamine, are unable to remain awake when high vigilance is required 

(92). Also narcoleptic dogs show histamine deficiency (93). It is known that 

histaminergic neurons fire at higher frequency during wakefulness than during 

sleep (94). Moreover, histamine is responsible for cortical EEG 

desynchronization (91), a salient sign of wakefulness (1, 95). Brain histamine 

elicits cortical activation directly, through excitatory interactions with 

cholinergic corticopetal neurons originating from the substantia innominata 

(96) and the nucleus basalis magnocellularis (75), and indirectly, as it 

activates, through stimulation of cholinergic neurons in the mesopontine 

tegmentum, thalamo- and hypothalamo-cortical circuitries (97). H3R blockade 

by local perfusion of thioperamide into the TMN increased the time spent in 

wakefulness along with the release of TMN histamine in freely moving rats 

(76), thus suggesting that they, by increasing arousal, may enhance 

attention and improve cognitive performances. However, several H3R 

antagonists/inverse agonists produced cognitive enhancing effects at much 

lower doses than those required to elicit a robust wake enhancement (59, 

61). For example, ABT-239 produced no detectable change in slow-wave EEG 

at 30 mg/kg, whereas it was effective in social recognition at 0.01 mg/kg 

(59). Consistently, for ciproxifan, thioperamide or GSK189254, only a 

relatively low level of cumulative wake activity was linearly correlated with up 

to 80% of the receptor occupancy, and an abrupt break from linearity along 

with a robust increase of waking activity was observed at doses that 

produced greater than 80% occupancy (98). High or low levels of H3R 

occupancy may express activities mechanistically different, and H3R 

antagonists/inverse agonists procognitive actions may not relate to increased 

arousal. Thus, lower dosage might be used to address H3R 

antagonists/inverse agonists actions specifically towards cognition. This is an 

important issue, since nocturnal sleep should ideally not be disturbed by drug 

therapies. Nevertheless, at least at higher dosage, this class of drugs 
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constitutes a novel effective treatment of narcolepsy and excessive daytime 

sleepiness (EDS), and this contention is supported by both preclinical and 

clinical data. Indeed, acute administration of GSK189254 reduced narcoleptic 

episodes in orexin knock out mice (99). Moreover, in a pilot single-blind 

clinical trial on 22 patients diagnosed with narcolepsy receiving a placebo for 

a week, followed by tiprolisant (BF2.649) for another week, the Epworth 

Sleepiness Scale (ESS) score was reduced from a baseline value of 17.6 by 

1.0 with the placebo (p>0.05) and 5.9 with tiprolisant (p<0.001) (100). 

Excessive daytime sleep, unaffected under placebo, was nearly suppressed on 

the last days of tiprolisant dosing (100). 

 

H3Rs AND NEUROPROTECTION 

Much of the recent interest in developing new ligands of the H3R stems 

from the potential use of H3R antagonists in controlling feeding behaviour, 

disorders of the sleep-wake cycle and cognitive impairments associated with 

Alzheimer’s or Parkinson’s disease (reviewed in (101)). However, there are 

potential therapeutic applications for H3R agonists as well. H3R activation in 

the CNS results in lower hypothalamic histamine release and H3R agonist 

may be used against insomnia (102). Also, Hough and co-workers have 

revealed an antinociceptive role for spinal histamine H3R (103). In the past 

years, several studies have hinted at a role of the histaminergic and H3R in 

neuroprotection. The first clear indication of how plastic the brain 

histaminergic system is following injury, was provided by Panula and 

collaborators. They showed that H3R mRNA is up-regulated in the rat 

caudate and putamen following induction of transient global cerebral 

ischemia (104), or in the rat cortex following kainic acid induced seizures 

(105), although with different time courses and recovery. A more recent, 

paper published by the same group elegantly demonstrated that histamine 

protects hippocampal neurons from damage induced by kaininc acid in 



  11 

organotipic co-cultures of hypothalamic and hippocampal tissue (106). The 

hypothalamic histaminergic innervation of hippocampal neurons affords the 

neuroprotective effect and the blockade of, presumably presynaptic 

autoinhibitory, H3R ameliorates the protective effect histaminergic neurons. 

We recently showed that H3R agonists activate anti-apoptotic pathways 

such as the PI3K/Akt/GSK-3beta pathway (107). The Akt pathway has been 

implicated in regulating several important cellular processes, including cell 

plasticity and survival, proliferation and metabolism. Akt promotes neuronal 

cell survival and opposes apoptosis by a variety of routes, e.g. modulating 

inhibitors of apoptosis such as Bcl-2 and Bcl-x (Song et al. 2001). Indeed, 

H3R agonists in our model increase the expression of Bcl-2, and decreases 

the expression of pro-apoptotic elements such as caspase-3 following 

neurotoxic insults in cultured murine cortical neurons (107). Hence, 

stimulation of H3R protects cortical neurons from NMDA-induced neurotoxic 

insults and this observation may have relevance in the prevention of, for 

instance, ischemic neuronal damage or neurodegenerative diseases. As a 

matter of fact, schizophrenic patients have impaired Akt/GSK-3β signalling 

(108) and evidence points to a key role for GSK-3β in promoting 

neurodegeneration (109). GSK3 is involved in a cascade of events, such as 

hyperphosphorylation of tau protein, increased production of β-amyloid, 

local cerebral inflammatory responses that may culminate in Alzheimer’s 

disease (110). In this regard, binding studies showed that the expression of 

H3R is spared in the brain of Alzheimer’s patients (78). To fully understand 

the impact of H3R-induced activation of antiapoptotic pathways in the CNS, 

in vivo experiments are necessary, the more so as H3R antagonists are now 

viewed as potential therapeutics for schizophrenia (77) and Azheimer’s 

disease (78). 

 

HETEROGENEITY OF HISTAMINERGIC NEURONS 
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In a comparable architecture to noradrenergic, dopaminergic, and 

serotonergic systems (111, 112), somata of histaminergic neurons are 

restricted to discrete cell clusters in the hypothalamic TMN, and send their 

axons to innervate nearly the entire central nervous system (6, 7). 

Cathecolaminergic and serotonergic nuclei are comprised of distinct 

compartments with respect to projection fields, as distinct sets of axons 

innervating separate brain regions originate from separate subgroups of 

noradrenergic (A1-A7), dopaminergic (A8-A17), and serotonergic (B1-B9) 

neurons (111, 112). This does not seem to be the case for the histaminergic 

system, as retrograde tracers injected into different CNS regions labeled 

histaminergic somata scattered throughout the TMN without a strict 

topographical pattern (8, 11, 113). Noradrenergic, dopaminergic, and 

serotonergic patterns imply independent functions of sets of neurons 

according to their origin and terminal projections. On the contrary, the 

morphological feature of the histaminergic system is consistent with the 

hypothesis of a single regulatory network for whole-brain activity, which 

modulates general states of metabolism and consciousness, rather than 

processing specific functions (15). However, very recently direct evidence 

demonstrated that histaminergic neurons as well are organized into 

functionally distinct circuits impinging on different brain regions, and 

displaying selective control mechanisms. Using the double-probe microdialysis 

technique in freely-moving rats it was observed that histaminergic neurons 

established distinct pathways related to independent functions according to 

their terminal projections, and to their sensitivity to H3R antagonists/inverse 

agonists or GABAA-receptor antagonists (65, 76). GABAA-R activation inhibits 

directly histaminergic cell firing rate (114, 115), whereas inhibition increases 

significantly TMN histamine release (116). Depending on GABAA-R subunit 

expressions, histaminergic neurons displayed different sensitivity to GABA 

(117, 118). This may account for the functional heterogeneity of GABAergic 
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responses displayed by histaminergic neurons following stimulation of the 

diagonal band of Broca, the antero-lateral hypothalamus, or the lateral 

preoptic area (114). The finding that Intra-hypothalamic perfusion of 

bicuculline increased histamine release from the TMN, the nucleus accumbens 

and cortex, but not from the striatum (76), indicates that sensitivity to 

bicuculline relates to TMN neurons heterogeneity also with respect to 

projection fields. 

Application of imidazole or non imidazole H3R antagonists/inverse agonists 

locally into the TMN, significantly increased histamine release from the TMN, 

the prefrontal cortex and the NBM, but not from the striatum or nucleus 

accumbens (65, 76). These findings indicate that histamine neurons 

projecting to the dorsal striatum and nucleus accumbens were insensitive to 

blockade of H3Rs (65, 76). Spatial segregation due to probe localization does 

not explain why histaminergic neurons projecting to the striatum or nucleus 

accumbens do not respond to H3R antagonists/inverse agonists. Infact, 

bicuculline administered into the TMN augmented significantly histamine 

release from the nucleus accumbens (76), and TMN perfusion with 

cannabinoid1 receptor agonists increased histamine from the dorsal striatum 

(116), confirming the existence of histaminergic afferents to the striatum. 

Furthermore, retrograde tracing with dye injections into the striatum or 

prefrontal cortex labeled most histaminergic somata within the same area, 

the medial part of the ventral TMN [Kohler, 1985 #2243]. This proximity 

suggests that the compounds administered through the microdialysis probe 

affected, indiscriminately, histaminergic cells projecting to the striatum and 

prefrontal cortex. Interestingly, previous studies showed that following 

GSK189254 administration, activation of c-fos occurred in cortical areas and 

the TMN, but not in striatum (78). Moreover, local perfusion of the striatum 

with H3R antagonists/inverse agonists did not alter spontaneous histamine 

release (65, 76), suggesting that the entire somatodendritic domain of 
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histaminergic neurons projecting to this region were insensitive to H3R 

blockade. Since the magnitude of neuronal responses to extracellular signals 

might depend also on different receptor number at the membrane, it is 

important to underline that in the TMN, some HDC-positive cells displayed 

very low levels of H3R immunoreactivity (76), although no evidence 

demonstrates that these cells are the ones innervating the nucleus 

accumbens or striatum. On the other hand, histamine increases in the 

prefrontal cortex and NBM were likely due to discharge potentiation of 

histamine neurons sending afferents to these regions, in analogy to TMN 

perfusion with prostaglandin-E2 (119), orexin-A (120), or endocannabinoids 

(116). 

These observations suggest that the histaminergic system is organized into 

distinct circuits modulated by selective mechanisms. This could imply 

independent functions of subsets of histaminergic neurons according to their 

respective origin and terminal projections. 

 

CONCLUDING REMARKS 

A wide variety of studies agree that the neuronal histaminergic system 

regulates some forms of cognition, and, inevitably, reports that 

pharmacological blockade of central H3Rs exerted procognitive activity in 

several cognitive tasks has raised considerable interest. The molecular 

pharmacology is uncovering the extraordinary complexity of the H3R: it 

shows functional constitutive activity, polymorphisms in humans and rodents 

with a differential distribution of splice variants in the central nervous system, 

and potential coupling to different intracellular signal-transduction 

mechanisms (1, 5). Thus, it will be a great challenge in the years to come to 

develop ever more selective agonists, inverse agonists, pure antagonists of 

the H3R, as well as ligands for its various isoforms. All histaminergic neurons 

are believed to express H3Rs, and response to H3R ligands is a criterion for 
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their identification in vitro. Contrary to this general assumption, it has been 

recently reported that histamine neurons projecting to the striatum and 

nucleus accumbens are insensitive to thioperamide, an H3R antagonist (65, 

76), thus suggesting that histamine neurons are more functionally 

heterogeneous than previously thought (15). Although further studies are 

required to understand the full implications of such functional heterogeneity 

of histaminergic neurons, the possibility that H3Rs control only some of those 

functions implies that H3R-directed therapies may achieve selective effects 

with minimal side effects, and this may increase the interest for this class of 

drugs. 
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