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We investigate the properties of magnetic islands arising from tearing instabilities that are driven
by an interchange turbulence. We find that such islands possess a specific signature that permits an
identification of their origin. We demonstrate that the persistence of a small scale turbulence
maintains a mean pressure profile, whose characteristics makes it possible to discriminate between
turbulence driven islands from those arising due to an unfavourable plasma current density
gradient. We also find that the island poloidal turnover time, in the steady state, is independent of
the levels of the interchange and tearing energy sources. Finally, we show that a mixing length
approach is adequate to make theoretical predictions concerning island flattening in the island
rotation frame.VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894699]

I. INTRODUCTION

In fusion devices, confinement can be affected by vari-
ous instabilities acting at different time and spatial scales. In
particular, a magnetic tearing instability can lead to the gen-
eration of magnetic islands that can reach a macroscopic
width whereas at smaller scales, interchange like instabilities
usually generate turbulence.1 An important issue is the
understanding of the interaction between turbulence and
islands. Indeed, for an efficient control of neoclassical tear-
ing modes (possibly a stabilization) and therefore an avoid-
ance of disruptions, one needs to develop a clear
understanding of the multiscale mechanisms that are
involved. In the past decades, island properties and turbu-
lence characteristics have typically been studied independ-
ently except in a few theoretical papers2–6 where turbulence
has been assumed to act on the islands through an enhance-
ment of transport parameters. However, the problem needs
to be addressed in a self consistent manner since the island
and the turbulence influence each other’s evolutions through
a mutual interaction. As it has been shown in Refs. 7–10, a
magnetic island can substantially modify the nature of turbu-
lence and also possibly trigger new short wavelength micro-
instabilities that can impact the transport properties of a
plasma in the presence of a magnetic island. In particular, in
this context, the existence and the calculation of turbulent
viscosity have been investigated in Ref. 11. On the other
hand, turbulence can affect the island dynamics and can
even provide the necessary free energy to generate it through
nonlinear mechanisms as has been discussed in Refs. 8 and
12–15. As of now there is no experimental proof that such a
mechanism is indeed at work, although it could give some
key explanations for the unexpected onset of islands. Indeed,
while (3,2) NTM magnetic islands, in the core of the plasma,
are often triggered by sawtooth precursors,16 (2, 1) magnetic
islands can appear without any noticeable MHD event or any

current driven instability.17 It follows that the determination
of a specific signature of islands generated by turbulence
would be useful to gather experimental evidence of these
mechanisms and to improve the means for controlling
islands in fusion devices.

In this paper, we aim to tackle this question by consider-
ing the generation of islands by resistive interchange turbu-
lence and to extract any key features that differentiate these
turbulence driven islands from the conventional current gra-
dient driven magnetic islands. A second objective of our
study is to clarify the interplay between zonal flow, diamag-
netic effects, magnetic island and small scale instabilities.
Our paper is organised as follows. Section II presents the
model equations which include curvature parameters and
diamagnetic effects and also provides details of the numeri-
cal procedures used to solve the model equations. In Sec. III,
we discuss the origin of the zonal flows and the flattening of
the tearing driven magnetic islands in the context of the
model. In Sec. IV, we focus on turbulence driven islands.
We review briefly the mechanisms generating them and pres-
ent their elementary characteristics, including pressure flat-
tening. In Sec. V, we analyze the origin of their rotation. We
also discuss the interplay between interchange and island
scales. In Sec. VI, we study the origin of the pressure flatten-
ing in both the early and the asymptotic nonlinear phases.
We identify a key feature (signature) of a turbulence driven
magnetic island that is linked to the pressure profile proper-
ties. We also propose a mixing length model to predict the
island flattening. In Sec. VII, we present a discussion of our
results and make some concluding remarks.

II. MULTISCALE INSTABILITIES MODEL

Our simulations are carried out on a minimal two-
dimensional plasma model based on the two-fluid Braginskii
equations in the drift approximation18,19 with cold ions and
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isothermal electrons. The model includes magnetic curvature
and electron diamagnetic effects:8
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where the dynamical field quantities are the electrostatic
potential /, the electron pressure p and the total magnetic
flux w (with w0¼w0(x) denoting its equilibrium profile).
The vorticity and the current in the parallel direction are,
respectively, x ¼ r2

?/ and j ¼ r2
?w. The equilibrium con-

sists of a constant pressure gradient and a magnetic field
given by the Harris current sheet model,20,21 namely,
B0ðxÞ ¼ tanh x

a

% &
ŷ, where a determines the width of the pro-

file. Details of the model can be found in Ref. 8. The numeri-
cal resolution of our simulations is up to 1024 grid points in
the x (radial) direction and to 256 poloidal modes. In this
study, we have fixed q̂ ¼ 0:058; v? ¼ 10#2; j1 ¼ 5; j2
¼ 0:36 and the dissipative parameters (l, v?, g) are all set
equal to 10#4.

We next categorize the most unstable interchange mode
number by m? and its growth rate by cm?

. In this work, the
modes m& 2 are stable with respect to tearing instability and
the parameter set imposes m? ' 1 when D0 < 1:16. The nature
of the m¼ 1 mode, i.e., the radial parity, depends on the com-
petition between the interchange and tearing instabilities. The
stiffness of the magnetic equilibrium profile at the resonance
(a#1 for the Harris magnetic equilibrium) modifies the growth
rate of both interchange and tearing modes as well as the sta-
bility index parameter D0

m¼1 ( D0.22 If we take a as a control
parameter and keep the box sizes constant, D0 can be seen as a
measure of the stiffness: the smaller the D0, the larger are m?

and cm?
and the smaller the tearing instability growth rate c1T .

We carry out a range of linear and nonlinear simulations
with different values of D0. The linear growth rates c1ðD0Þ of
the modes m¼ 1 and m¼m? are given in Fig. 1. Note that

the tearing mode m¼ 1 is marginally stable or unstable but is
weaker than interchange mode for D0 ) 1:16. Linear spectra
are shown in Fig. 2 For D0 ¼ #0:45, the large scale m¼ 1
tearing instability is stable (cT1 < 0), m?¼ 17, and a wide
range of interchange unstable modes are present. In the case
of D0 ¼ 1:16, the dominant m¼ 1 linear mode is driven by a
tearing instability and mode numbers m ! (Refs. 2 and 13)
are unstable with respect to the interchange instability.

III. TEARING DRIVEN ISLANDS

Before studying the impact of interchange instability on
magnetic islands, we have to clarify the island properties in
the absence of turbulence. Indeed, first, we need to highlight
the differences with the extensively studied case where pres-
sure fluctuations and curvature terms are neglected (see
Ref. 23 and references there in). Second, we also want to ver-
ify to what extent the classical flattening mechanism of island,
based on anisotropic diffusion considerations, is valid.24 Let
us focus on a situation where the m¼ 1 tearing instability is
strongly dominant by considering the D0 ¼ 4:02 case.

A. Generation of zonal flows

It has been shown22 that curvature leads nonlinearly to
the generation of zonal flows (mean poloidal flows or ZF),
with energy transfer occurring from the unstable tearing
mode m¼ 1 through the Maxwell stress. A snapshot of the
ZF is shown in Fig. 3. Note that it is slightly asymmetric in
terms of parities. It concentrates also the energy of the flow,
as indicated by the spectra shown for the same time. In fact,
the origin of the zonal flows comes from curvature terms
because they introduce a parity symmetry breaking25 in the
tearing mode structure. More precisely, in the minimal
model for tearing instability p¼ ji¼ v?¼ 0, zonal flows are
not generated because the tearing mode satisfies, both in the
nonlinear and linear regimes, the following well known
symmetries: there exists y? such that, for any dy, w(x,
y?þ dy, t)¼w(x, y?# dy, t) and /ðx; y? þ dy; tÞ ¼ #/ðx; y?
#dy; tÞ. In the model (1–3), there is no such symmetry.
Indeed, first, the fluid Larmor radius term and Maxwell stress
generate, respectively, pressure fluctuations and vorticity
perturbations localized at the resonant surface. The resulting

FIG. 1. Growth rates of the modes
m¼ 1 and m? obtained by linear and
nonlinear simulations. The colors indi-
cate the parity of the mode.
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potential, which depends also on the boundary conditions, is
not localized. Second, pressure fluctuations are also ampli-
fied by the diamagnetic and curvature terms, which are pro-
portional to / but not to x, and p. Therefore they also
contain a non-localized part with radial extension, roughly,
the size of the potential flow structure. The resulting two
scale pressure structure does not present any global symme-
try, even in the linear phase, as observed in the zoomed snap-
shot of the pressure in Fig. 3. Consequently, the m¼ 1
tearing mode generates nonlinearly both zonals flow and
mean pressure fluctuations. The latter contribute jointly
to the flattening of the island observed in the last graph of
Fig. 3.

B. Perturbed temperature profile and implicit thermal
conductivity

The model contains implicitly a parallel conductivity19

and one might expect that it explains the pressure flattening
when the island width becomes much larger than the critical
island width wc ¼

ffiffiffi
8

p
ðv?=vkÞ

1=4 ffiffiffiffiffiffiffiffiffi
a=ky

p
2 ½0:17; 0:34+ for

negative D0 runs.24 The implicit parallel diffusivity is defined
as vk ( g#1q̂2 and Dk is the operator ½~w; ½~w; :++. This parallel
conductivity is in fact equal to the collisional parallel con-
ductivity v2Te=!ei where vTe is the thermal electronic tempera-
ture and !ei the ion-electron collision frequency. Note that
the model does not contain explicit collisional parallel con-
ductivity. However, the ExB shear flow possibly contributes

FIG. 2. Linear spectra: (a) D0 ¼ #0:45, (b) D0 ¼ 1:16.

FIG. 3. D0 ¼ 4:02. (a) Mean poloidal
flow at t¼ 15 000. (b) Spectra in the
nonlinear phase at t¼ 15 000. (c)
Snapshot of the pressure fluctuations
(zoom), in the linear phase at t¼ 3000.
(d) Snapshot of the pressure at
t¼ 100 000.
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to the flattening and not only to the island rotation. For
instance, only the zonal flow part of the convective term
½/; p+; /0

m¼0@yp, possibly accounts for the drive of pressure
fluctuations at the island velocity. The flow is neglected in
the Fitzpatrick model. To clarify the role of the flow and the
implicit conductivity, let us consider the dominant terms in
the pressure evolution equation. We find that when the tear-
ing instability drives the dynamics, i.e., when D0 is large
enough, the fluid Larmor radius term dominates the pressure
equation: in the nonlinear regime the following typical
amplitudes for the different terms of the pressure equation
are found @tp , q2?½w; j# j0+ , 3:10#3 ' ½/; p+ , 3:10#4

& other contributions ðD0 ¼ 4:02Þ. To measure the link
between the ExB flow and the island flattening, we carry out
the study in the island rotating frame of reference. Let us
therefore introduce the quantities ~pðx; y isl; tÞ ¼ pðx; y; tÞ
where y isl ¼ y# v islt and ~/ isl ¼ ~/ # v islx. Here visl (t) is the
poloidal island velocity which is essentially the sum of the
diamagnetic and the E-B velocities, including nonlinear
fluctuations.22 In the island frame of reference and in the
nonlinear regime, using the Ohm’s law, we obtain

@t~p , vkDkð~p # ~/islÞ þ vk½~w; @t~w+: (4)

Note that in terms of amplitudes, Dk~/ isl=Dk/ , 10#2 in the
nonlinear regime. However, by evaluating physical quanti-
ties in the island rotating frame, we eliminate the part of the
electrostatic potential / which drives the island rotation
through E-B plasma velocity and focus on the possible role
of the latter in the pressure flattening of the island. In Fig. 4
are shown snapshots of the parallel Laplacian of, both, the
pressure and electrostatic fluctuations. First, one clearly
observes that in the range of intermediate spatial scale
structures, we tend to obtain a quasi-static equilibrium
Dkð~p # ~/islÞ , 0 asymptotically, which means that diffusion
of pressure fluctuations along the field lines is compensated
by electrostatic fluctuations. Let us emphasize however that
the bracket vk½~w; @t~w+ cannot be neglected even in the long

range dynamics and, notably, at such intermediate scales.
Indeed, while magnetic fluctuations are poloidally pulled by
both diamagnetic velocity and E-B flow, pressure fluctua-
tions tend to be pulled by the E-B flow only. Structural sta-
bility of the island, i.e., the fact that pressure and magnetic
fluctuations at island scales have to move at the same veloc-
ity, imposes therefore the permanent generation of fluctua-
tions in the vicinity of the separatrices and also inside the
island. The latter have a tendency to be aligned along the
magnetic field because of the large parallel collisional con-
ductivity, as observed also in Fig. 4, notably at the separatri-
ces. As a consequence vk½~w; @t~w+ remains one of the
dominant terms. The Fitzpatrick model24 does not take into
account the impact of these fluctuations, what we term as
structural fluctuations, on the island flattening. Second, and
this is the important point, only relatively strong field aligned
pressure fluctuations contribute to the Larmor nonlinear term
q̂2½w; j+ and therefore to the flattening of the pressure (see
Fig. 4). Noting further that at the separatrices, the perpendic-
ular diffusion, which is numerically at least a factor of three
larger than the convective and linear terms, cannot be
neglected, we see that the island structure is governed by

vkDk~p þ v?D?~p , 0: (5)

In this equation, we have neglected the impact of the struc-
tural fluctuations. Indeed, we can expect that statistically,
they only act as a modulator of the island rotation.
Moreover, an indirect way to show that they do not invali-
date Fitzpatrick model and Eq. (5) is to consider overtone
harmonics. Indeed, an enhancement of the first harmonics by
coupling of/with the structural fluctuations could be pro-
duced. Fitzpatrick predictions24 that the first overtone har-
monics (m> 1) of the unstable mode are localized in the
vicinity and inside the island, die away rapidly outside and
have radial extensions roughly equal to the island size could
become invalid. Validity is clearly verified in Fig. 5 where
the harmonic m¼ 1, 2, 3, 4 are drawn. The ratio of the

FIG. 4. D0 ¼ 4:02; t ¼ 105sA. Dominant parallel and perpendicular contributions in the pressure equation.
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amplitude between pm>1 and p1 are also compatible with the
predictions. The theoretical external m¼ 1 pressure eigen-
function24 for the limit w . x . Lx is also indicated (narrow
dotted black line). It shows that the amplitude of the mode
m¼ 1 has the expected order of magnitude at the edge of the
island.

IV. TURBULENCE DRIVEN MAGNETIC ISLANDS

A. Nonlinear magnetic island generation

As explained in Ref. 8 and reviewed briefly here, a fast
quasilinear formation of a magnetic island occurs at large
scales. It is induced by small scale interchange instabilities,
in particular when D0 < 0 or has moderate positive values.
Figs. 6(a) and 6(b) show the time evolution of the energy for

both, interchange and large scale m) 1 modes. The latter
dominates energetically asymptotically, while the former
grows exponentially at a faster rate as soon as they enter in
the nonlinear phase, when D0 is negative or weakly positive
(approximately D0 ) 1:7 in the set of runs of this paper). We
will call this phase the quasi-linear phase (QLP). Nonlinear
growth rates can be therefore computed during this phase
and are reported in Fig. 1 in order to compare them with the
linear values. The color of the points indicates the parity of
the mode. First, let us emphasize that the growth rate of the
interchange mode m? is not affected by the nonlinearities in
this phase. Second, the growth of the m¼ 1 mode is ampli-
fied by the nonlinearities. In fact, the parity of the modes
switches from an interchange parity in the linear phase to a
tearing parity in the QLP. As a consequence, a magnetic

FIG. 5. Eigenfunctions of the pressure
fluctuations for D0 ¼ 4:02 and t¼
40 000sA.

FIG. 6. (Left) D0 ¼ #0:45. (Right) D0 ¼ 1:16: Time evolution of the pressure fluctuations energy for modes m 2 f0; 1;m/;m/ þ 1g and total energies Em(t),
Ep(t) and Ek(t).
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island is nonlinearly generated. Finally, Fig. 1 indicates that
the nonlinear growth of the m¼ 1 mode is determined by the
small scale fluctuations according to cNL1 , cm?

þ cm?61

, 2cm?
> cL1. It shows that a nonlinear beating of the small

scales interchange modes m,m? gives rise to the generation
of a magnetic island at large scales. The resulting island size
is however smaller than when the large scales are tearing
unstable as can be seen in Fig. 7(a). This beating occurs
because if initially, the system is driven by small-scale inter-
change modes Iss, their mutual non linear interactions can
only drive tearing parity large scale fluctuations Tls. Indeed,
all the quadratic terms in Eqs. (1)–(3) follows the following
symmetry breaking: {Iss, Iss} ! Tls.

Nonlinear properties of the magnetic island and, in par-
ticular, the characterization of the island size at saturation
according to the level of turbulence have been investigated
in Ref. 8 and will not be reported here. However, it is in-
structive to compare energetically, the cases D0 < 0 and
D0 > 0. Figs. 6(c) and 6(d) show that pressure fluctuations
dominate magnetic ones in intensity in the first case, while
the converse occurs in the second case in the nonlinear
phase. Let us emphasize, nevertheless, that when D0 ¼ 1:16,
the QLP is still driven by the small scale interchange insta-
bility, while in the nonlinear regime and on larger time
scales, tearing instability drives predominantly the growth of
the island.

B. Pressure flattening of magnetic islands by
interchange mechanisms

Measured pressure fluctuations, similar to tearing driven
islands, induce an island flattening, as observed in Fig. 8.
From an experimental point of view, island formation is
detected by measuring the temperature profiles at different
poloidal positions using ECE or Thomson scattering meth-
ods.26 However, according to Fig. 8, no clear difference
between the two kinds of islands can be assessed in terms
of pressure profiles at different poloidal positions.
Nevertheless, the origin of the flattening, the underlying
mechanisms, possibly differs in the two cases. We will
investigate this question and look for some specific signa-
tures of turbulence driven magnetic islands. Note that a first
signature is that they grow at twice the interchange growth
rate. In the tokamak context, such a growth is difficult to
measure because it corresponds to a low level of magnetic
fluctuations. Access to the q profile, at a given time, to

determine if there is a tearing instability or not is also diffi-
cult in experiments.27

Thus, to proceed further and clarify the origin of pres-
sure flattening, we need to discriminate between the nonlin-
ear interactions driving it. However, we must take into
consideration the fact that there is a pile up of kinetic energy
at the largest scale m) 1 (see Fig. 7(b)). Similarly for tearing
driven island cases, the generation of a persistent strong
zonal flow, compared with other velocity fluctuations,
requires us to make the analysis in the island frame. We
therefore study, in the following, the poloidal island dynam-
ics in the context of interchange turbulence.

V. POLOIDAL ISLAND ROTATION AND TURBULENCE

The rotation frequency of the tearing driven island is
known to be modified by nonlinearities and has a strong de-
pendence on the transport coefficients.28 This can have a sig-
nificant physical consequence, for example, in a tokamak,
where such a nonlinear effect on the rotation can lead to a
slowing down of the plasma through locking to the resistive
wall producing in turn a degradation of the plasma and/or
triggering a transport barrier.29

FIG. 7. (a) Island sizes versus time.
(b) Spectra at t¼ 40 000sA and
D0 ¼ #0:45.

FIG. 8. Snaphots of the pressure in the stationary regimes: (Left)
D0 ¼ #0:45; t ¼ 4:104sA. (Right) D0 ¼ 1:16; t ¼ 105sA.
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However, the case of turbulent driven island has not
been studied. Interchange mechanism should nonlinearly
reduce the diamagnetic velocity p00 ( p0m¼0ðxÞ and generate a
ZF. The latter should alter the level of the turbulence in the
vicinity of the island by lowering the interchange energy
source level in the nonlinear regime, whatever the nature of
the island. Fig. 9 shows that in fact, contrary to the case of
electrostatic turbulence and in the absence of islands, there is
no ExB shear flow stabilisation:30 turbulence is not mitigated
by ExB shear flow but only by the lowering of the diamag-
netic velocity. Indeed, first, it is found that the ratio
c sm?

=cm?
< 1=2 whatever be the value of D0. c sm?

is the growth
rate computed by considering the mean profile, averaged in
time, in the nonlinear asymptotic regime instead of the initial
equilibrium. m? remains essentially unchanged (ms

? , m?).
Second, on the same graph, we observe that if we compute
c sm?

neglecting the nonlinear diamagnetic effect, we find
c sm?;p0¼peq

, cm?
. The graphs c sm?;p0¼p eq

=cm?
and c sm?;/0¼0=cm?

as a function of D0 show that the interchange growth rate is
in fact weakly sensitive to the ExB mean flow. Indeed, the
mean flow is a jet which is weakly sheared in the resistive
layer surrounding the resonant surface where the unstable
modes grow (see Fig. 9). Finally, we observe that pressure
gradient stabilization of the small scales instability when D0

is negative is such that the ratio c sm?
=cm?

, 0:4 is almost con-
stant, independent therefore of the level of the interchange
energy source.

Let us now quantify how such modifications influence
the poloidal island rotation when D0 < 0. Following Ref. 22,

to distinguish the terms driving the island rotation, we segre-
gate the Ohm’s law in its different contributions in terms of
instantaneous frequency averaged on the current sheet and
computed for the mode m¼ 1:

x tot ¼ x? þ ~x? þ xE-B þ x0 þ xg: (6)

The RHS terms are, respectively, the linear and nonlinear
part of the diamagnetic frequency, the E-B Doppler fre-
quency, the contribution of the equilibrium magnetic field
and the contribution of the resistivity. In this model, the
direct contribution from modes m> 1 to island rotation is
neglected. From this instantaneous frequency and/or the pre-
dicted island velocity xtot /km¼1, we can explicitly compute
the island poloidal position as a function of time. In Fig. 10,
the comparison between the model predictions and the meas-
ured position shows a good agreement, noting that the inte-
gration is done on a large time interval. In the nonlinear
regime, there is almost one order of magnitude between
xE-B and the diamagnetic contribution: the E-B velocity
drives the island in the ion diamagnetic direction. This is, of
course, linked not only to the flattening of the pressure inside
the island, which reduces the diamagnetic velocity, but also
to the plasma jet generated by the turbulence in which the
magnetic island structure is strongly frozen. Let us empha-
size that the direction of the rotation is the result of various
effects. In the case of tearing unstable magnetic island, it
was found that it depends on transport parameter values and,
possibly, an inversion of direction could be obtained by

FIG. 9. (a) Normalised nonlinear instantaneous growth rate versus D0. (b) Diamagnetic and E-B velocity at t¼ 42 125sA for D
0 ¼ #0:45.

FIG. 10. D0 ¼ #0:45. (a) Island poloidal position versus time. (b) Island poloidal instantaneous frequency versus time compare with the different contribution
of the model Eq. (6).
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lowering the viscosity.28 In the present study, we find that
for any D0 value, the island always rotates asymptotically in
the ion diamagnetic direction. For lower curvature parame-
ters but identical transport parameters, it was found that it
rotates in the electronic diamagnetic direction.22

More surprisingly, we also observe that the asymptotic
island velocity or equivalently the poloidal rotation time
srot¼ k1Ly/xtot is independent of D

0 and therefore of c? (see
Fig. 11). Recall that, for large enough D0, the tearing is the
dominant instability and m? decreases with D0. In other
words, the interchange or tearing source levels do not regu-
late the mean amplitude of the zonal flow. Further analysis
shows, however, that the level of fluctuation of the zonal
flow is correlated to the interchange source intensity.

VI. PRESSURE PROFILE AND TURBULENCE DRIVEN
MAGNETIC ISLANDS

A. Interchange origin of pressure profile flattening

Fig. 10 indicates that the nonlinear diamagnetic velocity
does not compensate for the equilibrium one. In other words,
the mean pressure profile is not almost flat in the current
sheet. In Fig. 12, for the cases D0 ¼ #0:45 and D0 ¼ þ4:02,
the profiles of the pressure are drawn at different times: the
end of the QLP or when the nonlinearities become dominant
energetically, during the nonlinear phase and in the asymp-
totic regime where the island velocity becomes roughly con-
stant. In the tearing driven magnetic island case there is a
clear flattening of the pressure profile at the resonance while
a pressure gradient remains in the turbulence driven mag-
netic island case. This gradient, denoted by v s? , which differs
from the imposed equilibrium one, remains constant with
time once the nonlinear regime is reached, v s?=v? , 0:4. Its
spatial extension is roughly equal to the island width. The
presence of such a gradient is observed in divergence free,

non turbulent diffusive heat flow model31 when ws/wc is
below one (wc being the critical island width above which
flattening occurs when explicit parallel conductivity is taken
into account). We will verify below that in fact w/wc is sig-
nificantly above one even in the QLP. Moreover, Fig. 12
shows that the constant nonlinear pressure gradient inside
the island is generated from the QLP.

The constancy of the gradient in the whole island exten-
sion is specific to turbulence driven islands. It can be linked
to the fact that in the absence of such a pressure gradient the
interchange instability would be stabilized inside the island
and therefore contradicts the notion of the instability giving
rise to the generation of the island. It follows that the gradi-
ent should be connected with the level of the small scale tur-
bulence, not the ratio of the diffusivities or equivalently to
ws/wc.

In fact, during the QLP, the modification of the mean
pressure gradient in the vicinity of the resonant surface
results from interchange modes coupling, when D0 is nega-
tive. The link with interchange scales can be clearly shown
by quantifying the rate of energy transfer between the inter-
change scales and the largest ones. More globally, in Fig. 13,
the energy transfer functions in between all the scales (Refs.
8 and 32) are computed for the pressure equation, namely,
C adv
p ðm1;m2; tÞ and Cq̂

p ðm1;m2; tÞ. They measure the energy
transfer from the modes m1 and m2 to the mode m¼m1þm2

through, respectively, the nonlinearities ½/; p+ and q̂2½w; j+,
i.e., the term of advection of the pressure by the flow and the
finite Larmor radius one, in the pressure equation. Let us
specify that, by symmetry, the definition of the transfer func-
tions is restricted to the domain (m1 & 0; jm2j ) m1). They
satisfy

FIG. 11. Period of the island poloidal rotation srot versus c?.

FIG. 12. Profile of the pressure at dif-
ferent times: (Left) D0 ¼ #0:45.
(Right) D0 ¼ 4:02.

FIG. 13. D0 ¼ #0:45: Multiscale energy transfers in the pressure equation
during the QLP at t¼ 750sA.
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dEp

dt
m; tð Þ ¼ Lp mð Þ

þ
X

m¼m1þm2

ðC adv
p m1;m2; tð Þ þ Cq̂

p m1;m2; tð ÞÞ;

(7)

where Lp(m) is the contribution of the linear terms to the
evolution of the energy of the mode m. The impact of Cq̂

p is
negligible from an energetic point of view compared with
C adv
p . Fig. 13 shows that interchange scales only contribute

to the generation of the large scales (m) 1) pressure fluctua-
tions and, in particular drive the nonlinear modification of
the profile. We also observe that the large scales, interacting
with the dominant interchange ones, weaken the growth of
the latter. We also show, for completeness, C adv

w , linked to
the bracket ½/;w+, which is the dominant transfer function
for the magnetic flux evolution equation during the QLP. It
allows us to emphasize that magnetic energy transfer occurs
from interchange scales to large ones and leads to the growth
of a magnetic island.

In the nonlinear phase, this simple picture of multiscale
energy transfers disappears and an analysis of that stage is
beyond the scope of this paper. However, let us underline,
that the bracket ½/; p+ maintains a transfer of energy from the
small scales to the large scales, but the small scales are no
longer restricted to the dominant unstable interchange ones.
Thus, interchange instability directly controls the existence
of a constant pressure gradient within the island. From these
observations, it follows that a characteristic signature to
identify a turbulence driven island could be the presence of a
pressure profile with a clear non null constant pressure gradi-
ent in the vicinity of the resonance layer along with an island
size that is larger than the critical island width wc.

B. Pressure flattening mechanism in the nonlinear
regime

The constancy in time and space of the mean pressure
gradient in the nonlinear phase is not intuitive at first glance

because energy transfers do not reduce to a beating of linear
modes. However, some heuristic scenario can be proposed.
Indeed, the dipole structure of the flow in the nonlinear regime
and inside the island redistributes permanently the small scale
turbulent structures in the whole island.8 Consequently, it
tends to spatially homogenize the turbulence inside the island
as the rotating island grows and/or saturates. Therefore, the
mean pressure gradient which mitigates the turbulence level
should be also homogenized.

However interchange instability does not generate a ho-
mogeneous small scale turbulence inside the island. This can
be clearly observed in Fig. 14 where fluctuations in the
island frame of reference ~/ and p are shown, the modes
m¼ 0 and 1 being subtracted to make small scales visible.
Interchange scales tend to pile up in the upper part of the
island which rotates downward. This poloidal asymmetry
indicates that the island rotation influences the distribution
of the fluctuations. Simultaneously, fluctuations tend to dif-
fuse along the magnetic field lines at a faster rate: the parallel
diffusion time is sk , L2yvk , 7:5 is much smaller than the
time for the island to carry out a poloidal rotation srot, 400.
The track of the fast parallel diffusion is observed on the ~p
snapshot. Consequently, the energy provided by interchange
instability is transferred at large scales preferentially along
the magnetic field lines on the edge of the island, in the vi-
cinity of the separatrices. It follows that both, vorticity and
current are localized along the separatrices with some impor-
tant fluctuations close to the X point related to interchange
unstable modes (see Fig. 14).

This is consistent with the finding that the mean pressure
gradient is constant. Indeed, in the nonlinear regime, the
structures of the interchange modes are well localized in the
vicinity of the resonance and their amplitudes are weakly
fluctuating in time. This is, of course, linked to the character-
istic of the mean profiles in the vicinity of the resonance
which are invariant since the QL phase. Therefore, it can be
postulated that in the nonlinear regime and in the island
frame, first, the flux of energy from interchange scales to

FIG. 14. D0 ¼ #0:45: Snapshots of fluctuations at t¼ 42 125sA. From left to right: ~/ and ~p (removing harmonics m¼ 0 and m¼ 1), vorticity and current.
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island structure is constant in time. Second, the constancy in
space relies on a local balance between the level of inter-
change fluctuations transported along the separatrices and
the local mean gradient pressure.

C. A mixing length model

The previous analysis has shown that we can reduce to
some extent the dynamics to the interactions of two kinds of
structures characterized by their spatial scales, namely the
island and the interchange modes. The two scales separation
is apparent in Fig. 15 where snapshots of the nonlinear
brackets in pressure equation are shown, in the island frame.
We clearly observe structures at interchange scales and elon-
gated structures along the field lines. Let us emphasize that
in terms of amplitude vkDp , vkD/ ' q̂2½w; j+. In fact vk
contribution tends to compensate partially because the adia-
batic response of the electrons is important at small scales,
/ , p. However, contrary to the non-turbulent case, the rem-
nant non-adiabatic part of the convective term is non-
negligible in terms of amplitude compared with q̂2½w; j+ (see
Fig. 15). Finally, it is important to note that in the nonlinear
regime, we have a steady state for large scales only in a sta-
tistical sense, i.e., by averaging quantities on some island
rotation times. Indeed, we expect that for interchange modes
@t , cs?.

We can therefore rely on a mixing length theory to
obtain some estimates of anomalous transport coefficients at
island scales. Let us denote a mean of island scales by an
overbar and write p ¼ "p þ p0, thus p0 ¼ 0. It follows that
½/; p+ ¼ ½"/; "p+ þ ½/0; p0+. Let us consider dominant fluctua-
tions or cells at interchange scales around the resonance
(located in the upper part of graphs in Fig. 14), dp0 and d/0.
As sk . sisl, the stretching of the fluctuations along the sepa-
ratrices or a field line is fast compared with the island dy-
namics and we can consider that such fluctuations, on island
time scales, are immediately converted into fluctuations at
island time scales and denoted by d"p and d"/. It follows that

dp0l2/ , d"pLyl/;

d/0l2/ , d"/Lyl/;

where l*¼Ly/m* is an estimate of the extension of inter-
change cells. The island parallel length is approximately
given by Ly. Therefore, noting that D? , l#2

/ , @x , l#1
/ and

@y, k1, we find

½d/0; dp0+ , k1
L2y
l2/
½ðd"/Þxd"p # ðd"pÞxd"/+

, v1D?d"p # v2D?d"/: (8)

The transport coefficients at island scales are v1 ,
L2yk1d"/=w/ , d/0 and v2 , dp0. Noting now that at inter-
change scales cs/dp

0 , ½d/0; dp0+ , k2/d/
0dp0 , k2/dp

02, we
obtain v1 , v2 , cs?=k

2
/. More generally, anomalous trans-

port coefficient due to nonlinearities are expected to be of
the order v turb

? ¼ cs?=k
2
? ðks? , k?Þ.6,8

Consequently, we can conclude that the contribution of
interchange source free energy to the diffusion of the pres-
sure at island scales can be taken into account by introducing
a large scale anomalous perpendicular diffusivity v turb

? . Let
us note that in a recent work, an effective turbulent diffusiv-
ity has been computed to account for the drag force acting
on the island in the context of ITG turbulence.11 Therefore,
one should expect a flattening of the pressure profile
when the island size exceeds the critical width w turb

c ¼ffiffiffi
8

p
ðv turb

? =vkÞ
1=4 ffiffiffiffiffiffiffiffiffi

a=ky
p

2 ½0:26; 0:43+ for negative D0 runs.
Recall that by using the molecular perpendicular diffusivity,
we had obtained a similar range for the set of runs selected
in this paper wmol

c 2 ½0:17; 0:34+. In any case, we always ver-
ify w > wc ¼ maxðwmol

c ;w turb
c Þ in the present set of simula-

tions, including during the QLP to a large extent and also
when D0 is close to zero, see Fig. 7. A precise study of the
threshold above which flattening occurs is out of the scope
of this paper. However, the threshold estimate is consistent
with the numerical observations.

FIG. 15. D0 ¼ #0:45: Snapshots of dominant contributions in pressure equation at t¼ 42 125sA in island rotating frame.
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VII. SUMMARYAND DISCUSSION

In this work, we have studied the mechanisms leading to
the flattening of the pressure inside magnetic islands, for
both, islands that are generated by a tearing instability
(including curvature effects), and those generated by small
scale interchange turbulence. In the former case, we find that
the results agree with earlier theoretical calculations,24 in the
limit where, both, island rotation and the induced friction
between magnetic and pressure fluctuations at the separatri-
ces are considered. In the case where the islands are gener-
ated by turbulence, we also observe a flattening of the
pressure inside the magnetic island. An important question is
whether or not, we can discriminate such islands from tear-
ing driven ones. This is a necessary step to assess the exis-
tence of such islands in the context of tokamak experiments.
We find that for turbulence driven islands the mean pressure
profile inside them is not completely flat, notably in the resis-
tive layer where the interchange modes grow, and this is a
“signature” feature of such islands. This is linked to the fact
that a flat profile would kill the interchange instability from
which the island itself originates. Another striking fact is that
the mean profile gradient inside the island is constant in time
and space. This can be interpreted in terms of the setting up
of a local equilibrium between the pressure profile gradient
and the interchange fluctuation energy levels, the latter being
equidistributed in the resistive layer, including the vicinity of
separatrices, by advection mechanisms.

We have proposed a mixing length model to account for
the small scale interchange turbulence in the theoretical pre-
diction of island flattening. Such kind of models has been
extensively used in fluid evolution studies in the context of
small scale homogeneous 2D turbulence. This is strictly not
applicable in the present context because the turbulence aris-
ing from the instability is localized at the resonant surface.
However, we have shown that, to some extent, one can intro-
duce an anomalous diffusion coefficient linked to the inter-
change energy source properties. It gives a prediction of the
island size above which flattening of turbulence driven island
will occur. In the present study, the simulation results are
found to be consistent with the model. Indeed, in all the simu-
lations, the critical island size is exceeded when the system
enters in the quasilinear phase. Therefore, a careful numerical
investigation of cases where the critical island sizes at satura-
tion do not exceed the predicted critical turbulent island size
would be interesting to thoroughly validate the model.

We have also studied the dynamical properties of the
magnetic island. In our set of simulations, we have found
that the island poloidal rotation velocity is independent of
the level of the source which generates the dynamics whether
they be the interchange or the tearing instabilities. In the
nonlinear asymptotic regime, when D0 < 0, the interchange
growth rate is reduced by a factor independent of the inter-
change level. Even if the island rotates at the ExB velocity
essentially in all the cases, we have shown that there is no
ExB flow stabilization of the turbulence. The latter is
induced by the nonlinear modification of the mean gradient
inside the magnetic island. Finally, by studying the energy
transfer between the interchange and island scales, we have

shown that, both, the island and the pressure flattening are
directly controlled by interchange instability in the QLP, and
no cascade mechanisms are at play. Energy transfers in the
fully nonlinear phase are complex and are not presented in
this study. In a future work, we will examine the multi-scale
energy transfers, including cascade mechanisms in the non-
linear regime, which modify the turbulence characteris-
tics8,10 and possibly the transport properties.
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