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Abstract—We consider a problem of communication over a
continuous-time additive Gaussian noise channel. A covertness
constraint is imposed on the communication protocol, which says
that the channel output must statistically resemble pure noise.
When there is no bandwidth constraint on the input, we argue
that the covert communication capacity of this channel is positive,
in contrast to the band-limited case where covertness requires
that the amount of transmission grow at most like the square
root of total communication time. This claim is formally proven
in the case where the Gaussian noise is white with respect to the
bandwidth used by the transmitter.

Index Terms—Covert communication, low probability of de-
tection, Gaussian channel, continuous time, waveform channel.

I. INTRODUCTION

Covert communication, or communicaiton with low proba-
bility of detection [1]–[4], refers to scenarios where the trans-
mitter and the receiver must keep a warden from discovering
the fact that they are using the channel to communicate. On an
additive white Gaussian noise (AWGN) channel, this means
that the warden’s observation should be statistically close to
pure noise. It was first shown in [1] that the AWGN channel
obeys the so-called “square-root law” for covert communica-
tion: the number of information nats that can be communicated
covertly over the channel can only grow proportionally to the
square root of the total number of channel uses. The exact
scaling law, when covertness is measured in terms of relative
entropy, was determined in [3]. Similar results have been
obtained for the binary symmetric channel [2] and general
discrete memoryless channels [3], [4]. A number of further
works have extended these results in several directions.

A discrete-time AWGN channel is usually used to model
a real-life continuous-time communication channel with a
bandwidth constraint on its input waveform, corrupted by
white Gaussian noise with respect to that bandwidth. Using
the sampling theorem, such a continuous-time channel with
bandwidth W Hz over the time interval [0, T ] is approximately
equivalent to 2WT uses of a discrete-time AWGN channel [5].
Hence, one can roughly say (as in, e.g., a brief remark in [1])
that the number of nats that can be covertly communicated
over this continuous-time channel is proportional to

√
WT .

Thus, for any fixed finite bandwidth W , the number of covert
nats can only grow like the square root of total communication
time T .

In this paper, we investigate the regime where W is infinity
or grows large with T . In most information-theoretic works,
asymptotic results are obtained in the limit where T → ∞
with W held fixed, or where W is set to infinity after one
lets T → ∞ (the latter is how one normally obtains the
capacity of an “infinite-bandwidth” AWGN channel). We study
a different regime with the intention to capture engineering
insights to scenarios where information is transmitted over a
large bandwidth and a relatively short time. This can happen,
for example, in “spread-spectrum” communication [6].

We observe that, if W is infinity or grows large fast enough
with T , then covert communication can have positive rates
in nats per second. In the white-noise case, this might be
somewhat obvious, since we already argued that information
throughput grows like

√
WT . In fact, we can show that, under

the same average-power constraint on the input, the covert
communication capacity is the same as the capacity without
covertness constraint. What is perhaps more interesting is
the case where the noise is colored, or band-limited, or
both. Our key observation there is that positive-rate covert
communication is possible if and only if the noise itself spans
an infinite bandwidth.

The above observations are related to our recent work
[7], which shows that the continuous-time Poisson channel
with neither bandwidth nor peak-power constraint permits
transmission of infinitely many information nats per second.

The above observations are first made using heuristic ap-
proaches along the direction of [5]. We then try to formulate
the problem in a mathematically rigorous fashion. Formal
treatments of continuous-time Gaussian channels are often
complicated because, in short, no nonzero signal can be both
band-limited and time-limited (see, e.g., [8, Theorem 6.8.2]).
Shannon’s capacity formula for the band-limited Gaussian
channel [5] called for several follow-up works to acquire a
clear physical meaning; see [9], [10] and references therein.
We start from these classic treatments, and observe some
technicalities that arise in covert communication. In particular,
we point out that, even when the transmitted signal is strictly
time-limited, one should not assume that the warden can only
observe the channel output within the same time limit. Instead,
in our formulation, we let the warden observe the output
waveform over the entire real line.

The main technical part of this paper is divided into two
sections: Section II makes some heuristic observations, and



Section III provides a formal treatment. Our formal treatment,
however, so far only covers the case where the noise is white
with respect to the bandwidth of interest; colored noise is only
discussed heuristically in Section II. Before proceeding, we
first introduce our notation and give an overall description of
the problem.

A. Notation and problem description

We use a boldface letter like x to denote a real function,
either on the entire real line or on an interval. The value of x
at a specific time t is denoted x(t). When it is necessary to
specify the domain of a function, we write it more explicitly
as, for example, x(t), t ∈ R, or x(t), t ∈ [0, T ]; the latter is
sometimes abbreviated as xT0 . We use the upper case to denote
random objects: X denotes a (real) random process, and X(t)
denotes the value of X at time t, hence X(t) is a real random
variable for any t in the domain of X. We use PX to denote
the finite-dimensional distribution of the random process X.

In this paper we are concerned with channels described by

Y (t) = X(t) + Z(t), t ∈ R, (1)

where X is the channel input, Y is the channel output, an Z
is the additive noise to the channel. Throughout the paper, we
assume that Z(t), t ∈ R, is zero-mean stationary Gaussian.

As in [3], we let both the receiver and the warden observe
Y (or Z, if no communication is taking place), and provide
the transmitter and the receiver with a sufficiently long secret
key; we do not consider the resolvability aspect of covert
communication as does [4]. Specifically, the transmitter maps
every message, together with a sufficiently long secret key
that it shares with the receiver, to some function x. The
receiver then maps the channel output y and the secret key
to its decoded message. The warden’s aim is to distinguish
between the output waveform Y and a pure noise process
Z, so as to determine whether the channel is being used for
communication or not. Our “covertness” constraint is that the
Kullback-Leibler divergence D(PY‖PZ) must be sufficiently
small. Note that, by Pinsker’s inequality [11], this would imply
that the total variation distance between PY and PZ also be
small, but not reversely.

II. HEURISTIC OBSERVATIONS

In this section, we analyze our problem using some con-
ventional arguments that are not mathematically rigorous.
The “observations” below hence should not be considered as
proven information-theoretic results. We shall formalize some
of these observations in Section III.

A. White Gaussian noise over infinite bandwidth

In our first setting, we want the Gaussian noise Z to be
white with infinite bandwidth; that is, we want its power-
spectral density (PSD) to equal some positive constant N0/2
for all frequency f ∈ R. Such a noise model is however
mathematically invalid, as the noise variance would equal
infinity at any given time. To avoid this issue, we assume,
instead, that the noise is white within a certain bandwidth

WT Hz: its PSD equals N0/2 for |f | ≤ WT and decays to
zero sufficiently fast for |f | > WT , where WT depends on and
grows to infinity with total communication time T . Then, for
any finite T , the noise process is well-defined. The assumption
that WT grows with T is only for mathematical convenience,
and has no engineering meaning.

Consider a constraint where X is power-limited to P per
second. For our signaling strategy, we limit the bandwidth
of X to WT Hz. By a standard sampling argument [5],
[12], the continuous-time channel can be reduced to 2WTT
uses of a discrete-time memoryless additive Gaussian noise
channel with noise variance N0/2. We choose the input for
each sample to be independent and identically distributed
(IID) Gaussian of mean zero and variance P/2WT . Then
D(PY‖PZ) equals the sum of the Kullback-Leibler diver-
gences corresponding to each use of the discrete-time channel,
which can be upper-bounded as in [3, Section V] by

P 2

2N2
0

· T
WT

.

This will vanish as T → ∞ if WT grows faster than T , for
example, if WT ∝ T 2.

The input-output mutual information can be calculated as
in normal (non-covert) communication. In particular, as WT

grows to infinity, the per-second mutual information tends to
P/N0. That this mutual information represents an achievable
coding rate in nats per second can be shown using similar
methods as in [3].

We thus see that, in the above setting, one can make
D(PY‖PZ) decay to zero as T grows large while still achiev-
ing its capacity P/N0. To summarize, we have:

Observation 1: Under average-power constraint P , a chan-
nel of “infinite-bandwidth” with additive white Gaussian noise
of double-sided PSD N0/2 has communication capacity P/N0

nats per second even under a covertness constraint that
D(PY‖PZ) must tend to zero as T grows large.

B. Noise with infinite bandwidth but finite variance

We have argued that positive-rate covert communication
over a Gaussian channel is possible if the input signal can
use infinite bandwidth and the noise is white over an infinite
bandwidth. One might wonder whether this is an artifact
resulting from the unbounded noise power, which allows one
to hide a nonzero signal power in it. Thus, we now turn to
scenarios where the additive noise has finite power. Let the
stationary Gaussian noise Z in (1) have PSD N(f), f ∈ R,
that is positive for all f ∈ R, symmetric around f = 0, and
satisfies ∫ ∞

−∞
N(f) df <∞. (2)

We choose the input signal X to be generated from a
stationary Gaussian process with PSD

S(f) =

{
T−7/4 ·N(f), f ∈ [−WT ,WT ]

0, otherwise,
(3)



where we choose WT = T 2. (Note that WT is a parameter of
our choice and not given in the problem.) We then have [13,
Theorem 10.5.1]

D(PY‖PZ) = T · 1

2

∫ WT

−WT

(
S(f)

N(f)
− log

(
1 +

S(f)

N(f)

))
df

≤ T · 1

4

∫ WT

−WT

(
S(f)

N(f)

)2

df =
T−1/2

2
, (4)

which tends to zero as T → ∞. We also have [13, Theorem
10.3.1]

I(X;Y) = T ·
∫ WT

−WT

1

2
log

(
1 +

S(f)

N(f)

)
df

=
T 3

2
log
(

1 + T−7/4
)
≈ T 5/4

2
(5)

for large T . Hence the per-second mutual information scales
like T 1/4 and grows to infinity with T . This suggests that
infinite covert nats per second can be achieved. Further note
that, by our choice, the average per-second input power, given
by
∫∞
−∞ S(f) df , tends to zero as T grows large. Summarizing

the above we have the following.
Observation 2: If the Gaussian noise process has PSD

N(f) that is positive almost everywhere, then the covert
communication capacity without bandwidth constraint on the
input is infinity. Furthermore, this should hold irrespective of
whether an average-power constraint is imposed on the input
or not.

C. Band-limited noise
We next consider the case where the noise is band-limited:

N(f) = 0, |f | > W. (6)

Note that W is a constant that does not depend on T . We
again restrict ourselves to using stationary Gaussian input
processes.1 Note that, if the input PSD S(f) is positive on
any interval where N(f) = 0, then D(PY‖PZ) will be infinity.
Hence the input process must also be limited to the frequencies
in [−W,W ]. Let λ(f) , S(f)/N(f) for f ∈ [−W,W ]. If we
require D(PY‖PZ) ≤ δ for some positive constant δ, then,
again by [13, Theorem 10.5.1],

δ ≥ D(PY‖PZ) = T · 1
2

∫ W

−W

(
λ(f)− log(1+λ(f))

)
df. (7)

The integrand is convex in λ(f), so we obtain

λ̄− log(1 + λ̄) ≤ δ

WT
(8)

where

λ̄ ,
1

2W

∫ W

−W
λ(f) df. (9)

From (8) we obtain that, for large T ,

λ̄ .

√
2δ

WT
. (10)

1Gaussian inputs are known to be optimal for covert communication over
discrete-time Gaussian channels [3]. We expect them to be optimal for the
current problem as well, though we do not prove it in this paper.

On the other hand,

I(X;Y) = T ·
∫ W

−W

1

2
log(1 + λ(f)) df

≤WT log(1 + λ̄) .
√

2δWT , (11)

where the first inequality follows because the integrand is
concave in λ(f). We thus see that I(X;Y) can only grow
like
√
T .

Observation 3: For the channel (1) where Z is band-
limited, the number of nats that can be covertly communicated
can at most grow proportionally to

√
T as T becomes large,

even if no explicit constraint is imposed on the bandwidth of
the input signal.

III. FORMAL TREATMENT

In this section we provide a mathematically rigorous treat-
ment of the problem. We only consider white Gaussian noise,
over a bandwidth that is either finite or unbounded.

Consider the channel (1), where Z(t) is a zero-mean sta-
tionary Gaussian process. Let D(t1, t2) denote the divergence
D(PY‖PZ) with both Y and Z restricted to the interval
[t1, t2]. Ideally, we would like to have a model where X
is strictly time-limited, while the covertness constraint is on
the entire real line, i.e., on D(−∞,∞), but so far we have
not been able to solve the capacity for such a model. We
discuss two relaxed models. As we shall see, the first model
is meaningful, whereas the second model is flawed and gives
pathological results. Before presenting these models and their
results, we first provide some preliminary.

A. Preliminary: prolate spheroidal wave functions

The prolate spheroidal wave functions (PSWFs) are useful
tools for analyzing band-limited continuous-time Gaussian
channels. We give a brief introduction to them below; for more
details, we refer the reader to [9], [10], [14] and references
therein.

Given any W,T > 0 there exists a countably infinite set of
real positive numbers

1 > λ1 > λ2 > · · · (12)

and a corresponding set of real functions {ψi : R → R}∞i=1

such that the following properties are satisfied.
1) Each ψi is band-limited to W Hz. Further, the functions
{ψi} are orthonormal on R, and complete in the space
of functions that are band-limited to W Hz.

2) The restrictions of {ψi} to the interval [0, T ] are orthog-
onal: ∫ T

0

ψi(t)ψj(t) dt =

{
λi, i = j,

0, i 6= j.
(13)

Further, the restrictions of {ψi} to [0, T ] are complete
in the space of square integrable functions on [0, T ].

Note it is clear from the above properties that
∞∑
i=1

λi = 2WT. (14)



It was shown by Slepian [15] that the coefficients {λi} above
satisfy the following: for any ε ∈ (0, 1), as WT →∞,

λ2(1−ε)WT → 1 (15)
λ2(1+ε)WT → 0. (16)

Further, let Z be stationary Gaussian noise with PSD

N(f) =

{
N0

2 , |f | ≤W,
0, |f | > W

(17)

restricted to the interval [0, T ], then Z can be written in the
Karhunen-Loève expansion using the above PSWFs:

Z(t) =

∞∑
i=1

Ziψi(t), t ∈ [0, T ], (18)

where {Zi} are IID Gaussian random variables of mean zero
and variance N0/2.

B. Covertness constraint on the entire real line

Model 1: We require the input signal to be “approximately
time-limited,” and impose the covertness constraint on the
entire real line. Specifically, for every T > 0,
• the transmitter maps a message to x(t), t ∈ R, subject to

the condition that the ratio∫ T
0
|x(t)|2 dt∫∞

−∞ |x(t)|2 dt

must tend to one as T grows large;
• the receiver maps y(t), t ∈ [0, T ], to a decoded message;

and
• the covertness constraint is that D(−∞,∞) must tend to

zero as T grows large.
The first two conditions are taken from a classic way of

treating band-limited Gaussian channel; see Wyner [9] and
Gallager [10].

Proposition 1: Assume, for every T , the noise process Z
has PSD N0/2 over [−WT ,WT ], where WT = T 2. Under
Model 1, and under power constraint

E
[∫ ∞
−∞
|X(t)|2 dt

]
≤ PT, (19)

the covert communication capacity of the channel is P/N0

nats per second.
Proof sketch: The proof is a slight generalization of

the classic approach in [9], [10]. Fix ε ∈ (0, 1). Our coding
scheme is to generate 2(1 − ε)T 3 IID Gaussian random
variables {Xi} each of mean zero and variance PT−2/2, and
transmit the signal

X(t) =

(1−ε)T 3∑
i=1

Xiψi(t), t ∈ R, (20)

where {ψi} are PSWFs for the frequency band [−T 2, T 2] and
time interval [0, T ]. The power constraint is satisfied because
each ψi has unit energy. Further, it follows from (15) that, as
T →∞, the power in X becomes concentrated in [0, T ].

For covertness, since the {ψi} are orthonormal on R,

D(−∞,∞) =

2(1−ε)T 3∑
i=1

D(PXi+Zi
‖PZi

)

= 2(1− ε)T 3 ·
(

P

2N0T 2
− log

(
1 +

P

2N0T 2

))
≤ 2(1− ε)T 3 · P 2

4N2
0T

4
=

(1− ε)P 2

2N2
0T

, (21)

which indeed tends to zero as T →∞.
Finally, we analyze the achievable rate with this scheme.

For brevity, we only compute the per-second input-output
mutual information; that this mutual information represents
an achievable communication rate can be proven using similar
methods as in [3]. To compute the mutual information between
X and Y on the interval [0, T ], we use (13) and (18) to see that
the receiver can recover every Xi+Zi, i ∈ {1, . . . , 2(1−ε)T 3},
by computing the inner product of Y and ψi on [0, T ] and
then dividing by λi. The continuous-time channel can then be
reduced to 2(1−ε)T 3 parallel discrete-time Gaussian channels,
with IID Gaussian noise. It can be easily computed that

lim
T→∞

I
(
XT

0 ;Y T0
)

T
= lim
T→∞

1

T

2(1−ε)T 3∑
i=1

I(Xi;Xi + Zi)

= lim
T→∞

2(1− ε)T 2 · 1

2
log

(
1 +

P

N0T 2

)
= (1− ε) P

N0
. (22)

By choosing ε arbitrarily close to zero, we approach the
claimed capacity P/N0.

Proposition 2: Let Z(t) be band-limited such that its PSD
equals N0/2 over [−W,W ] and equals zero elsewhere. Under
Model 1, positive-rate covert communication is not possible,
irrespectively of whether a power constraint is imposed on the
input or not.

Proof sketch: Since the noise is band-limited to W Hz,
covertness requires that the input signal x(t), t ∈ R be also
band-limited to W Hz. Then, since the {ψi} are complete in
the space of functions band-limited to W Hz, we can write X
as

X(t) =

∞∑
i=1

Xiψi(t), t ∈ R (23)

for some infinite sequence of random variables X1, X2, . . ..
By (16) and by the requirement that X must be “almost time-
limited” to [0, T ], we must have, for any ε > 0,

lim
T→∞

∞∑
i=2(1+ε)WT

E[Xi] = 0. (24)

By an argument similar to, e.g., [9], we know that {Xi, i ≥
2(1+ε)WT} cannot contribute to any positive communication
rate. The remaining Xis can be thought of as inputs to
2(1+ε)WT parallel channels with IID Gaussian noise. By [1],
[3], the amount of information that can be covertly commu-
nicated over these channels can at most grow proportionally



to
√

(1 + ε)WT as T → ∞, hence cannot contribute to a
positive rate, either.

C. Time-limited model

Model 2: The input signal is strictly time-limited, and the
covertness constraint is imposed on the duration of the input
signal. Specifically, for T > 0,
• the transmitter maps a message to x(t), t ∈ [0, T ];
• the receiver maps y(t), t ∈ [0, T ], to a decoded message;

and
• the covertness constraint is that D(0, T ) must tend to zero

as T grows large.
Proposition 3: Let Z(t) have PSD that equals N0/2 on

[−W,W ] and zero elsewhere. Under Model 2, the covert
communication capacity of the channel (1) is infinity.

Proof sketch: Our signaling scheme is again to modulate
on the PSWFs. The idea is simply to use the fact that, for any
W,T > 0, the number of nonzero PSWFs is infinity.

For any positive integer k, we generate a sequence of k3 IID
Gaussian random variables {Xi} of mean zero and variance
k−2. Let

X(t) =

{∑
iXiψi(t), t ∈ [0, T ],

0, otherwise.
(25)

Clearly, X(t) is strictly time-limited to [0, T ]. By the orthog-
onality of the PSWFs on [0, T ], the channel can be reduced,
for both the warden and the receiver, to a set of k3 parallel
Gaussian channels

Yi = Xi + Zi. (26)

The total divergence is

D(PY‖PZ) = k3
(

2k−2

N0
− log

(
1 +

2k−2

N0

))
≤ 2

kN2
0

.

(27)
The input-output mutual information is

I(X;Y) =
k3

2
log

(
1 +

2k−2

N0

)
. (28)

Clearly, as we let k grow large, D(PY‖PZ) tends to zero,
while I(X;Y) tends to infinity. (We again omit the proof that
I(X;Y) represents an achievable amount of communication.)
Thus, even for a fixed T , the amount of information that can
be covertly communicated is unbounded.

Proposition 3 contradicts Observation 3, which we made
earlier. This should be seen as an artifact of Model 2, in
particular, of restricting the covertness criterion to the interval
[0, T ]. Because the additive noise Z has memory, its value on
(−∞, 0) and (T,∞) can provide information about its values
on [0, T ], helping the warden detect communication. For
example, consider a communication scheme where X(0) 6= 0
with a nonzero probability. If the warden observes the entire
real line, then it will see a discontinuity in Y (t) at t = 0,
from which it can immediately determine that communication
is taking place. This would not be possible if the warden only
had access to Y (t), t ∈ [0, T ]. Hence the message of this
sub-section is that Model 2 should not be adopted.

IV. DISCUSSION

We showed that, over an AWGN channel where the trans-
mitter can employ unbounded bandwidth, covert communica-
tion has the same per-second capacity as standard, non-covert
communication. This is proven in a continuous-time setting, in
the spirit of [9], [10]. For the case where the noise is colored,
we provided calculations to suggest that infinitely many nats
per second can be communicated covertly, but we have not
proven this formally as in the white-noise case, because, in
short, we are not aware of properties similar to (15) and (16)
for the Karhunen-Loève expansion of colored Gaussian noise.

As we pointed out, one must be careful when formulating
the above continuous-time model. In particular, the model
should allow the warden to observe not only the time window
when communication might take place, but also before and
after that time window. This is because our channel has
memory. The same issue would also arise in discrete-time
channels with memory, unless one assumes, for example, that
the channel behaves independently before, during, and after
the communication window, as in [16], [17].
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