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Abstract—We analyze a physically degraded relay channel, in
which the transmitter sends a covert message to the legitimate
receiver with the help of a relay. Two wardens, who do not collude
with each other, monitor communication from the transmitter
and the relay, respectively, through two Discrete Memoryless
Channels (DMCs) to detect the presence of a covert message.
The objective of the transmitter is to deliver the covert message
successfully to the receiver without exceeding the covertness
threshold of either warden. We identify the optimal asymptotic
scaling of message and key bits and the dependence of the covert
throughput on the two covertness thresholds.

I. INTRODUCTION

After Bash et al. proved that the amount of information
that can be transmitted with Low Probability of Detection
(LPD) is governed by the square-root law [1], the following
works have investigated reliable communication with LPD
in a variety of settings. The fundamental limit of covert
communication over a point-to-point channel was charac-
terized in [2], [3], and the possibility of keyless covert
communication if the receiver’s channel is better than the
warden’s channel was put forward in [4], [5]. Since any
large communication network is fundamentally made up of
multiple-access, broadcast, and relay channels, the analysis of
covert communication over such models is of interest. Exact
characterizations of the information-theoretic limits of covert
communication over some multiple-access and broadcast chan-
nels are known [6], [7], [8], [9]. A relay channel in which the
relay communicates its own message covertly while hiding it
from the transmitter, who also serves as the warden, is studied
in [10]. Note that our channel model is significantly different
since the relay does not have its own covert message. In addi-
tion, [10] simplifies covertness analysis by using independent
and identically distributed (i.i.d.) Gaussian codebooks.

In this work, we show that the achievability and converse
techniques developed in [2], [4], [6], [8] extend to physically
degraded relay channels. We characterize the exact number of
covert bits that can be transmitted over a physically degraded
relay channel when communications from the transmitter and
the relay are monitored by two non-colluding wardens. The
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presence of a second warden at the relay is justified by the
fact that a node that assists covert communication would want
to keep its assistance covert as well.

The paper is organized as follows. Section II sets the
notation and introduces the channel model, and Section III
presents our main result. We omit some proofs for brevity.

II. COVERT COMMUNICATION MODEL

A. Notation
We denote random variables and their realizations in up-

per and lower cases, respectively. We denote sequences in
boldface with their start and end index as subscript and
superscript, respectively. For instance, yba denotes a sequence
(ya, ya+1, . . . , yb). We drop the subscript and superscript when
the context is clear. Throughout this work, log and exp
are to the base e. Following standard information-theoretic
notation, H(X) and I(X;Y ) represent the entropy of X
and the mutual information between X and Y , respectively.
For p ∈ [0, 1], let Hb (p) represent the binary entropy:
Hb (p) , −p log p − (1 − p) log(1 − p). For x ∈ R, we
define [x]+ , max(x, 0). For distributions P and Q defined
on the same alphabet X , the Kullback-Leibler (KL) divergence
D(P‖Q) ,

∑
x∈X P (x) log P (x)

Q(x) , and the variational distance
V(P,Q) , 1

2

∑
x∈X |P (x)−Q(x)|. The two quantities are

related via Pinsker’s inequality: V(P,Q)
2 6 1

2D(P‖Q). If P
is absolutely continuous with respect to (w.r.t.) Q, we write
P � Q. We denote the cardinality of a set S by |S|.
B. Channel Model

Consider the setup illustrated in Figure 1. We consider a dis-
crete memoryless relay channel

(
X1,X2,WY2Y3|X1X2

,Y2,Y3

)

that is physically degraded. Then, for all x1, x2, y2, y3,
WY2Y3|X1X2

decomposes as [11]

WY2Y3|X1X2
(y2, y3|x1, x2)

= WY2|X1X2
(y2|x1, x2)WY3|Y2X2

(y3|y2, x2). (1)

Warden 1 monitors transmissions from the transmitter through
a DMC

(
X1,WZ1|X1

,Z1

)
, and Warden 2 monitors transmis-

sions from the relay through another DMC
(
X2,WZ2|X2

,Z2

)
.

We assume that X1 = X2 = X , {0, 1}, with 0 being the in-
nocent symbol, i.e., the channel input when no communication
occurs. We also assume finite output alphabets.
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Fig. 1. Model of covert communication over a physically degraded relay
channel with two non-colluding wardens.

For a, b ∈ {0, 1}, we denote the output dis-
tributions at the relay and at the receiver Bob by
P ab(y2) , WY2|X1X2

(y2|a, b), y2 ∈ Y2, and Pab(y3) ,
WY3|X1X2

(y3|a, b), y3 ∈ Y3, respectively. We assume that
Pab � P00 and P ab � P 00 for all a, b ∈ {0, 1}.
For a ∈ {0, 1}, we denote the output distributions at the
two wardens by Qa(z1) , WZ1|X1

(z1|a), z1 ∈ Z1, and
Qa(z2) , WZ2|X2

(z2|a), z2 ∈ Z2, respectively. We assume
that Q1 � Q0, Q1 � Q0, Q1 6= Q0, and Q1 6= Q0 as in [4].

Alice wishes to communicate a covert message W ∈ J1,MK
to Bob, with the help of a relay and a secret key S ∈ J1,KK.
We assume both W and S to be uniformly distributed. Alice
maps W and S to her transmission sequence X1. The relay
generates its current symbol based on its past observations;
hence, X2,i is a function of (Y2,1, . . . , Y2,i−1) and S. Upon
observing the entire output sequence Y3, Bob maps Y3 and S
to the estimated message Ŵ . We measure reliability at Bob by
the error probability Pe , P

(
Ŵ
)
6= W. Warden 1 observes

Z1 while Warden 2 observes Z2. Let us denote the distributions
induced at the wardens when communication takes place by
Q̂n1 and Q̂n2 , respectively. We measure covertness at the war-
dens in terms of the respective KL divergences, D

(
Q̂n1‖Q⊗n0

)

and D
(
Q̂n2‖Q

⊗n

0

)
. If our communication scheme ensures that

both the KL divergence terms above are small, then any
statistical test used by the wardens is futile in detecting the
presence of a covert message. Our objective is to characterize
the optimal scalings of logM and logK with n such that, for
δ1, δ2 > 0,

lim
n→∞

Pe = 0, (2)

lim sup
n→∞

D
(
Q̂n1‖Q

⊗n
0

)
6 δ1, lim sup

n→∞
D
(
Q̂n2‖Q

⊗n

0

)
6δ2. (3)

We refer to δ1 and δ2 as the covertness thresholds.

III. MAIN RESULT AND PROOF

Define

χ2 ,
∑

z1∈Z1

(Q1(z1)−Q0(z1))
2

Q0(z1)
(4)

χ2 ,
∑

z2∈Z2

(
Q1(z2)−Q0(z2)

)2

Q0(z2)
. (5)

For any γ > 0 and β ∈ [0, 1], define

Γ(γ, β) , min

(
1

(1 + γβ)

√
δ1
χ2
,

1

γ

√
δ2
χ2

)
, (6)

κ2(γ, β) , max
(

(1 + γβ)D(Q1‖Q0), γD
(
Q1‖Q0

))
, (7)

and κ1(γ, β) as in (8) at the top of the next page. Our main
result is the following.

Theorem 1. For the degraded channel model described in
Section II-B, let M∗(n, ε) be the largest possible value of M
such that a length-n channel code can be constructed to satisfy
(3) and Pe ≤ ε. Then,

lim
ε↓0

lim
n→∞

logM∗(n, ε)√
n

= sup
γ>0,
β∈[0,1]

√
2Γ (γ, β)κ1 (γ, β) . (9)

Furthermore, this optimal scaling can be achieved if

lim inf
n→∞

logK√
n

>
√

2Γ (γ∗, β∗)[κ2 (γ∗, β∗)−κ1 (γ∗, β∗)]
+
, (10)

and only if

lim inf
n→∞

logK√
n

>
√

2Γ (γ∗, β∗)[κ2 (γ∗, β∗)−κ1 (γ∗, β∗)]
+
, (11)

for some (γ∗, β∗) pair that achieves the limit in (9).

Note that both Γ(γ, β)κ1(γ, β) and Γ(γ, β)κ2(γ, β) are
bounded for all γ > 0 and β ∈ [0, 1]. If there exist multiple
(γ∗, β∗) pairs, we choose the one that minimizes the lower
bound in (11).

Remark 1. If γ∗ = 0, then Γ(0, β∗) =
√

δ1
χ2

and κ1(0, β∗) =

D(P10‖P00), since D
(
P 10‖P 00

)
> D(P10‖P00) due to the

degraded channel assumption. Then,

lim
ε↓0

lim
n→∞

logM∗(n, ε)√
n

=

√
2δ1
χ2

D(P10‖P00), (12)

which matches the covert throughput achieved when the relay
is not used to transmit any covert information.

A. Proof of achievability for Theorem 1

For B ∈ N∗, divide the message w ∈ J1,MK into
B equal-sized messages wB1 each of length logM ′, where
logM ′ = logM

B . Similarly, divide the key s ∈ J1,KK into
B + 1 parts: sB1 , each of length logK ′ and another part ŝ.
We specify logK ′ and the length of ŝ later. Alice randomly
chooses a pair (m0, k0) ∈ J1,M ′K× J1,K ′K and reveals it to
Bob and the relay. Note that, unlike block-Markovian encoding
in traditional problems [11], [12], m0 cannot be fixed in
advance, because the warden can detect a fixed codeword with
ease. To this end, we employ the key ŝ, whose length needs to
be logM ′ + logK ′. Thus, as B grows, logK ′ approximately
equals logK

B . For n ∈ N∗, define

αn ,

√
2

n
· Γ(γ, β), (13)



κ1(γ, β) , min
(
D
(
P 10‖P 00

)
+ γ(1− β)D

(
P 01‖P 00

)
+ γβD

(
P 11‖P 00

)
− γD

(
(1− β)P 01 + βP 11‖P 00

)
,

D(P10‖P00) + γ(1− β)D(P01‖P00) + γβD(P11‖P00)
)
. (8)

and fix γ > 0 and β ∈ [0, 1] such that αn ∈ [0, 1]. For a large
n, define the input distribution ΠX2 as

ΠX2(1) = 1−ΠX2(0) = γαn, (14)

and define the conditional distribution ΠX1|X2
as

ΠX1|X2
(1|0) = 1−ΠX1|X2

(0|0) = αn, (15)
ΠX1|X2

(1|1) = 1−ΠX1|X2
(0|1) = β. (16)

Furthermore, defining ρn , 1+γβ−γαn we have ΠX1(1) =
ρnαn. Note that limn→∞ ρn = 1+γβ. We generate a separate
codebook Cb for each block b ∈ J1, B + 1K. Define N , n

B+1 .
For block b, generate M ′K ′ codewords x2b,s(w) of length
N , where w ∈ J1,M ′K and s ∈ J1,K ′K, according to the
distribution Π⊗NX2

. For each x2b,s(w), generate M ′K ′ code-
words x1b,(s,s′)(w,w

′) of length N , where w,w′ ∈ J1,M ′K
and s, s′ ∈ J1,K ′K, conditionally independently according to
the distribution Π⊗NX1|X2

(·|x2b,s(w)). Bob and the relay observe
the N -length sequences y2b and y3b, respectively, in block b.
Similarly, the wardens observe the N -length sequences z1b

and z2b, respectively, in block b. Let wB+1 = sB+1 = 1. We
follow the decode-and-forward scheme detailed in [12]. We
skip details of the reliability analysis to claim that, for any
ξ ∈ (0, 1), the above scheme can achieve

lim
n→∞

logM√
n

= (1− ξ)
√

2B

B + 1
Γ(γ, β)κ1(γ, β). (17)

By letting ξ ↓ 0 and B → ∞, we conclude that this scheme
approaches the right-hand side of (9).

Next, we show that the proposed scheme satisfies the
covertness conditions in (3). Following [4], we define the
covert processes at the wardens as

Qαn
(z1) ,

∑

x1

WZ1|X1
(z1|x1)ΠX1

(x1) (18)

Qαn
(z2) ,

∑

x2

WZ2|X2
(z2|x2)ΠX2(x2) (19)

We denote the corresponding n-fold product distributions by

Π⊗nX1X2
,

n∏

i=1

ΠX1X2
, Q⊗nαn

,
n∏

i=1

Qαn
, Q

⊗n

αn
,

n∏

i=1

Qαn
. (20)

Using similar steps as in [4], we obtain

ρ2
nα

2
n

2
(1 +

√
ρnαn)χ2 > D(Qαn‖Q0)

>
ρ2
nα

2
n

2
(1−√ρnαn)χ2, (21)

γ2α2
n

2
(1 +

√
γαn)χ2 > D

(
Qαn
‖Q0

)

>
γ2α2

n

2
(1−√γαn)χ2. (22)

Using our choice of αn in (13), we obtain

lim
n→∞

nD(Qαn‖Q0) = 2Γ(γ, β)2 · (1 + γβ)2

2
χ2 ≤ δ1, (23)

lim
n→∞

nD
(
Qαn
‖Q0

)
= 2Γ(γ, β)2 · γ

2

2
χ2 ≤ δ2. (24)

It then remains to show that the induced distributions at the
wardens are close to the respective covert processes. For some
b ∈ J1, B + 1K and τ1 > 0, define the set

BNτ1 ,

{
(x1b, z1b)∈XN×ZN1 : log

W ⊗N
Z1|X1

(z1b|x1b)

Q⊗Nαn
(z1b)

<τ1

}
.(25)

For
(
wB0 , sB0

)
,
(
uB0 , tB0

)
∈ J1,M ′KB+1 × J1,K ′KB+1,

we denote the expectation over all random codewords{{
X1b,(tb−1,tb)(ub−1, ub)

}
b∈J1,B+1K

}
(uB

0 ,t
B
0 ) 6=(wB

0 ,s
B
0 )

by

E∼(wB
0 ,s

B
0 ). The KL divergence between Q̂n1 and Q⊗nαn

averaged over all random codebooks C can be upper bounded
as in (26) at the top of the next page. For every set
Sb′ ⊆ J0, BK such that |Sb′ | = b′, where b′ ∈ J0, B + 1K,
define another set Tb′ , {i+ 1: i ∈ Sb′}. Here, Sb′ denotes
the set of block indices whose message-key pairs do not
match the corresponding message-key pairs of

(
wB0 , sB0

)
.

Defining µ1 , minz1∈Z1
Q0(z1), we upper bound the

log term in (26) as in (30). Combining (26) and (30), we
obtain (31). Defining τ1 , (1 + µ)NI(X1;Z1) and expanding
I(X1;Z1), we obtain

τ1 = (1 + µ)NρnαnD(Q1‖Q0) + nO
(
α2
n

)
. (32)

Using Bernstein’s inequality and choosing M ′ and K ′ such
that, for n large enough,

logM ′ + logK ′ > (1 + µ)NρnαnD(Q1‖Q0), (33)

we upper bound the average KL divergence at warden 1 by

EC
(
D
(
Q̂n1‖Q

⊗n
αn

))
6 exp (−cnαn) , (34)

for some constant c > 0. Similarly, by using Bernstein’s
inequality and choosing M ′ and K ′ such that, for a large n,

logM ′ + logK ′ > (1 + µ)NγαnD
(
Q1‖Q0

)
, (35)

we can show that

EC
(
D
(
Q̂n2‖Q

⊗n

αn

))
6 exp (−cnαn) , (36)

for an appropriate constant c > 0. Combining (21), (22), (34),
and (36), we prove that the proposed scheme indeed satisfies
the covertness conditions in (3).



EC
(
D
(
Q̂n1‖Q

⊗n
αn

))

6
∑

z1

1

(M ′K ′)
B+1

∑

wB
0

∑

sB0



B+1∏

b=1

∑

x1b,(sb−1,sb)
(wb−1,wb)

W ⊗N
Z1|X1

(
z1b|x1b,(sb−1,sb)(wb−1, wb)

)
Π⊗NX1

(
x1b,(sb−1,sb)(wb−1, wb)

)



× logE∼(wB
0 ,s

B
0 )



∑

uB
0

∑
tB0

(∏B+1
b=1 W ⊗N

Z1|X1

(
z1b|X1b,(tb−1,tb)(ub−1, ub)

))

(M ′K ′)
B+1

Q⊗nαn
(z1)


 . (26)

logE∼(wB
0 ,s

B
0 )



∑

uB
0

∑
tB0

(∏B+1
b=1 W ⊗N

Z1|X1

(
z1b|X1b,(tb−1,tb)(ub−1, ub)

))

(M ′K ′)
B+1

Q⊗nαn
(z1)




6 log



B+1∑

b′=0

1

(M ′K ′)
B+1−b′

∑

Sb′⊆J0,BK

B+1∏

b=1
b6∈Sb′∪Tb′

W ⊗N
Z1|X1

(
z1b|x1b,(sb−1,sb)(wb−1, wb)

)

Q⊗Nαn
(z1b)


 (27)

= log

(∏B+1
b=1 W ⊗N

Z1|X1

(
z1b|x1b,(sb−1,sb)(wb−1, wb)

)

(M ′K ′)
B+1

Q⊗nαn
(z1)

+ 1

+

B∑

b′=1

1

(M ′K ′)
B+1−b′

∑

Sb′⊂J0,BK

B+1∏

b=1
b6∈Sb′∪Tb′

W ⊗N
Z1|X1

(
z1b|x1b,(sb−1,sb)(wb−1, wb)

)

Q⊗Nαn
(z1b)

)
(28)

6 log

((
eτ1

M ′K ′

)B+1

+

B∑

b′=1

(
B + 1

b′

)
(eτ1)

B−b′

(M ′K ′)
B+1−b′ + 1

)
+ log

(
2B+1

Q⊗nαn
(z1)

)B+1∑

b=1

1
{

(x1b, z1b) 6∈ BNτ1
}

(29)

6

(
eτ1

M ′K ′

)B+1

+

B∑

b′=1

(
B + 1

b′

)
(eτ1)

B−b′

(M ′K ′)
B+1−b′ + n log

(
2B+1

(1− ρnαn)µ1

)B+1∑

b=1

1
{

(x1b, z1b) 6∈ BNτ1
}
. (30)

EC
(
D
(
Q̂N1 ‖Q

⊗N
αn

))
6

(
eτ1

M ′K ′

)B+1

+

B∑

b′=1

(
B + 1

b′

)
(eτ1)

B−b′

(M ′K ′)
B+1−b′ + n(B + 1) log

(
2B+1

(1− ρnαn)µ1

)
P
(
BNτ1

c
)
. (31)

B. Proof of converse for Theorem 1

Consider a covert communication scheme for a physically
degraded relay channel that satisfies (2) and (3). Let W be
the covert message and S be the secret key. Alice and the
relay transmit n-length sequences X1 = (X11, X12, . . . , X1n)
and X2 = (X21, X22, . . . , X2n), respectively. For i ∈ J1, nK,
define the joint distribution of the symbol pair (X1i, X2i)
as ΠX1iX2i

. We define two random variables X̃1 and X̃2

with joint distribution, ΠX̃1X̃2
, 1

n

∑n
i=1 ΠX1iX2i

. For
a, b ∈ {0, 1}, define µ(n)

ab , ΠX̃1X̃2
(a, b). The corresponding

marginal distributions of X̃1 and X̃2 are denoted by ΠX̃1
and

ΠX̃2
, respectively. Let P̂Y2i and P̂Y3i be the distributions of

outputs Y2 and Y3, respectively, at bit position i ∈ J1, nK. We
also define random variables Ỹ2 and Ỹ3 with distributions

PỸ2
(y2) =

∑

x1,x2

ΠX̃1X̃2
(x1, x2)WY2|X1X2

(y2|x1x2), (37)

PỸ3
(y3) =

∑

x1,x2

ΠX̃1X̃2
(x1, x2)WY3|X1X2

(y3|x1x2), (38)

respectively. Using the cut-set bound and the fact that our
channel is physically degraded, we upper bound logM by
(see [11])

logM 6 nI
(
X̃1X̃2; Ỹ3

)
+ Hb (εn) + εn logM, (39)

logM 6 nI
(
X̃1; Ỹ2|X̃2

)
+ Hb (εn) + εn logM, (40)

Define PỸ2|X̃2
(·|x2),

∑
x1

ΠX̃1|X̃2
(x1|x2)WY2|X1X2

(·|x1x2),
where ΠX̃1|X̃2

is the conditional distribution of X̃1 given
X̃2. Expanding the mutual information terms in (39)
and (40), we obtain the bounds in (41) and (42). Defin-
ing a random variable Z̃1 with distribution QZ̃1

(z1) ,∑
x1

ΠX̃1
(x1)WZ1|X1

(z1|x1), z1 ∈ Z1, we can write (see [2])

δ1 > lim sup
n→∞

D
(
Q̂n1‖Q

⊗n
0

)
> lim sup

n→∞
nD
(
QZ̃1
‖Q0

)
. (43)

In particular, limn→∞D
(
QZ̃1
‖Q0

)
= 0. This combined

with Q1 6= Q0 and Pinsker’s inequality implies that
limn→∞ΠX̃1

(1) = limn→∞

(
µ

(n)
10 + µ

(n)
11

)
= 0. Similarly,



logM 6 n
(
µ

(n)
10 D(P10‖P00) + µ

(n)
01 D(P01‖P00) + µ

(n)
11 D(P11‖P00)

)
+ Hb (εn) + εn logM, (41)

logM 6 n
(
µ

(n)
10 D

(
P 10‖P 00

)
+ µ

(n)
01 D

(
P 01‖P 00

)
+ µ

(n)
11 D

(
P 11‖P 00

)
−
(
µ

(n)
01 + µ

(n)
11

)
D
(
PỸ2|X̃2=1‖P 00

))

+ Hb (εn) + εn logM. (42)

D
(
Q̂n1‖Q

⊗n
0

)
>
∑

z1

(
1− ξ(n)

1 (z1)
)
n
(
µ

(n)
10 + µ

(n)
11

)2 (Q1(z1)−Q0(z1))
2

2Q0(z1)
, (44)

D
(
Q̂n2‖Q

⊗n

0

)
>
∑

z2

(
1− ξ(n)

2 (z2)
)
n
(
µ

(n)
01 + µ

(n)
11

)2
(
Q1(z2)−Q0(z2)

)2

2Q0(z2)
. (45)

we have limn→∞ΠX̃2
(1) = limn→∞

(
µ

(n)
01 + µ

(n)
11

)
= 0.

Let us define Ψ
(n)
1 (z1) , ΠX̃1

(1) (Q1(z1)−Q0(z1)),

ξ
(n)
1 (z1) , Ψ

(n)
1 (z1)
Q0(z1) +

4
∣∣∣Ψ(n)

1 (z1)
∣∣∣

3Q0(z1) , Ψ
(n)
2 (z2) ,

ΠX̃2
(1)
(
Q1(z2)−Q0(z2)

)
, and ξ

(n)
2 (z2) , Ψ

(n)
2 (z2)

Q0(z2)
+

4
∣∣∣Ψ(n)

2 (z2)
∣∣∣

3Q0(z2)
. We lower bound D

(
Q̂n1‖Q⊗n0

)
and D

(
Q̂n2‖Q

⊗n

0

)

as in (44) and (45). Applying limits to (44) and (45), we have

δ1 > lim sup
n→∞

n
(
µ

(n)
10 + µ

(n)
11

)2

2
χ2, (46)

δ2 > lim sup
n→∞

n
(
µ

(n)
01 + µ

(n)
11

)2

2
χ2. (47)

For n ∈ N∗, define βn , µ
(n)
11

µ
(n)
01 +µ

(n)
11

and γn =
µ
(n)
01 +µ

(n)
11

µ
(n)
10

. Note
that the last KL divergence term in (42) can be written as

D
(
PỸ2|X̃2=1‖P 00

)
= D

(
(1− βn)P 01 + βnP 11‖P 00

)
. (48)

We now combine (41) and (42) as

logM 6
nµ

(n)
10 κ1 (γn, βn)

1− εn
+

Hb (εn)

1− εn
. (49)

For any η > 0, (46) and (47) imply that, for an n large enough,
√
nµ

(n)
10 ≤ (1 + η)

√
2Γ(γn, βn). (50)

Combining (49) and (50), and letting η ↓ 0 proves the converse
part of (9).

Next, we lower bound logMK. Note that, if a sequence
of codes achieves the limit in (9), then it must contain a
subsequence satisfying γn → γ∗, βn → β∗, and

√
nµ

(n)
10 →√

2Γ(γ∗, β∗) as n → ∞, for some (γ∗, β∗) that achieves
the limit on the right-hand side of (9). For any code in this
subsequence, we have

logMK > I(X1; Z1) (51)

= n
∑

x

∑

z

ΠX̃1
(x)WZ1|X1

(z|x) log
WZ1|X1

(z|x)

Q0(z)

− D
(
Q̂n1‖Q

⊗n
0

)
(52)

= nµ
(n)
10 (1 + γnβn)D(Q1‖Q0)− D

(
Q̂n1‖Q

⊗n
0

)
, (53)

and, similarly,

logMK > nµ
(n)
10 γnD

(
Q1‖Q0

)
− D

(
Q̂n2‖Q

⊗n

0

)
. (54)

Normalizing (53) and (54) by
√
n and applying the limits, we

have (for the entire sequence of codes)

lim inf
n→∞

logMK√
n

>
√

2Γ(γ∗, β∗)κ2 (γ∗, β∗) . (55)

Combining (9) and (55) proves that K must satisfy (11).
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