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Abstract

Casein micelle (CM), porous colloidal phosphopmoteiineral complex, naturally present in
milk to deliver minerals, also has several featurgsich could ensure its use as nanocarrier
for bioactives. CM structure being not steady aditwy to the physico-chemical conditions,
its stability can be improved by intra-micellar ssdinking using transglutaminase (TGase)
inducing a strengthened structure called caseirogeln The aim of this research was to
investigate the morphology and nanomechanics dcficazanogel particles cross-linked by
TGase (TG-CM) using atomic force microscopy (AFM) native-like liquid environment
(lactose-free simulated milk ultrafiltrate, SMURrior to AFM, TG-CM were captured by

anti-phospho-Ser/Thr/Tyr monoclonal antibodies ¢tenthly bound to a gold-coated slide via
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carbodiimide chemistry. Surface topography and gireperties evaluation revealed an
increase in size of TG-CM compared to native CM-TR being characterized by a mean
width of 264 £ 7 nm and a mean height of 111 + 5 m@-CM displayed a relatively high
contact angle (62°) indicating a limited flatteniofythese particles after adsorption on the
substrate. The TG-CM elasticity was then evaluaggulying low indentation forces on single
TG-CM. The TGase treatment led to a significant ifcation of CM nanomechanics
attributed to intramolecular rearrangements witkive micellar structure. The elasticity
distribution of TG-CM revealed three elasticity pga@entered at 219 + 14 kPa, 536 + 14 kPa
and 711 = 11 kPa. The lower elasticity peak is teelato the native CM elasticity
characteristic and the two stiffer peaks werelaitad to the substantial changes in the TG-

CM structure.

Keywords. Casein micelle; Nanogel, Transglutaminase; Atonfmrce microscopy;

Topography; Nanomechanics
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1. Introduction

With the growing awareness of food importance osea$e prevention and cure, novel
strategies have been developed to include andedetioactive compounds through food
matrices (Katouzian & Jaffary, 2016; Prakash & Waekel, 2010; Zhu, 2017). Particularly,
nanoencapsulation of bioactives has been propaosgetect them against degradation during
processing, increase their bioavailability and rnmmtheir release to the desired site after
ingestion (Katouzian & Jaffary, 2016). Casein nlewl (CM) are natural polymeric
nanocarriers for delivery of minerals, particuladgicium and phosphate (de Kruif & Holt,
2003). Consequently, bioactives delivery systenve leeen developed from nanosized native
CM or modified CM (Chevalier-Lucia, Blayo, Graciakd, Picart-Palmade, & Dumay, 2011;
Livnhey, 2010; Ranadheera, Liyanaarachchi, Chanthapassanayake, & Vasiljevic, 2016).
CM is a naturally self-assembly of caseins, majoitk nproteins (~ 80%), through
hydrophobic bonds and colloidal calcium phosphaigges. The main four caseing, as, B
and k are phosphoproteins present at a molar ratio of:44..6 in CM (Walstra, Geurts,
Noomen, Jellema, & van Boekel, 1999). CM has a tygnamic diameter ai200 nm and a
highly hydrated structure retaining ~3.7 g watef@iry casein (McMahon & Brown, 1984).
It is characterized by a hydrophobic core and adphilic shell, CM surface being covered
by ax-casein brush insuring its stability thanks to elestatic and steric repulsion (Dalgleish,
Horne, & Law, 1989; De Kruif & Zhulina, 1996; Horn2006). Moreover, the porous and
open structure of CM due to the high proline confenvides an excellent release mechanism
for bioactive delivery in the stomach (Fox, 2008;iey, 2010). Consequently, CM can be an
excellent matrix to carry hydrophobic molecules anider biopolymers (Ranadheera et al.,
2016). Caseins without a well-defined permanenbisécor tertiary structure have been
described as rheomorphic (Holt & Sawyer, 1993) nmeathat they may adapt their structure

to suit various conditions. CM structure is therefmot steady since several structural
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modifications can occur and even lead to the dissopf the CM framework due to changes
of physico-chemical parameters such as pH, iomength, water activity, temperature or
pressure (De La Fuente, 1998; Gaucheron, 2005).eMesy CM structural stability can be
improved by intra-micellar cross-linking using tsgtutaminase enzyme (TGase) to form
strengthened structures called casein nanogelclesrtiDe Kruif, Huppertz, Urban, &
Petukhov, 2012; Huppertz & de Kruif, 2008; Smidtartin, Kelly, de Kruif, & Huppertz,
2006).

TGase has several applications in food processmm@ to enhance functional properties of
proteins (Romeih & Walker, 2017; Yokoyama, Nio, 8&HKchi, 2004) by catalyzing covalent
binding between protein-bound glutaminyl side chaimd protein-bound lysyl side chain
(Motoki, Seguro, Nio, & Takinami, 1986). It has bedearly shown that TGase cross-linking
increases the stability of CM against dissociatagents (Smiddy et al., 2006), ethanol
coagulation (Huppertz & De Kruif, 2007a) and haaatment (O’Sullivan, Kelly, & Fox,
2002). Particularly, many studies have focused lwn major gel property modifications
obtained from TGase cross-linked CM (Ardelean, da8oRohm, 2013; Jaros, Jacob, Otto, &
Rohm, 2010; Lorenzen, Neve, Mautner, & SchlimmeQ20 However, up to now, the
topographical and nanomechanical properties ofviddal TG-CM have never been
investigated.

The aim of the present research is to evaluatenibphology and nanomechanics of TGase
cross-linked CM (TG-CM) using atomic force microggdAFM) in lactose-free simulated
milk ultrafiltrate (SMUF, pH 6.6) to replicate timative mineral environment of CM (Jenness
& Koops, 1962). This technique provides soft malegvaluation with minimal sample
preparation to preserve its native properties (&aBcha, 2004; Kasas, Longo, & Dietler,
2013). Nevertheless, AFM requires the immobilizatad samples on a flat surface prior to

study. In this work, CM and TG-CM were captureddsefAFM by weak interactions via a
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specific MAH-PSer/Thr/Tyr antibody covalently bouta a carboxylic acid self-assembled
monolayer on a gold surface. This capture methosl pvaviously developed and tested on
native casein micelles (Bahri et al., 2017). Tharahterization of TG-CM, individual internal

cross-linked casein micelle, was carried out irajalrwith that of native CM and was also
intended to validate the sensitivity of this metblogyy to investigate the topographical and

nanomechanical properties of casein micelles.

2. Material and methods

2.1. Reagents

Tri-potassium citrate, tri-sodium citrate, KO, K,SO, were purchased from Alfa Aesar
(Heysham, UK). KCO; and CaCl were from Amresco (Solon, Ohio, USA) and acetidlac
MgCl,, KCI and KOH from VWR BDH Prolabo (Fontenay-soussh France). 11-mercapto-
1l-undecanoic acid (11-MUA), N-ethyl-dimethylaminopylcarbodiimide (EDC), N-

hydroxysuccinimide (NHS) and sodium azide were ioleh from Sigma-Aldrich (Saint-

Quentin Fallavier, France). Sodium acetate was hased from Merck (Darmstadt,
Germany). Transglutaminase (TGase, Activa WM®) weagift from Ajinomoto Foods

Europe S.A.S. (Mesnil-Saint-Nicaise, France). Mouwa#i-human phospho-Ser/Thr/Tyr
monoclonal antibody (MAH-PSer/Thr/Tyr antibody) wiiem Spring Bioscience (E3074 -
Pleasanton, CA, USA). HBS-N buffer (0.01 M HEPES150M NaCl, pH 7.4) and

ethanolamine hydrochloride 1 M pH 8.5 were purcdaBem Biacore (GE Healthcare,

Velizy-Villacoublay, France). All solutions weregpared using Milli-Q water (Millipore®).

2.2. Preparation of native and cross-linked casein micelle dispersions
Native phosphocasein (PC) powder purchased fromedhig SA (Promilk 852B, lot 131088,

Arras, France) has been industrially obtained bygrofiitration and diafiltration using the
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milk mineral soluble phase ensuring a quasi-nasiaée to the prepared casein micelles. PC
powder contained 95 g dry solids per 100 g of povatel, in dry basis (w/w), 86% total
proteins (corresponding to 79.1% caseins).

Casein micelle dispersion (5%, w/w) was prepareddisgolving PC powder in pH 6.6
lactose-free simulated milk ultrafiltrate (SMUF)pticating the mineral environment of
native CM (Jenness & Koops, 1962). The dispersias stirred at 540 rpm for 30 min at 20
°C before being stored overnight at 4 °C improyogvder hydration. The PC dispersion was
then warmed at 40 °C for 1 h and rapidly coole@@0’C just before experiments to ensure
complete equilibration. To prevent microbial grontlodium azide (0.35 g/L) was added to
all samples.

CM cross-linked by TGase (TG-CM) were obtained fré?@ dispersion prepared as
described above, equilibrated at 30 °C for 2 h #eh incubated with 0.5 g/L TGase (100
U/g activity) at 30 °C for 24 h. Then, TGase waactivated by heating the dispersion at 70
°C for 10 min, followed by a rapid cooling to rodemperature in an ice-water bath (Smiddy
et al., 2006). The cross-linkage of CM by TGase whscked by investigating the CM
demineralization by sodium citrate addition up @ mol.L* and turbidity measurements at
633 nm (Huppertz, Smiddy, & de Kruif, 2007) as shaw Table S1. A PC control dispersion
was concurrently prepared following the same théristory as TG-CM but without

addition of TGase.

2.3. Micellesize distribution by photon correlation spectr oscopy

The CM size distribution was evaluated by photorradation spectroscopy (PCS) using a
Zetasizer Nano-ZS equipment (Malvern Instrumentslvetn, UK) at 25 °C. Before
analyses, each sample was diluted 20-fold with SNJ&void multiple diffusion phenomena

during PCS measurement. Experimental data werssssdy the NNLS algorithm with the
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dispersant viscosity taken as 0.89 mPa.s and tfractiee index as 1.33 at 25 °C.
Characteristics of the dispersed CM particles wiaken as for milk proteins: 0.004 and 1.36
for the imaginary and the real refractive indiaespectively (Regnault, Thiebaud, Dumay, &
Cheftel, 2004). For each independent sample, a rdesrbution curve in intensity and in
number was calculated from six measurements as agethe mean diameter (arithmetical

mean).

2.4. Scanning electron microscopy (SEM)

Scanning electron microscopy (SEM) was used touewalCM shape. SEM samples were
prepared as described in a previous work (Gastaddjaude, & De La Fuente, 1996). Briefly,

ANODISC® membranes (Whatman, Maidstone, Englandh &n average pore diameter of
200 nm were immersed overnight in CM dispersiorteAtlehydration in a series of graded
ethanol solutions (25-100%), the specimens wereddusing a critical point dryer (Bal-Tec

AG, Balzers, Liechtenstein, Germany). Then, thégpas were sputtered with gold palladium
and analyzed with a Hitachi S-4800 scanning electnicroscope at an accelerating voltage

of 2 kV.

2.5. Atomic for ce microscopy

2.5.1. CM capture for AFM experiment

CM were captured by low energy interactions via MRBer/Thr/Tyr antibody as described
in a previous work (Bahri et al., 2017). All immbbation steps were carried out at room
temperature. As a first step, a gold-sputtered sglabip (AU.0500.ALSI, Platypus
Technologies LLC, Madison, WI, USA) was chemicallganed twice with piranha solution
(70% HSO; plus 30% HO,), then three times with ethanol. The cleaned chigs

immediately immersed in an ethanolic solution ofMWA (5 mM) for 18 h to coat the
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surface with a self-assembled monolayer (SAM) abeayl groups. The chip was then
extensively rinsed with absolute ethanol and ultrapvater before being immersed for 1 h in
a MAH-PSer/Thr/Tyr antibody solution (503/mL) prepared in acetate buffer (10 mM, pH
5). It was rinsed with acetate buffer (10 mM, pKthen with HBS-N buffer (0.01 M HEPES,
0.15 M NacCl, pH 7.4) before immersion into ethanalz solution (1 M, pH 8) for 30 min to
block free binding sites. The prepared chip was themediately immersed into the TG-CM
dispersion for 1 h, rinsed with SMUF and equililedatfor 4 h at room temperature before
AFM measurements.

2.5.2. AFM measurements

The AFM experimental system used was an Asylum NMBHiead coupled to the Molecular
Force Probe 3D controller (Asylum Research, Samatd&a, CA, USA). The microscope was
placed in an acoustic isolation enclosure with ati-dbration system. Silicon nitride
cantilevers MLCT were purchased from Veeco MetrglGyoup (Santa Barbara, CA, USA),
with a nominal spring constant of 0.01 Ntrand an half-opening angle of 35°. Prior to each
experiment, the cantilever spring constant wasrgeted in liquid environment using the
thermal noise method included in the MFP-3D sofewakFM height, deflection trace and
retrace topographic images, with a pixel resolubb@56 pixels at a line rate of 0.6 Hz, were
obtained in contact mode in SMUF at room tempeeatifter testing a range of loading
forces on different individual TG-CM, measurememtsre performed with a maximum
loading force oftlLOO pN. Higher loading force values led to stiffneserestimation due to
the substrate. It was particularly checked that @M TG-CM retained the same spherical
cap section shape and remained adhered befordtanthdentation experiments (Figure S1).
A constant approach velocity of 6 pihwas used, meaning a piezo-extension rate of DHz t

minimize hydrodynamic and viscoelastic artifactegBnbluth, Lam, & Fletcher, 2006).
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The height (h) and width (w) distributions were abed from the single TG-CM size
analysis using the MFP-3D software. The contactea® of each TG-CM was deduced
from the AFM-measured height and width using theatign (1):

0 =180 Arccos (1- (h/w))rl Q)
The elastic deformation was obtained from the faweves as a function of the loading force
applied by the tip. The Young's modulus (E) wascahkdted for each force curve from the
approaching part of the curve according to a medifHertz model (Hertz, 1881), as
described by Matrtin et al. (2013).

Experiments were repeated 3 times on different Ajeld chips.

2.5.3. AFM data analysis

Raw images were corrected by an implemented Asyaftware using a standard procedure
(flatten, planefit and artifact lines caused by tipeattachement and removal). Longitudinal

profiles at selected zones were also obtained &gdftware. The scale indicating the sample
height or deflection was adjusted to limit the dgagtween high and low regions. The

individual elasticity values for a sample were eoled via the Asylum software providing the

distribution of elasticity values. Counts were natized considering the total collected

elasticity values of the specimen. A Gaussiannfittias then applied using the multi-peak

analyzing software implemented in the MFP-3D opegasystem and OriginPro 8 software.

2.6. Statistics
Results were expressed as meastandard deviation. All the AFM and PCS resultgeve

analyzed by the Student’s t-test. Statistical $iggnce was set qt< 0.05.

3. Results and discussion
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3.1. Topography of transglutamisase cross-linked CM

The influence of TG cross-linking has been evalate the apparent CM shape and
dimensions. Fig. 1la-h shows AFM height and deftectmages of CM and TG cross-linked
CM captured on SAM-gold substrate via MAH-PSer/Tlr/ antibody when imaged in
contact mode under native conditions (SMUF, pH .6S8an parameters were adjusted for
optimum contrast and stability and no lateral dispment of particles was recorded during
analyses. These images (Fig. 1a-h) emphasize ticeeety of specific antibody capture of
TG-CM that reveal a spherical cap shape, as alreddgrved for native CM (Bahri et al.,
2017). The native CM and TG-CM surface appears gaghically homogeneous. This
observation was confirmed by SEM micrographs (Big.which display different-sized CM
and TG-CM (range of 40-300 nm) with a typical spter shape and a rough surface.
Moreover, SEM images of TG-CM (Fig. 2b, d) do nbow the presence of CM aggregates
proving that TGase cross-linking is exclusivelyanainicellar.

According to the 2D and 3D AFM heights (Fig. 1laecg, h, j, 1), it appeared that TG-CM are
higher and wider than native CM. The surface cayef TG-CM (11 + 4 micelles/pThwas
significantly { < 0.05) lower than the native CM surface cover@get 2 micelles/pr), this
lower density being attributed to the smaller aifa@ative CM compared to TG-CM. At the
same time, the hydrodynamic diameter distributiamves of native CM and TG-CM
measured by PCS have been compared. The bothistabudion curves in intensity exhibit
monomodal and polydisperse populations (Fig. 3)-ANs have however a significantly €
0.05) higher average hydrodynamic diameter of 218 gm compared to 192 + 8 nm for
native CM.

This result was confirmed by the height and widgtributions (Fig. 4a, b) obtained from the
single TG-CM size analysis using the MFP-3D sofewakll in all, 250 features obtained

from 10 different 2D-AFM images were analyzed. Thiee counts were normalized

10
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considering the total collected values of sampdesiulti-peak fitting was then applied using
OriginPro 8 software to calculate the mean widtd height. As depicted in Fig. 4a, b, TG-
CM are polydisperse with  monomodal width and heighstributions and they are
significantly @ < 0.05) wider (264 = 7 nm) and higher (111 = 5 nilnqn native CM
investigated in the same conditions and charaetri® a mean width of 148 + 8 nm and a
mean height of 42 £ 1 nm (Bahri et al., 2017).

The morphological AFM results as those from SEMrsgty show that TGase cross-linking is
intra- and not inter-micellar, which is in good egment with previous studies that underlined
the intra-micellar cross-linking of native CM usidgferent methods such as PCS, SLS and
SAXS (Huppertz & De Kruif, 2008). However, it hasdm until now mentioned that CM size
was not modified by TGase cross-linking. Nevertbglehe present results obtained from
AFM and PCS data indicate that TGase cross-linkimtgeases CM size as also observed
previously on covalently cross-linked CM using gemi(Nogueira Silva, Bahri, Guyomarc’h,
Beaucher, & Gaucheron, 2015). On the other harm fEEM images (Fig. 2), the size
difference between native CM and TG-CM was not rtyeabservable. This phenomenon
could be attributed to CM shrinkage caused by thieal point drying of samples during the
preparation steps since CM are highly hydratedufeatand therefore, drying process has an
important impact on micellar structure. These olke#wns are in accordance with other
studies reporting distortion of CM particles duethe drying step during sample preparation
for SEM (Dalgleish, Spagnuolo, & Goff, 2004; Marti@off, Smith, & Dalgleish, 2006;
McMahon & Oommen, 2008).

AFM size characteristics were used to calculatentiteve CM and TG-CM volume; it should
remain constant even after particle adsorption upensurface (Evangelopoulos, Glynos, &
Koutsos, 2012). The volume of the TG-CM was theowated using MFP-3D software by

performing the sum of all the heights of the mieethultiplied by the X scale and Y scale.

11
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TG-CM have a volume of ~ 5x 1Am?® that higher than that measured for native CM & 1
10° nm’), leading to a mean diameter of 214 nm for TG-ChMi 423 nm for native CM
considering CM as spherical. These values are stam$iwith the hydrodynamic diameter
obtained by PCS for TG-CM.

Height and width distributions (Fig. 4a, b) showtthG-CM captured on SAM-gold substrate
via MAH-PSer/Thr/Tyr antibody were definitely largghan higher, as it was also the case for
native CM (Bahri et al., 2017). According to AFMsidata, native CM and TG-CM have the
shape of a spherical cap section rather than aresphi@is deformation, attributed to the
adsorption upon gold substrate, can be evaluatatidoyatio calculation between height and
width, the perfect spherical particle width beirgual to its height (h/w ~ 1). TG-CM data
reveal a h/w ratio of10.5 higher than the native CM ratid .3), indicating that native CM
have a flatter shape compared to TG-CM. A previiudy also evaluated the h/w ratio equal
to 0.3 for native CM in liquid conditions and aléighlighted CM deformation due to
attachment on the substrate without losing volumthé case of CM immobilization on gold
substrate via amine-coupling strategy (Ouanezayo@arc’h, & Bouchoux, 2012). The h/w
ratio of native CM and TG-CM implies a liquid dreplliike behavior (Helstad et al., 2007).
This deformation can also be displayed by plotthmgheight against the width for each single
object (Fig. 4c, d). The comparison with the dotied representing a perfect sphere points
towards the fact that the TG-CM (Fig. 4c) are ldsdened compared to native CM (Fig. 4d)
once captured on the gold substrate. This phenomeearly highlights a structural
strengthening of CM due to the molecular rearrareggminduced by TGase.

The CM contact angle was deduced from the AFM-oeas (h and w) of each CM. The
contact anglefl) corresponding to the interior angle formed by shbstrate and the tangent
to the drop interface at the apparent intersectbrthese interfaces describes the object

deformation upon adsorption (Brown, 1999; Rusde09?). A small contact angle is observed

12
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when the particle spreads on the surface, whilergel contact angle is observed when the
liquid beads on the surface. More specifically, emfgct spherical particle would exhibit a
contact angle greater than 90° (Yuehua & Randall,32. The equilibrium shape of a given
particle does not depend only on surface forcesibuiiso greatly affected by the elastic
modulus of the droplet, the droplet deformationadefping of material elastic nature resulting
from stress development across the bulk in opmosito that deformation (Brown, 1999;
Evangelopoulos et al., 2012). According to the ABMa analysis, TG-CM have a contact
angle® of 62° against the coated surface. Converselyyen&M have a significantlyp(<
0.05) lower contact angle value of 44°. These testdnfirm the observed less deformation
of TG-CM than native CM after capture on gold stdist

An important change of the CM topography and etgstoperties occurred after CM cross-
linking with TGase compared to native CM. Cros&éid CM were significantly higher and
larger than native CM pointing towards significambdifications in the CM structure due to
TG crosslinking. A previous study highlighted a #an effect on CM height after
crosslinking with genipin by AFM measurements in aut widths were narrower probably
due to dry condition (Nogueira Silva et al., 2018hlike control native CM, TG-CM were
less deformed when adsorbed on gold substrate fiexteel by a higher contact angle.
Depending strongly on object elasticity, this higbntact angle value revealed the harder
aspect of TG-CM compared to native CM. The ratw honfirmed this observation since it

was higher than that evaluated for native CM.

3.2. Nanomechanical propertiesof TG-CM
To explore nanomechanical properties of CM, loweimithg forces were applied on each
individual micellar object. CM kept the same shaped neither displacement nor

disintegration was recorded after indentation expents. A low loading force value of ~ 100
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339

pN was chosen for nanoindentation to avoid CM daduge to the AFM tip and ensure a
minimal deformation in the CM-substrate region. Terte curves were applied at the center
of each individual CM. The elasticity of CM at avgn position was then calculated by fitting
the approach part of the force curve using the Hexvdel (Hertz, 1881; Uricanu, Duits, &
Mellema, 2004) (Figure S2). In order to confirm thesition of the analyzed particles,
successive images were regularly performed and amedp(Figure S1). Furthermore, by
reducing the indentation to 20 nm, the contributadrthe hard substrate on the calculated
elasticity value was minimized. The elasticity & @icellar objects was calculated to obtain
about 200 elasticity values.

The histogram of TG-CM stiffness values (Fig. S)e@s a multimodal stiffness distribution
with three prominent peaks at 218 + 14 kPa, 530 ¥Ra and 711 + 11 kPa, as identified by
the peak analyzing software. The intensity of threé Gaussian distributions used to fit the
TG-CM histogram is similar suggesting that the ¢hpepulations have the same weight (Fig.
5). In comparison, a broad unimodal stiffness itigtron with a peak centered at 269 + 14
kPa was observed for native immobilized CM (Fig. %®jenerally, the mechanical
heterogeneity of apparent Young’s moduli is atti#olto the complexity of the CM structure,
the AFM tip indenting different components of theer layer or of the core of CM (Bahri et
al., 2017). Actually, hydrophobic bonds, negativeharged surface and calcium phosphate
nanoclusters are involved in this complexity. Ie ttase of TG-CM, the softest stiffness peak
value (218 * 14 kPa) is comparable to native CM nfps modulus value (269 kPa + 14 kPa),
and presumably represents a population with cheniatits close to those of native CM. The
two other stiffer peaks (535 + 10 kPa and 710 &kR#&) were most likely due to substantial
changes in the shape and structure of CM inducetidoyf Gase activity, as suggested by the
size and topographical AFM data. This modificatbmuld be attributed to the creation of new

casein dimers and oligomers formed by crosslinkpegtide bound glutamine and lysine
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residues after incubation with TGase (Ardelean lgt 2013; Smiddy et al., 2006). It is
demonstrated that TGase creates intramicellar hdredge x-casein which is placed on the
surface of the CM is the most involved in the podyrpation reaction started by TGase
followed byp andos casein, respectively (Ardelean et al., 2013; Huzp® de Kruif, 2007a,
2007Db; Jaros et al., 2010; Sharma, Lorenzen, &tQR301). This is probably related to the
respective locations of caseins within the CM si@é# is recognized as complex network of
caseins chains witk-casein hairy layer predominately present on thiéase whilep-casein

is mostly present in the interior amgcasein is located all over the structure (DaldleSs
Corredig, 2012; De Kruif & Holt, 2003; Marchin, Rwix, Pignon, & Léonil, 2007).

To date, there are very few studies in literatunetle effect of TGase cross-linking on the
elasticity of individual CM at nanoscopic scaleebdlvland, Bouwman, Bennink, Silletti, &
de Jongh (2015) investigated the elastic moduluadi¥idual CM cross-linked by TGase at
different concentrations (0 to 90 U/g) using thej&guin, Muller, Toporov model applied on
AFM force curves. The maximum modulus was obserded the highest TGase
concentration, slightly lower than the TGase cotregion fixed in this study. This is in
accordance with the present results since thenes§ distribution of TG-CM was
characterized by two peaks (536 + 10 kPa and 711 kPa) stiffer than the native CM
Young's modulus value (269 kPa + 14 kPa).

At macroscopic scale, the cross-linked TG-CM hagerbinvestigated focusing on TG-CM
gelling properties by rheological measurementshligbting an increase in stiffness and
breaking strain of the TG-CM acid gels (Anema, Lewythee, Henle, & Klostermeyer, 2005;
Faergemand & Qvist, 1997; Faergemand, Sorensegerdsen, Budolfsen, & Qvist, 1999;
Lauber, Henle, & Klostermeyer, 2000). The gel mstrocture modification observed in these
studies at the macroscopic scale is attributechéointroduction of new covalent bonds in

individual CM. This resulted at nanoscale in a lkiglstiffness of individual TG-CM
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compared to native CM as shown by AFM nanomechhgitaracterization indicating that
TGase modified the nanoscale organization of CMnfroolloids association to microgel
particles.

Besides, these AFM results on the nano-structurapgsties of individual CM after
enzymatic cross-linking highlight significant maddtions probably inducing changes in the

functional properties of caseins.

Conclusions

In summary, this study of TG-CM by AFM in liquid \wronment presents the first
investigation on the size and nanomechanical ptigseof individual TG-CM. The AFM 2D
images reveal a spherical-cap shape with a widg& 27 nm) and higher (111 £+ 5 nm)
structure than native CM. Moreover, TG-CM shows arenresistant structure upon
adsorption on gold substrate owing to a high cdraagle of 62°.

The TG-CM nanomechanical properties highlight a asticity peak at 218 + 14 kPa that
could correspond to the mechanical signature av@aEM and also two stiffer elasticity
peaks observed at 536 + 10 kPa and 711 + 11 kPst, likely directly related to substantial
changes in the shape and structure of CM inducedl®gse and responsible for the
modification of their functional properties.

These results support the improved stability of CR-suggesting that these nanogel particles

can be an excellent matrix for bioactives encapsula
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Figure captions

Figure 1. Native CM (a, b, e, f, i, j) and transglutaminasess-linked CM (c, d, g, h, k, 1)
topography. AFM height (a, c, e, g) and deflectibnd, f, h) images, height profile (i, k) at
the selected black scan line on (e, g), three-dameal AFM height image (j, I) of CM and
TG-CM CM. CM and TG-CM were captured on SAM via MAEer/Thr/Tyr antibody.
Images were performed in liquid (SMUF, pH 6.6) ontact mode. The white scale bar (a-h)
represents um. The colored scale bar (a, c, e, g) represestfieight range between 0 and

120 nm. The grey scale bar (b, d, f, h) represetsleflection range between 0 and 30 nm.

Figure 2. SEM images of native CM (a, c¢) and transglutaseneross-linked CM (b, d) on

ANODISC® membrane at two different magnifications.

Figure 3: Particle size distribution curves of nativ@)(and TG cross-linked«) CM (5%,
w/w) determined by photon correlation spectroscaidCS) in light intensity. PCS
measurements were carried out at 25 °C. Mean curees six PCS determinations are

shown.

Figure 4: Histograms of width (a) and height (b) and heighitsus width plots (c-d) for TG
cross-linked (a, b, ¢) and native (d) CM. Heightl avidth histograms were best fitted with a
Gaussian function. The dotted lines in the heightvidth plots show the linear ratio between

width and height of a perfectly spherical particles

Figure 5: AFM elasticity distribution indicating the stifiss of TG-CM in a liquid native
environment (SMUF, pH 6.6). Young's modulus (E)tdimition was best fitted with 3

Gaussian peaks centered at 218 + 14 kPa, 536 #PA0akd 711 + 11 kPa (solid line).
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564 Young’s modulus distribution fit of native CM isqposed (dotted line) centered at 2694
565 kPa. 10 loading forces were applied on 20 diffel@Mm in order to obtain 200 analyzed

566 curves.
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Highlights

» TG cross-linked CM topography and nanomechanics were evaluated by AFM in
liquid.

* TG crosslinked CM are significantly wider and higher than native CM.

* TG-CM arelessflattened once captured on gold substrate compared to native CM.

* TG-CM stiffness distribution is multimodal with stiffer peaks compared to native CM.



