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 to multidimensional systems. We have assessed our method on several challenging benchmark problems for one-and two-dimensional Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.

Introduction

Consider a generic multidimensional time-dependent hyperbolic system of equations

∂U ∂t + div F(U ) = 0 (1) 
defined on a space-time domain Ω × T , with necessary initial and boundary conditions. We are interested in a numerical approximation of (1) by means of a finite element (FE) type technique. In [START_REF] Abgrall | How to avoid mass matrix for linear hyperbolic problems[END_REF][START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF], we have shown how one can solve a scalar version of (1) with a method that approximates the spatial term using a Residual Distribution (RD) approach, without having to solve a large linear system with a sparse mass matrix. This means that we are able to avoid any mass matrix "inversion" and have also an explicit scheme. This is achieved by first approximating the time operator in a consistent way with the spatial term. A priori, this would lead either to an implicit method in case of a nonlinear approximation, as done in order to avoid spurious oscillations in the case of discontinuous solutions, or at minima the inversion of a sparse but non diagonal matrix. This apparent difficulty can be solved by applying a Deferred Correction (DeC) type time-stepping method and the use of proper basis functions. It is demonstrated in [START_REF] Abgrall | How to avoid mass matrix for linear hyperbolic problems[END_REF][START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF] that Bernstein 1 polynomials are a suitable choice, but this is not the only possible one. The idea to use as shape functions the Bernstein polynomials, instead of the more typical Lagrange polynomials, has been discussed in [START_REF] Abgrall | An Example of High Order Residual Distribution Scheme Using non-Lagrange Elements[END_REF][START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF] applied to the context of high order residual distribution schemes and very recently, in [START_REF] Lohmann | Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements[END_REF], this idea has been applied for a different class of methods, namely, the flux-corrected transport method. The purpose of this paper is to show how these ideas can be further extended for solving the Euler equations of fluid dynamics for the simulation of flows involving strong discontinuities. The RD formulation used here is based on the finite element approximation of the solution as a globally continuous piecewise polynomial. The design principle of the new RD scheme guarantees a compact approximation stencil even for high order accuracy, which would hold for Discontinuous Galerkin (DG), but not for example for Finite Volume (FV) methods and allows to consider a smaller number of nodes than DG ([9, 10, 11]).

The format of this paper is the following. In Section 2, we recall the idea of the residual distribution schemes for steady problems and in Section 3 we describe the time-stepping algorithm and adapt the method developed in [START_REF] Abgrall | How to avoid mass matrix for linear hyperbolic problems[END_REF][START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF] to multidimensional systems. We illustrate the robustness and accuracy of the proposed method by means of rigorous numerical tests and discuss the obtained results in Section 4. Finally, we give the conclusive remarks and outline further perspectives.

2 Basic ideas of residual distribution schemes

Governing equations and approximate solution

Let us consider a generic system of PDEs

   ∂U ∂t + div F(U ) = 0 on Ω × [0, T ] U (x, 0) = U 0 (x), (2) 
which could, for example, represent the Euler equations of gas dynamics, with U = [ρ, ρu, ρv, E] T , with the fluxes F = (f 1 , f 2 ) defined as f 1 = (ρu, ρu 2 + p, ρuv, u(E + p)) T , f 2 = (ρv, ρuv, ρv 2 + p, v(E + p)) T We discretize the system (2) using the residual distribution approach. In this section, we shall give a brief overview of the RD method for steady problems and discuss the spatial discretization. The reader may refer to [START_REF] Ricchiuto | Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes[END_REF][START_REF] Abgrall | Residual distribution schemes: Current status and future trends[END_REF][START_REF] Deconinck | Encyclopedia of Computational Mechanics[END_REF] for further details on the construction of generic residual distribution schemes.

We consider the spatial domain Ω and its triangulation Ω h , and denote by K a generic element of the mesh and by h the characteristic mesh size. We also introduce the time discretization with time steps ∆t n = t n+1 -t n .

Γ Ω h

Figure 1: Discretized domain Ω h and its boundary Γ Following the ideas of the Galerkin finite element method (FEM), the solution approximation space V h is given by globally continuous piecewise polynomials of degree k:

V h = {U ∈ L 2 (Ω h ) ∩ C 0 (Ω h ), U |K ∈ P k , ∀K ∈ Ω h }, (3) 
so that the numerical solution U n h ≈ U (x, t n ) can be written as a linear combination of shape functions

ϕ σ ∈ V h : U n h = σ∈Ω h U n σ ϕ σ = K∈Ω h σ∈K U n σ ϕ σ , (4) 
with coefficients U n σ to be calculated by a numerical method.

Residual distribution scheme for steady problems

Consider first a steady scalar version of system (2):

∇ x • F(U ) = 0. ( 5 
)
The main steps of the residual distribution approach could be summarized as follows, see also Fig. 2 where the approach is illustrated for linear FEM on triangular elements:

1. We define ∀K ∈ Ω h a fluctuation term (total residual) φ K = K ∇ x • F(U ) dx (see Fig. 2(a))
2. We define a nodal residual φ K σ as the contribution to the fluctuation term φ K from a degree of freedom (DoF) σ within the element K, so that the following conservation property holds (see Fig. 2(b)):

φ K (U h ) = σ∈K φ K σ , ∀K ∈ Ω h , ∀Ω h (6) 
The distribution strategy, i.e. how much of the fluctuation term has to be taken into account on each DoF σ ∈ K, is defined by means of the so-called distribution coefficients β σ :

φ K σ = β K σ φ K , (7) 
where, due to [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF],

σ∈K β K σ = 1.
3. The resulting scheme is obtained by collecting all the residual contributions φ K σ from elements K surrounding a node σ ∈ Ω h (see Fig. 2(c)), that is

K|σ∈K φ K σ = 0, ∀σ ∈ Ω h , (8) 
which allows to calculate the coefficients U σ in the approximation (4). 

On the choice of the spatial discretization

In [START_REF] Abgrall | Some remarks about conservation for residual distribution schemes[END_REF][START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF][START_REF] Abgrall | Toward the ultimate conservative scheme: Following the quest[END_REF] it has been shown that any known finite element or finite volume scheme (such as SUPG, DG, FV-WENO, etc.) can be written in a generic residual distribution form [START_REF] Lohmann | Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements[END_REF]. In case σ ∈ Γ, equation ( 8) can be split for any degree of freedom (DoF) σ into the internal and boundary contributions:

K⊂Ω h ,σ∈K φ K σ,x (U h ) + γ⊂Γ,σ∈γ φ γ σ,x (U h ) = 0, ( 9 
)
where γ is an edge on the boundary Γ of the computational domain Ω h . The values φ K σ,x and φ γ σ,x are the residuals corresponding only to the spatial discretization, which is emphasized by the subscript x. Assuming that u = g on Γ, both residuals satisfy the following conservation relations

σ∈K φ K σ,x (U h ) = ∂K F(U h ) • n, ∀K σ∈Γ φ Γ σ,x (U h ) = Γ (F n (U h , g) -F(U h ) • n), ∀Γ. (10) 
Below we outline some of the schemes written in terms of residuals which satisfy the conservation relations [START_REF] Cangiani | Implementation of the Continuous-Discontinuous Galerkin Finite Element Method[END_REF], see also [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF]:

• the SUPG scheme [START_REF] Hughes | A new finite element formulation for computational fluid dynamics: III. the generalized streamline operator for multidimensional advective-diffusive systems[END_REF]:

φ K σ,x (U h ) = ∂K ϕ σ F(U h ) • n dγ - K ∇ϕ σ • F(U h ) dx + h K K ∇ U F(U h ) • ∇ϕ σ τ ∇ U F(U h ) • ∇U h dx (11) 
with τ > 0.

• the Galerkin FEM scheme with jump stabilization [START_REF] Burman | Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems[END_REF]:

φ K σ,x (U h ) = ∂K ϕ σ F(U h ) • n dγ - K ∇ϕ σ • F(U h ) dx + e∈K θh 2 e e [∇U h ] • [∇ϕ σ ] dγ (12) 
with θ ≥ 0 (see [START_REF] Burman | Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems[END_REF] for details). Note that in this case if the mesh is conformal, any edge e (or face in 3D) is the intersection of the element K and another element denoted by K + . For any function ψ, we define [∇ψ] = ∇ψ |K -∇ψ |K + .

• for the boundary approximation, it is possible to follow the same technique as in [START_REF] Abgrall | Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier-Stokes equations[END_REF], so that for σ ∈ γ ⊂ Γ we have

φ γ,x σ (U h ) = γ F(U h , g) -F(U h ) • n dγ.
It is also possible to consider schemes that do not have a straightforward variational formulation, as for example the limited residual distribution scheme (RDS) [START_REF] Abgrall | Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes[END_REF][START_REF] Abgrall | Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier-Stokes equations[END_REF][START_REF] Abgrall | On a class of high order schemes for hyperbolic problems[END_REF][START_REF] Abgrall | About Non Linear Stabilization for Scalar Hyperbolic Problems[END_REF]:

φ K σ,x (U h ) = β K σ ∂K F(U h ) • n dγ + h K K ∇ U F(U h ) • ∇ϕ σ τ ∇ U F(U h ) • ∇U h dx (13) or φ K σ,x (U h ) = β K σ ∂K F(U h ) • n dγ + edges of K θh 2 e e [∇U h ] • [∇ϕ σ ] dγ. ( 14 
)
where β K σ are parameters that guarantee conservation and σ∈K β K σ = 1.

Remark 1. One may notice that in (13) and (14) the streamline diffusion term and jump term are introduced due to the possible existence of spurious modes in the solution, but their role is somehow different compared to [START_REF] Abgrall | Construction of a p-Adaptive Continuous Residual Distribution Scheme[END_REF] and [START_REF] Ricchiuto | Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes[END_REF] where they are introduced to stabilize the Galerkin schemes (see [START_REF] Abgrall | Essentially non oscillatory residual distribution schemes for hyperbolic problems[END_REF][START_REF] Abgrall | Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes[END_REF][START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF] for more details). Indeed, (13) without the streamline term and (14) without the jump term satisfy a discrete maximum principle, and adding this terms violates formally the maximum principle, while experimentally this violation results to be extremely small if not non-existent.

It is important to remark that, at least formally, the exact solution cancels the residuals in the case of SUPG and RDS-SUPG, while in case of Burman's jump stabilization, we are able to rewrite the scheme as

φ K σ (U h ) = K ψ σ div F(U ) dx + R σ (U h ) with R σ = edges of K θh 2 e e [∇U h ] • [∇ϕ σ ] dγ.
where σ∈K R σ = 0. Here, R σ is not zero, except for the exact solution unless this solution has continuous normal gradients, see [START_REF] Burman | Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems[END_REF] for more details.

3 An Explicit High Order timestepping approach

Iterative timestepping method

In the previous sections, we have shown how system (5) can be discretized in terms of residual distributions approach. The main target of this paper is to extend this approximation to unsteady problems. Moreover, we aim to have a high order and explicit approximation method in time. In the rest of this paragraph, we rephrase [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF], since the discussion on the scalar case extends in a straightforward manner to the system case.

Here we describe the timestepping algorithm that we use in combination with the RD discretization in space to achieve high order accuracy in time. We consider M subintervals within each time step [t n , t n+1 ], so that

t n = t n,0 < t n,1 < • • • < t n,m < • • • < t n,M = t n+1 .
Next, for each subinterval [t n,m , t n,m+1 ], we introduce the corrections r = 0, . . . , R and denote the solution at the r-th correction and the m-th substep t n,m as U n,m,r h and the solution at t n by U n h . In addition, we define the solution vector

U (r) = (U n,1,r h , ..., U n,m,r h , ..., U n,M,r h ).
We propose a timestepping method that can be interpreted as a deferred correction method and proceed as follows within the time interval [t n , t n+1 ]:

1. for r = 0, set U (0) h = (U n,1,0 h , . . . , U n,m,0 h , . . . , U n,M,0 h ) = (U n h , . . . , U n h , . . . , U n h ); 2.
for each correction r > 0, knowing U (r) , evaluate U (r+1) as the solution of

L 1 (U (r+1) ) = L 1 (U (r) ) -L 2 (U (r) ) (15) 3. set the solution U n+1 h = U n,M,R h .
Formulation [START_REF] Abgrall | Toward the ultimate conservative scheme: Following the quest[END_REF] relies on a Lemma which has been proven in [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF].

Lemma 1. If two operators L 1 ∆ and L 2 ∆ depending on a parameter ∆ are such that: 1. There exists a unique U ∆ such that L 2 ∆ (U ∆ ) = 0; 2. There exists α 1 > 0 independent of ∆, such that for any U and V the operator L 1 ∆ is coercive, i. e.

α 1 ||U -V || ≤ ||L 1 ∆ (U ) -L 1 ∆ (V )||; (16) 
3. There exists α 2 > 0 independent of ∆, such that, for any U and V

L 1 ∆ (U ) -L 2 ∆ (U ) -L 1 ∆ (V ) -L 2 ∆ (V ) ≤ α 2 ∆||U -V ||. ( 17 
)
This last condition is nothing more than saying that the operator L 1 ∆ -L 2 ∆ is uniformly Lipschitz continuous with Lipschitz constant α 2 ∆.

Then if ν = α2 α1 ∆ < 1 the deferred correction method (15) is convergent, and after R iterations the error is smaller than ν R ||U (0) -U ∆ ||.

The differential operators L 1 and L 2 will be defined in the following sections; the detailed error analysis can be found in [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF].

On the low order differential operator L 1

Our discretization in time relies on the fact that the system (2) can be formally integrated on [0, t] as

U (x, t) = U (x, 0) + t 0 div F(U (x, s)) ds,
and the solution can be further approximated using a quadrature formula as

U (x, t) ≈ U (x, 0) + t r l=0 ω l div F(U (x, s l )), (18) 
with the same conventions as in the ODE case in [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF].

For any σ ∈ K, define L 1 σ as:

L 1 σ (U (r) ) = L 1 σ (U n,1,r , . . . , U n,M,r ) =         |C σ | U n,M,r σ -U n,0 σ + K|σ∈K t n,M
tn,0

I 0 φ K σ,x (U (r) ), s ds . . . |C σ | U n,1,r σ -U n,0 σ + K|σ∈K tn,1 tn,0 I 0 φ K σ,x (U (r) ), s ds         . ( 19 
)
where I 0 represents any first order piecewise-constant interpolant and where we have adopted a notation

I 0 φ K σ,x (U (r) ), s = I 0 φ K σ,x (U n,0,r ), . . . , φ K σ,x (U n,M,r ), s .
In order to simplify [START_REF] Abgrall | On a class of high order schemes for hyperbolic problems[END_REF] and make the operator explicit in time, we take the interpolant I 0 as a simple approximation at U n,0 , so that (19) becomes

L 1 σ (U (r) ) = L 1 σ (U n,1,r , . . . , U n,M,r ) =         |C σ |(U n,M,r -U n,0 ) + ξ M ∆t K|σ∈K φ K σ,x (U n,0 ) . . . |C σ |(U n,1,r -U n,0 ) + ξ 1 ∆t K|σ∈K φ K σ,x (U n,0 )         , ( 20 
)
where the weights ξ m with m = 1, .., M are chosen in [t n , t n+1 ] to satisfy t n,m = t n + ξ m ∆t and 0 = ξ 0 < ... < ξ m < ξ m+1 < ... < ξ M = 1.

In this system the coefficients |C σ | play the role of the dual cell measures and are defined as

|C σ | := K ϕ σ dx (21) 
A direct consequence of Lemma 1 is that in order for [START_REF] Abgrall | About Non Linear Stabilization for Scalar Hyperbolic Problems[END_REF] to be solvable, we have to satisfy the constraint

|C σ | > 0. ( 22 
)
This means that we are not free to choose any family of polynomials as shape functions but only those guaranteeing this property. For instance, for the family of the Lagrangian polynomials P k the condition ( 22) doesn't hold for k > 1. Therefore, in this work we investigate the use of Bernstein polynomials for high-order residual distribution approximations. The low order differential operator L 1 σ constructed this way is explicit in time.

The drawback of using Bernstein polynomials is that not all degrees of freedom U n σ in the expansion (4) will represent the solution values at certain nodes, however, the advantage of this family of shape functions is their positivity on K that will enforce [START_REF] Richtmyer | Difference Methods for Initial-Value Problems[END_REF].

We next provide the expressions for the families of Bernstein polynomials used in this paper. On triangular elements, given the barycentric coordinates x 1 , x 2 , x 3 , the Bernstein shape functions are defined as follows.

• Order 1 ('B1'):

ϕ 1 = x 1 , ϕ 2 = x 2 , ϕ 3 = x 3 .
• Order 2 ('B2'):

ϕ 1 = x 2 1 , ϕ 2 = x 2 2 , ϕ 3 = x 2 3 , ϕ 4 = 2x 1 x 2 , ϕ 5 = 2x 2 x 3 , ϕ 6 = 2x 1 x 3 .
• Order 3 ('B3'): 

ϕ 1 = x 3 1 , ϕ 2 = x 3 2 , ϕ 3 = x 3 3 , ϕ 4 = 3x 2 1 x 2 , ϕ 5 = 3x 1 x 2 2 , ϕ 6 = 3x 2 2 x 3 , ϕ 7 = 3x 2 x 2 3 , ϕ 8 = 3x 1 x 2 3 , ϕ 9 = 3x 2 1 x 3 , ϕ 10 = 6x 1 x 2 x 3 .

On the high order differential operator L 2

The high order differential operator L 2 σ reads

L 2 σ (U (r) ) = L 2 σ (U n,1,r , . . . , U n,M,r ) =         K|σ∈K K ψ σ U n,M,r σ -U n,0 σ dx + t n,M
tn,0

I M φ K σ,x (U (r) ), s ds . . . K|σ∈K K ψ σ U n,1,r σ -U n,0 σ dx + tn,1 tn,0 I M φ K σ,x (U (r) ), s ds         . ( 23 
)
In practice, we compute the coefficients of the interpolating polynomial I M of degree M and perform exact integration to obtain the approximation for every row of [START_REF] Abgrall | High order fluctuation schemes on triangular meshes[END_REF] in the form tn,m tn,0

I M φ K σ,x (U n,0,r ), . . . , φ K σ,x (U n,M,r ), s ds = M l=0 θ m,l φ K σ,x (U n,l,r ). ( 24 
)
This high order differential operator ensures a high order approximation of the space-time term ∂ t U + div F(U ), but is implicit in time, and therefore the iterative formulation [START_REF] Abgrall | Toward the ultimate conservative scheme: Following the quest[END_REF] is used in the timestepping to obtain an explicit scheme which ensures high order of accuracy both in space and time.

On the choice of the sub-time and correction steps

As outlined in [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF], after R corrections we have L 1 (U (R+1) ) = O(h R+1 ), as for each correction holds

L 1 (U (r+1) ) = L 1 (U (r) ) -L 2 (U (r) ) = O(h r+1 ). ( 25 
)
The approximation L 1 (U ) = 0 corresponds to a two level scheme for each of the sub-time steps m, and, thus, the solution U n,M,R h is obtained from a two-level scheme that is perturbed by an O(h r+1 ) term. From a result in [START_REF] Richtmyer | Difference Methods for Initial-Value Problems[END_REF], we see that, given a norm, the stability condition of the method corresponds to L 1 . Further, L 1 is recast in terms of a forward Euler method and to obtain a method of order M in space, the time step must be divided by M with respect to the time step needed for the first order in space scheme. Therefore, as a general rule, the idea is to take as many sub-timesteps M as corrections R, in order to provide the desired order.

Extension to systems

Out of the schemes described in the previous section, we have considered an approximation given by the limited RDS with an additional jump stabilization in the form of ( 14), since the results obtained in [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF] have shown the supremacy of the jump formulation with respect to the SUPG scheme in terms of dispersive errors.

The boundary term ∂K ϕ σ F(U h ) • n is evaluated with the same quadrature formula as the face term

e [∇U h ] • [∇ϕ σ ].
The volume term is evaluated by quadrature as well, and the accuracy requirements on these quadrature formula are similar to those of the discontinuous Galerkin (DG) methods.

The approximation of F which we denote by F(U h ) can be done in two possible ways. Either from the data U h one evaluates the values of the flux at the DoFs F σ and defines F(U h ) as:

F(U h ) ≈ σ∈K F σ ϕ σ , (26) 
which leads to a quadrature-free implementation since the integrals of the shape functions and/or gradients can be evaluated explicitly. Alternatively, one can define F(U h ) as the flux evaluated for the local value of U h at the quadrature point, since both approaches are formally equivalent from the accuracy point of view. The ϕ σ have degree k.

Let us now explain how the nonlinear residual ( 14) is calculated in case of systems, omitting the jump stabilization term for simplicity. We also omit the correction index r and describe the calculation for the m-th substep in time.

We start by introducing a local Lax-Friedrichs type nodal residual on the steady part of (2):

φ K,LxF σ,x (U h ) = ∂K ϕ σ F(U h ) • n dγ - K ∇ϕ σ • F(U h ) dx + α K (U σ -U K h ) (27) 
and define the nodal residual in space and time of (2) as

φ K,LxF σ (U h ) = K ψ σ U n,m σ -U n,0 σ dx + tn,m tn,0 I M φ K,LxF σ,x (U ), s ds (28) 
where U K h is the arithmetic average of all degrees of freedom defining U h in K. The coefficient α K is defined via the spectral radius of the flux Jacobian matrix

A(U ) = ∇ U F(U ) • n as follows α K = max σ∈K ρ S ∇ U A(U σ ) .
The use of this classic formulation of the Lax-Friedrichs results, nevertheless, in a very dissipative scheme when dealing with higher than second order schemes (see cf. Fig. 12). This observation has led to a reformulation of the term α K (U σ -U K h ) of equation [START_REF] Yee | Low-dissipative high-order shock-capturing methods using characteristic-based filters[END_REF]. This reformulation requires the fullfillment of a Lax-Wendroff like theorem [START_REF] Abgrall | High order fluctuation schemes on triangular meshes[END_REF][START_REF] Abgrall | Construction of a p-Adaptive Continuous Residual Distribution Scheme[END_REF] that sets the constraint on the conservation of [START_REF] Cangiani | Implementation of the Continuous-Discontinuous Galerkin Finite Element Method[END_REF] at an element interface level and not globally on the element.

To achieve this, we consider the flux approximation [START_REF] Shu | Efficient implementation of essentially non-oscillatory shock-capturing schemes, II[END_REF]. If the basis functions are of degree k, the approximation of ( 26) is denoted by F (k) . Following the idea of [START_REF] Abgrall | Construction of a p-Adaptive Continuous Residual Distribution Scheme[END_REF], we can rewrite the residuals K div F (k) dx as

K div F (k) dx = Ki⊂K ω Ki Ki div F (1) dx, (29) 
which is a weighted sum of the first order residuals Ki div F

Ki dx, where F

Ki is the piecewise linear interpolation of the flux F and F σ represents the values at the vertices σ of K i . The weights ω Ki are positive (refer to A for more details). Equation ( 29) allows to reformulate a new version of [START_REF] Yee | Low-dissipative high-order shock-capturing methods using characteristic-based filters[END_REF] as

Ki∈K,σ∈Ki ω Ki ∂Ki ϕ σ F (1) • n dγ i - Ki ∇ϕ σ • F (1) dx + α Ki (U σ,Ki -U h,Ki ) , (30) 
which corresponds to recast the Lax-Friedrichs term as a weighted sum over each node i belonging to a sub-cell K i within a cell K. In the proposed formulation, we do not write the Galerkin term for degree k

K ϕ σ div F (k) dx = - K ∇ϕ σ • F (k) dx + ∂K ϕ σ F (k) • n dγ,
as a weighted sum of the Galerkin term for degree 1 (though this is also possible, with positive weights), but we consider the Lax Friedrichs scheme for the sub-elements K i and we weight them in such a way that the conservation at the element-level K is recovered.

To get a non oscillatory scheme, the dissipation terms α Ki are defined by

α Ki = max σ∈Ki ρ S A(U σ ) .
The weights ω Ki are set to 1 in the one dimensional case, so that the sum corresponds basically to a telescopic sum over the sub-cells. In two-dimensions, we have set for the Bernstein approximation of order 2

ω Ki =    2 3 , for i = 1, 2, 3 2, for i = 4 (31) 
and for the Bernstein approximation of order 3

ω Ki =    1 2 , for i = 1, 2, .., 6 
1, for i = 7, 8, 9

following the sub-cell nomenclature as in Fig. 4 (see for more details [START_REF] Abgrall | Construction of a p-Adaptive Continuous Residual Distribution Scheme[END_REF]). In order to achieve high order accuracy and guarantee the monotonicity of the solution near strong discontinuities, we proceed as follows. For a scalar problem we would compute the distribution coefficients β K σ as

β K σ (U h ) = max φ K,LxF σ φ K , 0 j∈K max φ K,LxF j φ K , 0 , φ K = σ∈K φ K,LxF σ (33) 
In case of systems, to allow less dissipation, (33) is applied to each variable by considering their characteristic decomposition as described e. g. in [START_REF] Abgrall | Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier-Stokes equations[END_REF]. To this end, one considers the eigen-decomposition of the Jacobian matrix

A(U ) = ∇ U F(U ) • n of the flux F with respect to the state U K h
, where as n we take the average fluid velocity vector or we choose an arbitrary direction (for example the x-coordinate) in case the average velocity vanishes. The matrix composed of the right eigenvectors of A(U ) is denoted by R, so that L = R -1 is the matrix of left eigenvectors.

More precisely, and as described in [START_REF] Abgrall | Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier-Stokes equations[END_REF], the distribution coefficients for the system of equations are calculated in local characteristic variables by projecting the first order residuals onto a space of left eigenvalues, as φK,LxF

σ = L φ K,LxF σ , φK = L φ K . ( 34 
)
The high order nodal limited residuals are then obtained as follows. We first calculate the distribution coefficients according to

β K σ = max φK,LxF σ φK , 0 j∈K max φK,LxF j φK , 0 , φK = σ∈K φK,LxF σ . (35) 
Next, we apply the blending scheme φK,

σ = (1 -Θ) β K σ φK + Θ φK,LxF σ , (36) 
where the blending coefficient Θ is defined by

Θ = φK σ ∈K φK,LxF σ . (37) 
Clearly, 0 ≤ Θ ≤ 1, and Θ = O(h) for a smooth solution, thus ensuring accuracy and Θ = O(1) at the discontinuity, thus ensuring monotonicity [START_REF] Abgrall | Residual distribution schemes: Current status and future trends[END_REF]. Finally, the high order nodal residuals are projected back to the physical space:

φ K, σ = R φK, σ . (38) 
This guarantees that the scheme is high order in time and space and (formally) non-oscillatory, see [START_REF] Ricchiuto | Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case[END_REF][START_REF] Abgrall | Residual distribution schemes: Current status and future trends[END_REF] for more details.

Remark 2. When possible singularities may arise as, for example, due to pressures close to zero, instead of applying the characteristic limiting (34)-(38), we adopt locally in the affected cells the limiting as in (33).These two limiting strategies are both Lipschitz continuous, so that the switch does indeed not affect the property [START_REF] Burman | Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems[END_REF], causing convergence problems. Further, the only situation when the pressure becomes close to zero, or, eventually negative, typically occurs in problems with strong interacting discontinuities, and across shocks one would have a first order monotone method due to the limiting formulation.

After the application of the limiter, we add the jump stabilization term

φ K,jump σ,x (U h ) = edges of K θ 1 h 2 e e [∇U h ] • [∇ϕ σ ] dγ + edges of K θ 2 h 4 e e [∇ 2 U h n] • [∇ 2 ϕ σ n] dγ ( 39 
)
where n is a normal to e.

In general, since we are adding the edge stabilization terms of (39) to the residual distribution scheme after the high order limiting, the question may arise, wheather the inclusion of an unlimited high-order stabilization term might destroy monotonicity-preserving properties [START_REF] Jameson | Positive schemes and shock modelling for compressible flows[END_REF]. Numerical experiments show that this method is essentially non-oscillatory. Formally the monotonicity property is violated, in practice, nevertheless, this is not the case: we can see very small undershoots/overshoots. Moreover, in our experiments, we have observed that an appropriate choice of the coefficient θ 1 and θ 2 in (39) does not lead to any spurious oscillations at shocks and has only the beneficial effect to stabilize the solution for high order, ensuring, thus the aimed accuracy.

Numerical results

To assess the accuracy and robustness of the proposed high order residual distribution scheme, in the following section we perform the convergence analysis for the wave equation and isentropic flow and study several benchmark problems in one and two spatial dimensions for the Euler equations of gas dynamics. In the following, we shall refer to the second order scheme obtained by using linear shape functions on each element as 'B1'. Higher order approximations are obtained by choosing quadratic ('B2') or cubic ('B3') Bernstein polynomials as shape functions. For the B1 approximation we consider M = 2 and R = 2, for B2 M = 3 and R = 3 and, finally, for B3 M = 4 and R = 4 in algorithm [START_REF] Abgrall | Toward the ultimate conservative scheme: Following the quest[END_REF]. All test cases are advanced in time using the Courant-Friedrichs-Lewy condition ∆t = CFL • ∆x which is then updated by computing ∆t = CFL • min σ ∆xσ |uσ+cσ| , where ∆x σ represents the volume of the cell corresponding to the considered degree of freedom σ and |u σ + c σ | the spectral radius of the solution in σ. We have set for all the considered tests a fixed CF L = 0.1. The parameters of (39) θ 1 and θ 2 depend on the order of accuracy and on the typology of considered system, i.e. they change from 1D to 2D and from the wave equation to the Euler system. In the following considered benchmark problems, we set empirically the values of θ 1 and θ 2 that show a robust stabilization capability.

Numerical results for 1D test cases

Convergence study: wave equation

We start by considering the one dimensional wave equation q tt -a 2 q xx = 0 which we rewrite as a first-order system of PDEs with respect to the variables u = q t and v = q x :

u t -a 2 v x = 0, v t - u x = 0.
We perform the convergence analysis on the smooth problem with initial condition

q(x, 0) = exp -β(x -1/2) 2 sin(αx), -1 ≤ x ≤ 2,
where we set α = β = 100 and a = 1. The initial condition for the new variables u and v is derived from q(x, 0) as

u(x, 0) = 0, v(x, 0) = exp -β(x -1/2) 2 α cos(αx) -2β(x -1/2) sin(αx) .
The final time of the computation is T = 0.5. The computations have been performed for B1, B2 and B3 shape functions, leading to schemes of second, third and fourth order of accuracy, respectively. In order to stabilize the approximation, we set w.r.t. (39) for B1 θ 1 = 0.2 and θ 2 = 0, for B2 θ 1 = 0.1 and θ 2 = 0 and for B3 θ 1 = 2. and θ 2 = 4.

The numerical solution obtained with 600 grid cells is shown in Fig. 5 and the convergence plot is given in Fig. 6 along its Table 1. In Table 1 we have reported two different convergence studies for B3 elements: one with R = 4 corrections which gives a decreasing order of accuracy along a mesh refinement, and one with the double amount of corrections, which results in the predicted convergence rates of fourth order. We see that the solution given by B1 elements fails to capture the correct location of the waves in discretized domains with low number of cells, while the B2 and B3 elements at the same mesh are already able to provide a very accurate solution, however, the situation improves for B1 elements as the mesh is refined, which can be seen from the convergence plot. The scheme reaches the theoretically predicted convergence rates for all approximation orders that we have tested here. Figure 5: Numerical solution for the 1D wave system using 600 cells at T = 0.5 in the range -0.5 ≤ x ≤ 0.5 Table 1: Convergence study for the wave system in 1D at T = 0.5 

B1 B2 B3 B3 M = 1 M = 2 M = 4, M = 4, R = 2 R = 3 R = 4 R =

Convergence study: smooth isentropic flow

The next considered test case in 1D for the Euler system is performed to assess the accuracy of our scheme on a smooth isentropic flow problem introduced in [START_REF] Cheng | Positivity-preserving Lagrangian scheme for multi-material compressible flow[END_REF]. The initial data for this test problem is the following:

ρ 0 (x) = 1 + 0.9999995 sin(πx), u 0 (x) = 0, p 0 (x) = ρ γ (x, 0), with x ∈ [-1, 1], γ = 3 and periodic boundary conditions.
The exact density and velocity in this case can be obtained by the method of characteristics and is explicitly given by

ρ(x, t) = 1 2 ρ 0 (x 1 ) + ρ 0 (x 2 ) , u(x, t) = √ 3 ρ(x, t) -ρ 0 (x 1 ) ,
where for each coordinate x and time t the values x 1 and x 2 are solutions of the non-linear equations

x + √ 3ρ 0 (x 1 )t -x 1 = 0, x - √ 3ρ 0 (x 2 )t -x 2 = 0.
The smooth isoentropic flow test has been run with the parameters in (39) as follows: B1 θ 1 = 1 and θ 2 = 0; B2 θ 1 = 1 and θ 2 = 0; B3 θ 1 = 3 and θ 2 = 10.

The convergence of the second ('B1'), third ('B2') and fourth ('B3') order RD schemes is demonstrated in Fig. 7. We observe an overall good convergence rate for all the variables. It is nevertheless interesting to note, that increasing the amount of the performed corrections, i.e. setting for the fourth order scheme R = 8 corrections, greatly improves the convergence rate or 'B3' as shown in Fig. 8. 

Sod's shock tube problem

The Sod shock tube is a classical test problem for the assessment of the numerical methods for solving the Euler equations. Its solution consists of a left rarefaction, a contact and a right shock wave. The initial data for this problem is given as follows:

(ρ 0 , u 0 , p 0 ) = (1, 0, 1), x < 0, (0.125, 0, 0.1), x > 0.

The jump stabilization (39) parameters have been set as in Section 4.1.2. The results of the simulations comparing the second, third and fourth order RD scheme are illustrated in Fig. 9. The numerical solution converges to the exact one and higher order schemes show much more accurate approximation then the second order scheme. The interaction of blast waves is a standard low energy benchmark problem involving strong shocks reflecting from the walls of the tube with further mutual interactions. The initial data is the following:

(ρ 0 , u 0 , p 0 ) =      [1, 0, 10 3 ], 0 ≤ x ≤ 0.1, [1, 0, 10 -2 ], 0.1 < x < 0.9, [1, 0, 10 2 ], 0.9 ≤ x ≤ 1.
The jump stabilization (39) parameters have been set as in Section 4.1.2. The results of the simulations using second ('B1'), third ('B2') and fourth ('B3') order RD schemes are illustrated in Fig. 10. The plots show a very good behavior of the numerical scheme even for this extremely demanding test case. The solution is well approximated already on a 400 cell mesh with B3, and further mesh refinement shows the expected convergence to the exact solution. This test case, introduced in [START_REF] Shu | Efficient implementation of essentially non-oscillatory shock-capturing schemes, II[END_REF], is intended to demonstrate the advantages of high order schemes for problems involving some structure in smooth regions. In this test, we solve the Euler equations with initial conditions containing a moving Mach 3 shock wave which later interacts with periodic perturbations in density. The initial data for this problem is defined as follows:

W = [ρ, u, p] = [3.857143, 2.629369, 10.333333], -5 ≤ x ≤ -4, [1 + 0.2 sin(5x), 0, 1], -4 < x ≤ 5.
Also in this case, the jump stabilization (39) parameters have been set as in Section 4.1.2. The more accurate approximation obtained by the fourth order scheme in comparison to the second and third order is clearly visible in this benchmark problem, and increasing the number of mesh elements within the domain strongly increases the quality of the solution. This benchmark problem allows, further, to highlight the dissipative character of the original local Lax-Friedrichs approximation [START_REF] Yee | Low-dissipative high-order shock-capturing methods using characteristic-based filters[END_REF] when dealing with higher than second order of accuracy and the improvement one may achieve with its reformulation in terms of a telescopic sum as in (30). On a grid with 200 nodes we can observe in Fig. 4.1.5 how the approximation has extremely clipped extrema when the proposed method with ( 27) is applied, while with (30) in Fig. 4.1.5 results in sharper extrema on such a coarse mesh. Figure 15: 2D stationary vortex scatter plot for the density on a mesh given by N 0 = 934 elements. Results for B1 (dashed black), B2 (dashed blue) and B3 (dashed red) and the exact (continuous black) at T = 50.

In our numerical experiments this test case represents the only exception revealing the difference between the two approximating strategies of the fluxes, as described in Section 3.5. From a formal point of view, it is equivalent to interpolate the flux or to compute the flux for the solution interpolated at a quadrature point. However, from a computational point of view, the first strategy leads to a quadrature-free algorithm, while the second one requires a quadrature formula. For this test case, the quadrature-free strategy proved to be unstable while the second one led to the results presented above. We have never encountered this issue in the 1D simulations, which have all been computed with the quadrature-free approximation. In order to be consistent with the presented results, the 2D test cases have accordingly been computed using the second approximation strategy. We note that instability of the quadrature-free version can be attributed to a violation of stability conditions derived in the recent paper [START_REF] Barrenechea | Analysis of a group finite element formulation[END_REF].

2D Sod problem

Further, we have tested our high order RD scheme on a well-known 2D Sod benchmark problem. The initial conditions are given by (ρ 0 , u 0 , v 0 , p 0 ) = [1, 0, 0, 1], 0 ≤ r ≤ 0.5, [0.125, 0, 0, 0.1], 0.5 < r ≤ 1, where r = x2 + y 2 is the distance of the point (x, y) from the origin.

The computations have been performed a triangular mesh consisting of approximately 3500 and 13500 elements 2 . The stabilizing parameters of (39) have been set for B1, B2 and B3 as in Section 4.2.1. The 2D plot of the solution in Figure 16 and 18, as well as the behavior of the scatter plot of the density, velocity and pressure in Figure 17 and 19 are in agreement with the previous test cases: increasing the order of the basis polynomials leads to the improvement of the solution quality and, thus, an enhanced representation of the shock waves. Further, one may note also how increasing the mesh refinement, we can observe an increase of the symmetry of the solution from 17 to 19. 

Mach 3 channel with forward-facing step

To assess the robustness of the proposed scheme in multidimensional problems involving strong shock waves, the Mach 3 channel with a forward-facing step [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF] test case has been used with B1, B2 and B3 elements on both coarse mesh having N = 2848 cells3 and finer one having N = 11072 cells4 ) (see Fig. 20). The stabilizing parameters have been set for B1 to θ 1 = 0.1 and θ 2 = 0, for B2 to θ 1 = 0.3 and θ 2 = 0 and for B3 θ 1 = 0.05 and θ 2 = 0. As expected, the quality of the solution increases when going from the second to fourth order scheme even on coarse meshes. Indeed, while in B1 case in Fig. 20(c) it is not possible to recognize the structure forming at the triple point, in B2 and B3 cases (Figs. 20(e) and 20(g), respectively) this structure is already very well represented. On finer mesh, see Figs. 20(d),20(f) and 20(h), it is also possible to observe the gain in the quality of the approximation of shock waves when using a higher order RD method. 

Double Mach Reflection problem

Finally, we present a widely used benchmark problem of a double Mack reflection problem as described in [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF]. In this case, B1, B2 and B3 elements have been computed on a coarse mesh having N = 4908 cells5 and a finer one having N = 19248 cells6 ) (see Fig. 21). The stabilizing parameters have been set as in Section 4.2.1. Also here, as expected, the quality of the solution increases when going from the second to fourth order scheme on coarse meshes and more details are outlined on the finer mesh.

Conclusions

In this paper, extending the ideas of [START_REF] Ricchiuto | Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case[END_REF] and [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF], we have developed an explicit high order residual distribution scheme for multidimensional hyperbolic systems. The main advantage of this approach consists in a simple way to detain high order of accuracy both in time and space, while having an explicit scheme in time which does not have the typical matrix "inversion" pertinent to classical finite element methodologies. We have demonstrated the mesh convergence to exact solutions with theoretically predicted high orders of accuracy by this new class of RD schemes. Further, several benchmark problems have assessed the robustness of the scheme when dealing with strong discontinuities. Extensions to other models, such as multiphase flows or Lagrangian hydrodynamics, and further investigations of high order residual distribution schemes will be considered in forthcoming papers. Finally, we are currently extending the proposed approach to viscous problems by combining it with the discretisation technique as explained in [START_REF] Abgrall | Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier-Stokes equations[END_REF]. In this case, the time step results, of course, very small, and thus an implicit approach is needed with the challenge to have, nevertheless, a diagonal 'mass matrix'.

A A remark on the total residual as a weighted sum on triangular elements

For a better understanding of (29) and following [START_REF] Abgrall | Construction of a p-Adaptive Continuous Residual Distribution Scheme[END_REF], we rewrite explicitly how the total residual is obtained in 2D on triangular elements in terms of a weighted sum of first order residuals. This is carried out for the case of a B2 approximation. Let us define first the nomenclature of the considered element to be as the left triangle of Figure 4 with k in (29) to be 2. Take σ as the generic degree of freedom on the considered element K, while σ the degree of freedom of the sub-triangles K i with i = 1, .., 4. Further, let ϕ be the Bernstein shape function of order 2, x j the barycentric coordinates corresponding to the vertices of the triangular element with j = 1, 2, 3, and (y j i ) i=1,2,3 the local barycentric coordinates of the element K j . We define the first order approximation of the Flux as in [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF] to read F

Ki = σ j vertex of Ki F σ y j i .

We set for the B2 approximation

F (2) = 6 i=1 F i ϕ i .
The gradient of the Bernstein basis functions, which have been defined at the end of Section 3.2 are defined as ∇ϕ j = 2x j ∇x j , for j = 1, 2, 3 ∇ϕ 4 = 2(x 1 ∇x 2 + x 2 ∇x 1 ), ∇ϕ 5 = 2(x 2 ∇x 3 + x 3 ∇x 2 ), ∇ϕ 5 = 2(x 1 ∇x 3 + x 3 ∇x 1 ).

(42)
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 12 Figure 2: Illustration of the three steps of the residual distribution approach for linear triangular elements.
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 3 Figure 3: Nomenclature of the DoFs within a B 2 (upper triangle) and a B 3 (lower triangle) element.
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 4 Figure 4: Nomenclature of the sub-cells K i within a generic linear triangular element K for 'B2' (left) and 'B3' (right).
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 6 Figure 6: Convergence plot for the wave equation in 1D at T = 0.5. B3 counts R = 8 corrections, w.r.t.Table 1

Figure 7 :

 7 Figure 7: Convergence plot for a smooth isentropic flow in 1D at T = 0.1.
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 8 Figure 8: Convergence plot for a smooth isentropic flow in 1D at T = 0.1 with doubled number of corrections for 'B3'.
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 9 Figure 9: Comparison between B1, B2, B3 for the Sod 1D test at T = 0.16

Figure 10 :

 10 Figure 10: Comparison between B1, B2, B3 for the Woodward-Colella test case at T = 0.038
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 11 Figure 11: Comparison between B1, B2, B3 for the Shu-Osher test case at T = 1.8
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 12 Figure 12: Comparison of the different Lax-Friedrichs approximations between B1, B2, B3 for the Shu-Osher case at T = 1.8. Compare with Fig. 11, where we use a finer resolution for formulation (30).
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 13 Figure 13: 2D stationary vortex convergence study.
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 14 Figure 14: 2D stationary vortex for the density on a mesh given by N 0 = 934 elements at T = 50.
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 16 Figure 16: 2D Sod. Results at T = 0.25 on a grid with N = 3576 elements.
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 17 Figure 17: 2D Sod. Results for B1 (black), B2 (blue) and B3 (red) elements at T = 0.25 on a grid with N = 3576 elements.
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 18 Figure 18: 2D Sod. Results at T = 0.25 on a grid with N = 13548 elements.
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 19 Figure 19: 2D Sod. Results for B1 (black), B2 (blue) and B3 (red) elements at T = 0.25 on a grid with N = 13548 elements.
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 20 Figure 20: Mach 3 channel with step. Results at T = 4.0.

corresponding to typical element sizes h = 0.7, 0.57, 0.14 and 0.075, respectively

this last corresponds roughly to 115 × 115 grid points on a Cartesian grid

corresponds roughly to 30 × 100 grid points

corresponds roughly to 60 × 200 grid points

corresponds roughly to 30 × 100 grid points

corresponds roughly to 60 × 200 grid points

(a) Mesh with N 0 = 4908 elements (b) Mesh with N 1 = 19248 elements (c) B1 with N 0 (d) B1 with N 1 (e) B2 with N 0 (f) B2 with N 1 (g) B3 with N 0 (h) B3 with N 1Figure 21: Double Mach Reflection problem. Results at T = 0.2
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Numerical results for 2D test cases

Stationary vortex

The first considered test case in 2D is the stationary isentropic vortex evolution problem, see e. g. [START_REF] Yee | Low-dissipative high-order shock-capturing methods using characteristic-based filters[END_REF]. Initially, an isentropic perturbation (δS = 0) is applied to the system, such that

The initial conditions are thus set to

where β = 5, r = x2 + ȳ2 and (x, ȳ) = (x -x 0 ), (y -y 0 ) . The computational domain is a circle with radius of 10 and center at (0, 0). The center of the vortex is set in (x 0 , y 0 ) = (0, 0). The parameters of the unperturbed flow are set to u ∞ = v ∞ = 0 for the velocities, p ∞ = 1 for the pressure, T ∞ = 1 for the temperature and ρ ∞ = 1 for the density. The proposed RD method has been tested with B1, B2 and B3 basis polynomials on four different meshes with the number of triangular elements equal to N 0 = 608, N 1 = 934, N 2 = 14176 and N 3 = 56192, respectively 1 . In order to stabilize the approximation, we set w.r.t. (39) for B1 θ 1 = 0.1 and θ 2 = 0, for B2 θ 1 = 0.01 and θ 2 = 0 and for B3 θ 1 = 0.001 and θ 2 = 0. The obtained convergence curves for the three schemes considered are displayed in Figure 13 and show an excellent correspondence to the theoretically predicted order. From Figures 14 and15 it can be seen that a very good approximation is already achieved on the mesh with 934 cells. As expected, the B1 approximation is the most dissipative, while B2 becomes more accurate despite having a small density undershoot at the center of the vortex, and B3 shows an excellent approximation which is practically indistinguishable from the exact solution.

Rewriting the total residual explicitly will result in the following

which in terms of the sum over the sub-triangles is equivalent to

From (44) one can easily see the relation with [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF], where in particular

For Bernstein shape functions of order 3 the same idea is applied.