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Abstract—The fifth generation (5G) New Radio (NR) interface
inherits many concepts and techniques from 4G systems such
as the Orthogonal Frequency Division Multiplex (OFDM) based
waveform and multiple access. Dimensioning 5G NR interface
will likely follow the same principles as in 4G networks. It aims at
finding the number of radio resources required to carry a forecast
data traffic at a target users Quality of Services (QoS). The
present paper attempts to provide a new approach of dimension-
ing 5G NR radio resource (number of Physical Resource Blocks)
considering its congestion probability, qualified as a relevant
metric for QoS evaluation. Moreover, 5G users are assumed
to be distributed in roads modeled by Poisson Line Process
(PLP) instead of the widely-used 2D-Poisson Point Process. We
derive the analytical expression of the congestion probability for
analyzing its behavior as a function of network parameters. Then,
we set its value, often targeted by the operator, in order to find
the relation between the necessary resources and the forecast data
traffic expressed in terms of cell throughput. Different numerical
results are presented to justify this dimensioning approach.

Index Terms—5G network, Dimensioning, radio resources,
Congestion probability, Poisson Line Process.

I. INTRODUCTION

5G New Radio (NR), compared to the previous generations,

is expected to support new features in order to satisfy diverse

use cases with different user requirements. NR physical design

will be built upon the current 4G/4G+ key features. It aims to

support a wide range of frequency bandwidths, high data rate

applications (e.g., 3GPP enhanced Mobile Broad Band-eMBB-

services) as well as vehicular-type communications with low

latency constraints (e.g., 3GPP Ultra-Reliable Low-Latency

Communication -URLLC- services). 5G-NR system comes

with the scalable OFDM (Orthogonal Frequency Division

Multiplex) technology having different subcarriers’ spacing

(∆f = 2ν15 kHz, where ν = 0 to 4) and diverse spectrum

bands [1]. A set of OFDM subcarriers constitutes the basic

unit of radio resources that a cell can allocate to a mobile

user. This set of subcarriers is called Physical Resource Block

(PRB) in the 3GPP terminology. Furthermore, the allocation

of PRBs to users is performed at each Time Transmit Interval

(TTI) according to a predefined scheduling algorithm. The

choose of this latter is mainly related to the fairness level

between users, i.e., the way that resources are allocated to

users according to their channel qualities and their priorities,

defined by the operator [2].

The available scientific literature of OFDMA based systems’

dimensioning is quite rich but it is always considered as a

hard task because of the presence of elastic data services; see

for instance [3]–[6]. It was provided in [5] an analytical model

for dimensioning OFDMA based networks with proportional

fairness in resource allocation between users belonging to a

specific class of services, i.e., required the same transmission

rate. For a Poisson distribution of mobile users, [5] showed

that the required number of resources in a typical cell follows

a compound Poisson distribution. In addition, an upper bound

of the outage probability was given. In [6], an adaptive

resource allocation for multiuser OFDM system, with a set

of proportional fairness constraints guaranteeing the required

data rate, has been discussed. Despite the rich performance

analysis made in [5] and [6], there is no explicit hint of how

to dimension the radio resources given a predefined QoS.

Besides, the network geometry and the spatial distribution of

users are important factors for system performance analysis

and dimensioning exercise. Different models for network

geometry and user distributions can be found in [7]–[10]. In

particular, authors in [9] and [10] considered vehicular-type

communication systems where the transmitting and receiving

nodes are distributed in roads, modeled by Poisson Line

Process (PLP). It seems that PLP is a relevant model for

roads in urban environment and merits investigations when

looking for performance analysis and dimensioning exercise

of wireless cellular communications.

Always in the same context, we propose in this paper

a dimensioning method for OFDM based 5G system with

a proportional fair resources’ allocation policy. Instead of

considering a PPP spatial random distribution of users in the

cell, we characterize at first the geometry of cities by a PLP

model and then we distribute mobile users in the random

roads. We derive the explicit formula of the congestion



probability as a function of different system parameters. This

metric is defined as the risk that requested resources exceed

the available ones. It is often considered primordial for

operators when it comes to resources dimensioning since it is

related to the guaranteed quality of service. Then by setting

the target congestion probability, we show how to dimension

the number of PRBs given a forecast cell throughput.

The rest of this paper is organized as follows: In Section II,

system models, including a short introduction of Poisson Line

Process, are provided. Section III characterizes the proposed

dimensioning model and provides an explicit expression of

the congestion probability and an implicit relation between

the number of required resources and the cell throughput.

Numerical results are provided in Section IV. Section V

concludes the paper.

II. SYSTEM MODEL AND NOTATIONS

When we want to model cellular networks, we often think

about the network geometry, the shape of the cell, the as-

sociation between cells and users and of course their spatial

distribution. This latter is related to the geometry of the city

where the studied cell area exists. The Geometry of the city,

in turn, reveals linked to the spatial distribution of roads and

buildings. Indoor users, which are distributed in buildings, are

often modeled by a Poisson Point Process in R2, denoted

here by 2D-PPP. However, outdoor users (e.g., pedestrians

or vehicular) are always distributed in roads. To model the

spatial distribution of roads, many models have been proposed

in literature such as Manhattan model that uses a grid of

horizontal and vertical streets, Poisson Voronoi and Poisson

Line Process characterized by spatial random tessellations. In

this work, roads are modeled according to a Poisson Line

Process (PLP) for reasons of tractability.

A. Poisson Line Process

PLP is mathematically derived from a 2D-PPP. A PPP in

R2 with intensity ζ is a point process that satisfies: i) the

number of points inside every bounded closed set B ∈ R2

follows a Poisson distribution with mean ζ|B|, where |B| is

the Lebesgue measure on R2; ii) the number of points inside

any disjoint sets of R2 are independent [11].

Instead of points, the PLP is a random process of lines

distributed in the plane R2. Each line in R2 is parametrized in

terms of polar coordinates (r,θ) obtained from the orthogonal

projection of the origin on that line, with r ∈ R+ and

θ ∈ (−π, π]. Now we can consider an application T that

maps each line to a unique couple (r,θ), generated by a PPP

in the half-cylinder R+ × (−π, π]. The distribution of lines

in R2 is the same as points’ distribution in this half-cylinder;

see [9] and [10] for more details.

In the sequel, we assume that roads are modeled by a PLP φ
with roads’ intensity denoted by λ. The number of roads that

lie inside a disk s of radius R is a Poisson random variable,

denoted by Y . It corresponds to the number of points of the

equivalent 2D-PPP in the half-cylinder [0, R]×(−π, π] having

an area of 2πR. Hence, the expected number of roads that lie

inside s is E(Y ) = 2πλR. Moreover, users are assumed to be

distributed on each road according to independents 1D-PPP

with the same intensity δ. The mean number of users on a

given road j is δLj , with Lj is the length of road j. Besides,

the number of roads that lie between two disks of radius R1

and R2 respectively, with R1 6 R2, is 2πλ(R2 −R1). Also,

the number of distributed users in a road, parametrized by (r,θ)

and delimited by the two disks, is 2δ(
√

R2
2 − r2−

√

R2
1 − r2).

Furthermore, the average number of users in the disk of radius

R is calculated using the equivalent homogeneous 2D-PPP

with intensity λδ in the disk area. Let u denotes the average

number of users inside the disk s, it is written by

u = λδπR2. (1)

For illustration, Fig. 1 shows a realization of the described

Process φ.
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Fig. 1. A realization of the Poisson Line Process φ.

B. Network model

We consider a circular cell s of radius R with a Base

Station (BS), denoted also s and positioned at its center,

transmitting with a power level P . Received power by a user

located at distance x from s is Px−2b/a, where 2b is the

path loss exponent and a is the propagation constant. We

assume that BS s allocates PRBs to its users at every TTI

(e.g., 1 ms). Each PRB has a bandwidth denoted by W (e.g.,

W =180kHz for scalable OFDM with subcarriers spacing of

15kHz).

Active users in the cell compete to have access to the

available dimensioned PRBs. Their number is denoted by

M . The BS allocates a given number n of PRBs to a given

user depending on: i) the class of services he belongs to

(i.e.,the transmission rate he requires) and ii) his position in

the cell (i.e., the perceived radio conditions). Without loss of

generality, we assume that there is just one class of service

with a required transmission rate denoted by C∗.

A user located at distance x from s decodes the signal

only if the metric “Signal to Interference plus Noise Ratio



(SINR)” Θ(x) = Px−2b/a
I+σ2 is above a threshold Θ∗, where I

is the received co-channel interferences and σ2 is the thermal

noise power. For performance analysis purpose, SINR Θ(x) is

often mapped to the user throughput by a link level curve. For

simplicity of calculation, we use hereafter the upper bound

of the well known Shannon’s formula for MIMO system

TX × RX , with TX and RX are respectively the number

of transmit and receive antennas. Thence, the throughput of a

user located at distance x from s is

C(x) = ϑWlog2 (1 + Θ(x)) , (2)

with ϑ = min(TX,RX).
And then, the number of PRBs required by a user located at

distance x from s is

n(x) = ⌈
C∗

C(x)
⌉ ≤ N, (3)

where N = min(Nmax, ⌈C
∗/(ϑWlog2(1 + Θ∗))⌉), Nmax is

the maximum number of PRBs that a BS can allocate to a user

(fixed by the operator) and ⌈.⌉ stands for the Ceiling function.

It is obvious from (3) that users are fairly scheduled because

a user with bad radio condition (with low value of C(x)) gets

higher number of PRBs to achieve its transmission rate C∗.

Let dn be the distance from s that verifies, for all x ∈
(dn−1, dn], n(x) = n with

n =
C∗

C(dn)
(4)

is an integer and

dn =



































0 if n = 0,

R, if ∃k ∈ [1, N ] such that dk = R and n ≥ k,

[

a(I+σ2)
P (2

C
nϑW − 1)

]
−1

2b

otherwise,

with ∃ means that there exists at least one.

From (4), cell area s can be divided into rings with radius

dn such that for 1 6 n 6 N, 0 6 dn−1 < dn 6 R. The

area between the ring of radius dn and the ring of radius

dn−1 characterizes the region of the cell where users require

n PRBs to achieve the transmission rate C∗. We define the cell

throughput by the sum over all transmission rates of users:

τ = uC∗, (5)

with u is recalled the average number of users inside s and

derived in (1).

III. PRESENTATION OF THE DIMENSIONING APPROACH

Dimensioning exercise consists in evaluating the required

radio resources that allow to carry a forecast data traffic given

a target QoS. The QoS can be measured by the congestion

probability metric or even by a target average user throughput.

The present approach assesses the congestion probability as a

function of many key parameters, in particular the number

of PRBs M and the cell throughput τ . To characterize this

congestion probability, we need to evaluate the total requested

PRBs by all users. In the remainder of this section, we will

state some analytical results regarding the explicit expression

of the congestion probability under the system model pre-

sented in the previous section.

A. Qualification of the number of total requested PRBs

Following [5], the number of users in each ring is modeled

by a Poisson random variable denoted Xn with a parameter

µn(φ) = δ (αn(φ) − αn−1(φ)) , (6)

where

αn(φ) = 2

Y
∑

j=1

1(dn>rj)

(√

d2n − r2j

)

.

Coefficient αn(φ) stands for the length of the intersection

between road j and ring n. rj is the distance between the

origin and its orthogonal projection on road j. Hence, we can

define the total number of requested PRBs in the cell as the

sum of demanded PRBs in each ring. It can be expressed as

Γ =
N
∑

n=1

nXn. (7)

The random variable Γ is the sum of weighted Poisson

variables. The evaluation of its distributions requires extensive

numerical simulation. However, we fortunately derive here an

analytical formula.

B. Congestion probability and dimensioning

The congestion probability, denoted by Π, is defined as the

probability that the number of total requested PRBs in the

cell is greater than the available PRBs fixed by the operator. In

other words, it measures the probability of failing to achieve an

output number of PRBs M required to guarantee a predefined

quality of services:

Π(M, τ) = P(Γ ≥ M). (8)

The following theorem gives the explicit expression of the

congestion probability conditionally to the PLP.

Theorem 1. Let Γ be defined as in (7) and φ be a PLP defined

as in subsection II.A, the probability that Γ exceeds a threshold

M conditionally to φ is

P(Γ ≥ M |φ) = 1−
1

π
e−δ αN

∫ π

0

epn(φ)×

sin(Mθ
2 )

sin( θ2 )
cos(

M − 1

2
− qn(φ))dθ, (9)

where

pn(φ) =

N
∑

n=1

µn(φ)cos(nθ) and qn(φ) =

N
∑

n=1

µn(φ)sin(nθ).



Proof. See appendix A.

Theorem 1 is valid not only for PLP but also for every

process of user distribution, in particular for 2D-PPP model

for which the parameters µn in (6) are adapted to µn =
u(d2n − d2n−1)/R

2.

The final expression of the congestion probability can be

derived by averaging over the PLP as follows:

Π(M, τ) = Eφ[P(Γ ≥ M |φ)]. (10)

By setting a target congestion probability Π∗, the required

number of PRBs M is written as a function of τ through

the implicit equation Π(M, τ) = Π∗. The output M of the

implicit function constitutes the result of the dimensioning

exercise.

IV. NUMERICAL RESULTS

For numerical purpose, we consider a cell of radius

R = 0.3km with power level P = 43dBm and operating in

a bandwidth of 20MHz. The downlink thermal noise power

including the receiver noise figure is calculated for 20MHz
to σ2 = −93dBm. Since only users on roads are concerned,

outdoor environment with propagation parameter a = 130dB
and path loss exponent 2b = 3.5 is considered. We assume

also that we have 8TX antennas in the BS and 2RX antennas

in users’ terminals. So, the number of possible transmission

layers is at most 2. The SINR threshold is set to Θ∗ = −10dB.

Fig. 2 shows the explicit expression of the congestion

probability compared with simulation results for three values

of cell throughput τ . We notice that the explicit expression of

the congestion probability fits the simulated one. Moreover,

it is obvious that an increase in cell throughput τ generates

an increase in the congestion probability because τ is related

to the number of users in the cell. When the intensity of

users in roads δ increases, the number of required PRBs on

roads that lie inside the cell coverage area increases, thus the

system experiences a high congestion probability. An other

important factor that impacts system performances is the path

loss exponent. The variations of this parameter has tremendous

effect on the congestion probability: when 2b goes up, radio

conditions become worse and consequently the number of

demanded PRBs, to guarantee the required QoS, increases.

To see the impact of road geometry, we show in Fig. 3

the congestion probability with PLP model having different

intensity compared with equivalent 2D-PPP model, i.e., PLP

and 2D-PPP have the same user intensity. The first PLP

model assumes high road intensity and low user intensity

(λ = 100km/km2, δ = 10users/km) whereas the second

PLP is configured with low road intensity and high user

intensity (λ = 10km/km2, δ = 100users/km) so that λδ
is the same for both PLP and 2D-PPP models. We observe

that when road intensity becomes higher, users appear to be
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Fig. 2. Congestion probability for different values of τ

distributed every where in the cell as in 2D-PPP model and

hence the congestion probability for PLP gets closer to that

of its equivalent 2D-PPP. However, congestion probability for

PLP with low road intensity behaves differently from that of

both PLP with higher road intensity and 2D-PPP. In other

words, even if the mean number of users in the cell is the

same, the geometry of the area covered by this cell has a

significant impact on system performances.
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During resource dimensioning exercise, the operator starts

by defining a target congestion probability that can be tolerated

for a given service. For different traffic forecasts, the number

of PRBs is set to ensure that the congestion probability never

exceeds its target. Fig. 4 shows the number of required PRBs

that the operator should make it available when the expected

cell throughput is known for two target values of congestion

probability (Π∗ = 1% and Π∗ = 5%) and for two road

intensities (λ = 5km/km2 and λ = 15km/km2). Once again,

we conclude that the number of dimensioned PRBs is very

sensitive to the road intensity λ and this is in agreement with

results of Fig. 3. Indeed, for a target congestion probability

Π∗ = 1%, when λ increases from 5km/km2 to 15km/km2



(i.e., from 10 expected roads to 30) the number of dimensioned

PRBs decreases by 23, for the same cell throughput value

τ = 25Mbps. For a given value of τ , we can notice from

(5) that the user intensity on roads δ is inversely proportional

to roads’ intensity λ. Thus for fixed τ , if λ increases δ
decreases and consequently the number of required PRBs

decreases. Besides, we have shown previously that when λ is

very high, the distribution of users becomes similar to a 2D-

PPP. Thus, with a 2D-PPP model, one can have small values of

dimensioned PRBs, which is considered optimistic compared

to the real geometry of roads where more PRBs are required

to guarantee the desired quality of services.
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Dimensioning process is very important because it gives the

operators a vision on how they should manage the available

spectrum. If this dimensioned number exceeds the available

one, the operator can for instance:

• aggregate fragmented spectrum resources into a single

wider band in order to increase the available PRBs,

• activate capacity improvement features like carrier aggre-

gation or dual connectivity between 5G and legacy 4G

networks in order to delay investment on the acquisition

of new spectrum bands,

• change the TDD (Time Division Duplexing), configura-

tion to relieve the congested link,

• or even buy new spectrum bands.

V. CONCLUSIONS

In this paper, we have presented a resource dimensioning

model for OFDM based 5G NR interface. Poisson Line Pro-

cess have been used to model the geometry of roads covered

by a typical cell. Outdoor users have been assumed to be

distributed on that roads according to a 1D-Poisson Point

Process. The explicit expression of the congestion probability

has been derived and its behavior as a function of network

parameters has been studied. Besides, we have established

an implicit relationship between the required resources and

the forecast traffic for a given target congestion probability.

This relationship translates the dimensioning exercise that an

operator can perform to look for the amount of required

spectrum resources. Finally, we have shown how the spatial

distribution of roads can hit the dimensioning process. Further

extension to this approach could include the spatial distribution

of indoor users according to a 2D-Poisson Point Process.

APPENDIX A

PROOF OF THEOREM 1

To prove theorem 1, we firstly calculate the moment gener-

ating function (i.e., Z-Transform) f(z) of the discrete random

variable Γ of equation (7).

f(z) = E(zΓ) =

+∞
∑

k=0

zkP(Γ = k|φ)

=

N
∏

n=1

+∞
∑

k=0

znkP(Xn = k|φ). (11)

Since Xn is a Poisson random variable with parameter µn,

(11) is simplified to

f(z) = e−δαN e
∑N

n=1
znµn , (12)

with αN comes from the relation
∑N

n=1 µn = δαN .

It is obvious that f is analytic on C and in particular inside

the unit circle ω. Cauchy’s integral formula gives then the

coefficients of the expansion of f in the neighborhood of z =
0:

P(Γ = k|φ) =
1

2πi

∫

ω

f(z)

zk+1
dz. (13)

In (13), replacing f by its expression (12) and parameterizing

z by eiθ lead to

P(Γ = k|φ) =
1

2π
e−δ αN

∫ 2π

0

e
∑

N
n=1

µne
inθ

eikθ
dθ. (14)

Since the congestion probability is defined by the CCDF

(Complementary Cumulative Distribution Function) of Γ, then

P(Γ ≥ M |φ) = 1−

M−1
∑

k=0

P(Γ = k|φ)

= 1−
1

2π
e−δ αN

∫ 2π

0

e
∑N

n=1
µne

inθ
M−1
∑

k=0

e−ikθdθ.

(15)

The sum inside the right hand integral of (15) can be easy

calculated to get the explicit expression of (9) after some

simplifications.
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