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Synchronizing Relations on Words
Diego Figueira and Leonid Libkin

University of Edinburgh, UK

Abstract
While the theory of languages of words is very mature, our understanding of relations on words
is still lagging behind. And yet such relations appear in many new applications such as veri-
fication of parameterized systems, querying graph-structured data, and information extraction,
for instance. Classes of well-behaved relations typically used in such applications are obtained
by adapting some of the equivalent definitions of regularity of words for relations, leading to
non-equivalent notions of recognizable, regular, and rational relations.

The goal of this paper is to propose a systematic way of defining classes of relations on
words, of which these three classes are just natural examples, and to demonstrate its advantages
compared to some of the standard techniques for studying word relations. The key idea is that
of a synchronization of a pair of words, which is a word over an extended alphabet. Using it,
we define classes of relations via classes of regular languages over a fixed alphabet, just {1, 2}
for binary relations. We characterize some of the standard classes of relations on words via
finiteness of parameters of synchronization languages, called shift, lag, and shiftlag. We describe
these conditions in terms of the structure of cycles of graphs underlying automata, thereby
showing their decidability. We show that for these classes there exist canonical synchronization
languages, and every class of relations can be effectively re-synchronized using those canonical
representatives. We also give sufficient conditions on synchronization languages, defined in terms
of injectivity and surjectivity of their Parikh images, that guarantee closure under intersection
and complement of the classes of relations they define.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Word Relations, Regular, Rational, Recognizable

1 Introduction

Foundations of formal language theory have been largely developed in the 1960s and 1970s,
and used heavily in practically all areas of computer science. The field itself stayed somewhat
dormant for a while, but that changed over the past 10–15 years due to new application
areas requiring techniques that could not have been foreseen 30 or 40 years earlier. Among
consumers of results in formal language theory are verification (for instance, automata-based
approaches to model-checking are now part of standard industrial verification tools [7, 22])
and data management (standards for describing and querying XML documents, for instance,
are rooted in both word and tree automata [24, 28], and emerging graph data models are
borrowing many formal language concepts [3]).

Of interest to us in this paper are relations on words. That is, for a given finite alphabet
A, we deal with binary relations R ⊆ A∗×A∗. Their study goes back to Elgot, Mezei, Nivat
in the 1960s [15, 25] with much subsequent work done later (see, e.g., surveys [8, 13]). The
standard notions of regularity that generate the same class of languages —recognizability
by finite monoids, definability by automata, or by regular expressions— give rise to different
classes of relations, called recognizable, regular, and rational relations. Their properties may
differ significantly from properties of regular languages: for instance, rational relations are
not closed under intersection and it is even undecidable whether the intersection of two
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such languages is non-empty. Recognizable relations are just unions of products of regular
languages; examples of regular relations are prefix, equality, or equal length of words; and
examples of rational relations are suffix, subword (for instance, bb is a subword of aabbaa),
and subsequence (bb is a subsequence of abaaba: letters need not be consecutive).

There has been renewed interest in relations on words as of late. One motivation comes
from verification of safety and liveness properties of parameterized systems, where such
relations describe transitions [1, 10, 20, 29]. Another comes from graph databases, which
are actively studied as a suitable model for RDF data, social networks data, and others
[3]. Paths in graph databases are described by their labels, and need to be compared, for
instance, for their degree of similarity, e.g., their edit distance [4, 6, 23]. Yet another example
is the study of formal models underlying IBM’s tools for information extraction [16].

Many of the basic questions that arise in these new applications, however, are not the
kind of questions that had been addressed previously. Just to give an example, it is well
known that checking nonemptiness of the intersection of a rational relation and a regular
relation is an undecidable problem. But what about really used rational relations such as
subword, suffix, subsequence (as opposed to artificial codings of the halting problem) –
can we test if their intersection with regular relations is nonempty? However natural these
questions are, they were answered only recently [5].

An even more basic question relates to the very choice and structure of the main classes
of relations: recognizable, regular, and rational. They appeared in a somewhat ad hoc way,
just as analogs of different ways of defining regularity of languages, but is there another way
to explain these, and perhaps other classes as well? This is the main point of our paper: we
argue that there is a natural way to study relations on words, and we do it by explaining
how positions in words are synchronized.

As an example of synchronization, consider words w1 = ababb and w2 = baaaba. We can
represent this pair as a single word over {a, b}, by shuffling w1 and w2, i.e., interspersing
letters of w1 among letters of w2. For each position in the shuffle, we remember which word
it came from – this is indicated by the symbols 1 or 2 above the letters in the figure.

w1

w2

a b a b a a b b b
1 2 2 1 2 1 1 2 1a b a b b

b a a a b a �
��

�

a a
2 2

When we read the letters marked i, for i = 1, 2 we get the word wi. The word over {1, 2}
provides a synchronization of the pair (w1, w2) – in our example, 12212112212. We show
that the commonly occurring classes of relations over words follow the same principle:

1. to decide whether (w1, w2) is in the relation, one runs an automaton over the shuffle;
2. classes of relations are then determined by the classes of allowed synchronizations.

For instance, recognizable relations are given by synchronizations from 1∗2∗, length-
preserving regular relations by synchronizations from (12)∗, arbitrary regular relations by
synchronizations from (12)∗(1∗|2∗), and rational relations by synchronizations from (1|2)∗.

For relations, we have proper inclusions recognizable ( regular ( rational [8], making
them very different from languages. This immediately raises the question: since every
recognizable language is regular, and yet 1∗2∗ is not contained in (12)∗(1∗|2∗), there must
be multiple ways of synchronizing relations to obtain even known classes. What are these
ways, and how can they be characterized? And will those characterizations lead to new
naturally appearing classes?
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These are the questions we answer. We define three parameters of regular languages
in (1|2)∗: the shift says how often we switch between 1s and 2s, the lag says how big the
difference between the numbers of 1 and 2 is allowed to get, and shiftlag combines the two in a
certain way. Then finite shift characterizes recognizability, while finite shiftlag characterizes
regularity of relations. Finite lag, which appears to be a natural measure then, captures
another known class of relations.

We provide automata characterizations of classes of synchronization languages in terms
of the structure of cycles in the graph representations of automata. All these turn out to be
decidable. This shows one advantage of dealing with relations in terms of their synchroniza-
tions. For instance, it is known that checking whether a given rational relation is regular, is
an undecidable problem (assuming the input is a transducer, i.e., an automaton with output
[8]). However, if the input to the problem is a synchronization language, then it is decidable
whether the relations it describes are all regular.

Another advantage of describing relations by their synchronizations is the ability to
find classes closed under intersection or complementation (rational relations, for instance,
are not). We do it by imposing decidable conditions on Parikh images of synchronization
languages to guarantee closure properties of classes of relations they give rise to.

We also look at re-synchronization of relations. For each class of relations, there may
be many different regular synchronizing languages over {1, 2}. We show that in the stand-
ard cases, there exist canonical synchronizing languages, and relations can be effectively
resynchronized using those canonical languages.

2 Recognizable, regular, and rational relations

We start with some basic notations. Throughout the paper, A stands for a finite alphabet,
N = {1, 2, . . . } for the set of positive natural numbers, and N0 for N ∪ {0}. The set of all
words over A is denoted by A∗, and the length of w in A∗ is denoted by |w|. If w = a1 . . . an,
then w[i, j] stands for the subword ai . . . aj ; in particular, w[i] is the letter ai.

Recall that there are three standard ways of defining regular languages:

Recognizability by finite monoids: the set A∗, equipped with the concatenation opera-
tion (denoted by ‘·’, whose unit is the empty word ‘ε’) is a monoid. A set L ⊆ A∗ is
recognizable if there is a finite monoid M and a homomorphism 〈A∗, ·, ε〉 → M so that
L = f−1(M0) for some M0 ⊆M .
Definability by finite automata, say NFAs.
Definability by regular (sometimes called rational) expressions, i.e., those built from the
empty word and alphabet letters using union, concatenation, and the Kleene star.

Classical formal language theory tells us that these definitions generate the same class of
languages, known as regular languages. We now adapt them to binary relations on words.

Recognizable relations Since 〈A∗, ·, ε〉 is a monoid, A∗ × A∗ has the structure of a monoid
too. We can thus define recognizable relations as sets R ⊆ A∗ × A∗ for which there is a
finite monoid M and a morphism f : A∗ × A∗ → M such that R = f−1(M0) for some
M0 ⊆M . This class will be denoted by REC.

Regular relations Let ⊥ 6∈ A be a new alphabet letter. A pair (w1, w2) of words from A∗
can be encoded by a single word of length max(|w1|, |w2|) over the alphabet (A∪{⊥})×
(A∪{⊥}): its ith letter is the pair containing the ith letter of w1 and the ith letter of w2,
with ⊥ used when i is greater than the length of w1 or w2. For example, the encoding for
the words of the figure of page 2 is (a, b)(b, a)(a, a)(b, a)(b, b)(⊥, a). A regular relation R
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is given by an automaton over this alphabet: it contains pairs (w1, w2) whose encodings
are accepted by the automaton. The class of regular relations is denoted by REG.

Rational relations There are two equivalent ways of defining them. One uses regular expres-
sions, which are now built from pairs in (A∪ {ε})× (A∪ {ε}) using the same operations
of union, concatenation, and Kleene star. Alternatively, rational relations can be defined
by means of 2-tape automata, that have 2 heads for the tapes and one additional control;
at every step, based on the state and the letters it is reading, the automaton can enter a
new state and move some (not necessarily all) tape heads. The class of rational relations
is denoted by RAT.

Relations in REC are exactly the finite unions of products of regular languages over
A [8, 15]. Examples of relations in REG \ REC are prefix, equality, or equal length. Ex-
amples of relations in RAT\REG are suffix, given by

(⋃
a∈A(ε, a)

)∗ ·(⋃a∈A(a, a)
)∗; subword:(⋃

a∈A(ε, a)
)∗ · (⋃a∈A(a, a)

)∗ · (⋃a∈A(ε, a)
)∗, and subsequence:

(⋃
a∈A(ε, a) ∪ (a, a)

)∗.
Note that unlike in the case of languages, where the three notions coincide, we have

REC ( REG ( RAT. The classes REC and REG are closed under intersection; however the
class of rational relations is not. In fact, one can find R ∈ REG and S ∈ RAT so that
R ∩ S 6∈ RAT. However, if R ∈ REC and S ∈ RAT, then R ∩ S ∈ RAT.

Relations in REC and REG inherit all the closure/decidability properties of regular lan-
guages. If R ∈ RAT, then each of its projections is a regular language, and can be ef-
fectively constructed. Hence, the nonemptiness problem is decidable for RAT. However,
testing nonemptiness of the intersection of two rational relations is undecidable. We refer
to [8, 12, 27] for basic information on these relations and their decision problems.

3 Synchronizations of relations

We now formalize the idea of synchronizations informally described in the introduction. We
write k for the set {1, . . . , k}. A synchronization of a pair (w1, w2) of words in A∗ is a word
over 2×A so that the projection on A of positions labeled i is exactly wi, for i = 1, 2 (see the
figure on page 2). Every word w in (2× A)∗ is a synchronization of a uniquely determined
pair (w1, w2), where wi is the sequence of A-letters corresponding to the symbol i in the first
position of 2×A. We denote such (w1, w2) by [[w]] and extend it to languages S ⊆ (2×A)∗
by [[S]] = {[[w]] | w ∈ S}.

For two words u = a1 · · · an ∈ A∗ and v = b1 · · · bn ∈ B∗, we write u⊗ v for the word
(a1, b1) · · · (an, bn) ∈ (A×B)∗. The main idea of our approach to relations on words comes
from two different ways of viewing words in (2× A)∗.

Every word w ∈ (2× A)∗ is a synchronization of a pair [[w]] = (w1, w2).
Every word w ∈ (2× A)∗ is of the form u⊗ v with u ∈ 2∗ and v ∈ A∗.

This makes it possible to define relations consisting of pairs [[w]] with restricted synchron-
izations, i.e., w = u⊗ v and u belongs to a given language L ⊆ 2∗.

Formally, if L ⊆ 2∗, we say that u⊗ v is L-controlled if u ∈ L; a language is L-controlled
if all its words are. We now look at relations given by L-controlled synchronizations, i.e.,
for a regular language L ⊆ 2∗, let

Rel(L) = {[[S]] | S is a regular L-controlled language} (1)

If C is a class of relations over A∗, then L ⊆ 2∗ is a synchronization for C if Rel(L) ⊆ C,
that is, all relations given by L-controlled synchronizations belong to C. We remark that a
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similar approach to defining relations was used in [18], although the questions considered
were completely different.

Procedurally, each relation in Rel(L) is obtained as follows:

1. Choose an automaton over 2× A;
2. consider words u⊗ v it accepts so that u ∈ L,
3. view v as a synchronization of (w1, w2) and add the pair to the relation.

This view suggests natural candidates for capturing classes REC,REG, and RAT. For
REC, relations are unions of products of regular languages, so synchronizations are of the
form 1∗2∗: one starts by going over the first word, and then over the second. For REG, they
are from (12)∗(1∗|2∗): we first go over two words letter-by-letter, and then write out the rest
of the longer word. For RAT, there are no restrictions. Indeed, we can show the following.

I Proposition 1.

(I) Rel(1∗2∗) = REC.
(II) Rel((12)∗ · (1∗|2∗)) = REG.
(III) Rel((1|2)∗) = RAT.

It is easy to see that Rel(L) is closed under union, alphabetic morphisms, and inverse
alphabetic morphisms, and that L1 ⊆ L2 implies Rel(L1) ⊆ Rel(L2).

Remark One may ask why we need to take both S and L regular in the definition (1)
of Rel(L). The reason why S needs to be regular is that even with regular L (e.g., 1∗),
Rel(L) would otherwise contain non-rational relations (e.g., {(anbn, ε) | n ∈ N}). If, on
the other hand, L is not regular, strange things may happen. For instance, it could be that
all relations in Rel(L) are finite, although L is infinite. Indeed, take L as the set of all
words 1p for prime p. Note that there is no infinite regular L-controlled language, since
it would imply that an infinite number of distinct primes is semi-linear. Thus, all regular
L-controlled languages are finite, and Rel(L) is the set of all finite relations on A∗×{ε} so
that the first component is of prime length.

4 Synchronizations for recognizable, regular, and rational relations

We have seen examples of languages characterizing the classes of recognizable, regular, and
rational relations, but those are not unique. There are trivial examples such as Rel(1∗2∗) =
Rel(2∗1∗) = REC, and Rel((12)∗(1∗|2∗)) = Rel((21)∗(1∗|2∗)) = REG, but others as well,
e.g., Rel(1∗2∗1∗2∗) equals REC, and Rel(((12)∗1(12)∗2)∗(1∗|2∗)) = REG.

What kind of parameters guarantee that L ⊆ 2∗ synchronizes relations in a class C, for
the classes we study here? That is, what parameters guarantee that with the synchronization
language L, we are guaranteed that the resulting relations are in C?

We now answer this question, but first we need some definitions. Given a word w over
some finite alphabet, and a letter a in the alphabet, we define #a(w) as the number of
occurrences of a in w. Given a word w ∈ 2∗, a position i ≤ |w|, and δ ∈ N, we say i is

δ-lagged if |#1(w[1, i])−#2(w[1, i])| = δ;
≥δ-lagged if |#1(w[1, i])−#2(w[1, i])| ≥ δ;
≤δ-lagged if |#1(w[1, i])−#2(w[1, i])| ≤ δ.

That is, these parameters show by how much the numbers of 1s and 2s in w ∈ 2∗ differ.
A shift of w is a position i ∈ {1, . . . , |w| − 1} so that w[i] 6= w[i + 1]. Two shifts i < j

are consecutive if there is no shift l so that i < l < j.
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Let shift(w) be the number of shifts of w, let lag(w) be the maximum lag of a position
in w, and let shiftlag(w) be the maximum n ∈ N so that w contains n consecutive shifts
which are >n-lagged. We lift these notions to languages by taking maxima, e.g., shift(L) =
maxw∈L shift(w), and likewise for lag(L) and shiftlag(L). If words of arbitrarily large lag
(shift, or shiftlag) occur in L, we write shift(L) =∞ (and likewise for the other parameters).

Observe that finite shift and finite lag imply that shiftlag is finite, but the converse is
not true: for L = (12)∗1∗ we have shiftlag(L) <∞ and yet lag(L) = shift(L) =∞.

It turns out that finiteness of the shiftlag parameter corresponds to synchronizing regular
languages, and finiteness of shift corresponds to synchronizing recognizable languages. An
arbitrary regular L ⊆ 2∗ is guaranteed to synchronize rational languages.

As for the finite lag, it corresponds to a class of languages that is known as well. The
class REGbld of bounded length discrepancy relations [17, 27] is defined as follows. Recall
the definition of rational relations using two-tape automata. For a rational relation to be in
REGbld it is required that there be δ ≥ 0 so that in accepting runs of such automata, the heads
for the two tapes are never more than δ positions apart. It also follows from [17, 27] that
REGbld is the class

⋃
k∈N0

Rel(Lk), for Lk = (12)∗(1k|2k). Note that Rel(L0) is the class of
length preserving relations. A closely related class R≤ = {(w1, w2) ∈ A∗ ×A∗ | |w1| ≤ |w2|}
[21] can be equally defined by Rel((12|2)∗).

Now we can state the characterization result.

I Theorem 1. Let L ⊆ 2∗ be a regular language. Then:

(I) L synchronizes regular relations iff shiftlag(L) <∞,
(II) L synchronizes recognizable relations iff shift(L) <∞,
(III) L synchronizes relations in REGbld iff lag(L) <∞,
(IV) L synchronizes rational relations.

Proof idea. For the ‘if’ direction of (I), one can easily show that for any regular language
L with shiftlag(L) < n there is some δ so that L ⊆ L′ for L′ = L≤δ-lag · (1∗|2∗)n, where
L≤δ-lag is the (regular) language of all words with ≤δ-lagged positions. On the other hand,
it is easy to show that Rel(L′) = REG. Since L ⊆ L′, by applying monotonicity, we then
have Rel(L) ⊆ REG.

For the ‘only if’ direction of (I), suppose that shiftlag(L) = ∞. Note that this means
that for every s, δ ∈ N there is some w ∈ L that has s consecutive shifts >δ-lagged. Let
S ⊆ (2 × {a, b})∗ consist of all words u⊗ v ∈ (2 × {a, b})∗ so that u ∈ L, and for every
i ∈ {1, . . . , |v|}, we have v[i] = a if i is a shift of u, and v[i] = b otherwise. One can show
that S is an L-controlled relation so that [[S]] ∈ RAT \ REG.

The proofs for the items (II), (III), and (IV), as well as the full proof for item (I) are
contained in the Appendix and are omitted here. J

We conclude the section with a couple of examples of applications of the main result.
First, we show that Rel((112)∗) 6⊆ REG. Indeed, note that for every s, δ, the word w =
(112)δ+s is in (112)∗ and the last s shifts of w are ≥δ-lagged. Hence, there must be some
L-controlled regular language S ⊆ (2× A)∗ so that [[S]] is not a regular relation.

As another example, we get more ways of synchronizing regular relations: given L1 =
(1k ·2k)∗, L2 = (1∗ ·2∗)k for some fixed k, we have Rel(Li) ⊆ REG (in fact, Rel(L2) ⊆ REC).

Finally, we consider the (r/s)-synchronized relations [27, p.660] studied in [11]. This
class can be defined as Rel(Lr/s), where

Lr/s = (1r2s)∗
( ⋃
r′<r

(1r
′
2∗) |

⋃
s′<s

(1∗2s
′
)
)
. (2)
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It is easy to see that shiftlag(Lr/s) =∞ whenever r 6= s, and hence that (r/s)-synchronized
relations (with r 6= s) are not in REG.

4.1 Automata theoretic characterizations
We characterized classes of relations via conditions imposed on their synchronization lan-
guages: finite shift, lag, or shiftlag. Now we show that these conditions themselves can be
characterized using automata, or more precisely, the underlying labeled graphs of automata.
It turns out that the structure of the cycles provides the desired characterizations.

Since in this section we deal with synchronization languages, we consider automata over
the alphabet {1, 2}. For a given NFA A, we consider the transition graph GA of A as the
usual representation of the transition relation, where GA is a directed graph where states
are vertices and edges are labeled by transitions. Given a cycle C of GA, we define #a(C)
as the number of edges in C labeled with transitions reading letter a. In a heterogeneous
cycle C we have #1(C) > 0 and #2(C) > 0; otherwise a cycle is homogeneous. A cycle C is
balanced if #1(C) = #2(C), otherwise it is unbalanced (these definitions are closely related
to the notions of balanced/unbalanced oriented cycles in digraphs, cf. [19]). Note that all
balanced cycles are also heterogeneous.

Recall that the trim automaton is the result of removing all states which are not reachable
from the initial state, and all states from which no final state is reachable.

I Theorem 2. For any trim NFA A over the alphabet 2, and its transition graph GA,

(I) shiftlag(L(A)) =∞ iff
GA contains a heterogeneous unbalanced cycle, or
GA contains a path from a homogeneous to a heterogeneous cycle,

(II) shift(L(A)) =∞ iff GA has a heterogeneous cycle,
(III) lag(L(A)) =∞ iff GA has an unbalanced cycle.

Proof idea. The ‘if’ directions of all items are straightforward. For the ‘only if’ direction
of item (I), it can be shown that for n = 2|Q| + 1 (where |Q| is the number of states
of A), any accepting run of A on w ∈ L(A) so that shiftlag(w) ≥ n must induce a path
on the transition graph GA of A containing either a heterogeneous unbalanced cycle, or a
homogeneous cycle followed by a heterogeneous cycle. Once this is verified, the statement
follows. Note that since shiftlag(w) ≥ n, w must contain n consecutive >n-lagged shifts
1 ≤ a1 < a2 < · · · < an ≤ |w| in w. Since a1 is >n-lagged, there must be an unbalanced
cycle C1 contained in the path induced by the run ρ restricted to w[1, a1]. Since there is a
sufficiently large number of shifts, there must be some heterogeneous cycle C2 contained in
the path induced by the run ρ restricted to w[a1, |w|]. Of course, we have that there is a path
from C1 to C2 in GA, showing (I). The remaining items are shown in the Appendix. J

I Corollary 3. Checking whether Rel(L(A)) ⊆ REG, Rel(L(A)) ⊆ REC or Rel(L(A)) ⊆
REGbld

2 can be done in polynomial time in the size of A.

Note that Corollary 3 does not mean that it is decidable whether a relation R ∈ RAT is
in REG (in fact, this problem is undecidable [8, Theorem 8.4-(vi)]). What one can check is
whether it has a “safe” control, in the sense that it synchronizes regular relations. Hence,
for any relation R controlled by L(A), if Rel(L(A)) ⊆ REG then R ∈ REG, but the opposite
does not necessarily hold. For example, if we take L′ = (1|2)∗, we have that Rel(L′) 6⊆ REG
but the universal relation A∗ × A∗ is obviously in REG.
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5 Resynchronizing relations

We saw that different languages in 2∗ can generate the same class relations, and yet for the
commonly used classes, we have synchronization languages that somehow look canonical:
for instance, (12)∗(1∗|2∗) for REG. Thus, we now address the question whether we can
resynchronize relations using those canonical synchronization languages, and if so, can we
do it effectively?

To pose this formally, suppose two different languages S, S′ ⊆ (2 × A)∗ controlled by
L,L′ ⊆ 2∗ respectively represent the same relation, i.e., [[S]] = [[S′]]. Then we say that S
is an L-resynchronization of S′. Given a class C of regular languages over 2, we say that
L0 ∈ C is a canonical representative of C if for every L ∈ C and every L-controlled language S
there exists an L0-resynchronization of S. In other words, for every L ∈ C and R ∈ Rel(L),
there is an L0-controlled S′ ∈ (2×A)∗ so that [[S′]] = R. If, in addition, there is a recursive
procedure that constructs such an L0-resynchronization of S, then we say that L0 is an
effective canonical representative of C.

Let RLall be the class of all regular languages over 2, and let RLfinparam stand for class
of regular languages L ⊆ 2∗ with finite parameter param, where param is lag, or shift, or
shiftlag. We also let RLlag≤δ denote the class of all regular languages L ⊆ 2∗ with lag(L) ≤ δ.

I Example 4. Take, for example, L1 = (1122)∗1∗2∗ and L2 = (12)∗(1∗|2∗), and a L1-
controlled relation S1. Since shiftlag(L1) < ∞, [[S1]] ∈ REG by Theorem 1. Further, since
by Proposition 1-(II) Rel(L2) = REG, there must be some L2-controlled relation S2 so that
[[S2]] = [[S1]]. In other words S2 is the L2-resynchronization of S1. Since Rel(L2) = REG in
fact L2 is a canonical representative of RLfinshiftlag.

I Theorem 5 (Resynchronization theorem).

(I) (12)∗(1∗|2∗) is an effective canonical representative of RLfinshiftlag;
(II) 1∗2∗ is an effective canonical representative of RLfinshift;
(III) there is no canonical representative of RLfinlag;
(IV) (12)∗(1≤δ|2≤δ) is an effective canonical representative of RLlag≤δ;
(V) 2∗ is an effective canonical representative of RLall.

If the relations are given as NFA, the synchronization procedures are in exponential time.

Proof idea. We only give the proof sketch for (I), the other items being easier.
The strongly connected components (henceforth SCC) of GA are its maximal strongly

connected subgraphs. An SCC is heterogeneous if it contains a heterogeneous cycle; an SCC
is homogeneous if it contains a cycle and all the cycles it contains are homogeneous; other-
wise, an SCC without cycles (that is, a single vertex) is an edgeless SCC. The condensation
of GA (written con(GA)) is the labeled directed acyclic graph (henceforth labeled DAG)
induced by the SCC’s of GA. This is the labeled DAG whose nodes are the SCC’s of GA,
and there is an edge labeled (q, (i, a), q′) from vertex v to vertex v′ iff v 6= v′, q belongs to
the SCC v in GA, q′ belongs to the SCC v′ in GA, and there is an edge labeled (q, (i, a), q′)
from q to q′ in GA (in other words, (q, (i, a), q′) is a transition of A).

Let S ⊆ (2 × A)∗ be an L-controlled regular language with shiftlag(L) < ∞. Let A be
an NFA recognizing S with statespace Q, initial state q0 and set of final states QF .

Note that since the projection of S onto 2 is inside L, we can apply Theorem 2-(I) to
A, obtaining that there are no paths from homogeneous SCC’s to heterogeneous SCC’s in
GA (and there are no heterogeneous cycles C with #1(C) 6= #2(C)). Let Qhom be the
set of all vertices of GA that are reachable from a vertex of a homogeneous SCC. Note
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2

2

2

1

2

1

2
1

1

1

2

1

1 2

Figure 1 Example of GA with the subgraphs induced by Qhom and Qhet. For simplicity we
assume that A = {a} and we hence omit the letter a when depicting edges labeled by (i, a).

that Qhom includes all vertices in homogeneous SCC’s, plus some vertices from edgeless
SCC’s. Also, note that the subgraph of GA induced by Qhom has no heterogeneous cycles.
Let Qhet = Q \ Qhom. Hence, Qhet includes all vertices in heterogeneous SCC’s and some
vertices in edgeless SCC’s. Also, by the property before, the subgraph of GA induced by
Qhet is connected. Figure 1 contains an example. Further, any path P in GA is of the form
(1) P · (q, τ, q′) · P ′, (2) P , or (3) P ′, where

P is a (possibly empty) path of the subgraph of GA induced by Qhet,
P ′ is a (possibly empty) path of the subgraph of GA induced by Qhom,
q ∈ Qhet, q′ ∈ Qhom, and τ is a transition of A.

Let Ahet be A restricted to Qhet, and let Ahom be A restricted to Qhom. For every pair
of states qhet ∈ Qhet and qhom ∈ Qhom, let Lqhet,qhom be the union of all

L(Ahet[q0, qhet]) · {(i, a)} · L(Ahom[qhom, qf ])

for every qf ∈ QF and (i, a) ∈ 2 × A so that (qhet, (i, a), qhom) is a transition of A. Let
Lhom =

⋃
qf∈QF

L(Ahom[q0, qf ]) and Lhet =
⋃
qf∈QF

L(Ahet[q0, qf ]). It follows that

S = Lhom ∪ Lhet ∪
⋃

qhet∈Qhet,qhom∈Qhom

Lqhet,qhom .

We show that we can build, in exponential time, a (12)∗(1∗|2∗)-controlled automaton for
each of these languages. Since the case of Lqhet,qhom is more general than Lhom and Lhet, we
will only prove this case.

Note that by definition of Ahet and Ahom, and since GA has no unbalanced heterogeneous
cycles, for every qhet ∈ Qhet, qhom ∈ Qhom, qf ∈ QF we have that lag(L(Ahet[q0, qhet])) <
∞ and shift(L(Ahom[qhom, qf ])) < ∞. This implies that lag(L(Ahet[q0, qhet])) ≤ n, and
shift(L(Ahom[qhom, qf ])) ≤ n, for n = |A|(this is actually shown in Lemma 12 in the Ap-
pendix).

By the already shown item (II), there exists a (1∗2∗)-controlled automaton Ahom
qhom,qf

so
that [[L(Ahom[q0, qhom])]] = [[L(Ahom

q0,qhom
)]]. By item (IV), there exists a (12)∗(1≤n|2≤n)-

controlled automaton Ahet
q0,qhet

so that [[L(Ahet[q0, qhet])]] = [[L(Ahet
q0,qhet

)]]. These automata can
be built in exponential time.

Indeed, a (12)∗(1∗|2∗)-controlled automaton for Lqhet,qhom can be built from Ahet
q0,qhet

and
all the Ahom

qhom,qf
’s for all qf ∈ QF in polynomial time, and thus the statement follows. This

is shown by a variant of (II), showing that from any (1∗2∗)-controlled automaton one can
build, in polynomial time, an equivalent automaton (in the sense of the relation it represents)
that is (12)∗(1∗|2∗)-controlled. J
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6 Closure via Parikh images

It is well known that the class REG is effectively closed under Boolean operations. Although
RAT is a natural generalization of REG, it is not a Boolean algebra (let alone an effective
one), not being closed under intersection or complement [8]. Even testing whether a ra-
tional relation is regular, or whether it has an empty intersection with a regular relation is
undecidable [8]. Since regular relations are characterized via finite shiftlag, it is natural to
ask whether infinite shiftlag somehow describes “dangerous” classes of relations. That is,
does this mean for example that for any L ⊆ 2∗ with shiftlag(L) =∞ the intersection prob-
lem is undecidable for Rel(L)? The answer to this question is negative: take for instance
L = (122)∗ with shiftlag(L) = ∞. However, it is not hard to see that Rel(L) is effectively
closed under intersection.

This raises the question of whether there are classes C ⊆ RAT that are natural, expressive,
and well-behaved, that is, so that

REC ( C,
C is effectively closed under union, intersection and complementation (i.e., is an effective
Boolean algebra); and
C corresponds to a natural condition on the language.

Note that REG is one such example. Here we address the question from our perspective
in terms of control languages. The idea is to show sufficient conditions of synchronization
languages L so that Rel(L) is effectively closed under intersection, or an effective boolean
algebra. We state those in terms of Parikh images of languages.

Recall that the Parikh image of a word w ∈ k∗, written Π(w), is the vector of Nk0 whose
ith component contains #i(w), the number of occurrences of i in w. The Parikh image of
a language L is Π(L) = {Π(w) | w ∈ L}. It is well known that for regular and context-free
languages L, sets Π(L) are exactly the semi-linear sets in Nk0 , see [26].

A language L ⊆ k∗ is
Parikh-injective if the function Π : L→ Nk0 is injective, and
Parikh-surjective if the function Π : L→ Nk0 is surjective.

I Example 6.
(12)∗(1∗|2∗) and 1∗2∗ are Parikh-injective, while (1|2)∗ is not.
It can easily be shown that L = w∗1 · w∗2 · · ·w∗` ⊆ k∗ is Parikh-injective if ` ≤ k and
{Π(w1), . . . ,Π(w`)} generate a linear subspace of (N0)k of dimension `. For example,
(122)∗(112)∗ is Parikh-injective.
(12)∗(1∗|2∗), 1∗2∗, and (1|2)∗ are Parikh-surjective, but (122)∗(112)∗ is not Parikh-
surjective.
It is easy to see that Lr/s as defined in (2) is Parikh-injective and Parikh-surjective for
any choice of r, s. For example, if r = 2, s = 1, we have Lr/s = (122)∗(22∗|1∗2|1∗),
which is Parikh-injective and Parikh-surjective, since every element of (N0)2 is covered,
and there is only one way to reach any element of (N0)2.

We now analyze the (effective) closure of classes Rel(L) under Boolean operations. It
turns out that closure under union is free, but for closure under intersection and complement,
the newly introduced criteria serve as sufficient conditions.

I Theorem 7. Let L ⊆ 2∗ be a regular language. Then

(I) Rel(L) is effectively closed under union, alphabetic morphisms, and inverse alphabetic
morphisms;
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(II) If L is Parikh-injective, then Rel(L) is effectively closed under intersection;
(III) if L is both Parikh-injective and Parikh-surjective, then Rel(L) is effectively closed

under complement.

Proof idea. We prove only item (III). Let S ⊆ (2×A)∗ be an L-controlled relation. We show
that [[S]]c = [[Sc ∩ (L⊗A∗)]], where Sc, [[S]]c denote the complement of S, [[S]] respectively,
and L⊗A∗ denotes the set of all words u⊗ v where |u| = |v|, u ∈ L and v ∈ A∗.

[⊆] Suppose (u, v) 6∈ [[S]]. We show that there must be some w ∈ Sc ∩ (L⊗A∗) so that
(u, v) = [[w]]. By Parikh surjectivity and injectivity, there is exactly one word w′ ∈ L so
that Π(w′) = (|u|, |v|). Let w = u′⊗ v′ ∈ (2 × A)∗ be the only word so that u′ = w′ and
[[w]] = (u, v). Note that w 6∈ S and that its projection onto the first component (i.e., w′) is
in L. Therefore, w ∈ Sc ∩ (L⊗A∗).

[⊇] Assume w ∈ Sc ∩ (L⊗A∗) and suppose that [[w]] ∈ [[S]]. Then, there is some
w′ ∈ S so that [[w′]] = [[w]]. It cannot be that w′ = w, as it would be in contradiction
with w ∈ Sc ∩ (L⊗A∗). Since L is Parikh-injective, and w,w′ are L-controlled, w = w′,
as otherwise [[w′]] 6= [[w]]. This contradicts w ∈ Sc ∩ (L⊗A∗). Thus, [[w]] 6∈ [[S]] and
[[S]]c ⊇ [[Sc ∩ (L⊗A∗)]]. J

I Corollary 8. If L ⊆ 2∗ is Parikh-injective and Parikh-surjective, then Rel(L) is an effect-
ive boolean algebra, closed under alphabetic morphisms and inverse alphabetic morphisms.

Observe that in this context, REG and REC are simply two examples of the (infinitely)
many such well-behaved classes.

I Example 9.
REC and REG are effective boolean algebras because they correspond to Rel(1∗2∗) and
Rel((12)∗(1∗|2∗)), where 1∗2∗, (12)∗(1∗|2∗) are Parikh-injective and Parikh-surjective.
Rel((122)∗(112)∗) is effectively closed under intersection.
It was shown in [11] that the class of (r/s)-synchronized relations is an effective Boolean
algebra. Our results provide an alternative proof, since Lr/s is Parikh-injective and
Parikh-surjective.

Observation Note that Theorem 7 cannot be generalized to finite unions of Parikh-injective
languages, since for example Rel(L) for L = ((12)∗1∗)|(1∗(12)∗) is not closed under inter-
section. In fact, its intersection problem is undecidable. This follows from the fact that
Rel(L) contains the suffix relation and all regular relations (where the first component is
longer than the second). By [5, Theorem V.1], this problem is undecidable.

7 Future work

We presented a new way of looking at relations on words, and this new perspective opens
up several directions. An obvious one is to extend results to k-ary relations, for k > 2. We
know that exact analogs of Proposition 1, Theorem 1, and Theorem 2 continue to hold.

Another natural extension is to look for other classes of relations, say analogs of context-
free languages. In particular, one can look at a generalization of rational relations, the
pushdown relations of [14], which are those recognized by multi-tape automata with a stack
or, equivalently, by a context-free grammar. We have some preliminary results in this
direction but more work is needed.

We also would like to use the structural approach to look for better behaved classes of
relational word transducers for verification purposes, and for classes of relations that can be
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effectively used in querying graph data. Finally, we would like to use it to identify classes
of well behaved relations over data words [9] and study logics over them, extending the
approach of [5, 6] with data.
Acknowledgment Work partially supported by EPSRC grants G049165 and J015377.
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A APPENDIX: Complete Proofs

Preliminaries
The strongly connected components (henceforth SCC) of GA are its maximal strongly con-
nected subgraphs. An SCC is heterogeneous if it contains a heterogeneous cycle; an SCC is
homogeneous if it contains a cycle and all cycles it contains are homogeneous; otherwise, an
SCC without cycles (that is, a single vertex) is an edgeless SCC. The condensation of GA
(written con(GA)) is the directed acyclic graph (henceforth DAG) induced by the SCC’s of
GA. This is the DAG where nodes are SCC’s of GA and there is an edge labeled (q, (i, a), q′)
from vertex v to (a different) vertex v′ if q belongs to the SCC of v, q′ belongs to the SCC of
v′ and there is an edge labeled (q, (i, a), q′) from q to q′ in GA (in other words, (q, (i, a), q′)
is a transition of A).

Complete proof of Proposition 1
Proof. (I)-[⊇] The fact that Rel(L) contains any union of products of regular languages
(and hence that REC ⊆ Rel(L)) is straightforward. Note that Rel(L) is closed under finite
union, and for any two regular languages L1, L2 we have that L1 × L2 ∈ Rel(L) because
(1⊗L1) · (2⊗L2) is an L-controlled language.

(I)-[⊆] On the other hand, let R ∈ Rel(L), defined by a L-controlled language S. Let
S be described by an NFA AS with statespace Q, initial state q0 and final states F . Let
Lq,q

′

i be the language consisting of all words v ∈ A∗ so that there is a partial run of AS
on i⊗ v starting in state q and ending in state q′. Note that Lq,q

′

i is regular. Hence,
R = [[S]] =

⋃
q∈Q,q′∈F L

q0,q
1 × Lq,q

′

2 , and thus any relation in Rel(L) is a finite union of
products of languages. Therefore, Rel(L) ⊆ REC.

(II)-[⊇] Let R ⊆ A∗×A∗ be a regular relation, represented by an NFA A over the alphabet
(A∪{⊥})2, where (u1, u2) is in R if and only if u′1⊗u′2 ∈ L(A), where u′i ∈ (A∪{⊥})∗ is the
result of padding ui with a suffix of max(|u1|, |u2|)− |ui| letters ⊥. Let Q be the statespace
of A. We produce an NFA A′ over 2×A so that [[L(A′)]] = R and L(A′) is L-controlled. Let
Q′ = 2 × Q. For any transition (q, (a, b), q′) of A, where a, b 6= ⊥, we have two transitions
((1, q), (1, a), (2, q)) and ((2, q), (2, b), (1, q′)) in A′; and for any transition (q, (⊥, b), q′) (resp.
(q, (a,⊥), q′)) of A, we have a transition ((1, q), (2, b), (1, q′)) (resp. ((1, q), (1, a), (1, q′))) in
A′. It follows that if a pair (u, v) is accepted by the relation represented by L(A′) if, and
only if, (u, v) is in [[L(A′)]]. Further, it is plain that by the behavior of A (i.e., once it reads
a letter (a,⊥) for a ∈ A, it reads only ⊥ in the second component, and likewise for the first
component) A′ must be L-controlled.

(II)-[⊆] Let A be an NFA over 2 × A so that L(A) is L-controlled, with statespace Q.
Note that Q can be partitioned into four sets Q1, Q2, Q

′
1, Q

′
2, so that the transition relation

δ of A is such that

δ ⊆
⋃
i∈2

Qi × {i} × A× (Q \Qi) ∪
⋃
i∈2

Q′i × {i} × A×Q′i (†)

that is, all outgoing transitions from Qi, Q
′
i read letters from {i} × A, and there is an

alternation between Q1 and Q2 until a state from Q′i is reached, and after that it stays
only in Q′i. We can build an automaton A′ over (A ∪ {⊥})2 representing the same relation
as follows. For every two transitions (q1, (1, a), q2) and (q2, (2, b), q′) of A where qi ∈ Qi,
we have a transition (q1, (a, b), q′) in A′; for every transition (q1, (1, a), q′1) where q1, q

′
1 ∈
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Q1 ∪ Q′1, we have a transition (q1, (a,⊥), q′1) in A′; and for every transition (q2, (2, b), q′2)
where q2, q

′
2 ∈ Q2 ∪Q′2, we have a transition (q2, (⊥, b), q′2) in A′. By (†), it follows that A′

represents the relation [[L(A)]].
(III) Note that L = (1|2)∗ = 2∗ imposes no constraint on Rel(L). That is, Rel(L) is

the set of all relations [[S]] so that S ⊆ 2× A is regular. Any automaton A over 2× A can
be alternatively seen as a two-tape automaton A′, having one head on each tape, where a
transition (q, (i, a)q,′ ) in A corresponds to a transition in A′ from q to q′ reading letter a
from tape i. Conversely, any two-tape automaton A′ can be converted into an NFA A over
2×A. For both directions, the set of relations accepted by A′ is [[L(A)]]. These are precisely
the relations in RAT, and hence the statement follows. J

Complete proof of Theorem 1
I Lemma 10. For every s ≥ 1, we have Rel((1∗2∗)s) = REC.

Proof. This is a consequence of a synchronization theorem, Theorem 5-(II), which implies
that for every (1∗2∗)s-controlled language S there is a (1∗2∗)-controlled language S′ so that
[[S]] = [[S′]]. This fact, in conjunction with Proposition 1-(I), shows the statement. J

In the lemma below, we extend the notion of concatenation to classes of relations in the
natural way, i.e., element-wise.

I Lemma 11. For every δ ∈ N, we have Rel(L≤δ-lag) ( REG and Rel(L≤δ-lag)·REC = REG.

Proof. Note that any relation R ∈ Rel(L≤δ-lag) only contains pairs (u, v) so that −δ ≤
|u| − |v| ≤ δ. Hence the regular relation {(u, ε) | u ∈ A∗} is not in Rel(L≤δ-lag), and thus
Rel(L≤δ-lag) 6= REG. On the other hand, we have that any R ∈ Rel(L≤δ-lag) is regular,
since it can be recognized by a nondeterministic automaton on two tapes with a look-ahead
of δ, which can be simulated in the states of the automaton. Hence, Rel(L≤δ-lag) ( REG.

Since the concatenation of a regular relation and a recognizable relation is regular [8],
we are only left to show REG ⊆ Rel(L≤δ-lag) · REC. It is easy to see from their automata
description that every regular relationR ∈ REG can be factored into a finite union of relations
R1·R2 so that R1 is (12)∗-controlled and R2 is (1∗|2∗)-controlled. Since (12)∗ ∈ Rel(L≤δ-lag)
for δ = 1, it follows that REG ⊆ Rel(L≤1-lag) · REC. Note that for every δ ≤ δ′ we have
L≤δ-lag ⊆ L≤δ′-lag. Then, by the above and monotonicity, REG ⊆ Rel(L≤δ-lag) · REC for
every δ ≥ 1. J

Proof of Theorem 1. (I)-(if) Let n ∈ N so that shiftlag(L) < n. Since L is regular, this
implies that there is some δ′ where all shifts of w are ≤δ′-lagged for some δ′, except perhaps
the last n− 1 shifts.
I Claim 1. There is some δ′ so that for all w ∈ L and for all shifts i of w that are not among
the last n− 1 shifts, we have that they are ≤δ′-lagged.

Proof. Remember that L is regular. LetAL be an NFA accepting the language L with a state
space Q. Let δ′ = n(|Q|+ 1) + 1. Suppose, by means of contradiction, that there is w ∈ L
with a shift i ∈ {1, . . . , |w|} that is >δ′-lagged, so that there are at least n− 1 shifts to the
right of i. Let us assume, without any loss of generality, that #1(w[1, i])−#2(w[1, i]) > δ′.
Figure 2 contains an example. Since w ∈ L, let ρ : {0, . . . , |w|} → Q be an accepting run of
AL on w. Let i′ ≤ i be

the largest shift i′ < i that is ≤n-lagged, if there is any, or
i′ = 1 otherwise.
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w : 1 1 1 1 1 2 1 1 1 1 1
δ :

i1 i2 i3 i4

ij ij�

1 2 3 4 5 4 5 6 7 8 9

ii�

1

2
. . .

. . .1
10

2
9

i5

Figure 2 Example, where w has a prefix 1111121111112 after which it has n − 1 shifts, n = 4,
δ′ = 9, and |Q| = 1. Shift positions are circled.

Note that in [i′, i] there cannot be more than n shifts, since otherwise w would have n
consecutive >n-lagged shifts contradicting shiftlag(w) < n. Also, in [i′, i] there must be
k = δ′ − n positions i′ ≤ i1 < · · · < ik ≤ i so that for every j ∈ {1, . . . , k − 1}

#1(w[ij + 1, ij+1])−#2(w[ij + 1, ij+1]) = 1, (3)

where, by definition of δ′, k = n|Q| + 1 (cf. Figure 2). Remember that there are no more
than n shifts in [i′, i] and i is itself a shift; hence, since k > n|Q|, there must be |Q|+ 1 such
positions ij1 < · · · < ij|Q|+1 so that there is no shift in [ij1 , ij|Q|+1 − 1]. Then, there must
be two distinct positions ij , ij′ ∈ {ij1 , . . . , ij|Q|+1}, ij < ij′ , so that ρ(ij) = ρ(ij′) and there
is no shift in [ij , ij′ − 1] (cf. Figure 2). We show that we can then “pump” the subword of
w inside [ij , ij′ ] to obtain a larger word w′ ∈ L that has n shifts >n-lagged, that is, where
shiftlag(w′) ≥ n. Indeed, for any l ∈ N, we have that

w′ = w[1, ij ] · (w[ij + 1, ij′ ])l · w[ij′ + 1, |w|] ∈ L.

Note that w′ has as many shifts as w. Moreover, shift i in w corresponds now to shift
î = i+ (l − 1) · |[ij + 1, ij′ ]| in w′, and we have

#1(w′[1, î])−#2(w′[1, î]) > (l − 1) + δ′

since for every iteration of w[ij+1, ij′ ] we add more letters 1 than letters 2, as a consequence
of (3).

If we take l = |w|+ 1, we then have that
w′ has at least n shifts in [̂i, |w′|], because w has at least n shifts in [i, |w|] and w′ [̂i, |w′|] =
w[i, |w|], and
#1(w′[1, î])−#2(w′[1, î]) > |w|+ δ′.

Therefore, the last n shifts of w′ are all >n-lagged, contradicting shiftlag(L) < n. The
contradiction comes from assuming that for all δ′ there is w ∈ L and a >δ′-lagged shift i of
w that is not among the last n− 1 shifts. J

As a consequence of Claim 1, there must be some δ′′ where all the positions occurring
before the last s shifts are ≤δ′′-lagged.
I Claim 2. There is some δ′′ so that for all w ∈ L and all i so that w has at least n shifts
in [i, |w|], we have that i is ≤δ′′-lagged.



REFERENCES 17

Proof. Let δ′ be as in Claim 1. Take any position i so that there are at least n shifts in
[i, |w|]. Take also the two positions i1 ≤ i ≤ i2 so that

i2 is a shift,
i1 is a shift or i1 = 1, and
there are no shifts in [i1 + 1, i2 − 1].

By Claim 1, it follows that both i1 and i2 are ≤δ′-lagged. Since w[i1 + 1, i2] is a string of
only 1’s or only 2’s, it cannot be that |w[i1 + 1, i2]| > 2δ′, as otherwise either i1 or i2 would
not be ≤δ′-lagged. It then follows that i must be ≤2δ′-lagged. Hence, taking δ′′ = 2δ′, the
statement follows. J

A direct consequence of Claim 2 is that there is some δ′′ so that

L ⊆ L≤δ′′-lag · (1∗|2∗)n (4)

because (1∗|2∗)n contains all words with at most n shifts, and L≤δ′′-lag is the (regular) lan-
guage of all words with ≤δ′′-lagged positions. Since Rel(L′) = REC for L′ = (1∗|2∗)n by
Lemma 10, we obtain that Rel(L′′) = REG for L′′ = L≤δ′′-lag · (1∗|2∗)n by Lemma 11. Fi-
nally, as stated in (4), we have that L ⊆ L′′ where Rel(L′′) = REG. Applying monotonicity,
we then have Rel(L) ⊆ REG.

(I)-(only if) Suppose that shiftlag(L) = ∞. Note that this means that for every
s, δ ∈ N there is some w ∈ L that has s consecutive shifts >δ-lagged (because in particular
there is some w ∈ L so that shiftlag(w) > max(s, δ)). We build an L-controlled relation
S ⊆ (2× A)∗ so that [[S]] ∈ RAT \ REG.

Let A be any two-letter alphabet {a, b}. Let S ⊆ (2 × {a, b})∗ consisting of all words
u⊗ v ∈ (2× {a, b})∗ so that u ∈ L, and for every i ∈ {1, . . . , |v|},

v[i] = a if i is a shift of u, and
v[i] = b otherwise.

It is plain that S is a regular L-controlled relation since L is regular, and hence that [[S]] ∈
Rel(L) is a rational relation. Next we show that [[S]] 6∈ REG.

Note that every pair in the relation has almost the same number of a’s:

For every (u, v) ∈ [[S]], −1 ≤ #a(u)−#a(v) ≤ 1. (†)

Suppose, by means of contradiction, that [[S]] is regular and therefore, by Proposition 1,
[[S]] ∈ Rel(L′) for L′ = (12)∗(1∗|2∗). Hence, there must be some L′-controlled relation
S′ ⊆ (2 × {a, b})∗ so that [[S′]] = [[S]]. Let AS be an NFA accepting S with statespace Q,
and let AS′ be an NFA accepting S′ with statespace Q′.

Let s = 2|Q′| + 2, and let us define the constant K = s2|Q|. We hence define δ = 2K.
There must then be some w = u⊗ v ∈ S with s consecutive shifts that are >δ-lagged. Let
1 ≤ i1 < · · · < is ≤ |u| be the shifts in question. Let us assume, without any loss of
generality, that w is minimal in length and that #1(u[1, i1])−#2(u[1, i1]) > δ.

Due to minimality of w, it is easy to see through a pumping argument, that the lengths
of w[i1, is] and of w[is + 1, |w|] are bounded by a function on s and |Q|.
I Claim 3. |w| − i1 ≤ s2|Q| = K.

Proof. Let ρ : [0, |w|] → Q be an accepting run of AS on w. For any l ∈ s we have that
u[il + 1, il+1] is a string of 1’s or a string of 2’s.

Suppose that u[il + 1, il+1] is a string of 2’s, and suppose that the string has length
greater than |Q|. Then there are two distinct elements i, j ∈ [il + 1, il+1] so that i < j,
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u[i] = u[j] = 2 and ρ(i) = ρ(j). We then have that w′ = w[1, i] · w[j + 1, |w|] ∈ S and it
has s consecutive >δ-lagged shifts, because we only removed positions labeled with 2. But
this is not possible by minimality of w. Hence, u[il + 1, il+1] cannot contain more than |Q|
elements 2, and thus

#2(u[i1 + 1, is]) ≤ (s− 1)|Q|. (5)

Now suppose that u[il + 1, il+1] is a string of 1’s, and suppose that the string has length
greater than s|Q|. Then, there are two distinct elements i, j ∈ [il + 1, il+1] so that u[i] =
u[j] = 2, ρ(i) = ρ(j) and i − j ≤ |Q|. We then have that w′ = w[1, i] · w[j + 1, |w|] ∈ S.
Further, w′ has s consecutive >δ-lagged shifts, because although we removed some positions
marked with 1, we left sufficiently many (at least (s− 1)|Q|) to make sure that, by (5),

#1(u[i1 + 1, i] · u[j + 1, il+1])−#2(u[i1 + 1, i] · u[j + 1, il+1]) ≥ 0,

and hence that there are still s shifts >δ-lagged in w′. However, this is not possible by
minimality of w. Hence, u[il + 1, il+1] cannot contain more than s|Q| positions labeled 1,
and thus

#1(u[i1 + 1, is]) ≤ (s− 1)s|Q|. (6)

Then, by (5) and (6), the length of u[i1, is] is bounded by (s− 1)|Q|+ (s− 1)s|Q|+ 1.
A simpler consequence of the minimality of w is that

|[is + 1, |w|]| ≤ |Q|. (7)

Then, summing up, [i1, |w|] is bounded by

|Q|︸︷︷︸
by (7)

+ (s− 1)|Q|︸ ︷︷ ︸
by (5)

+ (s− 1)s|Q|︸ ︷︷ ︸
by (6)

+1 = s2|Q|+ 1.

Thus, |w| − i1 ≤ s2|Q| = K. J

Since δ = 2K < #1(u[1, i1]) −#2(u[1, i1]) and #2(u[i1 + 1, |w|]) ≤ K by Claim 3, we have
that

#1(u)−#2(u) > K. (8)

Let w′ = u′⊗ v′ ∈ S′ be the corresponding word in S′, so that [[w]] = [[w′]]. Let ρ′ :
[0, |w′|]→ Q′ be an accepting run of AS′ on w′. Note that u′ can be factored into u′ = u′1 ·u′2
with u′1 ∈ (12)∗ and u′2 ∈ 1∗. (The other possibility, u′2 ∈ 2∗, is only easier.)

Notice that u[|u| − K, |u|] contains s shifts, by Claim 3, and in particular s/2 shifts
labeled with 1. Therefore, w[|u| −K, |u|] contains at least s/2 letters (1, a) by definition of
S. By (8), we have that |u′2| ≥ K. Thus, u′2 must contain at least s/2 positions labeled with
a. Since s/2 = |Q′| + 1, there must be two distinct positions |u′1| < i < j ≤ |w′| labeled
with a so that ρ′(i) = ρ′(j). Consider then w′′ = w′[1, i] · (w′[i+ 1, j])4 ·w′[j + 1, |w′|]. Note
that w′′ ∈ S′. By property (†), we had that [[w′]] has the same quantity of a’s (plus-minus
one) in the first and second components. Therefore, [[w′′]] has at least two more a’s in its
first component than in its second component. Hence, due to property (†), it cannot be that
[[w′′]] ∈ [[S]], and thus [[S]] 6= [[S′]]. The contradiction comes from assuming that there exists
an L′-controlled language S′ so that [[S′]] = [[S]]. Hence, [[S]] 6∈ REG.
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(II)-(if) Let shift(L) < n. Note that L′ = (1∗2∗)n contains all words with less than n

shifts. Hence, L ⊆ L′. By Lemma 10, Rel(L′) = REC, and since L ⊆ L′, it follows that
Rel(L) ⊆ REC by monotonicity.

(II)-(only if) Suppose shift(L) = ∞. We exhibit a relation of Rel(L) which is not in
REC. We use the same relation as a previous part of this proof, but we repeat it here for
the reader’s convenience. Let A be any two-letter alphabet {a, b}. Let S ⊆ (2 × {a, b})∗
consisting of all words u⊗ v ∈ (2× {a, b})∗ so that u ∈ L, and for every i ∈ {1, . . . , |v|},

v[i] = a if i is a shift of u, and
v[i] = b otherwise.

It is plain that S is a regular L-controlled relation since L is regular, and hence that [[S]] ∈
Rel(L) is a rational relation. Next we show that [[S]] 6∈ REC.

Note that every pair in the relation has almost the same number of a’s:

For every (u, v) ∈ [[S]], −1 ≤ #a(u)−#a(v) ≤ 1. (‡)

By means of contradiction, suppose that [[S]] ∈ REC. Then, by Proposition 1-(I), there
is a 1∗2∗-controlled language S′ ⊆ (2 × {a, b})∗ so that [[S′]] = [[S]]. Let AS′ be an NFA
recognizing S′ with statespace Q′. Let u⊗ v ∈ S be a word so that u has more than |Q′|
shifts, and hence [[u⊗ v]] has more than |Q′| letters a. Since [[S′]] = [[S]] there is some
w′ = u′⊗ v′ ∈ S′ so that [[u′⊗ v′]] = [[u⊗ v]]. Let ρ′ : [0, |w′|] → Q′ be an accepting run of
AS′ on w′. Note that u′ has at most one shift. Let i be the only shift of u′ (if u′ has no
shifts the reasoning is only easier). Since v′ has more than than |Q′| a’s, there must be two
positions j1, j2 of w′ so that ρ′(j1) = ρ′(j2), v′[j1] = v′[j2] = a and either 1 ≤ j1 < j2 ≤ i or
i < j1 < j2 ≤ |w′|. Note then that w′[1, j1] · (w′[j1 + 1, j2])n · w′[j2 + 1, |w′|] ∈ S′ for every
n ∈ N. Take n = 4, and let w′′ = w′[1, j1] · (w′[j1 + 1, j2])4 · w′[j2 + 1, |w′|] ∈ S′. Note that
[[w′′]] has at least two more a’s in one component than in the other, because w′ has at most
a difference of one a between its components, due to (‡). Hence, w′′ is in contradiction with
(‡), and it cannot be that [[S′]] = [[S]]. Therefore, [[S]] 6∈ REC and thus Rel(L) 6⊆ REC.

(III) This is direct by definition of REGbld.

(IV) This is direct from definition of Rel(L) and Proposition 1-(III). J

A.1 Complete proof of Theorem 2
Let Q be the statespace of A. Given w ∈ L(A) and an accepting run ρ : [0, |w|] → Q of A
on w, the path P on GA induced by w, ρ is defined as the sequence of edges e1 · · · e|w| of GA,
so that ei is the edge between ρ(i− 1) and ρ(i) labeled with (ρ(i− 1), w[i], ρ(i)).

(I)-(if) Let n ∈ N. We show that assuming one of the two properties is met, there is
some w ∈ L(A) with shiftlag(w) ≥ n.

If GA has a heterogeneous cycle Chet with #1(Chet) 6= #2(Chet), one can iterate this cycle
to obtain a word w with shiftlag(w) > n. In other words, suppose that w ∈ L(A) with an
accepting run ρ : [0, |w|]→ Q so that the path P induced by w, ρ contains a heterogeneous
unbalanced cycle Chet between the positions i ≤ j where we assume, without any loss of
generality, #1(Chet) > #2(Chet) > 0. Since this means that ρ(i− 1) = ρ(j), we have that

wm = w[1, i− 1] · (w[i, j])m · w[j + 1, |w|] ∈ L(A)
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for every m ∈ N, and #1(w[i, j]) > #2(w[i, j]) > 0 because #1(Chet) > #2(Chet) > 0.
Hence, if we take m = |w| + 2n, it is easy to see that wm has n consecutive shifts that are
>n-lagged. Thus, shiftlag(wm) ≥ n.

If, on the other hand, there is a path from a homogeneous cycle Chom to a heterogeneous
cycle Chet in GA, then we show that we can iterate both cycles enough times to obtain a word
w ∈ L(A) so that shiftlag(w) > n. Suppose w ∈ L(A) with an accepting run ρ : [0, |w|]→ Q,
so that the path P induced by w, ρ contains both cycles, where Chom occurs before Chet.
That is, there are 0 < i < j ≤ i′ < j′ ≤ |w| so that

ρ(i) = ρ(j) and Chom is the cycle induced by w[i, j], ρ|[i−1,j], and
ρ(i′) = ρ(j′) and Chet is the cycle induced by w[i′, j′], ρ|[i′−1,j′].

Note that for any m, l ∈ N we have

wm,l = w[1, i] · (w[i+ 1, j])m · w[j + 1, i′]︸ ︷︷ ︸
um

· (w[i′ + 1, j])l · w[j′, |w|]︸ ︷︷ ︸
vl

∈ L(A).

If we take m = (n+ 2)|w| and l = n, we obtain that
|#1(um)−#2(um)| > (n+ 1)|w|,
|vl| ≤ n|w|, and
shift(vl) > n.

Therefore, wm,l = um · vl is so that shiftlag(wm,l) ≥ n.
Thus, if any of the conditions in (I) is met, we must have that shiftlag(L(A)) =∞.
(I)-(only if) Suppose now that shiftlag(L(A)) =∞. We choose n = 2|Q|+ 1, and show

that any accepting run of A on w ∈ L(A) so that shiftlag(w) ≥ n must induce a path P

containing either

(i) a heterogeneous cycle Chet with #1(Chet) 6= #2(Chet), or
(ii) a homogeneous cycle Chom and a heterogeneous cycle Chet, so that Chom occurs before

Chet in P .
Note that once this is verified, the statement follows.

Let ρ : [0, |w|]→ Q be an accepting run of A on w so that shiftlag(w) > n. Consider the
path P on GA induced by ρ, w. By definition of shiftlag(w) > n, there must be n consecutive
>n-lagged shifts 1 ≤ a1 < a2 < · · · < an ≤ |w| in w. Without any loss of generality, assume
that

#1(w[1, a1])−#2(w[1, a1]) > n, (†)

and that for every odd index i, w[ai] = 1 and for every even index i, w[ai] = 2. Since
n > 2|Q|, it follows that there must be ai < aj < al with ρ(ai) = ρ(aj) = ρ(al), and thus
there must be a heterogeneous cycle inside P (the one defined between positions i + 1 and
l). Further, by (†), there are positions 0 ≤ b1 < · · · < bn ≤ a1 so that #1(w[bi + 1, bi+1])−
#2(w[bi + 1, bi+1]) = 1 for every i ∈ n− 1. Since n > |Q|, there must be two bi < bj so that
ρ(bi) = ρ(bj). Hence the cycle C of P induced by w[bi + 1, bj ], ρ|[bi,bj ] necessarily verifies

#1(C) > #2(C). (‡)

Now there are two possibilities.
If #2(C) > 0 then C is heterogeneous and with #1(C) 6= #2(C) by (‡), verifying
condition (i).
The other possibility is that C is homogeneous. Since there is a path from C to Chet,
the condition (ii) is met.
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(II)-(if) Suppose that GA contains a heterogeneous cycle Chet. Then, there must be
some word w ∈ L(A) with an accepting run ρ : [0, |w|] → Q so that the path P induced
by w, ρ contains Chet between positions i ≤ j of P . Therefore ρ(i − 1) = ρ(j), and wn =
w[1, i − 1] · (w[i, j])n · w[j + 1, |w|] ∈ L(A) for any n ∈ N. Note that as a consequence of
Chet being heterogeneous, w[i, j] contains at least one letter 1 and one letter 2. Thus, wn
contains at least n shifts, and therefore shift(L(A)) =∞.

(II)-(only if) Suppose that shift(L(A)) = ∞, that is, for every n ∈ N there is a word
w ∈ L(A) so that shift(w) > n. Take n = 2|Q|, and let w ∈ L(A) so that shift(w) > n.
There must be more than |Q| shifts in w with the same letter i ∈ 2. Without any loss of
generality, suppose there are shifts 1 ≤ i1 < · · · < i|Q|+1 ≤ |w| so that w[ij ] = 1 for all
j ∈ {1, . . . , |Q| + 1}. Then there must be two ij1 < ij2 so that ρ(ij1) = ρ(ij2). Hence, the
word w[ij1 + 1, ij2 ] has length ≥ 2, and contains at least one letter 1 (the last letter) and at
least one letter 2 (the first letter, as otherwise ij1 would not be a shift with letter 1). It then
follows that the path on GA induced by w[ij1 + 1, ij2 ], ρ|[ij1 ,ij2 ] is indeed a heterogeneous
cycle.

(III) This is shown in [27, Lemma 6.7, p. 603].

Complete proof of Theorem 5

For the proof of Theorem 5 we use the following lemma.

I Lemma 12 (Bounds for shiftlag, shift, lag). Given an NFA A over the alphabet 2 with
statespace Q,

(I) if shiftlag(L(A)) <∞, then shiftlag(L(A)) ≤ |Q|;
(II) if shift(L(A)) <∞, then shift(L(A)) ≤ |Q|;
(III) if lag(L(A)) <∞, then lag(L(A)) ≤ |Q|.

Proof. Assume without any loss of generality that A is trim. Given a set of vertices S, let
A|S be the NFA whose set of initial states is S, and its transition relation corresponds to
the subgraph of GA induced by all the vertices reachable from S.

(I) By Theorem 2-(I) every SCC S of GA is so that

(a) S is edgeless, or
(b) S is homogeneous and all SCC’s S′ reachable from S are homogeneous or edgeless, or
(c) S is heterogeneous, and all simple cycles C in S are so that #1(C) = #2(C).

Let us analyze each case separately. Let S1, . . . , Sn be the set of SCC’s reachable from
S (excluding S).

(a) Then, shiftlag(L(A|S)) ≤ 1 + shiftlag(L(A|S1∪···∪Sn
)).

(b) Then, any word w accepted by A|S is contained in (1∗2∗)≤l, where l is the number of
SCC’s in GA|S . Therefore, shift(L(A|S)) ≤ l and therefore shiftlag(L(A|S)) ≤ l.

(c) We then have that any word w in L(A|S) is of the form w = u·v where u ∈
⋃
i≤|S|(sh(1i, 2i))∗

and v ∈ L(A|S1∪···∪Sn
). Note that

there are no positions >|S|-lagged in u, and
position |u| is 0-lagged in w.

Thus, shiftlag(L(A|S)) ≤ max(|S|, shiftlag(L(A|S1∪···∪Sn
))).
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Combining (a), (b) and (c), and by the fact that con(GA) is a DAG, we obtain that
shiftlag(L(A)) ≤ |A|.

(II) By Theorem 2-(II) there are no heterogeneous cycles in GA, and every SCC S of
GA is hence homogeneous or edgeless. Shifts can hence only occur in transitions between
SCC’s in GA (i.e., transitions that involving states from two different SCC’s). Since the
condensation of GA is a DAG, there are not more than |A| different SCC that an accepting
run of A for a word can go through. Hence, shift(L(A)) < n, where n is the number of
SCC’s of A minus one. Since n ≤ |A|, the statement follows.

(III) By Theorem 2-(III) all cycles C in GA are so that #1(C) = #2(C). By means of
contradiction, suppose that there is some w ∈ L(A) with lag(w) > |Q|, and an accepting
run ρ : [0, |w|] → Q of A on w, where Q is the statespace of A. Further, suppose that
w is minimal in length; that is, any word w′ shorter than w is so that lag(w′) ≤ |Q|.
Since |w| > |Q|, let 0 ≤ i < j ≤ |w| be any two indices so that ρ(i) = ρ(j). Note that
the path induced by w[i, j − 1], ρ|[i,j] is a cycle C, and by hypothesis it must be so that
#1(C) = #2(C). Therefore, #1(w[i, j − 1]) = #2(w[i, j − 1]). Consider then the word
w′ = w[1, i − 1] · w[j, |w|]. We have that w′ ∈ L(A) and that lag(w′) = lag(w) because we
removed a subword with equal number of letters 1 and 2. This is an absurd by minimality
of w. Thus, there cannot be that lag(L(A)) > |Q| and the statement follows. J

Proof of Theorem 5. We start by showing (II) and (IV) because we use these items in the
proof of (I).

(II) Let S be an L-controlled regular language S ⊆ (2 × A)∗ with shift(L) < ∞. We
assume, without any loss of generality, that L = {u | u⊗ v ∈ S}. Let A be an NFA
recognizing S with statespace Q, initial state q0 and set of final states QF . Note that, since
S is L-controlled, one can build in linear time an automaton AL recognizing L, having the
same statespace Q (the transformation consists in replacing every transition (q, (i, a), q′)
with (q, i, q′)). Hence, by Lemma 12-(II), shift(L) ≤ |Q|.

Let us call 1-edge (resp. 2-edge) to an edge of GA labeled with a transition reading the
letter 1 (resp. 2) in its first component. Note that every SCC of GA is homogeneous or
edgeless by Theorem 2-(II). Hence, if a SCC has only 1-edges, we call it a 1-SCC. Otherwise
(if it has only 2-edges), we call it a 2-SCC. For the purpose of this proof, it is indifferent
whether we categorize edgeless SCC’s as 1-SCC’s or 2-SCC’s, but just to fix nomenclature,
let us call them 1-SCC’s. Hence, every SCC in GA is a 1-SCC or a 2-SCC.

Note that any path on GA induces a (possibly empty) path on con(GA) (cf. Figure 3).
By acyclicity there are at most exponentially many paths in con(GA).

For any (possibly empty) path P in con(GA) and final state q ∈ QF , let SP,q be the
set of all words w ∈ S with an accepting run of A ending in q and inducing the path P in
con(GA). Hence,

S =
⋃
{SP,q | P is a path of con(GA) and q ∈ QF }.

We conclude the proof by showing that for every path P in con(GA) and q ∈ QF we can
build, in polynomial time, a (1∗2∗)-controlled automaton AP,q so that [[L(AP,q)]] = [[SP,q]].

I Claim 4. For every path P in con(GA) and q ∈ QF , an automaton AP,q so that
[[L(AP,q)]] = [[SP,q]] and
L(AP,q) is (1∗2∗)-controlled

is computable in polynomial time in |A|.
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Figure 3 Example of path in GA and corresponding path in con(GA). For simplicity, we assume
that the alphabet is singleton A = {a}, and we therefore omit ‘a’ in the transitions.

Proof. We can assume, without any loss of generality, that P is not empty, and contains
a vertex corresponding to a 1-SCC, or a 1-edge, and
a vertex corresponding to a 2-SCC, or a 2-edge,

since otherwise SP,q would be trivially (1∗2∗)-controlled and an automaton can be easily
built in polynomial time in |A|.

Let GP,q be the transition graph of the NFA recognizing SP,q, which is the result of
removing from A

all the states from SCC’s that are not in P and its associated transitions, and
all transitions (q, (i, a), q′) not appearing in P , so that q, q′ do not belong to the same
SCC.

Note that con(GP,q) is a directed chain, where there is at most one edge traveling between
two vertices from different SCC’s; the shape of GP,q is depicted in the top picture of Figure 4.
Let statesq0,q(P ) be the sequence of states appearing in P , prefixed with q0 and suffixed with
q; that is, if

P = (v1, (q1, (i1, a1), q′1), v2), . . . , (vn, (qn, (in, an), q′n), vn+1),

then statesq0,q(P ) = q0, q1, q
′
1, . . . , qn, q

′
n, q. The idea is that statesq0,q(P ) represents the

sequence of states that any accepting run of the automaton recognizing SP,q has to go
through (there could, however, be some repetitions of states if the incoming and outgoing
state of a SCC are the same in P ). For example, in the path P depicted in Figure 3, we have
statesq0,q6 = q0, q1, q5, q5, q6, q6. In the top picture of Figure 4, the vertices in statesq0,q(P )
are depicted as bullets. Consider the graph GP,q,1 as the result of

1. removing all 2-edges from GP,q,
2. removing all vertices without incoming or outgoing edges that remain, and
3. associating vertices to make it a connected graph, so that the relative appearance of the

1-SCC’s and 1-edges given by P is preserved.
This construction is shown in Figure 4. Let v1, v

′
1 be the first and last vertices in the

construction of GP,q (cf. Figure 4). That is, v1 corresponds to the first vertex in statesq0,q(P )
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Figure 4 Example of construction of G′
P,q from GP,q. The SCC are abstracted as grey boxes,

labeled “1-SCC” or “2-SCC” depending on the sort of SCC they are. Edges are also labeled
depending on whether they are 1-edges or 2-edges. Dotted lines are used to identify two vertices as
being the same.

that has an outgoing 1-edge in GP,q, and v′1 corresponds to the last vertex in statesq0,q(P )
that has an incoming 1-edge in GP,q.

We define GP,q,2 and v2, v
′
2 analogously to GP,q,2 and v1, v

′
1, but removing 1-edges instead

(cf. Figure 4). Now, let G′P,q be the transition graph resulting from composing GP,q,1 with
GP,q,2 by associating v′1 with v2 (cf. Figure 4). Let us define the automaton AP,q as having
the transition relation defined by G′P,q, where the initial state is v1 and the set of final states
is {v′2}. We then have that AP,q is (1∗2∗)-controlled and [[L(AP,q)]] = [[SP,q]]. J

The statement follows directly from the previous claim, defining

S′ =
⋃
P,q

L(AP,q)

for every path P of con(GA) and q ∈ QF , and defining AS′ as the union of all automata
AP,q’s. Then, S′ is a (1∗2∗)-resynchronization of S, and AS′ can be built in exponential
time.

We now show another claim concerning (1∗2∗)-controlled languages, that will be useful
in the proof of (I).
I Claim 5. For any (1∗2∗)-controlled automaton A one can build, in polynomial time, (12)∗-
controlled automata Ahead

1 , . . . , Ahead
t and (1∗|2∗)-controlled automata Atail

1 , . . . , Atail
t so that

[[L(A)]] =
⋃
i∈t

[[L(Ahead
i ) · L(Atail

i )]].

Proof. In the scope of this proof, let Q be the statespace of A, with initial state qinit and
set of final states QF . Let us define the automaton A′ over the same alphabet as A with
the statespace Q×Q× 2, with a transition

((q1, q2, 1), (1, a), (q′1, q2, 2)) if (q1, (1, a), q′1) is a transition of A, and
((q1, q2, 2), (2, a), (q1, q

′
2, 1)) if (q2, (2, a), q′2) is a transition of A.

Note that for every q1, q1, q
′
1, q
′
2 ∈ Q, A′[(q1, q2, 1), (q′1, q′2, 1)] is (12)∗-controlled. Also, note

that for every q′1, q2, q
′
2 ∈ Q and qf ∈ QF ,

L(A′[(qinit, q2, 1)(q2, q
′
2, 1)])︸ ︷︷ ︸

Lhead
1

· (L(A[q′2, qf ]) ∩ ({2} × A)∗)︸ ︷︷ ︸
Ltail

1

and

L(A′[(qinit, q2, 1)(q′1, qf , 1)])︸ ︷︷ ︸
Lhead

2

· (L(A[q′1, q2]) ∩ ({1} × A)∗)︸ ︷︷ ︸
Ltail

2
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are (12)∗(1∗|2∗)-controlled, and that automata recognizing Lheadi , Ltaili can be obtained in
polynomial time.

Observe that for any q1, q
′
1, q2, q

′
2 ∈ Q, w ∈ L(A′[(q1, q2, 1)(q′1, q′2, 1)]) if, and only if,

wodd ∈ L(A[q1, q
′
1])∩ ({1}×A)∗ and weven ∈ A[q2, q

′
2]∩ ({2}×A)∗, where wodd (resp. weven)

is the subword of w of odd (resp. even) positions.
From the definition of Lheadi and Ltaili and the previous observation, we show that for

any word w ∈ Lheadi · Ltaili there is some w′ ∈ L so that [[w]] = [[w′]], and vice versa.
From any accepting run of A′[(qinit, q2, 1), (q2, q

′
2, 1)] on w1 and an accepting run of

A[q′2, qf ] on w2 ∈ ({2} ×A)∗ one can build an accepting run of A on (w1)odd · (w1)even ·w2,
where [[(w1)odd · (w1)even · w2]] = [[w1 · w2]]. Similarly, from an accepting run of

A′[(qinit, q2, 1), (q′1, qf , 1)]

on w1 and an accepting run of w2 ∈ ({1} × A)∗ on A[q′1, q2] one can build an accepting run
of A on (w1)odd ·w2 · (w1)even, where [[(w1)odd ·w2 · (w1)even]] = [[w1 ·w2]]. Indeed, note that
in both cases, (w1)odd = (w1){1}×A and (w1)even = (w1){2}×A.

Conversely, for every accepting run of A on w, let w′ be the interleaving of w{1}×A[1,m]
and w{2}×A[1,m], where m = min(|w{1}×A|, |w{2}×A|) (more formally, it is the word w′ ∈
sh(w{1}×A[1,m], w{2}×A[1,m]) so that w′ ∈ (({1}×A) · ({2}×A))∗). If |w{1}×A| ≤ |w{2}×A|
then for some q2, q

′
2 ∈ Q and qf ∈ QF there is an accepting run of A′[(qinit, q2, 1), (q2, q

′
2, 1)]

on w′, and accepting run of A[q′2, qf ] on w[2m + 1, |w|] ∈ ({2} × A)∗. Similarly, if
|w{1}×A| > |w{2}×A| then for some q2, q

′
1 ∈ Q and qf ∈ QF there is an accepting run of

A′[(qinit, q2, 1)(q′1, qf , 1)] on w′, and accepting run of A[q′1, q2] on w[2m+1, |w|] ∈ ({1}×A)∗.
In both cases, observe that [[w′ · w[2m+ 1, |w|]]] = [[w]].

Summing up, for every pair (u, v) ∈ A∗ × A∗, there is a word w ∈ Lheadi · Ltaili with
[[w]] = (u, v) for some i ∈ 2 if, and only if, there is some w′ ∈ L(A) with [[w′]] = (u, v).

Hence, defining L′ as the union of all the above Lhead1 ·Ltail1 and Lhead2 ·Ltail2 languages for
all possible q2, q

′
2, q
′
1 ∈ Q and qf ∈ QF , it follows that [[L(A)]] = [[L′]]. Since every Lheadi is

(12)∗-controlled and every Ltaili is (1∗|2∗)-controlled, and since automata for these languages
can be built in polynomial time, the statement follows. J

(IV) This follows from [27, Proposition 6.9, pp. 604–605]. Although in the cited work the
complexity is not given, it follows from the proof that it can be built in exponential time.
In fact, note that it suffices to build an automaton whose every state has a buffer of lag(L)
letters.

(I) Let S be an L-controlled regular language S ⊆ (2×A)∗ with shiftlag(L) <∞. Let A
be an NFA recognizing S with statespace Q, initial state q0 and set of final states QF .

By Theorem 2-(I), there are no paths from homogeneous SCC’s to heterogeneous SCC’s
in GA (and there are no heterogeneous cycles C with #1(C) 6= #2(C)). Let Qhom be the
set of all vertices of GA that are reachable from a vertex of a homogeneous SCC. Note
that Qhom includes all vertices in homogeneous SCC’s, plus some vertices from edgeless
SCC’s. Also, note that the subgraph of GA induced by Qhom has no heterogeneous cycles.
Let Qhet = Q \ Qhom. Hence, Qhet includes all vertices in heterogeneous SCC’s and some
vertices in edgeless SCC’s. Also, by the property before, the subgraph of GA induced by
Qhet is connected. Figure 5 contains an example. Further, any path P in GA is of the form
(1) P · (q, τ, q′) · P ′, (2) P , or (3) P ′, where

P is a (possibly empty) path of the subgraph of GA induced by Qhet,
P ′ is a (possibly empty) path of the subgraph of GA induced by Qhom,
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Figure 5 Example of GA with the subgraphs induced by Qhom and Qhet. For simplicity we
assume that A = {a} and we hence omit the letter a when depicting edges labeled by (i, a).

q ∈ Qhet, q′ ∈ Qhom, and τ is a transition of A.

Let Ahet be A restricted to Qhet, and let Ahom be A restricted to Qhom. For every pair
of states qhet ∈ Qhet and qhom ∈ Qhom, let Lqhet,qhom be the union of all

L(Ahet[q0, qhet]) · {(i, a)} · L(Ahom[qhom, qf ])

for every qf ∈ QF and (i, a) ∈ 2× A so that (qhet, (i, a), qhom) is a transition of A (if there
is no such (i, a), let Lqhet,qhom = ∅). Note that in the definition above it could be that, for
example, q0 6∈ Qhet, and we remind the reader that Ahet[q, q′] (resp. Ahom[q, q′]) where q or
q′ are not in Qhet (resp. Qhom) denotes the automaton accepting the empty language. Let
Lhom =

⋃
qf∈QF

L(Ahom[q0, qf ]) and Lhet =
⋃
qf∈QF

L(Ahet[q0, qf ]). It follows that

S = Lhom ∪ Lhet ∪
⋃

qhet∈Qhet,qhom∈Qhom

Lqhet,qhom .

We show that we can build, in exponential time, a (12)∗(1∗|2∗)-controlled automaton for
each of these languages. Since the case of Lqhet,qhom is more general than Lhom and Lhet, we
will only prove this case.

Note that by definition of Ahet and Ahom, and since GA has no unbalanced heterogeneous
cycles, for every qhet ∈ Qhet, qhom ∈ Qhom, qf ∈ QF we have that lag(L(Ahet[q0, qhet])) <∞
and shift(L(Ahom[qhom, qf ])) <∞. Hence, by Lemma 12,

lag(L(Ahet[q0, qhet])) ≤ n,
shift(L(Ahom[qhom, qf ])) ≤ n,

for n = |A|.
By the already shown item (II), let Ahom

qhom,qf
be a (1∗2∗)-controlled automaton so that

[[L(Ahom[q0, qhom])]] = [[L(Ahom
q0,qhom

)]]. By item (IV), letAhet
q0,qhet

be a (12)∗(1≤n|2≤n)-controlled
automaton so that [[L(Ahet[q0, qhet])]] = [[L(Ahet

q0,qhet
)]]. These automata can be built in expo-

nential time.
We finally show that a (12)∗(1∗|2∗)-controlled automaton for Lqhet,qhom can be built from

Ahet
q0,qhet

and all the Ahom
qhom,qf

’s for all qf ∈ QF in polynomial time, and thus the statement
follows.
I Claim 6. A (12)∗(1∗|2∗)-controlled automaton for Lqhet,qhom can be built from Ahet

q0,qhet
and

all the Ahom
qhom,qf

’s in polynomial time.

Proof. It is plain that from Ahom
qhom,qf

(which is 1∗2∗-controlled) one can build 1∗-controlled
automata Bhom-1∗

1 , . . . , Bhom-1∗
t and 2∗-controlled automata Bhom-2∗

1 , . . . , Bhom-2∗
t in poly-

nomial time so that

L(Ahom
qhom,qf

) =
⋃
i∈t

(
L(Bhom-1∗

i ) · L(Bhom-2∗
i )

)
.
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Also, it is easy to see that from Ahet
q0,qhet

(which is (12)∗(1≤n|2≤n)) one can build (12)∗-
controlled automata Ahet-(12)∗

1 , . . . , A
het-(12)∗
s , 1≤n-controlled automata Ahet-1∗

1 , . . . , Ahet-1∗
t

and 2≤n-controlled automata Ahet-2∗
1 , . . . , Ahet-2∗

s in polynomial time, so that

L(Ahet
q0,qhet

) =
⋃
i∈s

(
L(Ahet-(12)∗

i ) · L(Ahet-1∗
i ) · L(Ahet-2∗

i )
)

We then have that

[[Lqhet,qhom ]] =
⋃
`∈2

[[
⋃

i∈t,j∈s
L(Ahet-(12)∗

j ) · L(Ahet-1∗
j ) · L(Ahet-2∗

j ) · L`,qhet,qhom ·

L(Bhom-1∗
i ) · L(Bhom-2∗

i )]]

where L`,qhet,qhom = {(`, a) | (qhet, (`, a), qhom) in A}. Note that for ` = 1 we have

[[
⋃

i∈t,j∈s
L(Ahet-(12)∗

j ) · L(Ahet-1∗
j ) · L(Ahet-2∗

j ) · L1,qhet,qhom · L(Bhom-1∗
i ) · L(Bhom-2∗

i )]]

= [[
⋃

i∈t,j∈s
L(Ahet-(12)∗

j ) · L′1,i,j ]], where

L′1,i,j = L(Ahet-1∗
j ) · L1,qhet,qhom · L(Bhom-1∗

i ) · L(Ahet-2∗
j ) · L(Bhom-2∗

i ).

Since L′1,i,j is 1∗2∗-controlled, we can apply the previous Claim 5 on L′1,i,j obtaining
(12)∗-controlled automata Ahead

1 , . . . , Ahead
m and (1∗|2∗)-controlled automata Atail

1 , . . . , Atail
m

so that

[[L′1,i,j ]] =
⋃
k∈m

[[L(Ahead
k ) · L(Atail

k )]].

in polynomial time. Defining L′′1,i,j =
⋃
k∈m L(Ahead

k ) · L(Atail
k ), we obtain that L′′1,i,j is

(12)∗(1∗|2∗)-controlled, and an automaton for L′′1,i,j can be computed in polynomial time.
Thus,

[[
⋃

i∈t,j∈s
L(Ahet-(12)∗

j ) · L(Ahet-1∗
j ) · L(Ahet-2∗

j ) · L1,qhet,qhom · L(Bhom-1∗
i ) · L(Bhom-2∗

i )]]

= [[
⋃

i∈t,j∈s
L(Ahet-(12)∗

j ) · L′′1,i,j ]],

where note that L′′′1 =
⋃
i∈t,j∈s L(Ahet-(12)∗

j ) · L′′1,i,j is (12)∗(1∗|2∗)-controlled, and an auto-
maton for L′′′1 can be built in polynomial time.

For ` = 2 we apply a similar reasoning,

[[
⋃

i∈t,j∈s
L(Ahet-(12)∗

j ) · L(Ahet-1∗
j ) · L(Ahet-2∗

j ) · L2,qhet,qhom · L(Bhom-1∗
i ) · L(Bhom-2∗

i )]]

= [[
⋃

i∈t,j∈s
L(Ahet-(12)∗

j ) · L′2,i,j ]]

this time taking

L′2,i,j = L(Ahet-1∗
j ) · L(Bhom-1∗

i ) · L2,qhet,qhom · L(Ahet-2∗
j ) · L(Bhom-2∗

i ).

and obtaining, through Claim 5, a (12)∗(1∗|2∗)-controlled language L′′′2 so that

[[
⋃

i∈t,j∈s
L(Ahet-(12)∗

j ) · L(Ahet-1∗
j ) · L(Ahet-2∗

j ) · L2,qhet,qhom · L(Bhom-1∗
i ) · L(Bhom-2∗

i )]] = [[L′′′2 ]].
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Hence,

[[Lqhet,qhom ]] =
⋃
`∈2

[[L′′′` ]]

and an automaton recognizing
⋃
`∈2 L

′′′
` can be built in polynomial time. J

(III) For any L ∈ RLfinlag with lag(L) = k, consider the singleton language L′ = {1k+1} ∈
RLfinlag. Note that any nonempty L′-controlled relation cannot have a L-resynchronization.
Thus, there cannot be a canonical representative of RLfinlag.

Note that, however, the class RLfinlag∪{(12)(1∗|2∗)} has (12)(1∗|2∗) as an effective canonical
representative by item (I).

(V) This is straightforward since 2∗ contains all languages over 2, and therefore all
relations are 2∗-controlled. J

Proof of Theorem 7
Proof of Theorem 7. (I) Let S1, S2 ⊆ (2×A)∗ be two L-controlled relations. It is immedi-
ate that the language S∪ = S1 ∪ S2 is L-controlled. We then have that [[S1]] ∪ [[S2]] = [[S∪]].
The fact that it is closed under (inverse) alphabetic morphisms is immediate from the defin-
ition of Rel(L).

(II) Let S1, S2 ⊆ (2×A)∗ be two L-controlled relations. It is immediate that the language
S∩ = S1 ∩ S2 is L-controlled and [[S∩]] ⊆ [[S1]] ∩ [[S2]]. We show that [[S1]] ∩ [[S2]] ⊆ [[S∩]].
Suppose that (u, v) ∈ [[S1]] ∩ [[S2]]. Then, there must be w1 ∈ S1 and w2 ∈ S2 so that
[[w1]] = [[w2]] = (u, v). Note that the projection onto the first component of w1 must be
equal to the projection onto the first component of w2 since L is Parikh-injective. Then, we
must have that w1 = w2 and thus (u, v) ∈ [[S∩]].

(III) Let S ⊆ (2× A)∗ be an L-controlled relation. Let Sc be the complement of S and
let [[S]]c be the complement of [[S]]. We show the following,

[[S]]c = [[Sc ∩ (L⊗A∗)]],

where L⊗A∗ denotes the set of all words u⊗ v where |u| = |v|, u ∈ L and v ∈ A∗.
[⊆] Suppose (u, v) 6∈ [[S]]. We show that there must be some w ∈ Sc ∩ (L⊗A∗) so that

(u, v) = [[w]]. Since L is Parikh-injective, there must be at most one word w′ ∈ L so that
Π(w′) = (|u|, |v|). Since the Parikh image of L is the whole universe N2

0, there must be at
least one word w′ ∈ L so that Π(w′) = (|u|, |v|). Hence, there is exactly one word w′ ∈ L
so that Π(w′) = (|u|, |v|). Let w = u′⊗ v′ ∈ (2× A)∗ be the only word so that u′ = w′ and
[[w]] = (u, v). Note that w 6∈ S (otherwise (u, v) would be in [[S]]) and that its projection
onto the first component (i.e., w′) is in L. Therefore, w ∈ Sc ∩ (L⊗A∗).

[⊇] Suppose now that w ∈ Sc ∩ (L⊗A∗). We show that [[w]] 6∈ [[S]]. Assume, by means
of contradiction, that [[w]] ∈ [[S]]. Then, there is some w′ ∈ S so that [[w′]] = [[w]]. It cannot
be that w′ = w, as it would be in contradiction with w ∈ Sc ∩ (L⊗A∗). Since L is Parikh-
injective, and both w and w′ are L-controlled, it must be that w = w′, as otherwise [[w′]] 6=
[[w]]. But the fact that w = w′ is in contradiction with w ∈ Sc∩ (L⊗A∗). The contradiction
comes from assuming that [[w]] ∈ [[S]]. Thus, [[w]] 6∈ [[S]] and [[S]]c[[ ⊇ Sc ∩ (L⊗A∗)]]. J


	Introduction
	Recognizable, regular, and rational relations
	Synchronizations of relations
	Synchronizations for recognizable, regular, and rational relations
	Automata theoretic characterizations

	Resynchronizing relations
	Closure via Parikh images
	Future work
	APPENDIX: Complete Proofs
	Complete proof of Theorem 2


