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ON THE STABILITY OF THE SCHWARTZ CLASS
UNDER THE MAGNETIC SCHRÖDINGER FLOW

G. BOIL, N. RAYMOND, AND S. VŨ NGO. C

Abstract. We prove that the Schwartz class is stable under the magnetic Schrödinger
flow when the magnetic 2-form is non-degenerate and does not oscillate too much at
infinity.

1. Introduction

1.1. Motivation and context. This paper is devoted to describing the solutions to
the magnetic Schrödinger equation. Let B be a smooth and closed 2-form on Rd. Let
A : Rd → Rd be a 1-form (identified with a vector field) such that dA = B. The
magnetic Schrödinger operator is the essentially self-adjoint differential operator

Lh = (−ih∇−A)2 =
d∑
j=1

L2
j ,

where h > 0 and, for all j ∈ {1, . . . , j}, Lj = −ih∂j − Aj. Its domain is given by

Dom(Lh) = {ψ ∈ L2(Rd) : (−ih∇−A)ψ ∈ L2(Rd) , (−ih∇−A)2ψ ∈ L2(Rd)}
= {ψ ∈ L2(Rd) : (−ih∇−A)2ψ ∈ L2(Rd)} .

The time dependent magnetic Schrödinger equation is given by

− ih∂tψ = Lhψ , ψ(0) = ψ0 ∈ Dom(Lh) . (1.1)

By Stone’s theorem, this Cauchy problem admits a unique solution, evolving in the
domain of Lh, and it is given by

∀t ∈ R , ψ(t) = e
itLh
h ψ0 .

By unitarity of the flow, we have

∀t ∈ R , ‖ψ(t)‖ = ‖ψ0‖ , ‖Lhψ(t)‖ = ‖Lhψ0‖ ,
where ‖ · ‖ denotes the usual norm on L2(Rd). This norm controls the rough phase
space localization of the quantum state ψ(t); a natural question is to know to which
extent a strong phase space localization of ψ0 is preserved by the flow. More precisely,
this paper was inspired by the following rather naive question. Is it true that

ψ0 ∈ S (Rd) =⇒ ∀t ∈ R , ψ(t) ∈ S (Rd) ? (1.2)

If so, what kind of explicit control do we have in terms of the Schwartz semi-norms?
These questions are motivated by the recent investigation of the propagation of coher-

ent states by the magnetic Hamiltonian flow in two dimensions (see the Ph. D. thesis
of the first author [2]). The present paper gives a positive answer to (1.2). Our ex-
plicit estimates of the Schwartz semi-norms (in terms of the semiclassical parameter h),
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combined with the use of the Birkhoff normal form from [13], turn out to be the key
ingredients in the study by [3] of the propagation of coherent states up to times of order
h−N , for all N ∈ N. This gives a quantum analog to the low energy (say of order ε)
classical propagation for times of order ε−∞ (see [13, Theorem 1.2]). Taking into ac-
count the analysis of [6], one can even hope to extend these results to three dimensions
where the classical dynamics has a more complex behavior.

Independently of this motivation, the answer to (1.2) has an interest of its own, espe-
cially because it lives at the confluence of two closely related domains: hypoellipticity
and semiclassical analysis with magnetic fields. On these vast subjects, the literature is
enormous, and we only refer to [11, 9, 7, 10, 15, 16, 4, 12]. In this paper, we will use many
classical ideas from these two contexts, and provide an elementary and self-contained
presentation.

1.2. Main results. Let us now describe our assumptions and results.
Let P be the class defined by

P = {ψ ∈ C∞(Rd) : ∀α ∈ Nd ,∃(C,m) ∈ R+ × R+ , ∀x ∈ Rd , |∂αψ| 6 C〈x〉m} .
The following assumption will hold throughout the paper, where we identify B with

its antisymmetric matrix obtained in the usual basis (dxj ∧ dxk; j < k).

Assumption 1.1. We assume that
i. A belongs to P (in particular B ∈P),
ii. there exists b0 > 0 such that, for all x ∈ Rd,

Tr+B(x) > b0 ,

where Tr+B(x) denotes the sum of the moduli of the eigenvalues with positive
imaginary part of the matrix B(x),

iii. for all α ∈ Nd, there exists C > 0 such that, for all x ∈ Rd, ‖∂αB(x)‖ 6 C‖B(x)‖,
where ‖ · ‖ denotes a norm on the space of matrices.

Assumption 1.1 is stronger than really necessary as we can see in our proofs. In this
context, we will use the following lemma (see [8, Theorem 2.2]).

Lemma 1.2. We have

inf sp(Lh) = h inf
x∈Rd

Tr+B(x) + o(h) .

In particular, there exist C > 0 and h0 > 0, such that, for all h ∈ (0, h0), Lh is
invertible and

‖L −1
h ‖ 6 Ch−1 .

In the following, we will always assume that h is small enough and such that Lh is
invertible.

Definition 1.3. For all n ∈ N, we let

Dom(L n
h ) = {ψ ∈ L2(Rd) : ∀` ∈ {1, . . . , n} : L `−1

h ψ ∈ Dom(Lh)} .
The operator L n

h is defined by induction by

∀ψ ∈ Dom(L n
h ) , L n

h ψ = Lh(L
n−1
h ψ) .
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The operator (Dom(L n
h ),L n

h ) is self-adjoint and invertible. The following theo-
rem proves some magnetic elliptic estimates, showing that iterations of the magnetic
laplacian Lh control iterations of the magnetic derivatives (Lj)16j6d. This will be an
important tool on the proof of the main result of the paper.

Theorem 1.4. Let Assumption 1.1 hold. Let n ∈ N. There exist h0 > 0 and C > 0
such that, for all h ∈ (0, h0), and all ψ ∈ Dom(L n

h ),∑
σ∈A(2n)

‖Lσψ‖ 6 Ch−3n/2‖L n
h ψ‖ , (1.3)

where, for k ∈ N, A(k) = ∪kp=0{1, . . . , d}{1,...,p}, and for p ∈ N, for σ ∈ {1, . . . , d}{1,...,p},
Lσ := Lσ(1) . . . Lσ(p), with the convention L∅ = Id.

In the case where A is bounded, Theorem 1.3 is closely related to [15, Theorem 3],
which deals with the context of general Gårding inequalities.

Definition 1.5. For all k ∈ N and all ψ ∈ S (Rd), we let

pk(ψ) = max
(α,β)∈N2d

|α|+|β|6k

‖xα∂βψ‖∞ .

We can now state the main result of this paper.

Theorem 1.6. Let Assumption 1.1 hold. For all t ∈ R, we have

e
itLh
h S (Rd) ⊂ S (Rd) .

More precisely, for all M ∈ N∗, for all k ∈ N, there exist h0 > 0, C > 0, N ∈ N∗ and
K ∈ N, such that, for all h ∈ (0, h0), and for all ψ0 ∈ S (Rd), and all t ∈ [0, h−M ],

pk(e
itLh
h ψ0) 6 Ch−NpK(ψ0) .

Theorem 1.6 is related to the (pseudo-differential) analysis in [16, Section 7]. In
this work, under the assumption that the derivatives of order two or higher of the
symbol of the propagator should be bounded, a parametrix of the evolution operator
was constructed. Closely related is also the paper [14, Corollary 2.11], based on the
analysis of coherent states, where the derivatives of order three or higher of the symbol
have to be bounded. Our approach here is more directly related to the structure of the
magnetic Laplacian, and is reminiscent of the analysis in [11] of the ellipticity of certain
algebras of non-commuting vector fields.

1.3. Organisation of the proofs. In Section 2, we prove Theorem 1.4 by using a
regularization argument involving exponentially weighted estimates and commutator
estimates. In Section 3, we apply our magnetic elliptic estimates to prove Theorem 1.6.
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2. Magnetic elliptic estimates

This section is devoted to the proof of Theorem 1.4.

2.1. Density argument. Let us explain here why it is sufficient to prove Theorem 1.4
for ψ ∈ S (Rd).

Let us consider f ∈ L2(Rd). There is a unique ψ ∈ Dom(L n
h ) such that L n

h ψ =
f . Consider fk ∈ C∞0 (Rd) converging to f in L2(Rd) and consider the unique ψk ∈
Dom(L n

h ) such that L n
h ψk = fk. Note that, by continuity of (L n

h )−1, ψk converges to
ψ in L2(Rd).

Lemma 2.1. We let

H∞exp(Rd) = {ψ ∈ L2(Rd) : ∀α ∈ Nd ,∃β > 0 : eβ〈x〉∂αψ ∈ L2(Rd)} .

Consider f ∈ H∞exp(Rd). Then, the unique solution u ∈ Dom(Lh) to Lhu = f satisfies
u ∈ H∞exp(Rd).

Proof. The proof follows from the classical Agmon estimates (see [1, 5]). Consider β > 0
such that eβ〈x〉f ∈ L2(Rd). Let ε > 0 and Φε = βmin(〈x〉, ε−1). We have the Agmon
formula (see [12, Section 4.2]):

〈Lhu, e
2Φεu〉 =

∫
Rd
|(−ih∇−A)eΦεu|2dx− h2‖∇Φεe

Φεu‖2 .

In particular, ∫
Rd
|(−ih∇−A)eΦεu|2dx− β2h2‖eΦεu‖2 6 ‖eΦεf‖‖eΦεu‖ . (2.1)

On the other hand, by Lemma 1.2, we get, for some c > 0,

(hc− β2h2)‖eΦεu‖2 6
∫
Rd
|(−ih∇−A)eΦεu|2dx− β2h2‖eΦεu‖2 .

Choosing β small enough, we get, for some C(h) > 0 independent of ε,

‖eΦεu‖ 6 C(h)‖eΦεf‖ .
Then, we take the limit ε→ 0 and apply Fatou’s Lemma to find

‖eβ〈x〉u‖ 6 C(h)‖eβ〈x〉f‖ . (2.2)

Coming back to (2.1), and replacing β by β̃ < β, we get∫
Rd
|eΦε(−ih∇−A− ih∇Φε)u|2dx− β̃2h2‖eΦεu‖2 6 ‖eΦεf‖‖eΦεu‖ .

Thus,
h2

2

∫
Rd
|eΦε∇u|2dx 6 ‖eΦεf‖‖eΦεu‖+ β̃2h2‖eΦεu‖2 + 2‖(ih∇Φε + A)eΦεu‖2

6 ‖eΦεf‖‖eΦεu‖+ β̃2h2‖eΦεu‖2 + 4‖∇Φεe
Φεu‖2 + 4‖AeΦεu‖2 .

Using that A ∈P, (2.2), and Fatou’s Lemma, we get eβ̃〈x〉∇u ∈ L2(Rd).
Considering the equation Lhu = f , we get, in the sense of tempered distributions,

− h2∆u = f − |A|2u− ih(∇ ·A)u− 2ih(A · ∇)u . (2.3)
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Noticing that we have just controlled the terms of order at most one, we deduce that,
for some β > 0,

eβ〈x〉∆u ∈ L2(Rd) ,

and also
∆
(
eβ〈x〉u

)
∈ L2(Rd) .

By Fourier transform, we get
eβ〈x〉u ∈ H2(Rd) ,

which implies that, for all α ∈ Nd with |α| 6 2,

eβ〈x〉∂αu ∈ L2(Rd) .

The higher order derivatives can be controlled by induction (taking successive derivatives
of (2.3)). �

Remark 2.2. By the Sobolev embeddings, we have H∞exp(Rd) ⊂ S (Rd).

By Lemma 2.1, we see that ψk ∈ S (Rd). Assume that (1.3) holds for any ψ ∈ S (Rd),
with ψ = ψk − ψ`, for all (k, `) ∈ N2, this shows that, for all σ ∈ A(2n), (Lσψn)n∈N is
a Cauchy sequence in L2(Rd). Thus, in the sense of distributions, Lσψ ∈ L2(Rd). It
remains to use again (1.3) with ψ = ψk and to take the limit k → +∞.

2.2. Preliminary lemmas.

Lemma 2.3. For all ψ ∈ Dom(Lh), we have

‖(−ih∇−A)ψ‖2 6
1

2
‖ψ‖2

Lh

where ‖ψ‖2
Lh

= ‖ψ‖2 + ‖Lhψ‖2.

Proof. We recall that, by definition of the domain, for all ψ ∈ Dom(Lh),

〈Lhψ, ψ〉 = ‖(−ih∇−A)ψ‖2 =
d∑
j=1

‖Ljψ‖2 ,

so that
d∑
j=1

‖Ljψ‖2 6 ‖ψ‖‖Lhψ‖ .

�

Lemma 2.4. There exist C > 0 and h0 > 0 such that, for all ψ ∈ S (Rd) and all
h ∈ (0, h0),

‖〈B〉ψ‖+ ‖〈B〉
1
2 (−ih∇−A)ψ‖ 6 Ch−1‖ψ‖Lh

. (2.4)
Moreover, for all ψ ∈ Dom(Lh), we have

Bψ ∈ L2(Rd) and |B|
1
2 (−ih∇−A)ψ ∈ L2(Rd) ,

and (2.4) holds for ψ ∈ Dom(Lh).
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Proof. By integration by parts and using Assumption 1.1,∫
Rd
〈B〉|(−ih∇−A)ψ|2dx = 〈〈B〉(−ih∇−A)ψ, (−ih∇−A)ψ〉

6 〈Lhψ, 〈B〉ψ〉+ C‖〈B〉ψ‖‖(−ih∇−A)ψ‖
6 C‖〈B〉ψ‖‖ψ‖Lh

.

(2.5)

Then, we have ∫
Rd
|hB|2|ψ|2dx =

∑
(k,`)∈{1,...,d}2

∫
Rd
|hBk,`|2|ψ|2dx

and we write∑
(k,`)∈{1,...,d}2

∫
Rd
|hBk,`|2|ψ|2dx =

∑
(k,`)∈{1,...,d}2

|〈[Lk, L`]ψ, hBk,`ψ〉|

6 Ch‖〈B〉ψ‖‖(−ih∇−A)ψ‖+ Ch

∫
Rd
〈B〉|(−ih∇−A)ψ|2dx ,

where we used an integration by parts and Assumption 1.1.
By (2.5), it follows ∫

Rd
|B|2|ψ|2dx 6 Ch−1‖〈B〉ψ‖‖ψ‖Lh

and then
‖〈B〉ψ‖ 6 Ch−1‖ψ‖Lh

.

Using again (2.5), the conclusion follows. �

2.3. Case n = 1. The estimate of Theorem 1.4 is obvious when n = 0. Let us consider
the case when n = 1 to explain the principle producing these estimates.

Lemma 2.5. There exist C > 0, h0 > 0 such that, for all ψ ∈ S (Rd) and all h ∈ (0, h0),

‖L2
1ψ‖+ ‖L2

2ψ‖+ ‖L1L2ψ‖+ ‖L2L1ψ‖ 6 Ch−1‖Lhψ‖ .

Proof. Let us consider ψ ∈ S (Rd) and let

Lhψ = f .

Consider j ∈ {1, . . . , d}. We have

Lh(Ljψ) = Ljf + [Lh, Lj]ψ ,

and
‖(−ih∇−A)(Ljψ)‖2 = 〈Ljf, Ljψ〉+ 〈[Lh, Lj]ψ,Ljψ〉 ,

We have

[Lh, Lj] =
d∑

k=1

[L2
k, Lj] =

d∑
k=1

(
[Lk, Lj]Lk + Lk[Lk, Lj]

)
.

Thus,

|〈[Lh, Lj]ψ,Ljψ〉| 6 C‖Bψ‖‖(−ih∇−A)ψ‖+ C

∫
Rd
|B||(−ih∇−A)ψ|2dx .
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We have, for all ε ∈ (0, 1),

|〈Ljf, Ljψ〉| 6 ε‖L2
jψ‖2 + C‖f‖2 ,

and then

‖(−ih∇−A)(Ljψ)‖2

6 C‖f‖2 + C‖Bψ‖‖(−ih∇−A)ψ‖+ C

∫
Rd
|B||(−ih∇−A)ψ|2dx .

With Lemma 2.3, noting that ‖ψ‖2
Lh
6 C(1 + h−2)‖f‖2, we find

‖(−ih∇−A)(Ljψ)‖2 6 Ch−3‖f‖2 .

�

2.4. Induction. Let n ∈ N∗. Let us assume that, for all k ∈ {1, . . . , n}, the ellipticity
property (1.3) is true. Let us consider f, ψ ∈ S (Rd) such that

Lhψ = f .

Consider σ ∈ A(2n). Since the functions are in the Schwartz class, all the following
computations are justified.

We have
LhLσψ = Lσf + [Lh, Lσ]ψ ,

and then
〈LhLσψ,Lσψ〉 = 〈Lσf, Lσψ〉+ 〈[Lh, Lσ]ψ,Lσψ〉 . (2.6)

By using the Cauchy-Schwarz inequality and the induction assumption, we have for all
ε ∈ (0, 1),

|〈Lσf, Lσψ〉| 6 Ch−3n‖L n
h f‖‖L n

h ψ‖ 6 Ch−3n‖L n+1
h ψ‖2 + Ch−3n‖L n

h ψ‖2 ,

so that, by Lemma 1.2,

|〈Lσf, Lσψ〉| 6 Ch−(3n+2)‖L n+1
h ψ‖2 .

Let us now deal with 〈[Lh, Lσ]ψ,Lσψ〉. The commutator [Lh, Lσ] is the sum of various
terms. Each of them is the composition of at most 2n − 2 of the Lj and with exactly
one of the Bk,`. By commuting the Bk,` to put it on the left, and using Assumption 1.1,
we get

‖[Lh, Lσ]ψ‖ 6 C
∑

τ∈A(2n−2)

‖〈B〉Lτψ‖ .

By applying Lemma 2.4, and then the induction assumption, we get

‖[Lh, Lσ]ψ‖ 6 Ch−1
∑

τ∈A(2n−2)

‖Lτψ‖Lh
6 Ch−(3n−1)/2‖L n

h ψ‖ .

Thus, we deduce
|〈LhLσψ,Lσψ〉| 6 Ch−3n−1/2‖L n+1

h ψ‖2 .

This shows that, for all γ ∈ A(2n+ 1),

‖Lγψ‖ 6 Ch−(3n/2+1)‖L n+1
h ψ‖ . (2.7)
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Now, we want to get the control for γ ∈ A(2n + 2). Let σ ∈ A(2n + 1). We consider
again (2.6). By integration by parts, we can write

〈Lσf, Lσψ〉 = 〈Lσ̌f, Lσ̂ψ〉 ,

with σ̌ ∈ A(2n) and σ̂ ∈ A(2n + 2). Thus, by Cauchy-Schwarz, and the induction
assumption, for all ε > 0, there exists C > 0 such that

|〈Lσf, Lσψ〉| 6 ε‖Lσ̂ψ‖2 + Ch−3n/2‖L n+1
h ψ‖2 . (2.8)

As previously, we have

‖[Lh, Lσ]ψ‖ 6 C
∑

τ∈A(2n−1)

‖〈B〉Lτψ‖ .

We use Lemma 2.4 and (2.7) to find

‖[Lh, Lσ]ψ‖ 6 Ch−1
∑

τ∈A(2n−1)

‖Lτψ‖Lh
6 Ch−(3n/2+2)‖L n+1

h ψ‖ .

Then, with Cauchy-Schwarz and (2.7), we get

|〈[Lh, Lσ]ψ,Lσψ〉| 6 Ch−(3n+3)‖L n+1
h ψ‖2 . (2.9)

From (2.6), (2.8), and (2.9), summing over σ ∈ A(2n+1), and choosing ε small enough,
we get (1.3) with n replaced by n+ 1.

This achieves the proof of Theorem 1.4 when ψ ∈ S (Rd) and it remains to use the
discussion of Section 2.1.

3. Application to the evolution problem

We can now prove Theorem 1.6. Let ψ0 ∈ S (Rd). We denote by ψ(·) the solution to
the Schrödinger equation (1.1).

Notation. For κ, λ ∈ N, we define Πκ,λ the set of the operators P that are composition
of operators taken among (Lj)16j6d and and (xk)16k6d with κ occurences of x and λ

occurences of L. We also set Π =
⋃

(κ,λ)∈N2

Πκ,λ.

The aim of this section is to prove the following proposition.

Proposition 3.1. Let (κ, λ) ∈ N2 and consider P ∈ Πκ,λ . There exist h0 > 0, C > 0
and N ∈ N such that, for all t > 0, and all ψ0 ∈ S (Rd), for λ 6 2n 6 λ+ 1,

‖Pψ(t)‖ 6 Ch−N (1 + tκ)
∑

|α|6κ:|α|+ν6κ+n

‖L ν
h x

αψ0‖ .

This proposition implies the control of the Schwartz semi-norms and achieves the
proof of Theorem 1.6. Indeed, from Sobolev embeddings, for all k ∈ N, there exists
K ∈ N such that for all f ∈ S (Rd),

pk(f) 6 max
|α|,|β|6K

‖xα∂βf‖ .
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Using now that ∂j = (−ih)−1(Lj + Aj), and A ∈ P, there exists C > 0 and N ∈ N
such that, for all f ∈ L2(Rd), if‖Pf‖ < +∞ for all P ∈ Π, then xα∂βf ∈ L2(Rd) for all
α, β ∈ Nd, and

‖xα∂βf‖ 6 Ch−N
∑
P∈R

‖Pf‖ ,

where R is a finite part of Π. Then, Proposition 3.1 implies, for N , κ and n large
enough,

‖xα∂βψ(t)‖ 6 Ch−N
∑
P∈R

∥∥Pψ(t)
∥∥ 6 Ch−N(1 + tκ)

∑
|γ|6κ,|ν|6n

‖L ν
h x

γψ0‖ .

Finally, we conclude by

‖L ν
h x

αψ0‖ 6 C‖(1 + x2)mL ν
h x

αψ0‖∞ 6 CpK(ψ0) ,

for m, K large enough.

3.1. Case when κ = 0. For all t > 0, we have, by definition,

ψ(t) = e
it
h

Lhψ0 .

For all ` ∈ N, we get

L `
hψ(t) = e

it
h

LhL `
hψ0 .

Applying Theorem 1.4, this establishes the estimate of Proposition 3.1 when κ = 0.

3.2. Case when κ = 1. Before starting the induction procedure, let us understand
first the mechanism with only one occurence of x. Let j ∈ {1, . . . , d}. We have

−ih∂t(xjψ) = Lh(xjψ) + [xj,Lh]ψ .

Note that [xj,Lh] = 2hLj. With the Duhamel formula, we have, for all t > 0,

xjψ(t) = e
it
h

Lh(xjψ0) +

∫ t

0

e
i(t−s)
h

Lh2Ljψ(s)ds . (3.1)

With Lemma 2.3, we get

‖xjψ(t)‖ 6 ‖xjψ0‖+ 2

∫ t

0

‖Ljψ(s)‖ds 6 ‖xjψ0‖+
√

2

∫ t

0

‖ψ(s)‖Lh
ds .

Since the evolution is unitary, we get, for all t > 0,

‖xjψ(t)‖ 6 ‖xjψ0‖+ 2

∫ t

0

‖Ljψ(s)‖ds 6 ‖xjψ0‖+ t
√

2‖ψ0‖Lh
.

More generally, with (3.1), we have, for all ` ∈ N,

L `
hxjψ(t) = e

it
h

LhL `
h (xjψ0) +

∫ t

0

e
i(t−s)
h

Lh2L `
hLjψ(s)ds .
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so that

‖L `
hxjψ(t)‖ 6 ‖L `

h (xjψ0)‖+ 2

∫ t

0

‖L `
hLjψ(s)‖ds

6 ‖L `
h (xjψ0)‖+ Ch−N

∫ t

0

‖L `+1
h ψ(s)‖ds

6 ‖L `
h (xjψ0)‖+ Cth−N‖L `+1

h ψ0‖ .
It remains to apply Theorem 1.4 and to commute the xj with the Lk.

3.3. Induction. Let us now end the proof of Proposition 3.1 by induction. We set the
following two induction assumptions. For κ ∈ N, let

Qκ : ∀n ∈ N, ∀α ∈ Nd, |α| = κ, ∃N ∈ N s.t.

‖L n
h x

αψ(t)‖ 6 ‖L n
h x

αψ0‖+ C
∑

|β|6κ−1:|β|+ν6κ+n

‖L ν
h x

βψ0‖h−N(1 + tκ) ;

and

Pκ : ∀P ∈ Πκ,λ, ‖Pψ(t)‖ 6 C
∑

|α|6κ:|α|+ν6κ+n

‖L ν
h x

αψ0‖h−N(1+tκ), forλ 6 2n 6 λ+1 .

We have proved propositions P0, Q0 and Q1. We assume now that for a given κ ∈ N∗,
for any k 6 κ, Qk and Pk hold, and we prove Pκ+1 and Qκ+1. We begin with Qκ+1.
Let α ∈ Nd, with |α| = κ+ 1 and n ∈ N. We have

−ih∂t
(
L n
h x

αψ(t)
)

= L n+1
h xαψ(t) + L n

h [xα,Lh]ψ(t) .

Then, noting that
[xα,Lh] = hP1

with P1 a sum of elements in Πκ,1, we get from the Duhamel formula

L n
h x

αψ(t) = e
it
h

LhL n
h x

αψ0 + i

∫ t

0

ei
t−s
h

LhL n
h P1ψ(s)ds .

As L n
h P1 is a sum of elements in Πκ,(2n+1), we can apply Pκ, and integrating in time

and using the unitariness of ei
t
h

Lh , we find, for some integer N ∈ N

‖L n
h x

αψ(t)‖ 6 ‖L n
h x

αψ0‖+ Ch−N
∑

|β|6κ:|β|+ν6κ+n+1

‖L ν
h x

βψ0‖(1 + tκ+1)

that proves Qκ+1. It remains to prove Pκ+1. We consider so some P ∈ Πκ+1,λ, for
a given λ ∈ N. Then, because of the commutation relation of the (xk)16k6d with the
(Lj)16j6d, that is [xk, Lj] = −ihδk,j, there is α ∈ Nd, |α| = κ+ 1 such that

P = P2 + P3x
α

with P2 a sum of elements in Πκ,λ−1 and P3 ∈ Π0,λ. So

‖Pψ(t)‖ 6 ‖P2ψ(t)‖+ ‖P3ψ(t)‖ .
Then, applying Pκ, we get, for some integer N ∈ N

‖P2ψ(t)‖ 6 Ch−N(1 + tκ)
∑

|β|6κ:|β|+ν6κ+n

‖L ν
h x

βψ0‖ (3.2)
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and applying Theorem 1.4 along with Qκ+1, for some integer N ∈ N, and for λ 6 2n 6
λ+ 1, we have

‖P3x
αψ(t)‖ 6 Ch−n‖L nxαψ(t)‖

6 Ch−N(1 + tκ+1)

‖L nxαψ0‖+
∑

|β|6κ:|β|+ν6κ+n+1

‖L ν
h x

βψ0‖

 .
(3.3)

Now, gathering (3.2) and (3.3), we find, for some integer N ,

‖Pψ(t)‖ 6 Ch−N(1 + tκ+1)
∑

|β|6κ+1:|β|+ν6κ+n+1

‖L ν
h x

βψ0‖

that proves Pκ+1 and achieves the proof of Proposition 3.1.
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