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I. INTRODUCTION

The maximum a posteriori (MAP) threshold of a given channel code ensemble is defined as the minimum value of the channel parameter for which the average conditional entropy of a transmitted codeword is bounded away from zero [START_REF] Richardson | Modern Coding Theory[END_REF]Sec. 4.7]. The average is taken over all possible randomly chosen codes in the given code ensemble as the length of the code goes to infinity. For the capacity achieving code ensemble, its MAP threshold reaches the fundamental limit on the channel parameter given by Shannon's channel coding theorem. It is known that performing the MAP decoding over any binary memoryless channel (BMS) is in general computationally intractable and this makes finding the MAP threshold also a difficult problem [START_REF] Richardson | Modern Coding Theory[END_REF]. Finding the MAP threshold is thus an important yet difficult problem in the field of channel coding theory.

Méasson et al. have proposed a method to find the MAP threshold of a given code ensemble [START_REF] Méasson | Maxwell construction: The hidden bridge between iterative and maximum a posteriori decoding[END_REF], [START_REF] Méasson | The generalized area theorem and some of its consequences[END_REF]. In this method, the MAP threshold is obtained by applying the Maxwell construction to the EBP-GEXIT chart of a given code ensemble [START_REF] Méasson | Maxwell construction: The hidden bridge between iterative and maximum a posteriori decoding[END_REF]. For the binary erasure channel, when the close form expression for the density evolution equation is known, the EBP-GEXIT chart can be obtained analytically [START_REF] Richardson | Modern Coding Theory[END_REF]. However for any other BMS channel, obtaining this EBP-GEXIT chart is in general difficult. In this case, Méasson et al. have proposed a numerical method to find the EBP-GEXIT chart, using which one can find an estimate of the MAP threshold [START_REF] Méasson | The generalized area theorem and some of its consequences[END_REF]Sec. VIII].

In this paper, we consider the binary input additive white Gaussian noise (AWGN) channel for which we provide a simple numerical approximation method to obtain the EBP-GEXIT chart of the given code ensemble. We assume that the distribution of the messages exchanged during the belief propagation (BP) decoding is consistent Gaussian [START_REF] Ryan | Channel codes: classical and modern[END_REF]Ch. 9]. Note that this Gaussian assumption was initially proposed by Chung et al. [START_REF] Chung | Analysis of sum-product decoding of LDPC codes using a gaussian approximation[END_REF]. This Gaussian assumption simplifies the operations performed at the check and variable nodes and enables us to find the EBP-GEXIT chart in a computationally feasible manner. We next summarize the main contributions of this paper.

(1) We propose a simple numerical method to obtain the EBP-GEXIT chart of the given code ensemble that makes use of the above mentioned Gaussian assumption. (2) We compare the EBP-GEXIT charts obtained by our method with the method given by Méasson's et al. [START_REF] Méasson | The generalized area theorem and some of its consequences[END_REF]Sec. VIII]. We observe that the EBP-GEXIT charts obtained by both the methods with Gaussian approximation are the same (see Fig. 1). (3) Finally, we obtain the EBP-GEXIT chart of several generalized LDPC and doubly generalized LDPC codes and estimate their MAP thresholds. The paper is organized as follows. We first recall some preliminaries related to the EBP-GEXIT chart in Section II. In Section III, we provide a numerical method to find the EBP-GEXIT chart of a given code ensemble. In Section IV section, we provide EBP-GEXIT chart of several generalized and doubly generalized LDPC codes and estimate their MAP-threshold. Finally, we discuss some future directions and conclude in Section V.

II. PRELIMINARIES AND NOTATIONS

Let λ(x) = i λ i x i-1 and ρ(x) = i ρ j x j-1 be the degree distribution pair of an LDPC code ensemble from the edge perspective and let Λ(x) and P (x) be the corresponding normalized degree distribution pair from the node perspective. For irregular LDPC codes, all constraint nodes correspond to single parity check codes and variable nodes correspond to repetition codes [START_REF] Ryan | Channel codes: classical and modern[END_REF]. When some of the check nodes correspond to any other linear block code, the LDPC code is referred to as generalized LDPC (GLDPC) code and when both variable and check nodes correspond to any general linear block code, the code is referred to as doubly generalized LDPC (DGLDPC) code [START_REF] Ryan | Channel codes: classical and modern[END_REF]. We assume that variable nodes are unpunctured and have degree greater or equal to 2.

In this paper, we consider the transmission over a binary input AWGN channel where coded bits are modulated according to a binary phase shift keying and the additive noise is of zero mean and variance σ 2 , The family of AWGN channels parameterized by σ will be denoted by {AWGN(σ)} σ . Let X and Y be the channel input alphabet and output alphabets respectively. For the given AWGN(σ), the distribution of log likelihood ratios L := log P[Y =y|X=+1] P[Y =y|X=-1] under the condition X = +1 is referred to as L-density and is denoted by c σ [3, Sec. II]. The entropy H(c σ ) of AWGN(σ) is then defined as

H(c σ ) = ∞ -∞ c σ (z) log 2 (1 + e -z )dz. (1) 
It can be seen that

H(c σ ) ∈ [0, 1]. If H(c σ ) = h, AWGN(σ)
can be equivalently described by its entropy h. Since h and σ can be obtained from one another, we can parametrize the family of AWGN channel either by h or σ. In the remaining paper, we use c σ and c to represent the same L-density if H(c σ ) = h and the corresponding AWGN channel is represented either by AWGN(σ) or by AWGN(h) . Let f C and f V be the functions corresponding to the operations performed at the check and variable nodes respectively while performing BP decoding. When the allone codeword is transmitted, let a BP,l be the density of the message transmitted by any randomly chosen variable node to check node in the l-th iteration of BP decoding. For the first iteration, a BP,0 is initialized to c h . For l ≥ 1, a BP,l can be obtained from a BP,l-1 as follows

a BP,l = c h f V (f C (a BP,l-1 )), (2) 
where the operator is the convolution operator associated to the operations performed in one iteration of the BP decoding (for details refer [START_REF] Richardson | Modern Coding Theory[END_REF]Sec. 4.1.4]). For an irregular LDPC code, f C (.) = ρ(.) and

f V = λ(.) [1, Theorem 4.97].
For GLDPC codes and DGLDPC codes, the operations performed at check and variable node are more complex. We now recall the definition the EBP-GEXIT chart [3, Sec. VII-A]. Let us first define a complete fixed-point family. The family of densities {a x } x and {c x } x parameterized by x ∈ [0, 1] is called a complete fixed-point family if the following conditions are satisfied.

1) a x is a fixed point density with respect to c x , 3) H(a x ) = x, 4) {a x } x and {c x } x are smooth with respect to x. The EBP-GEXIT function g EBP (x) for an LDPC code ensemble with degree distribution pair (λ, ρ) is then defined as [3, Sec. VII-A]

c x ∈ {AWGN(h)} h for some h ∈ [0, 1], 2) For any x ∈ [0, 1] we have a x = c x f V (f C (a x )), i.e.,
g EBP (x) := ∞ -∞ Λ(f C (a x ))(z)l(c x (z))dz, (3) 
where l(c x (z)) is defined as follows [3, Example 7]

l(c x (z)) =   ∞ -∞ e - (w-(2/σ 2 )) 2 8/σ 2 1 + e w+z dw     ∞ -∞ e - (w-(2/σ 2 )) 2 8/σ 2
1 + e w dw   .

(4) The EBP-GEXIT chart is the curve obtained by plotting g EBP (x) versus c x for all possible values of x ∈ [0, 1].

III. EBP-GEXIT CHART OVER AWGN

In this section, we propose a simple numerical method to find the EBP-GEXIT chart of a given LDPC code ensemble. As explained in the previous section, in order to plot the EBP-GEXIT chart, we need to first find a fixed point density a for a given channel c h , i.e., we need to find a pair of densities a and c h that satisfy the following equation

a = c h f V (f C (a))). (5) 
Note that the density a corresponds to a message transmitted by a variable node to a check node in the BP decoding. We assume that the distribution of a is a consistent normal distribution, i.e., for some real number m a , distribution of a is normal with mean m a and variance 2m a , denoted by N(m a , 2m a ). This Gaussian assumption is proposed by Chung et al. [START_REF] Chung | Analysis of sum-product decoding of LDPC codes using a gaussian approximation[END_REF] and also used for classical EXIT charts analysis [START_REF] Ashikmin | Extrinsic information transfer functions: Model and erasure channel properties[END_REF]. We shall next explain how this Gaussian assumption simplifies the operations required to find EBP-GEXIT curve. First, we explain how c h f V (f C (a))) in ( 5) can be efficiently approximated using a classical approximation by an EXIT-like monodimensional fixed point equation. For a given density a = N(m a , 2m a ), consider the function J(m a ) defined as follows

J(m a ) := 1 -E a log 2 (1 + e -y ) , (6) 
where E a denotes expectation with respect to a. Approximate values of the functions J(.) and J -1 (.) can be deduced from [START_REF] Ashikmin | Extrinsic information transfer functions: Model and erasure channel properties[END_REF]. Further, the function J(.) is a one-to-one function and this implies that the density a can be uniquely determined from it. Using EXIT based monodimensional representation, the fixed point equation ( 5) can be equivalently stated using some abuse of notations as follows

J(m a ) = c h f V f C J(m a ) , (7) 
where the operator corresponds to the change of operation occurred due to change from density a to J(m a ). For the irregular LDPC codes, the operations f C (.) and f V (.) can be simplified as follows [START_REF] Ryan | Channel codes: classical and modern[END_REF] f

C (J(m a )) = j ρ j 1 -J (j -1)J -1 (1 -J(m a )) c h f V (f C (m a ))) = i λ i J (i -1)J -1 f C (m a ) + 2 σ 2 (8) 
where 2/σ 2 is the mean of the L-density c h . Note that, [START_REF] Liva | Quasi-cyclic generalized LDPC codes with low error floors[END_REF] can now be efficiently computed using [START_REF] Wang | Doubly generalized LDPC codes[END_REF]. For GLDPC and DLDPC codes, the functions f C (.) and f V (.) are evaluated point-wise by means of Monte Carlo simulations (details are given in [START_REF] Liva | Quasi-cyclic generalized LDPC codes with low error floors[END_REF] and [START_REF] Wang | Doubly generalized LDPC codes[END_REF]).

We now explain how the EBP-GEXIT function can be computed efficiently. To this end, we first need to derive Λ(f C (a)) (see equation ( 3)) under our Gaussian assumption. Let b denotes the density of the messages coming from the check nodes. Suppose this density is consistent Gaussian with mean m b . For a variable node of degree j, the density obtained by taking the convolution of the input density j times is the consistent Gaussian density of mean jm b . Let us denote this density by b j . The density Λ(b) is thus the mixture of densities b j given by

Λ(b)(z) = j Λ j b j (z), (9) 
where b j (z) is given by,

b j (z) = 1 √ 4πjm b exp - z -jm b 4jm b . ( 10 
)
Substituting ( 9) in (3) we get,

g EBP = ∞ -∞ j Λ j b j (z) l(c h (z))dz, = j Λ j ∞ -∞ b j (z)l(c h (z))dz, = j Λ j E bj l(c h (z)) . (11) 
Observe that E bj l(c h (z)) is now expectation over a Gaussian density b j . This expectation can be efficiently computed using the Gauss-Hermit quadrature weights as follows [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]:

• For some integer d, let H d be the Hermite polynomial of degree d and let k 1 , k 2 , . . . , k d be its roots.

• Let z i = √ 4jm b k i + jm b .
Then an approximate value of E bj l(c h (z)) is given by

E bj l(c h (z)) ≈ 1 √ π d i=1 2 d-1 d! √ π d 2 [H d-1 (k i )] 2 l(c h (z i )), (12) 
where l(c h (z)) is defined in (4) and can be computed using numerical integration. To summarize, using the Gaussian assumption, the fixed point density in ( 5) is now represented by fixed point equation (7) since both J(m a ) and h take values in the interval [0, 1]. Further, the Gaussian assumption provides an efficient computation of the EBP-GEXIT function via Gauss-Hermit quadrature weights. Using these simplifications, we now propose an algorithm to find the EBP-GEXIT chart of a given LDPC code ensemble in Algorithm 1. The basic idea of the proposed algorithm consists of finding all possible a and c h pairs that satisfy [START_REF] Chung | Analysis of sum-product decoding of LDPC codes using a gaussian approximation[END_REF]. All such pairs are found efficiently via grid search by varying J(m a ) and h in the range [0, 1]. It is important to mention that the consistent Gaussian assumption makes this a grid search and evaluation of EBP-GEXIT function computationally feasible.

Algorithm 1 EBP-GEXIT chart over AWGN 1)

Choose h ∈ [0, 1] and let c h be the L-density corresponding to AWGN(h). 2) Find S h := J(m a ) : such that J(m a ) satisfies [START_REF] Liva | Quasi-cyclic generalized LDPC codes with low error floors[END_REF] , by varying J(m a ) in the range [0, 1]. (The calculations are performed using ( 8)).

3) The set of densities a corresponding to S h provide a set of points on the EBP-GEXIT curve. For each a obtained in step ( 2), compute g EBP using ( 11), ( 12). 4) Plot all possible values g EBP obtained in step [START_REF] Méasson | The generalized area theorem and some of its consequences[END_REF] versus the chosen h. 5) Repeat the process for various values of h ∈ [0, 1].

Remark 1. On contrary to the definition of complete fixedpoint family, a and c h pairs obtained using Algorithm 1 are not parameterized by some x ∈ [0, 1], since we find these pairs exhaustively. However it can be easily verified that H(a) = x for some x ∈ [0, 1] and the set of a and c h obtained do form a complete fixed-point family.

IV. OBTAINED RESULTS

In this section, we first compare the EBP-GEXIT chart obtained using the proposed method with the method of [START_REF] Méasson | The generalized area theorem and some of its consequences[END_REF] for various irregular LDPC codes. We then obtain EBP-GEXIT chart for various GLDPC and DGLDPC codes using the proposed algorithm and estimate their corresponding BP and MAP thresholds. An estimate of the MAP threshold is obtained by applying Maxwell's construction to each EBP-GEXIT chart (the details about Maxwell's construction can be found in [START_REF] Richardson | Modern Coding Theory[END_REF]Sec. 3.20]).

A. EBP-GEXIT chart for irregular LDPC codes

Méasson et al. have proposed a numerical method to find the EBP-GEXIT chart for a given LDPC code ensemble [3, Sec. VIII]. In Figures 1 to 4 we plot the EBP-GEXIT charts obtained by Méasson's method and our method for various regular and irregular LDPC codes. For plotting the EBP-GEXIT chart using Méasson's method also we consider the Gaussian assumption explained in first paragraph of this section. It can be seen that the EBP-GEXIT charts obtained by both the methods are the same.

B. EBP-GEXIT chart for GLDPC and DGLDPC codes

In this section, several examples of GLDPC and DGLDPC codes are considered and their BP and MAP thresholds are estimated. To illustrate our approach, let us estimate BP and MAP thresholds of the following code examples:

• and ρ(x) = x 9 is illustrated for our method (left side) and for the method of [START_REF] Méasson | The generalized area theorem and some of its consequences[END_REF] (right side). Fig. 4. The EBP-GEXIT chart of LDPC code ensemble with λ(x) = 0.17120x + 0.21053x 2 + 0.00273x 3 + 0.00009x 6 + 0.15269x 7 + 0.09227x 8 + 0.02802x 9 + 0.01206x 14 + 0.07212x 29 + 0.2583x 49 and ρ(x) = 0.33620x 8 + 0.08883x 9 + 0.57497x 10 is illustrated for our method (left side) and for the method of [START_REF] Méasson | The generalized area theorem and some of its consequences[END_REF] (right side). This is a capacity achieving ensemble [START_REF] Richardson | Design of capacity-approaching irregular low-density parity-check codes[END_REF].

• C 3 : DGLDPC ensemble of rate 3/4 from [START_REF] Wang | Doubly generalized LDPC codes[END_REF] • C 4 : DGLDPC ensemble of rate 7/15 from [START_REF] Wang | EXIT chart analysis for doubly generalized LDPC codes[END_REF] • C 5 : 3-regular GLDPC ensemble of rate 1/2 based on a TLDPC component code [START_REF] Andriyanova | Asymptotically good codes with high iterative decoding performances[END_REF] • C 6 : irregular GLDPC ensemble of rate 1/2 from with a TLDPC component code [START_REF] Andriyanova | Asymptotically good codes with high iterative decoding performances[END_REF] The ensembles C 3 and C 4 have the following structure. Let the generator matrices G 1 , G 2 and G 3 be

G 1 = 1 1 1 1 0 0 0 0 1 1 1 1 , G 2 =   1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1   , G 3 =     1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1     .
Then [START_REF] Andriyanova | Asymptotically good codes with high iterative decoding performances[END_REF]. C 5 is a 3-regular code, while C 6 has the following degree distribution of variable nodes λ(x) = 0.5x + 0.182x 2 + 0.069x 12 + 0.249x 13 which has been optimized in [START_REF] Andriyanova | Asymptotically good codes with high iterative decoding performances[END_REF] to improve the BP threshold. EBP-GEXIT charts of codes from C 1 to C 6 are given in Fig. 5, 6 and 7. Based on these curves, BP and MAP thresholds of the ensembles have been estimated (dashed lines in figures), and the results are reported to Table I.

Finally, in order to show the validity of our estimations, let us compare them with numerical simulations. Fig. 8 shows the bit error rates over the AWGN for spatially-coupled versions of codes from C 5 with a spatial coupling parameter w. It is known that [START_REF] Kudekar | Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC[END_REF], [START_REF] Giurgiu | Spatial coupling as a proof technique and three applications[END_REF], the spatially-couple ensemble has a BP threshold that approaches the MAP threshold with w (and it equals to the (non-coupled) BP threshold for w = 0). Referring to Table I, the BP threshold for C 5 is 1.4264 dB (h = 0.4035) and the MAP threshold -0.5548 dB (h = 0.4719). Referring to Fig. 8, the thresholds of spatiallycoupled ensembles with w = 1 and w = 3 are around 0.9 -0.95 dB, this is consistent with Table I. We propose a tractable and fast MAP threshold evaluation for graph ensembles, based on the Gaussian approximation. It works well for cases where using the method from [START_REF] Méasson | The generalized area theorem and some of its consequences[END_REF] is too involved (e.g., over the AWGN channel), and numerical results are tight. Our method can be extended to ensembles with punctured bits and to ensembles having bits of degree 1. This will make object of our future work. 
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 56 Fig. 5. EBP-GEXIT chart for C 1 (left) and for C 2 (right).
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  both C 3 and C 4 , have variable nodes of constant degree 6. The variable nodes for C 3 correspond to repetition codes of length 6 (69% of all nodes), linear codes defined by G 2 (1%), linear codes defined G 3 (22%) and single parity check codes of length 6 denoted by SPC(6) (8%). On the check node side, nodes correspond to SPC[START_REF] Andriyanova | Asymptotically good codes with high iterative decoding performances[END_REF]. The variable nodes for C 4 correspond to repetition codes of length 6 (42.5% of all nodes), codes defined by G 1 (7.5%), codes defined by G 3 (7.5%), and SPC(6) (42.5%). Component codes for C 4 are Hamming[START_REF] Lentmaier | On the thresholds of generalized LDPC convolutional codes based on protographs[END_REF][START_REF] Wang | EXIT chart analysis for doubly generalized LDPC codes[END_REF] codes. Codes C 5 and C 6 are GLDPC ensembles belonging to the class of TLDPC codes of type B, designed in

  7. EBP-GEXIT charts for C 5 (left) and C 6 (right).

	LDPC	BP	Our	Our	Upper Bound
	Ensemble	(literature)	BP	MAP	on MAP
			estimate	Estimate	Threshold [3]
	GLDPC C 1	0.756 [15]	0.7582	0.8191	0.8554
	(Hamm(7))				
	GLDPC C 2	0.478	0.4719	0.5140	0.5328
	(Hamm(15))	(0.75dB) [7]			
	DGLDPC C 3	0.23	0.2296	0.2296	0.2296
		(1.9dB) [8]			
	DGLDPC C 4	0.514	0.514	0.514	0.514
		(0.3dB) [11]			
	TLDPC C 5	0.4035	0.4011	0.4719	0.4849
	TLDPC C 6	0.478	0.4756	0.4756	0.4756
		(0.45dB)			

TABLE I COMPARISON

 I OF BP AND MAP THRESHOLD VALUES (IN h) FOR GLDPC AND DGLDPC EXAMPLES V. CONCLUSIONS AND FUTURE WORK