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ABSTRACT
We investigate model theoretic properties of XPath with
data (in)equality tests over the class of data trees, i.e., the
class of trees where each node contains a label from a finite
alphabet and a data value from an infinite domain.

We provide notions of (bi)simulations for XPath logics
containing the child, descendant, parent and ancestor

axes to navigate the tree. We show that these notions pre-
cisely characterize the equivalence relation associated with
each logic. We study formula complexity measures consist-
ing of the number of nested axes and nested subformulas in
a formula; these notions are akin to the notion of quantifier
rank in first-order logic. We show characterization results
for fine grained notions of equivalence and (bi)simulation
that take into account these complexity measures. We also
prove that positive fragments of these logics correspond to
the formulas preserved under (non-symmetric) simulations.
We show that the logic including the child axis is equivalent
to the fragment of first-order logic invariant under the cor-
responding notion of bisimulation. If upward navigation is
allowed the characterization fails but a weaker result can still
be established. These results hold over the class of possibly
infinite data trees and over the class of finite data trees.

Besides their intrinsic theoretical value, we argue that bi-
simulations are useful tools to prove (non)expressivity re-
sults for the logics studied here, and we substantiate this
claim with examples.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Model theory; H.2.3 [Lan-
guages]: Query Languages; I.7.2 [Document Prepara-
tion]: Markup Languages
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1. INTRODUCTION
We study the expressive power and model theory of XPath—

arguably the most widely used XML query language. In-
deed, XPath is implemented in XSLT and XQuery and it is
used as a constituent part of many specification and update
languages. XPath is, fundamentally, a general purpose lan-
guage for addressing, searching, and matching pieces of an
XML document. It is an open standard and constitutes a
World Wide Web Consortium (W3C) Recommendation [6].

Core-XPath (term coined in [13]) is the fragment of XPath
1.0 containing the navigational behavior of XPath. It can
express properties of the underlying tree structure of the
XML document, such as the label (tag name) of a node, but
it cannot express conditions on the actual data contained
in the attributes. In other words, it only allows to reason
about trees over a finite alphabet. Core-XPath has been
well studied and its satisfiability problem is known to be
decidable even in the presence of DTDs [17, 1]. Moreover,
it is known that it is equivalent to FO2 (first-order logic
with two variables over an appropriate signature on trees)
in terms of expressive power [18], and that it is strictly less
expressive than PDL with converse over trees [2]. From a
database perspective, however, Core-XPath fails to include
the single most important construct in a query language:
the join. Without the ability to relate nodes based on the
actual data values of the attributes, the logic’s expressive
power is inappropriate for many applications.

The extension of Core-XPath with (in)equality tests be-
tween attributes of elements in an XML document is named
Core-Data-XPath in [4]. Here, we will call this logic XPath=.
Models of XPath= are data trees which can be seen as XML
documents. A data tree is a tree whose nodes contains a la-
bel from a finite alphabet and a data value from an infinite
domain (see Figure 1 for an example). We will relax the
condition on finiteness and consider also infinite data trees,
although all our results hold also on finite structures.

The main characteristic of XPath= is to allow formulas
of the form 〈α = β〉, where α, β are path expressions, that
navigate the tree using axes: descendant, child, ances-

tor, next-sibling, etc. and can make tests in intermediate
nodes. The formula is true at a node x of a data tree if there
are nodes y, z that can be reached by the relations denoted
by α, β, respectively, and such that the data value of y is
equal to the data value of z.

Recent articles investigate several algorithmic problems

1



of logics evaluated over data trees. For example, satisfiabil-
ity and evaluation are discussed in [8, 5]. In particular, all
the logics studied in this article have a decidable satisfiabil-
ity problem [10, 9]; but tools to investigate their expressive
power are still lacking. There are good reasons for this: in
the presence of joins and data values, classical notions such
as Ehrenfeucht-Fräıssé games or structural bisimulations are
difficult to handle. In this article we take the first steps to-
wards understanding the expressive power and model theory
of XPath= on data trees.

Contribution: XPath= can navigate the data tree by means
of its axes: child (that we will note ↓), descendant (↓∗),
parent (↑), ancestor (↑∗), etc. XPath= can also navigate
the data tree horizontally, by going to a next or previous
sibling of the current node. However, we focus on the ver-
tical axes that allow downward and upward exploration. In
particular, we will discuss the following languages: XPath↓=
(XPath= with ↓); XPathl= (XPath= with ↓ and ↑); XPath↓↓∗=

(XPath= with ↓ and ↓∗); XPathll
∗

= (XPath= with ↓, ↑, ↓∗
and ↑∗); and its positive fragments. Our main contributions
can be summarized as follows:

• In §3 and §5 we introduce bisimulation notions for XPath↓=,
XPath↓↓∗= , XPathl=, and XPathll

∗
= and show that they pre-

cisely characterize the logical equivalence relation of the re-
spective logic. We also consider fine grained versions of
these bisimulations that take into account the number of
nested axes and subformulas. The notion of bisimulation
for XPathl= relies on a strong normal form which we also
introduce.

• In §4 we show that the simulations associated to the de-
fined bisimulations characterize the positive fragments of the
logics: a formula is equivalent to a positive formula if and
only if it is invariant under simulations.

• In §6 we characterize XPath↓= as the fragment of first-
order logic over data trees (over a signature that includes
the child relation and an equivalence relation) that is in-

variant under bisimulations. If we consider XPathl= instead
the characterization fails, but a weaker result can still be
established.

•Using bisimulations we show (non)expressivity results about
XPath= in §7. We characterize, for example, in which cases
increasing the nesting depth increases the expressive power
of XPath↓=.

• All results are proved both over the class of arbitrary (pos-
sibly infinite) data trees, and over the class of finite data
trees.

Related work: The notion of bisimulation was introduced
independently by Van Benthem [26] in the context of modal
correspondence theory, Milner [19] and Park [23] in concur-
rency theory, and Forti and Honsell [11] in non-wellfounded
set theory (see [25] for a historical outlook). This classical
work defines a standard notion of bisimulation but this no-
tion has to be suitably adapted for a particular, given logic.
The notion of bisimulation for a given logic L defines when
two models are indistinguishable for L, that is, when there
is no formula of L that is true in one model but false in the
other. Bisimulations can also be used to obtain model the-
oretic characterizations that identifies the expressive power
of a logic L1 in terms of the bisimulation invariant fragment
of a logic L2 which, hopefully, is better understood. The
challenge, here, is to pinpoint both the appropriate notion

x

y

z

a, 2

a, 2 b, 2

b, 9 b, 5 b, 3

a, 2 b, 1 b, 2

Figure 1: A data tree of Trees(A×D) with A = {a, b}
and D = N.

of bisimulation required and the adequate ‘framework’ logic
L2. The classical example of a result of this kind is Van
Benthem’s characterization for the basic modal logic as the
bisimulation (with the standard notion of bisimulation) in-
variant fragment of first-order logic [26]. Van Benthem’s
original result over arbitrary structures was proved to hold
for finite structures by Rosen [24]. The proof was then sim-
plified and unified by Otto [20, 22], and later expanded by
Dawar and Otto [7] to other classes of structures.

Logics for semi-structured databases can often be seen as
modal logics. In fact, structural characterizations for XPath
without equality test were studied in [14], and XPath is
known to be captured by PDL [15], whose bisimulation is
well-understood [3]. It is then natural to look for an intu-
itive bisimulation definition for XPath=.

2. PRELIMINARIES

2.1 Notation
Let N = {1, 2, 3, . . . } and let [n] := {1, . . . , n} for n ∈ N.

We use the symbol A to denote a finite alphabet, and D
to denote an infinite domain (e.g., N) of data values. In
our examples we will consider D = N. We write X∼Y to
say that X is the result of replacing every data value d ∈ D
from Y by f(d) where f : D→ D is some arbitrary bijection,
for any objects X, Y . We write λ for the empty string.

2.2 Data trees
Let Trees(A) be the set of ordered and unranked trees over

an arbitrary alphabet A. We say that T is a data tree if it
is a tree from Trees(A×D) where A is a finite set of labels
and D is an infinite set of data values. Figure 1 shows
an example of a (finite) data tree. A data tree is finitely
branching if every node has finitely many children. For
any given data tree T , we denote by T its set of nodes. We
use letters x, y, z, v, w as variables for nodes. Given a node
x ∈ T of T , we write label(x) ∈ A to denote the node’s label,
and data(x) ∈ D to denote the node’s data value.

Given two nodes x, y ∈ T we write x→y if y is a child of
x, and x

n→y if y is a descendant of x at distance n. In par-

ticular,
1→ is the same as →, and

0→ is the identity relation.
(x

n→) denotes the set of all descendants of x at distance n,

and (
n→y) denotes the sole ancestor of y at distance n (as-

suming it has one).
For any binary relation R over elements of data trees, we

say that a property P is R-invariant whenever the following
condition holds: for every data tree T and u ∈ T , if (T , u)
satisfies P and (T , u) is R-related to (T ′, u′) then (T ′, u′)
satisfies P .

2.3 XPath
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[[↓]]T = {(x, y) | x→y}

[[↑]]T = {(x, y) | y→x}

[[ε]]T = {(x, x) | x ∈ T}

[[[ϕ]]]T = {(x, x) | x ∈ [[ϕ]]T }

[[¬ϕ]]T = T \ [[ϕ]]T

[[α ∪ β]]T = [[α]]T ∪ [[β]]T

[[ϕ ∧ ψ]]T = [[ϕ]]T ∩ [[ψ]]T

[[↓∗]]T = reflexive transitive closure of [[↓]]T

[[↑∗]]T = reflexive transitive closure of [[↑]]T

[[a]]T = {x ∈ T | label(x) = a}

[[αβ]]T = {(x, z) | (∃y ∈ T ) (x, y) ∈ [[α]]T , (y, z) ∈ [[β]]T }

[[〈α〉]]T = {x ∈ T | (∃y ∈ T ) (x, y) ∈ [[α]]T }

[[〈α = β〉]]T = {x ∈ T | (∃y,z ∈ T )(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) = data(z)}

[[〈α 6= β〉]]T = {x ∈ T | (∃y,z ∈ T )(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) 6= data(z)}

Table 1: Semantics of XPath= for a data tree T .

We introduce the query language XPath adapted to data
trees as abstractions of XML documents. We work with
a simplification of XPath, stripped of its syntactic sugar.
We consider fragments of XPath that correspond to the
navigational part of XPath 1.0 with data equality and in-
equality. XPath= is a two-sorted language, with path ex-
pressions (that we write α, β, γ) and node expressions
(that we write ϕ,ψ, η). The fragment XPath=(O), with
O ⊆ {↓, ↓∗, ↑, ↑∗}, is defined by mutual recursion as follows:

α, β ::= o | [ϕ] | αβ | α ∪ β o ∈ O ∪ {ε}
ϕ,ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 |

〈α = β〉 | 〈α 6= β〉 a ∈ A

A formula of XPath=(O) is either a node expression or a
path expression. To save space, we use XPath↓= for XPath=(↓);
XPathl= for XPath=(↓, ↑); XPath↓↓∗= for XPath=(↓, ↓∗); and

XPathll
∗

= for XPath=(↓, ↑, ↓∗, ↑∗).
We formally define the semantics of XPath= in Table 1.

As an example, if T is the data tree shown in Figure 1,
then [[〈↓∗[ b ∧ 〈↓[b] 6= ↓[b]〉 ]〉]]T = {x, y, z}, where the for-
mula reads: “there is a descendant node labeled b, with two
children labeled b with different data values.” For a data
tree T and u ∈ T , we write T , u |= ϕ to denote u ∈ [[ϕ]]T ,
and we say that T , u satisfies ϕ. We say that the formu-
las ϕ,ψ of XPath= are equivalent (notation: ϕ ≡ ψ) iff
[[ϕ]]T = [[ψ]]T for all data trees T . Similarly, path expres-
sions α, β of XPath= are equivalent (notation: α ≡ β) iff
[[α]]T = [[β]]T for all data trees T .

We call downward XPath to XPath↓= and vertical XPath
to XPathl=.

In terms of expressive power, it is easy to see that ∪ is
unessential: every XPath= node expression ϕ has an equiv-
alent ϕ′ with no ∪ in its path expressions. ϕ′ can be com-
puted in exponential time without incrementing the number
of nested axes or the number of nested subformulas. It is
enough to use the following equivalences to eliminate occur-
rences of ∪

〈α� β〉 ≡ 〈β � α〉
〈β(α ∪ α′)β′〉 ≡ 〈βαβ′〉 ∨ 〈βα′β′〉

〈γ � β(α ∪ α′)β′〉 ≡ 〈γ � βαβ′〉 ∨ 〈γ � βα′β′〉

where � ∈ {=, 6=}. We will henceforth assume that formulas
do not contain union of path expressions.

3. BISIMULATION

3.1 Downward XPath

We write dd(ϕ) to denote the downward depth of ϕ,
defined in Table 2. Let `-XPath↓= be the fragment of XPath↓=
consisting of all formulas ϕ with dd(ϕ) ≤ `.

Let T and T ′ be data trees, and let u ∈ T , u′ ∈ T ′.
We say that T , u and T ′, u′ are equivalent for XPath↓=
(notation: T , u ≡↓ T ′, u′) iff for all formulas ϕ ∈ XPath↓=,
we have T , u |= ϕ iff T ′, u′ |= ϕ. We say that T , u and T ′, u′

are `-equivalent for XPath↓= (notation: T , u ≡↓` T
′, u′)

iff for all ϕ ∈ `-XPath↓=, we have T , u |= ϕ iff T ′, u′ |= ϕ.
For every `, there are finitely many different formulas ϕ

of dd(ϕ) ≤ ` up to logical equivalence.

Proposition 3.1. ≡↓` has finite index.

Corollary 3.2. {T ′, u′ | T , u ≡↓` T
′, u′} is definable by

an `-XPath↓=-formula χ`,T ,u.

3.1.1 Bisimulation and `-bisimulation
Let T and T ′ be two data-trees. We say that u ∈ T

and u′ ∈ T ′ are bisimilar for XPath↓= (notation: T , u↔↓
T ′, u′) iff there is a relation Z ⊆ T ×T ′ such that uZu′ and
for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig (Figure 2): If xZx′, x
n→v and x

m→w then there

are v′, w′ ∈ T ′ such that x′
n→v′, x′m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i→v)Z (

i→v′) for all 0 ≤ i < n, and

3. (
i→w)Z (

i→w′) for all 0 ≤ i < m.

• Zag: If xZx′, x′
n→v′ and x′

m→w′ then there are v, w ∈
T such that x

n→v, x
m→w and items 1, 2 and 3 above

are verified.

For a data tree T and u ∈ T , let T |u denote the subtree

of T induced by {v ∈ T | (∃n) u
n→v}. Observe that the

root of T |u is u. The following results are straightforward
consequences of the definition of bisimulation:

Proposition 3.3. T , u↔↓ (T |u), u.

Proposition 3.4. If T is a subtree of T ′ and u ∈ T then
T , u↔↓ T ′, u.

We say that u ∈ T and u′ ∈ T ′ are `-bisimilar for
XPath↓= (notation: T , u↔↓` T

′, u′) if there is a family of
relations (Zj)j≤` in T ×T ′ such that uZ`u

′ and for all j ≤ `,
x ∈ T and x′ ∈ T ′ we have
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dd(a) = 0

dd(ϕ ∧ ψ) = max{dd(ϕ), dd(ψ)}
dd(¬ϕ) = dd(ϕ)

dd(〈α〉) = dd(α)

dd(〈α� β〉) = max{dd(α),dd(β)}
dd(λ) = 0

dd(εα) = dd(α)

dd([ϕ]α) = max{dd(ϕ), dd(α)}
dd(↓α) = 1 + dd(α)

Downward depth

vd(a) = (0, 0)

vd(ϕ ∧ ψ) = max{vd(ϕ), vd(ψ)}
vd(¬ϕ) = vd(ϕ)

vd(〈α〉) = vd(α)

vd(〈α� β〉) = max{vd(α), vd(β)}
vd(λ) = (0, 0)

vd(εα) = vd(α)

vd([ϕ]α) = max{vd(ϕ), vd(α)}
vd(↓α) = max{(0, 0), vd(α) + (1,−1)}
vd(↑α) = max{(0, 0), vd(α) + (−1, 1)}

Vertical depth

nd(a) = 0

nd(ϕ ∧ ψ) = max{nd(ϕ), nd(ψ)}
nd(¬ϕ) = nd(ϕ)

nd(〈α〉) = nd(α)

nd(〈α� β〉) = max{nd(α),nd(β)}
nd(αβ) = max{nd(α),nd(β)}

nd(ε) = 0

nd([ϕ]) = 1 + nd(ϕ)

nd(↓) = 0

nd(↑) = 0

Nesting depth

Table 2: Definitions of downward depth, vertical depth and nesting depth. (a ∈ A, � ∈ {=, 6=}, ‘+’ and ‘max’ are
performed component-wise, α is any path expression or the empty string λ.)

=
( 6=

)

8v 9v0

8w 9w0

T T 0

n

m

x x0

Z

=
( 6=

)

Figure 2: Zig clause of bisimulation for XPath↓=.

• Harmony: If xZjx
′ then label(x) = label(x′).

• Zig: If xZjx
′, x

n→v and x
m→w with n,m ≤ j then

there are v′, w′ ∈ T ′ such that x′
n→v′, x′m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i→v)Zj−n+i (

i→v′) for all 0 ≤ i < n, and

3. (
i→w)Zj−m+i (

i→w′) for all 0 ≤ i < m.

• Zag: If xZjx
′, x′

n→v′ and x′
m→w′ with n,m ≤ j then

there are v, w ∈ T such that x
n→v, x

m→w and items 1,
2 and 3 above are verified.

Clearly if T , u↔↓ T ′, u′ then T , u↔↓` T
′, u′ for all `.

Proposition 3.5. Suppose T and T ′ have height at most
`, u ∈ T , and u′ ∈ T ′. Then T , u↔↓` T

′, u′ iff T , u↔↓
T ′, u′.

For a data tree T and u ∈ T , let T |`u denote the subtree of

T induced by {v ∈ T | (∃n ≤ `) u n→v}.

Proposition 3.6. T , u↔↓` (T |`u), u.

3.1.2 Equivalence and bisimulation
We now show that↔↓ coincides with≡↓ on finitely branch-

ing data trees, and that↔↓` coincides with ≡↓` .

Theorem 3.7.

1. T , u↔↓ T ′, u′ implies T , u ≡↓ T ′, u′. The converse also
holds when T and T ′ are finitely branching.

2. T , u↔↓` T
′, u′ iff T , u ≡↓` T

′, u′.

The Theorem above (see Appendix for details) is a conse-
quence of the next two propositions:

Proposition 3.8. T , u↔↓` T
′, u′ implies T , u ≡↓` T

′, u′.

Proof. We actually show that if T , u↔↓` T
′, u′ via (Zi)i≤`

then for all 0 ≤ n ≤ j ≤ `, for all ϕ with dd(ϕ) ≤ j, and for
all α with dd(α) ≤ j:

1. If xZjx
′ then T , x |= ϕ iff T ′, x′ |= ϕ;

2. If x
n→v, x′

n→v′ and (
i→v)Z(j−n)+i (

i→v′) for all 0 ≤
i ≤ n, then (x, v) ∈ [[α]]T iff (x′, v′) ∈ [[α]]T

′
.

We show 1 and 2 by induction on |ϕ|+ |α|.
Let us see item 1. The base case is ϕ = a for some a ∈ A.

By Harmony, label(x) = label(x′) and then T , x |= ϕ iff
T ′, x′ |= ϕ. The Boolean cases for ϕ are straightforward.

Suppose ϕ = 〈α = β〉. We show T , x |= ϕ ⇒ T ′, x′ |=
ϕ, so assume T , x |= ϕ. Suppose there are v, w ∈ T and

n,m ≤ j such that x
n→v, x

m→w, (x, v) ∈ [[α]]T , (x,w) ∈ [[β]]T

and data(v) = data(w). By Zig, there are v′, w′ ∈ T ′ such

that x′
n→v′, x′m→w′, (

i→v)Zj−n+i (
i→v′) for all 0 ≤ i ≤ n,

(
i→w)Zj−m+i (

i→w′) for all 0 ≤ i ≤ m, and data(v′) =

data(w′). By inductive hypothesis 2 (twice), (x′, v′) ∈ [[α]]T
′

and (x′, w′) ∈ [[β]]T
′
. Hence T ′, x′ |= ϕ. The implication

T ′, x′ |= ϕ⇒ T , x |= ϕ is analogous. The case ϕ = 〈α 6= β〉
is shown similarly. The case ϕ = 〈α〉 is similar (and simpler)
to the previous case.

Let us now analyze item 2. We only show the ‘only if’
direction. The base case is when α ∈ {ε, ↓}. If α = ε
then v = x and so n = 0. Since v′ = x′, we conclude

(x′, v′) ∈ [[α]]T
′
. If α =↓ then x→v in T , and so n = 1.

Since x′→v′, we have (x′, v′) ∈ [[α]]T
′
.

For the inductive step, let

x0, . . . , xn ∈ T and x′0, . . . , x
′
n ∈ T ′

be such that

x = x0→x1→x2→· · ·→xn = v in T ,
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x′ = x′0→x′1→x′2→· · ·→x′n = v′ in T ′,

and xiZj−ix
′
i for all 0 ≤ i ≤ n. Assume, for contradiction,

that (x′, v′) /∈ [[α]]T
′
. Then, there is a subformula ϕ of α

and k ∈ {0, . . . , n} such that T , xk |= ϕ and T ′, x′k 6|= ϕ(this
is shown in Lemma A.1 in the Appendix). This contradicts
the inductive hypothesis 1.

Proposition 3.9. T , u ≡↓` T
′, u′ implies T , u↔↓` T

′, u′.

Proof. Fix u ∈ T and u′ ∈ T ′ such that T , u ≡↓` T
′, u′.

Define (Zi)i≤` by

xZix
′ iff T , x ≡↓i T

′, x′.

We show that Z is an `-bisimulation between T , u and T ′, u′.
By hypothesis, uZ`u

′. Fix h ≤ `, by construction, Zh satis-
fies Harmony. Let us see that Zh satisfies Zig (the case for
Zag is analogous). Suppose xZhx

′,

x = v0→v1→· · ·→vn = v in T ,
x = w0→w1→· · ·→wm = w in T ,

and data(v) = data(w) (the case data(v) 6= data(w) is shown
in a similar way), where m,n ≤ h. Let P ⊆ T ′2 be defined
by

P = {(v′, w′) | x′ n→v′ ∧ x′m→w′ ∧ data(v′) = data(w′)}.

Since T , x ≡↓h T
′, x′, dd(〈↓n=↓m〉) ≤ h and T , x |= 〈↓n=↓m

〉, we conclude that P 6= ∅. We next show that there exists
(v′, w′) ∈ P such that

i. x′ = v′0→v′1→· · ·→v′n = v′ in T ′,

ii. x′ = w′0→w′1→· · ·→w′m = w′ in T ′,

iii. (∀i ∈ {0, . . . , n}) T , vi ≡↓h−i T
′, v′i, and

iv. (∀j ∈ {0, . . . ,m}) T , wj ≡↓h−j T
′, w′j ,

and hence Zig is satisfied by Zh. By way of contradiction,
assume that for all (v′, w′) ∈ P satisfying i and ii we have
either

(a) (∃i ∈ {0, . . . , n}) T , vi 6≡↓h−i T
′, v′i, or

(b) (∃j ∈ {0, . . . ,m}) T , wj 6≡↓h−j T
′, w′j .

Fix > as any tautology such that dd(>) = 0. For each
(v′, w′) ∈ P we define two families of formulas,

ϕ0
v′,w′ , . . . , ϕ

n
v′,w′ and ψ0

v′,w′ , . . . , ψ
m
v′,w′ ,

satisfying that dd(ϕiv′,w′) ≤ h − i for all i ∈ {0, . . . , n} and

dd(ψjv′,w′) ≤ h− j for all j ∈ {0, . . . ,m} as follows:

• Suppose that (a) holds and that i is the smallest num-

ber such that T , vi 6≡↓h−i T
′, v′i. Let ϕiv′,w′ be such

that dd(ϕiv′,w′) ≤ h−i and T , vi |= ϕiv′,w′ but T ′, v′i 6|=
ϕiv′,w′ . For k ∈ {0, . . . , n}\{i}, let ϕkv′,w′ = >, and for

k ∈ {0, . . . ,m}, let ψkv′,w′ = >.

• Suppose that (a) does not hold. Then (b) holds. Let j

be the smallest number such that T , wj 6≡↓h−j T
′, w′j .

Let ψjv′,w′ be such that dd(ψjv′,w′) ≤ h−j and T , wj |=
ψjv′,w′ but T ′, w′j 6|= ψjv′,w′ . For k ∈ {0, . . . ,m} \ {j},
let ψkv′,w′ = >, and for k ∈ {0, . . . , n}, let ϕkv′,w′ = >.

For each i ∈ {0, . . . , n} and j ∈ {0, . . . ,m}, let

Φi =
∧

(v′,w′)∈P

ϕiv′,w′ and Ψj =
∧

(v′,w′)∈P

ψjv′,w′ . (1)

Since dd(ϕiv′,w′) ≤ h − i, by Proposition 3.1, there are

finitely many non-equivalent formulas ϕiv′,w′ ; the same ap-

plies to ψjv′,w′ . Hence, both infinite conjunctions in (1) are

equivalent to finite ones, and we may assume that Φi and
Ψj are well-formed formulas. Finally, let

α = [Φ0]↓[Φ1]↓ · · · ↓[Φn] and β = [Ψ0]↓[Ψ1]↓ · · · ↓[Ψm].

By construction, dd(α),dd(β) ≤ h and so dd(〈α = β〉) ≤ h.
Furthermore, T , x |= 〈α = β〉 and T ′, x′ 6|= 〈α = β〉. This

contradicts T , x ≡↓h T
′, x′.

3.2 Vertical XPath
We now study bisimulation for XPathl=. Interestingly, the

notion we give is simpler than the one for XPath↓= due to a
normal form enjoyed by the logic.

In the downward fragment of XPath= we used dd(ϕ) to
measure the maximum depth from the current point of eval-
uation that the formula can access. For the vertical fragment
of XPath=, we need to define both the maximum distance r
going downward and the maximum distance s going upward
that the formula can reach. We call the pair (r, s) the verti-
cal depth of a formula. Formally, the vertical depth of a
formula ϕ (notation: vd(ϕ)) is the pair vd(ϕ) ∈ Z2

≥0 defined
in Table 2.

The nesting depth of a formula ϕ (notation: nd(ϕ))
is the maximum number of nested [ ] appearing in ϕ. See
Table 2 for the formal definition.

Let (r, s, k)-XPathl= be the set of all formulas ϕ in XPathl=
with vd(ϕ) ≤ (r, s) and nd(ϕ) ≤ k.

Let T and T ′ be data trees, let u ∈ T and u′ ∈ T ′. We
say that T , u and T ′, u′ are equivalent for XPathl= (nota-

tion: T , u ≡l T ′, u′) iff for all ϕ ∈ XPathl=, we have T , u |=
ϕ iff T ′, u′ |= ϕ. T , x and T ′, x′ are (r, s)-equivalent

[resp. (r, s, k)-equivalent] for XPathl=, and we note it

T , x ≡lr,s T ′, x′ [resp. T , x ≡lr,s,k T
′, x′] if they satisfy the

same XPathl= formulas ϕ so that vd(ϕ) ≤ (r, s) [resp. vd(ϕ) ≤
(r, s) and nd(ϕ) ≤ k].

3.2.1 Normal form
We define a useful normal form for XPathl= that will be

implicitly used in the definition of bisimulation in the sec-
tion. For n ≥ 0, let ↓n denote the concatenation of n sym-
bols ↓. I.e., ↓0 is the empty string λ, ↓1 = ↓, and ↓n+1 = ↓↓n
(similarly for ↑n).

A path expression α of XPathl= is downward [resp. up-
ward] if it is of the form ↓n[ϕ] [resp. [ϕ]↑n] for some n ≥ 0

with ϕ ∈ XPathl=. For example, ↓[〈↑〉] is a downward expres-
sion whereas ↓[〈↓〉]↓ is not. An up-down expression is any
expression of the form ε, α↑, α↓ or α↑α↓ where α↑ is upward
and α↓ is downward. Henceforth we will use α↑, β↑, γ↑ to de-
note upward expressions and α↓, β↓, γ↓ to denote downward
expressions and α↑↓, β↑↓, γ↑↓ to denote up-down expressions.
Note that in particular any downward or upward expression
is an up-down expression. An XPathl= formula or expres-
sion is in up-down normal form if every path expression
contained in it is up-down and every data test is of the form
〈ε� α↑↓〉 with � ∈ {=, 6=}.
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Proposition 3.10. Let ϕ ∈ (r, s, k)-XPathl=. There is

ϕ↑↓ ∈ XPathl= in up-down normal form such that

1. ϕ↑↓ ≡ ϕ;

2. vd(ϕ↑↓) = (r, s); and

3. nd(ϕ↑↓) ≤ k · (r + s+ 2).

3.2.2 Finite index
Contrary to the case of XPath↓= (cf., Proposition 3.1), the

logical equivalence relation restricted to XPathl=-formulas
of bounded vertical depth has infinitely many equivalence
classes.

Proposition 3.11. If r + s ≥ 2 then ≡lr,s has infinite
index.

In the proof of the above proposition (see Appendix)we
need to use formulas with unbounded nesting depth. In fact,
when restricted to bounded nesting depth there are only
finitely many formulas up to logical equivalence, as stated
next.

Proposition 3.12. ≡lr,s,k has finite index.

Corollary 3.13. {T ′, u′ | T , u ≡lr,s,k T
′, u′} is definable

by an (r, s, k)-XPathl=-formula.

3.2.3 Bisimulation and (r, s, k)-bisimulation
The advantage of the normal form presented in Section 3.2.1,

is that it makes it possible to use a very simple notion of
bisimulation. The disadvantage is that, since it does not pre-

serve nesting depth,↔lr,s,k does not correspond precisely to

≡lr,s,k, although↔l corresponds precisely to ≡l. Nonethe-
less, we obtain, for all r, s, k,

↔r,s,k ⊆ ≡
l
r,s,k ⊆ ↔

l
r,s,k·(r+s+2).

Let T and T ′ be two data-trees. We say that u ∈ T
and u′ ∈ T ′ are bisimilar for XPathl= (notation: T , u↔l
T ′, u′) iff there is a relation Z ⊆ T ×T ′ such that uZu′ and
for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′),

• Zig (Figure 3): If xZx′, y
n→x and y

m→z then there

are y′, z′ ∈ T ′ such that y′
n→x′, y′m→z′, data(z) =

data(x)⇔ data(z′) = data(x′), and zZz′.

• Zag: If xZx′, y′
n→x′ and y′

m→z′ then there are y, z ∈ T
such that y

n→x, y
m→z, data(z) = data(x)⇔ data(z′) =

data(x′), and zZz′.

Observe that contrary to the definition of↔↓, the condi-
tions above do not require intermediate nodes to be related
by Z. This is a direct consequence of the up-down normal
form (Proposition 3.10).

We say that u ∈ T and u′ ∈ T ′ are (r, s, k)-bisimilar for

XPathl= (notation: T , u↔lr,s,k T
′, u′) if there is a family of

relations (Z k̂r̂,ŝ)r̂+ŝ≤r+s,k̂≤k in T × T ′ such that uZkr,su
′ and

for all r̂ + ŝ ≤ r + s, k̂ ≤ k, x ∈ T and x′ ∈ T ′ we have that
the following conditions hold.

x x0

8y

8z 9z0

9y0

T T 0

n

m

Z

=
( 6=

)=
( 6=

)

Figure 3: Zig clause of bisimulation for XPathl=

• Harmony: If xZ k̂r̂,ŝx
′ then label(x) = label(x′).

• Zig: If xZ k̂r̂,ŝx
′, y

n→x and y
m→z with n ≤ ŝ and m ≤

r̂+n then there are y′, z′ ∈ T ′ such that y′
n→x′, y′m→z′,

and the following hold

(1) data(z) = data(x)⇔ data(z′) = data(x′),

(2) if k̂ > 0, zZ k̂−1
r̂′,ŝ′z

′ for r̂′ = r̂+n−m, ŝ′ = ŝ−n+m.

• Zag: If xZ k̂r̂,ŝx
′, y′

n→x′ and y′
m→z′ with n ≤ ŝ and

m ≤ r̂ + n then there are y, z ∈ T such that y
n→x,

y
m→z, and items (1) and (2) above are verified.

Observation 3.14. If xZ k̂r̂,ŝx
′, y

n→x and y′
n→x′ then it

follows that yZ k̂−1
r̂′,ŝ′y

′, for r̂′ = r̂ + n, ŝ′ = ŝ− n. The same

occurs with Z instead of Z k̂r̂,ŝ for the case of bisimilarity.

For a data tree T and u ∈ T , let T |sru denote the subtree
of T induced by

{v ∈ T | (∃m ≤ s) (∃n ≤ r +m) (∃w ∈ T ) w
m→u ∧ w

n→v}.

Proposition 3.15. T , u↔lr,s,k (T |sru), u.

3.2.4 Equivalence and bisimulation
The next result says that↔l coincides with ≡l on finitely

branching data trees, and states precisely in what way↔lr,s,k
is related to ≡lr,s,k.

Theorem 3.16.

1. T , u↔l T ′, u′ implies T , u ≡l T ′, u′. The converse also
holds when T and T ′ are finitely branching.

2. T , u↔lr,s,k·(r+s+2) T
′, u′ implies T , u ≡lr,s,k T

′, u′.

3. T , u ≡lr,s,k T
′, u′ implies T , u↔lr,s,k T

′, u′.

Corollary 3.17. ↔lr,s,k has finite index.

4. SIMULATION
In this section we define notions of directed (non-symmetric)

simulations for XPath↓= and XPathl=, as it is done, e.g.,
in [16] for some modal logics. We obtain results similar to
Theorems 3.7 and 3.16 but relating each simulation notion
with the corresponding logical implication.
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We say that an XPath= formula is positive if it contains
no negation ¬ and no inequality data tests 〈α 6= β〉. For L
one of XPath↓=, XPathl=, XPath↓↓∗= , or XPathll

∗
= , we write

L+ for the positive fragment of L.
A simulation for XPath↓= [resp. for XPathl=] is simply

a bisimulation from which the Zag clause and half of the
first condition in the Zig clause have been omitted. Observe
that simulations need not be symmetric.

Formally, we say that u ∈ T is similar to u′ ∈ T ′ for
XPath↓= (notation: T , u →↓ T ′, u′) iff there is a relation
Z ⊆ T × T ′ such that uZu′ and for all x ∈ T and x′ ∈ T ′
we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig: If xZx′, x
n→v and x

m→w then there are v′, w′ ∈ T ′
such that x′

n→v′, x′m→w′ and

1. data(v) = data(w)⇒ data(v′) = data(w′),

2. (
i→v)Z (

i→v′) for all 0 ≤ i < n, and

3. (
i→w)Z (

i→w′) for all 0 ≤ i < m.

u ∈ T is similar to u′ ∈ T ′ for XPathl= (notation: T , u→l
T ′, u′) iff there is a relation Z ⊆ T ×T ′ such that uZu′ and
for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig: If xZx′, y
n→x and y

m→z then there are y′, z′ ∈
T ′ such that y′

n→x′, y′m→z′, zZz′, and if data(z) =
data(x) then data(z′) = data(x′).

Relations→↓` and→lr,s,k are defined accordingly. We de-
fine one-way (non-symmetric) logical implication between
models as follows. We write T , uV↓ T ′, u′ for

(∀ϕ ∈ XPath↓+= ) [T , u |= ϕ⇒ T ′, u′ |= ϕ].

DefineV↓` ,V
l, andVlr,s,k in an analogous way for `-XPath↓+= ,

XPathl+= , (r, s, k)-XPathl+= , respectively. As for bisimula-
tion, we have that→ coincides with V.

Theorem 4.1.

1. Let † ∈ {↓, l}. T , u →† T ′, u′ implies T , u V† T ′, u′.
The converse holds when T ′ is finitely branching.

2. T , u→↓` T
′, u′ iff T , uV↓` T

′, u′.

3. T , u→lr,s,k·(r+s+2) T
′, u′ implies T , uVlr,s,k T

′, u′.

4. T , uVlr,s,k T
′, u′ implies T , u→lr,s,k T

′, u′.

We say that T ′ is a substructure of T if T ′ is a data tree
which results from removing some nodes of T , i.e., T ′ ⊆ T
and for all u, v ∈ T ′ we have: 1) u→v on T iff u→v on T ′;
2) label(u) on T ′ equals label(u) on T ; and 3) data(u) on
T ′ equals data(u) on T . Equivalently, seen as σ-structures,
T ′ is the σ-substructure of T induced by T ′ ⊆ T . One can
verify that the identity on T ′ is a simulation for XPathl=
from T ′ to T .

Lemma 4.2. If T ′ is a substructure of T and u′ ∈ T ′ then
T ′, u′→l T , u′.

We obtain that the formulas of XPath= invariant under
simulations are, precisely, the positive ones.

Theorem 4.3.

1. ϕ ∈ XPath↓= is→↓-invariant [resp.→↓` ] iff it is equivalent

to a formula of XPath↓+= [resp. `-XPath↓+= ].

2. ϕ ∈ XPathl= is →l-invariant iff it is equivalent to a for-
mula of XPathl+= .

3. If ϕ ∈ XPathl= is→lr,s,k-invariant then it is equivalent to

a formula of (r, s, k)-XPathl+= .

4. If ϕ ∈ XPathl= is equivalent to a formula of (r, s, k)-

XPathl+= then ϕ is→lr,s,k′ -invariant, for k′ = k·(r+s+2).

5. ADDING TRANSITIVITY
As it happens, for example, with the basic modal logic and

propositional dynamic logic, the same notion of bisimulation
[resp. simulation] of each logic captures the logical equiva-
lence [resp. logical implication] for the corresponding frag-
ments including the reflexive-transitive closure of the axes
which are present. Intuitively, this occurs because ↓∗ is an
infinite union of compositions of ↓, and similarly for ↑.

Let ≡↓↓∗ and ≡ll
∗

be the logical equivalence relation
for XPath↓↓∗= and XPathll

∗
= respectively, and let V↓↓

∗
and

Vll
∗

be the logical implication for XPath↓↓∗+= and XPathll
∗+

=

respectively.

Theorem 5.1. Let † ∈ {↓↓∗, ll∗}.

1. T , u↔† T ′, u′ implies T , u ≡† T ′, u′. The converse
also holds when T ′ is finitely branching.

2. T , u →† T ′, u′ implies T , u V† T ′, u′. The converse
also holds when T ′ is finitely branching.

6. CHARACTERIZATION
In §6.1 we show that there is a truth-preserving transla-

tion from XPathl= to first-order logic over an appropriate
signature. In §6.2 we characterize XPath↓= as the fragment
of first-order logic ↔↓-invariant over data trees. In §6.3
we show that this result fails for XPathl= in general, but
a weaker result can still be proved.

6.1 Translating to first-order logic
We say that an XPathl=-path expression α is in simple

normal form if it is of the form

[ϕ0]o1[ϕ1]o2 · · · on[ϕn],

for n ≥ 0, ϕi ∈ XPathl=, and oi ∈ {↓, ↑}.

Proposition 6.1. For any XPathl=- [resp. XPath↓=-] path

expression α there is an equivalent XPathl=- [resp. XPath↓=-]
path expression α′ in simple normal form. Further, α′ can
be computed in polynomial time from α.1

We say that an XPathl=-formula ϕ is in simple normal
form if each path expression α occurring in ϕ is in simple
normal form.

Fix the signature σ with binary relations  and ≈, and
a unary predicate Pa for each a ∈ A. Any data tree T can
be seen as a first-order σ-structure such that

 T = {(x, y) ∈ T 2 | y is a child of x};
1Note that this proposition holds only for paths expressions
without union.
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≈T = {(x, y) ∈ T 2 | data(x) = data(y)};
P Ta = {x ∈ T | label(x) = a}.

We define the following translation Tr mapping XPathl=
formulas in simple normal form to first-order σ-formulas:

Trx(a) = Pa(x) (a ∈ A)

Trx(ϕ † ψ) = Trx(ϕ) † Trx(ψ) († ∈ {∧,∨})
Trx(¬ϕ) = ¬Trx(ϕ)

Trx(〈α〉) = (∃ȳ)
(
x = y0 ∧ Trȳ(α)

)
Trx(〈α = β〉) = (∃ȳ)(∃z̄)

(
x = y0 ∧ x = z0 ∧ yn ≈ zm∧

Trȳ(α) ∧ Trz̄(β)
)

Trx(〈α 6= β〉) = (∃ȳ)(∃z̄)
(
x = y0 ∧ x = z0 ∧ yn 6≈ zm∧

Trȳ(α) ∧ Trz̄(β)
)

Trȳ(α) =

n−1∧
i=0

oi+1(yi, yi+1) ∧
n∧
i=0

Tryi(ϕi),

where ȳ = y0, . . . , yn and z̄ = z0, . . . , zm, and are fresh when
quantified in the fourth and fifth definition;

α = [ϕ0]o1[ϕ1]o2[ϕ2]o3 · · · on[ϕn];

β = [ψ0]o′1[ψ1]o′2[ψ2]o′3 · · · o′m[ψm];

oi, o
′
i ∈ {↓, ↑}; oj(u, v) represents u v if oj = ↓, and v  u

otherwise.

Proposition 6.2. For ϕ ∈ XPathl= we have T , u |= ϕ iff
T |= Trx(ϕ)(u).

6.2 Downward XPath
Let FO(σ) be the set of first-order formulas over a given

signature σ, and let C be a class of σ-models. An FO(σ)-
formula ϕ(x) is `-local if for all data trees T and u ∈ T , we
have T |= ϕ(u) ⇔ T |`u |= ϕ(u). Finally, for ϕ ∈ FO(σ) let
qr(ϕ) be its quantifier rank, i.e., the depth of nesting of its
quantifiers.

Observe that the following result has two readings: one
classical, and one restricted to finite models.

Theorem 6.3 (Characterization). Let ϕ(x) ∈ FO(σ).
The following are equivalent:

(i) ϕ is↔↓-invariant over [finite] data-trees;

(ii) ϕ is logically equivalent over [finite] data-trees to an

`-XPath↓=-formula, where ` = 2qr(ϕ) − 1.

Proof. The implication (ii) ⇒ (i) follows straightfor-
wardly from Theorem 3.7. The proof of (i) ⇒ (ii) goes as
follows: First, we show that any↔↓-invariant ϕ(x) ∈ FO(σ)

is `-local for ` = 2qr(ϕ) − 1 (Proposition 6.4). Then, we
prove that any↔↓-invariant ϕ(x) ∈ FO(σ) that is `-local

is↔↓` -invariant(Proposition B.2 in the Appendix). Finally,

we show that any FO(σ)-definable property which is↔↓` -
invariant is definable in `-XPath↓=(Proposition B.3 in the
Appendix).

Proposition 6.4. Any↔↓-invariant ϕ(x) ∈ FO(σ) over

[finite] data-trees is `-local for ` = 2qr(ϕ) − 1.

Proof. We follow Otto’s proof [20]. Assume that ϕ(x) ∈
FO(σ) is↔↓-invariant, let q = qr(ϕ), and put ` = 2q − 1.
Given a data tree T and u ∈ T it suffices to show the exis-
tence of data trees T ′ and T ′′, with corresponding elements
u′ ∈ T ′ and u′′ ∈ T ′′ such that

| {z }
q copies

⌘q

u0 u00

| {z }
q copies

| {z }
q copies

| {z }
q copies

Figure 4: Definition of T ′, u′ and T ′′, u′′.

(a) T ′, u′↔↓ T , u,

(b) T ′′, u′′↔↓ (T |`u), u, and

(c) T ′, u′ ≡q T ′′, u′′.

Indeed, from the above conditions it follows that

T |= ϕ(u) iff T ′ |= ϕ(u′) ((a) and↔↓-inv. of ϕ)

iff T ′′ |= ϕ(u′′) (c)

iff (T |`u) |= ϕ(u), ((b) and↔↓-inv. of ϕ)

and hence ϕ is `-local. By Proposition 3.3 one may assume
that u ∈ T is the root of T .

We define T ′ and T ′′, as structures that are disjoint copies
of sufficiently many isomorphic copies of T and T |`u, re-
spectively, all tied together by some common root. Both
structures have q isomorphic copies of both T and T |`u,
and only distinguish themselves by the nature of the one ex-
tra subtree, in which u′ and u′′ live, respectively: u′ is the
root of one of the copies of T and u′′ is the root of one of
the copies of T |`u. We indicate the two structures in the
diagram of Figure 4, with distinguished elements u′ and u′′

marked by •; the open cones stand for copies of T , the closed
cones for copies of T |`u. The new isomorphic copies have
the same data values as the original one. The new root has
an arbitrary, fixed, data value and label.

By Proposition 3.4, it is straightforward that conditions
(a) and (b) are satisfied. Condition (c) is true because one
can exhibit a strategy for player II in the q-round Ehrenfeucht-
Fräıssé game on structures T ′ and T ′′. The strategy is ex-
actly the same used in [20].

6.3 Vertical XPath
The analog of Theorem 6.3 fails for XPathl=:

Lemma 6.5. The FO(σ)-formula

(∃x) Pa(x)

is↔l-invariant though not logically equivalent over [finite]

data-trees to any XPathl=-formula.

Hence XPathl= is not the fragment of FO(σ) which is↔l-
invariant over [finite] data-trees. However, the following ana-
log of Proposition B.3 (needed for the proof of Theorem 6.3)

still holds for the case of XPathl=:

Proposition 6.6. Let k′ = k·(r+s+2). If ϕ(x) ∈ FO(σ)

is↔lr,s,k′ -invariant over [finite] data-trees, then there is ψ ∈
(r, s, k)-XPathl= such that Trx(ψ) is logically equivalent to ϕ
over [finite] data-trees.
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Notice that the counterexample in Lemma 6.5 is an un-
restricted, existential formula. One may wonder if it might
be possible to extend the expressive power of XPathl= to
accout for unrestricted quantification. The natural candi-
date would be the modal operator E (usually known as
the existential modality) which, intuitively, let us express
that there is some node in the model where a formula holds.
But even with the additional expressive power provided by
E the analog of Theorem 6.3 fails. Formally, consider the
logic XPathlE= , which results from adding the operator E
to XPathl= with the following semantics: [[Eϕ]]T = T if
[[ϕ]]T 6= ∅, and [[Eϕ]]T = ∅ otherwise.

The following lemma shows a counterexample to the ana-
log of Theorem 6.3, showing that XPathlE= is not the frag-
ment of FO(σ)↔l-invariant over [finite] data-trees.

Lemma 6.7. The FO(σ)-formula

(∃y, z) [y ≈ z ∧ Pa(y) ∧ Pb(z)]

is↔l-invariant though not logically equivalent over [finite]

data-trees to any XPathlE= -formula.

7. APPLICATIONS
We devote this section to exemplify how the model theo-

retic tools we developed can be used to show expressiveness
results for XPath=. We do not intend to be comprehensive;
rather we will exhibit a number of different results that show
possible uses of the notions of bisimulation we introduced.

7.1 Expressiveness hierarchies
Define ≡↓`,k as the equivalence ≡↓` restricted to formulas

of nesting depth at most k, that is, T , u ≡↓`,k T
′, u′ iff for

all ϕ ∈ XPath↓= such that dd(ϕ) ≤ ` and nd(ϕ) ≤ k we
have T , u |= ϕ iff T ′, u′ |= ϕ. Define a more fine-grained
notion of bisimulation in a similar way. We say that u ∈ T
and u′ ∈ T ′ are (`, k)-bisimilar for XPath↓= (notation:

T , u↔↓`,k T
′, u′) if there is a family of relations (Zj,t)j≤`,t≤k

in T × T ′ such that uZ`,ku
′ and for all j ≤ `, t ≤ k, x ∈ T

and x′ ∈ T ′ we have

• Harmony: If xZj,tx
′ then label(x) = label(x′).

• Zig: If xZj,tx
′, x

n→v and x
m→w with n,m ≤ j then

there are v′, w′ ∈ T ′ such that x′
n→v′, x′m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. if t > 0, (
i→v)Zj−n+i,t−1 (

i→v′) for all 0 ≤ i < n,
and

3. if t > 0, (
i→w)Zj−m+i,t−1 (

i→w′) for all 0 ≤ i <
m.

• Zag: If xZj,tx
′, x′

n→v′ and x′
m→w′ with n,m ≤ j then

there are v, w ∈ T such that x
n→v, x

m→w and items 1,
2 and 3 above are verified.

Following the same ideas used in Propositions 3.8 and 3.9,
it is easy to show that (`, k)-bisimulations characterize (`, k)-
equivalence.

Proposition 7.1. T , u↔↓`,k T
′, u′ iff T , u ≡↓`,k T

′, u′.

≡↓
0,0 ≡↓

0,1 ≡↓
0,2 ≡↓

0,3 ≡↓
0,4

≡↓
1,0 ≡↓

1,1 ≡↓
1,2 ≡↓

1,3 ≡↓
1,4

≡↓
2,1≡↓

2,0 ≡↓
2,2 ≡↓

2,3 ≡↓
2,4

≡↓
3,0 ≡↓

3,1 ≡↓
3,2 ≡↓

3,3 ≡↓
3,4

�
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· · ·
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· · ·

· · ·

Figure 5: Hierarchy of XPath↓=.

↔�

Figure 6: Closure under subtree replication.

The following theorem —proved in the Appendix using
the bisimulation notion introduced above— characterizes
when an increase in nesting depth results in an increase in
expressive power (see Figure 5). We conjecture that a simi-
lar hierarchy holds in the absence of data values, but this is
not a direct consequence of our result.

Theorem 7.2. For all `, k ≥ 0, i ≥ 1,

≡↓`,0 ) ≡↓`,1 ) · · · ) ≡↓`,` = ≡↓`,`+i, and

≡↓`,k ) ≡↓`+i,k.

7.2 Safe operations on models
Bisimulations can also be used to show that certain opera-

tions on models preserve truth. Such operations are usually
called safe for a given logic, as they can be applied to a
model without changing the truth values of any formula in
the language. Proposition 3.3, for example, is already an ex-
ample of this kind of results showing that the class of models
of a formula is closed under sub-model generation. We will
now show a more elaborate example.

We say that T ′ is a subtree replication of T , if T ′ is
the result of inserting T |x into T as a sibling of x, where x
is any node of T different from the root. Figure 6 gives a
schematic representation of this operation.

Proposition 7.3. XPathll
∗

= is closed under subtree repli-
cation, i.e. if T ′ is a subtree replication of T , and u ∈ T then
T ′, u ≡ll

∗
T , u.

Proof. Suppose that x ∈ T is not the root of T , and
that T ′ is the result of inserting T |x into T as a sibling of
x. Let us call Tx to the new copy of T |x inserted into T ′,
and let X be the set of nodes of T |x. Furthermore, if v ∈ X

9



then vx is the corresponding node of Tx. Nodes v and vx
have the same label and data value, and the position of v in
T |x coincides with the position of vx in Tx.

By Theorem 5.1, it suffices to verify that T , u↔l T ′, u
via Z ⊆ T × T ′ defined by:

Z = {(y, y) | y ∈ T} ∪ {(v, vx) | v ∈ X}

(Z is depicted as dotted lines in Figure 6).

7.3 Non-expressivity results
Finally, we will use bisimulation to show the expressivity

limits of different fragments of XPath. Let key(a) be the
property stating that every node with label a has a different
data value. Let fk(a, b) (for foreign key) be the property
(∀x)[Pa(x)⇒ (∃y)[Pb(y) ∧ x ∼ y]].

Proposition 7.4.

1. key(a) is not expressible in XPathll
∗

= .

2. fk(a, b) is expressible in XPathll
∗

= but it is not expressible

in XPath↓↓∗= or XPathll
∗+

= .

Proof. The first item follows from Proposition 7.3. Since
the logic is closed under subtree replication, the trees of
Figure 7 are equivalent. As key(a) holds in one and not in
the other, the statement follows.

For the second item, it is easy to see that fk(a, b) is express-
ible with the formula ¬〈↑∗↓∗[a ∧ ¬〈ε = ↑∗↓∗[b]〉]〉. However,
this property cannot be expressed in XPath↓↓∗= because the
models T and T ′ in Figure 8 are bisimilar for XPath↓= via
Z, depicted as dotted lines. Since T , x satisfies fk(a, b) but
T ′, x′ does not, from Theorem 5.1 it follows that fk(a, b) is
not expressible in XPath↓↓∗= .

Finally, suppose there exists ψ ∈ XPathll
∗+

= expressing
fk(a, b). Since T is a substructure of T ′ we have T , x →l
T ′, x by Lemma 4.2. By Theorem 5.1(2) and the fact that
T , x |= ψ, we have T ′, x |= ψ, which is a contradiction.

Let dist3(x) be the property stating that there are nodes
y, z so that x→y→z and x, y, z have pairwise distinct data
values.

Proposition 7.5.

1. dist3 is expressible in XPathl=;

2. dist3 is not expressible in XPath↓↓∗= ;

3. neither dist3 nor its complement can be expressed in
XPathll

∗+
= .

Proof. For 1, one can check that T , x |= ϕ iff T , x sat-
isfies dist3, for ϕ = 〈ε 6= ↓↓[〈ε 6= ↑〉]〉.

Let us see 2. Consider the data trees T , x and T ′, x′ de-
picted in Figure 9. It is straightforward that T , x satisfies
dist3 and T ′, x′ does not.

Let v′1 and v′2 be the leaves of T ′ and let v be the only node
of T with data value 3. One can check that T , x↔↓ T ′, x′
via Z ⊆ T × T ′ defined by

Z = {〈u, u′〉 | h(u) = h(u′) ∧ data(u) = data(u′)} ∪
{〈v, v′1〉, 〈v, v′2〉},

where h(y) denotes the height of y, i.e., the distance from y
to the root of the corresponding tree (Z is depicted as dotted

lines in Figure 9). Since T , x satisfies dist3 but T ′, x′ does
not, from Theorem 5.1 it follows that dist3 is not expressible
in XPath↓↓∗= .

For 3, one can verify that T , x →l T ′, x′ via Z as de-

fined above. If dist3 were definable in XPathll
∗+

= via ψ and
the fact that T , x |= ψ, by Theorem 5.1(2) we would have
T ′, x′ |= ψ, and this is a contradiction.

Let dist3 denote the complement of dist3, i.e., dist3(x) iff
for all y, z so that x→y→z, we have that x, y, z do not have
pairwise distinct data values. Now T ′, x′ satisfies dist3 and
T , x does not. Since T ′ is a substructure of T , by an argu-
ment analog to the one used in the proof of Proposition 7.4-2,
we conclude that dist3 is not expressible in XPathll

∗+
= .

8. DISCUSSION
In this article we studied model theoretic properties of

XPath over both finite and arbitrary data trees using bisim-
ulations. One of the main results we discuss is the charac-
terization of the downward and vertical fragments of XPath
as the fragments of first-order logic which are invariant un-
der suitable notions of bisimulation. This can be seen as
a first step in the larger program of studying the model
theory and expressiveness of XPath with data values and,
more generally, of logics on data trees. It would be interest-
ing to study notions of bisimulation with only descendant;
or characterizations of XPath with child and descendant,
as a fragment of FO with the descendant relation on data
trees. We did not considered XPath with horizontal navi-
gation between siblings, such as the axes next-sibling and
previous-sibling. In fact, adding these axes results in
a fragment that is somewhat less interesting since the ad-
equate bisimulation notion on finite data trees corresponds
precisely to data tree isomorphism modulo renaming of data
values.

In Section 7 we show a number of concrete application of
the model theoretic tools we developed, discussing both ex-
pressivity and non-expressivity results. We also show exam-
ples of operations which are safe for a given XPath fragment.
It would be worthwhile to devise other model operations that
preserve truth of XPath formulas as we show is the case for
subtree replication.

An important application of bisimulation is as a minimiza-
tion method: given a data tree T1 we want to find a data
tree T2, as small as possible, so that T1 and T2 are bisimilar
for some fragment L of XPath. Since L cannot distinguish
between T1 and T2, we can use T2 as representative of T1

while the expressive power of L is all that is required by a
given application. The complexity of several inference tasks
(e.g., model checking) depends directly on the model size.
This is why in some cases it may be profitable to first apply
a minimization step. The existence of efficient minimiza-
tion algorithms is intimately related to bisimulations: we
can minimize a data tree T by partitioning it in terms of
its coarsest auto-bisimulation. We plan to design and im-
plement algorithms for data tree minimization using bisim-
ulation and investigate their computational complexity.
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APPENDIX
A. PROOFS OF SECTION 3

Given a path expression α, the navigation of α (nota-
tion: nav(α)) is the string of {↑, ↓}∗ that results from re-
moving all node expressions [ψ] and ε from α. For example,
nav(↓[〈↑〉]↓[〈↓ = ↑〉]↑[b]) = ↓↓↑.

Lemma A.1. Let α be a path expression of XPath↓↓∗= . Let

x
n→v and x′

n→v′ such that (x, v) ∈ [[α]]T and (x′, v′) /∈ [[α]]T
′
.
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Then there is a subformula ϕ of α and k ∈ {0, . . . , n} such

that T , ( k→v) |= ϕ and T ′, ( k→v′) 6|= ϕ.

Proof. Let x = v0→v1→· · ·→vn = v and x′ = v′0→v′1→· · ·→v′n =
v′. We proceed by induction on |α|. If α = ε then x = v and

so n = 0. Hence x′ = v′ and (x′, v′) ∈ [[α]]T
′
, which con-

tradicts the hypothesis, and thus the statement is trivially
true. If α =↓ then x→v and so n = 1. Hence x′→v′ and

(x′, v′) ∈ [[α]]T
′
. This case is also trivial. The case α = ↓∗ is

similar.
Suppose α = [ψ]. Since (x′, v′) /∈ [[α]]T

′
, we have x′ = v′

and T ′, v′ 6|= ψ. Taking k = 0 and ϕ = ψ the statement
holds. Observe that ψ is a subformula of α.

Suppose α = βγ. Then there is k such that (x, vk) ∈ [[β]]T

and (vk, v) ∈ [[γ]]T . Since (x′, v′) /∈ [[α]]T
′
, we have (x′, v′k) /∈

[[β]]T
′

or (v′k, v
′) /∈ [[γ]]T

′
. In either case, apply inductive

hypothesis straightforwardly.

Proposition 3.1. ≡↓` has finite index.

Proof. We show by induction on ` that there are finitely
many non-equivalent formulas of downward depth at most `,
and finitely many non-equivalent path expressions of down-
ward depth at most `.

For the base case, any formula of downward depth 0 is a
Boolean combination of labels, and hence there are finitely
many non-equivalent of them. Any path expression of down-
ward depth 0 is equivalent to [ϕ] for dd(ϕ) = 0, and hence
there are finitely many non-equivalent of them.

For the induction, any formula of downward depth ` + 1
is a boolean combination of labels or formulas of the form
〈α〉, 〈α = β〉 or 〈α 6= β〉, where dd(α),dd(β) ≤ ` + 1, so it
suffices to show that there are finitely many non-equivalent
path expressions of downward depth at most ` + 1. Let
α be such that dd(α) ≤ ` + 1. By Proposition 6.1, α is
either equivalent to a path expression of the form [ψ] or of
the form [ψ] ↓ β, where dd(ψ), dd(β) ≤ `. By inductive
hypothesis there are finitely many non-equivalent ψ’s and
βi’s, and hence finitely many non-equivalent α’s.

Corollary 3.2. {T ′, u′ | T , u ≡↓` T
′, u′} is definable by

an `-XPath↓=-formula χ`,T ,u.

Proof. Consider the conjunction of all `-XPath↓= formu-
las ϕ such that T , u |= ϕ. By Proposition 3.1, up to logical
equivalence, there are finitely many such ϕ’s, and hence the
conjunction is equivalent to a finite one. Define χ`,T ,u as
this finite conjunction.

Theorem 3.7.

1. T , u↔↓ T ′, u′ implies T , u ≡↓ T ′, u′. The converse also
holds when T and T ′ are finitely branching.

2. T , u↔↓` T
′, u′ iff T , u ≡↓` T

′, u′.

Proof. Item 2 is a direct consequence of Propositions 3.8
and 3.9. The argument for item 1 is similar to the one of
the aforementioned propositions, but working with a single
Z instead of (Zi)i≤`. For the converse implication, define Z
by xZx′ iff T , x ≡↓ T ′, x′. The conjunctions in (1) are then
finite because T ′ is finitely branching, and so P is finite (the
fact that T is finitely branching is used to show that Zag is
satisfied).

Proposition 3.10.Let ϕ ∈ (r, s, k)-XPathl=. There is

ϕ↑↓ ∈ XPathl= in up-down normal form such that

1. ϕ↑↓ ≡ ϕ;

2. vd(ϕ↑↓) = (r, s); and

3. nd(ϕ↑↓) ≤ k · (r + s+ 2).

Proof. The idea is that we can factorize any path in the
tree going down and up as a node tests in the expression.
Consider for instance the expression α = ↑↓[a]↑↑↓. It is
immediate that α is equivalent to the up-down expression
[〈↑[〈↓[a]〉]〉]↑↑↓, which is in up-down normal form.

We use the following directed equivalences to translate
any path expression into an equivalent up-down expression.

εγ ≡l γ (ε)

α[ψ1][ψ2]β ≡l α[ψ1 ∧ ψ2]β (merge)

α ξ−n↓ · · · ↓ξ−1↓ξ0↑ξ1↑ · · · ↑ξn β ≡l

α[〈ξ−nξn↓ · · · ↓ξ−1ξ1↓ξ0〉]β (factor)

α ξn↓ξn−1↓ · · · ↓ξ0 ≡l α ↓n[〈ξ0↑ξ1↑ . . . ↑ξn〉] (shift-r)

ξ0↑ξ1↑ · · · ↑ξn β ≡l [〈ξ0↑ξ1↑ · · · ↑ξn〉]↑n β (shift-l)

In the expressions above, each ξi is the empty string, or of
the form ε or [ϕ1][ϕ2] . . . [ϕn], α and β can be any path ex-
pression, or the empty string, and γ is any path expression.
The idea is that (factor) converts an expression that goes
down n times and then up n times into a node expression,
and when doing this, any test done in the i-th node when
going down is merged with the (n − i)-th test when going

up. For example, ↓[¬a]↓[c]↑[¬b]↑ ≡l [〈↓[¬a][¬b]↓[c]〉]. On
the other hand, (shift-r) and (shift-l) group all the node
tests in the lowest node in the expression, making use of the
fact that the parent relation is functional. Thus, for exam-
ple [a]↓[b]↓ ≡l ↓↓[〈↑[b]↑[a]〉] and ↑[a]↑[b] ≡l [〈↑[a]↑[b]〉]↑↑. It
is thus clear that the left and right expressions above are
semantically equivalent.

Lemma A.2. Let α be an XPathl=-path expression with
vd(α) = (r, s) and nd(α) = k, Then there is an up-down
path expression α↑↓ such that:

1. α↑↓ ≡l α

2. vd(α↑↓) = (r, s), and

3. nd(α↑↓) ≤ k + r + s+ 1.

Proof. We first apply rule (factor) as many times as
possible. It is clear that if nav(α) is of the form ↑n↓m for
some n,m ≥ 0 then rule (factor) cannot be applied and we
are done. Hence, suppose nav(α) contains the pattern ↓↑.
Let

α = γ↑α1γ↓

α1 = γ1 ξ
1
−n1
↓ . . . ↓ξ1

0↑ . . . ↑ξ1
n1︸ ︷︷ ︸

matches (factor)

γ2 ξ
2
−n2
↓ . . . ↓ξ2

0↑ . . . ↑ξ2
n2︸ ︷︷ ︸

matches (factor)

...
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γm−1 ξ
m
−nm↓ . . . ↓ξ

m
0 ↑ . . . ↑ξmnm︸ ︷︷ ︸

matches (factor)

γm,

where nav(γ↑),nav(γm) ∈ ↑∗, nav(γ↓),nav(γ1) ∈ ↓∗, and ξij
are the empty string, ε or [ϕi,j1 ][ϕi,j2 ] . . . [ϕi,jhi,j ]. Furthermore,

assume that m is maximal (i.e., it is impossible to apply
(factor) in any of the γi’s) and that the length of each γi is
minimal (i.e., it is not the case that nav(γi) ends with ↓ and
that nav(γi+1) begins with ↑). Observe that nav(γi) ∈ ↑∗↓∗.
We apply rule (factor) in the m−1 marked places and obtain

α2 = γ1 [〈ξ1
−n1

ξ1
n1
↓ · · · ↓ξ1

−1ξ
1
1↓ξ1

0〉]︸ ︷︷ ︸
(factor) applied

γ2 [〈ξ2
−n2

ξ2
n2
↓ · · · ↓ξ2

−1ξ
2
1↓ξ2

0〉]︸ ︷︷ ︸
(factor) applied

...

γm−1 [〈ξm−nmξ
m
nm↓ · · · ↓ξ

m
−1ξ

m
1 ↓ξm0 〉]︸ ︷︷ ︸

(factor) applied

γm,

Let vd(nav(α1)) = (r1, s1). Since nav(α) = nav(γ↑α1γ↓)
contains the pattern ↓↑, we have that r1 > 0. It can be
shown that vd(γ↑α2γ↑) = (r, s), nd(α2) ≤ nd(α1) + 1, and
vd(nav(α2)) ≤ (r1− 1, s1). If we repeat this procedure with
α2 and so on until we can no longer apply rule (factor), we
end up with an up-down path expression αf so that

1. αf ≡l α1,

2. vd(γ↑αfγ↓) = (r, s), and

3. nd(αf ) ≤ nd(α1) + r1.

We can now apply (shift-r), (shift-l), (ε) and (merge) to
γ↑αfγ↓ in order to obtain an up-down path expression α↑↓

satisfying the desired conditions:

1. α↑↓ ≡l α

2. vd(α↑↓) = (r, s), and

3. nd(α↑↓) ≤ k + r1 + 1 ≤ r + s+ 1.

This concludes the proof of Lemma A.2.

Lemma A.3. Let α↑↓, β↑↓ be up-down path expressions and
let ϕ = 〈α↑↓�β↑↓〉 (for � ∈ {=, 6=}) with vd(ϕ) = (r, s) and
nd(ϕ) = k. Then there is an up-down path expression γ↑↓

such that:

1. 〈ε� γ↑↓〉 ≡l ϕ,

2. vd(γ↑↓) = (r, s), and

3. nd(γ↑↓) ≤ k + 1.

Proof. Let us analyse the case where

α↑↓ = [ψα]↑nα↓mα [τα]

β↑↓ = [ψβ ]↑nβ↓mβ [τβ ]

(the remaining cases being only simpler), where ψα, ψβ , τα,
τβ are in up-down normal form. Suppose, without loss of

generality, that nα ≤ nβ . Hence, we have 〈α↑↓ � β↑↓〉 ≡l

|

{z

}

|

{z

} �
n↵

n�

m�

m↵

|
{z

}
|

{z
}

[ ↵]
[ � ]

[⌧� ]

[⌧↵]

|

{z

}

|
{z

}

�n↵

m�

m↵

n� � n↵

|
{z

}

|
{z

}
[⌧� ]

[⌧↵]

[ ↵ ^  � ]

↵"#

�"#

⌘l

Figure 10: Normal form for data tests.

. . .

� �� �
n times

x1,1

x2,0

x0,2

Tn :

Figure 11: Model verifying ψji for all i ≥ n and not
verifying ϕl for no l < n. Dotted lines represent
equal data values.

〈ε� γ↑↓〉, where

γ↑↓ = [ψα ∧ ψβ ]↑nα↓mα [τα ∧ 〈ε� ↑mα↑nβ−nα↓mβ [τβ ]〉].

It is clear that the formulas are equivalent (cf. Figure 10).
Moreover, the right-hand formula has at most one more nest-
ing than the left-hand formula, and its vertical depth is at
most (r, s). This concludes the proof of Lemma A.3.

By induction on ϕ, and using lemmas A.2 and A.3, one
can show that there is ϕ↑↓ as desired.

Proposition 3.11. If r + s ≥ 2 then ≡lr,s has infinite
index.

Proof. We show that for every r, s so that r + s = 2
there is an infinite set of non-equivalent formulas {ψir,s}i≥0

of vertical depth (r, s). It thus follows that for every r, s so

that r + s ≥ 2, ≡lr,s has infinite index.
Consider the following formulas.

ψ0
1,1 = 〈ε = ↑↓↓〉 ψi+1

1,1 = 〈ε = ↑↓[ψi1,1]↓〉

ψ0
0,2 = 〈↑ = ↑↑↓↓〉 ψi+1

0,2 = 〈↑ = ↑↑↓[ψi1,1]↓〉

ψ0
2,0 = 〈↓ = ↓↓〉 ψi+1

2,0 = 〈↓ = ↓[ψi1,1]↓〉

Note that vd(ψnr,s) = (r, s) and nd(ψnr,s) = n for every n.
The formula ψnr,s intuitively says that there is a chain of
length n as depicted in Figure 11.

In the data tree Tn of the figure, we have that Tn, xr,s |=
ψnr,s but Tn, xr,s 6|= ψn

′
r,s for any n′ > n. Therefore, {ψir,s}i≥0

is an infinite set of non-equivalent formulas of vertical depth
(r, s).
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Proposition 3.12.≡lr,s,k has finite index.

Proof. For any ϕ with nd(ϕ) = k and vd(ϕ) = (r, s),
let F (ϕ) = (k, r + s). Define F in a similar way for path
expressions α. In this proof “finite” means finite up to log-
ical equivalence. By Proposition 3.10 we can consider only
formulas in up-down normal form.

We show that there are finitely many formulas ϕ in up-
down normal form such that F (ϕ) ≤ (k, t), and that there
are finitely many path expressions α in up-down normal form
such that F (α) ≤ (k, t). We use induction on the lexico-
graphic ordering of (k, t). Observe that if F (ϕ) = (k, t) then
ϕ is a boolean combination of labels and formulas of the
form 〈ε = α〉, 〈ε 6= α〉 or 〈α〉, where F (α) ≤ (k, t). Hence
it suffices to show the statement for path expressions. If
F (α) = (0, t) then α is either ε or ↑n↓m, where n,m ≤ 2t,
so there are finitely many of them. If F (α) = (k + 1, t),
then α is [ϕ1]↑n↓m[ϕ2], where n,m ≤ 2t and nd(ϕi) ≤ k for
i = 1, 2. Since F (ϕi) <lex (k+ 1, t), by inductive hypothesis
there are finitely many such ϕi’s, and therefore α’s.

Corollary 3.13. {T ′, u′ | T , u ≡lr,s,k T
′, u′} is definable

by an (r, s, k)-XPathl=-formula.

Proof. Similar to the proof of Corollary 3.2.

Theorem 3.16.

1. T , u↔l T ′, u′ implies T , u ≡l T ′, u′. The converse also
holds when T and T ′ are finitely branching.

2. T , u↔lr,s,k·(r+s+2) T
′, u′ implies T , u ≡lr,s,k T

′, u′.

3. T , u ≡lr,s,k T
′, u′ implies T , u↔lr,s,k T

′, u′.

Proof. Items 2 and 3 are shown in Propositions A.4
and A.5.

The argument for item 1 is similar to the one of the afore-
mentioned propositions, but working with a single Z instead

of (Z k̂r̂,ŝ)r̂,ŝ,k̂. For the converse implication, define Z by xZx′

iff T , x ≡l T ′, x′. The conjunctions in (2) are then finite be-
cause T ′ is finitely branching, and so P is finite (the fact
that T is finitely branching is used for showing that Zag is
satisfied).

Proposition A.4. T , u↔lr,s,k·(r+s+2) T
′, u′ implies T , u ≡lr,s,k

T ′, u′.

Proof. We show that if T , u↔lr,s,k T
′, u′ via

(Z k̂r̂,ŝ)r̂+ŝ≤r+s,k̂≤k

then for all n ≤ ŝ and m ≤ r̂+n, for all ϕ in up-down normal
form with vd(ϕ) ≤ (r̂, ŝ), nd(ϕ) ≤ k̂, for all upward expres-
sion α↑ in up-down normal form, and for all downward ex-
pression α↓ in up-down normal form with vd(α↑), vd(α↓) ≤
(r̂, ŝ), nd(α↑), nd(α↓) ≤ k̂:

1. If xZ k̂r̂,ŝx
′ then T , x |= ϕ iff T ′, x′ |= ϕ.

2. If y
n→x, y′

n→x′, xZ k̂−1
r̂,ŝ x′, then (x, y) ∈ [[α↑]]T iff (x′, y′) ∈

[[α↑]]T
′
.

3. If y
m→z, y′m→z′, z Z k̂−1

r̂′,ŝ′ z
′ for r̂′ = r̂ + n − m, ŝ′ =

ŝ− n+m, then (y, z) ∈ [[α↓]]T iff (y′, z′) ∈ [[α↓]]T
′
.

Hence, by Proposition 3.10, the main statement follows.
We simultaneously show 1, 2 and 3 by induction on |ϕ| +
|α↑|+ |α↓|.

Let us see item 1. The base case is ϕ = a for some a ∈ A.
By Harmony, label(x) = label(x′) and then T , x |= ϕ iff
T ′, x′ |= ϕ. The boolean cases for ϕ are straightforward.

Suppose ϕ = 〈ε = α↑α↓〉. We show T , x |= ϕ ⇒ T ′, x′ |=
ϕ, so assume T , x |= ϕ. Suppose there are y, z ∈ T and n ≤
ŝ, m ≤ r̂ + n such that y

n→x, y
m→z, (x, y) ∈ [[α↑]]T , (y, z) ∈

[[α↓]]T and data(x) = data(z). By Zig, there are y′, z′ ∈ T ′

such that zZ k̂−1
r̂′,ŝ′z

′ for r̂′ = r̂ + n − m, ŝ′ = ŝ − n + m,

and data(x′) = data(z′). By inductive hypothesis 2 and 3,

(x′, y′) ∈ [[α↑]]T
′

and (y′, z′) ∈ [[α↓]]T
′
. Hence T ′, x′ |= ϕ.

The implication T ′, x′ |= ϕ ⇒ T , x |= ϕ is analogous. The
cases ϕ = 〈ε 6= α↑↓〉, and ϕ = 〈ε � α↑〉, ϕ = 〈ε � α↓〉 (� ∈
{=, 6=}) and ϕ = 〈α〉 (for α in up-down normal form) are
shown in a similar way. The cases ϕ = 〈ε� ε〉 (� ∈ {=, 6=})
are trivial.

Let us now analyze item 2. Let α↑ = [ψ]↑n (n ≥ 0), and
let

x0, . . . , xn ∈ T and x′0, . . . , x
′
n ∈ T ′

be such that

y = x0→x1→· · ·→xn = x in T ,

y′ = x′0→x′1→· · ·→x′n = x′ in T ′,

and xZ k̂−1
r̂,ŝ x

′. By Observation 3.14, we have x0Z
k̂−1
r̂′,ŝ′x

′
0, for

r̂′ = r̂+n, ŝ′ = ŝ−n. Assume by contradiction that (x′, y′) /∈
[[α↑]]T

′
. This necessarily means that T , x0 |= ψ but T ′, x′0 6|=

ψ. But ψ is a subformula of α↑, nd(ψ) ≤ k̂− 1 and nd(ψ) ≤
(r̂′, ŝ′) and this contradicts inductive hypothesis 1.

Item 3 is shown in a similar way. Let α↓ = ↓m[ψ] (m ≥ 0),
and let

z0, . . . , zm ∈ T and z′0, . . . , z
′
m ∈ T ′

be such that

y = z0→z1→· · ·→zm = z in T ,
y′ = z′0→z′1→· · ·→z′m = z′ in T ′,

and zZ k̂−1
r̂′,ŝ′z

′. Assume by contradiction that (y′, z′) /∈ [[α↓]]T
′
.

This necessarily means that T , xm |= ψ but T ′, x′m 6|= ψ.

But ψ is a subformula of α↓, nd(ψ) ≤ k̂ − 1 and nd(ψ) ≤
(r̂′, ŝ′) and this contradicts inductive hypothesis 1.

Proposition A.5. T , u ≡lr,s,k T
′, u′ implies T , u↔lr,s,k

T ′, u′.

Proof. Fix u ∈ T and u′ ∈ T ′ such that T , u ≡lr,s,k
T ′, u′. Define (Z k̂r̂,ŝ)r̂+ŝ≤r+s,k̂≤k by

xZ k̂r̂,ŝx
′ iff T , x ≡l

r̂,ŝ,k̂
T ′, x′.

We show that Zkr,s is a (r, s, k)-bisimulation between T , u
and T ′, u′. By hypothesis, uZkr,su

′. Now fix r̂ + ŝ ≤ r + s,

k̂ ≤ k. By construction, Z k̂r̂,ŝ satisfies Harmony. Let us

see that Z k̂r̂,ŝ satisfies Zig (the case for Zag is analogous).

Suppose xZ k̂r̂,ŝx
′,

y = x0→x1→· · ·→vn = x in T ,

y = z0→z1→· · ·→zm = z in T ,
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and data(x) = data(z) (the case data(x) 6= data(z) is shown
in a similar way), where m ≤ r̂+n. Let P ⊆ T ′2 be defined
by

P = {(y′, z′) | y′ n→x′ ∧ y′m→z′ ∧ data(x′) = data(z′)}.

Since T , x ≡lr,s,k T
′, x′, vd(〈ε = ↑n↓m〉) ≤ (r, s), nd(〈ε =

↑n↓m〉) = 0, and T , x |= 〈ε = ↑n↓m〉, we conclude that
P 6= ∅. We next show that there exists (y′, z′) ∈ P such
that

i. y′ = x′0→x′1→· · ·→x′n = x′ in T ′

ii. y′ = z′0→z′1→· · ·→z′m = z′ in T ′,

iii. T , x ≡l
r̂,ŝ,k̂−1

T ′, x′, and

iv. T , z ≡l
r̂′,ŝ′,k̂−1

T ′, z′, where r̂′ = r̂+n−m, ŝ′ = ŝ−n+
m,

and hence, by inductive hypothesis, Zig is satisfied by Z k̂r̂,ŝ.
By way of contradiction, assume that for all (y′, z′) ∈ P
satisfying i and ii we have either

(a) T , x 6≡l
r̂,ŝ,k̂−1

T ′, x′; or

(b) T , z 6≡l
r̂′,ŝ′,k̂−1

T ′, z′ for r̂′ = r̂+ n−m, ŝ′ = ŝ− n+m.

Fix > as any tautology such that vd(>) = (0, 0), nd(>) =
0. For each (y′, z′) ∈ P we define formulas, ϕy′,z′ and

ψy′,z′ , satisfying that vd(ϕy′,z′) ≤ (r̂, ŝ), nd(ϕy′,z′) < k̂ and

vd(ψy′,z′) ≤ (r̂′, ŝ′), nd(ψy′,z′) < k̂ as follows:

• Suppose (a) holds. Let ϕy′,z′ be such that vd(ϕv′,w′) ≤
(r̂, ŝ), nd(ϕv′,w′) < k̂, and such that T , x |= ϕy′,z′ but
T ′, x′ 6|= ϕy′,z′ ; and let ψv′,w′ = >.

• Suppose (a) does not hold. Then (b) holds. Let ψy′,z′

be such that vd(ψy′,z′) ≤ (r̂′, ŝ′), nd(ψy′,z′) < k̂ and
such that T , z |= ψy′,z′ but T ′, z′ 6|= ψy′,z′ ; and let
ϕy′,z′ = >.

Let

Φ =
∧

(y′,z′)∈P

ϕy′,z′ and Ψ =
∧

(y′,z′)∈P

ψy′,z′ . (2)

Since vd(ϕy′,z′) ≤ (r̂, ŝ), nd(ϕy′,z′) < k̂, by Proposition 3.12,
there are finitely many non-equivalent formulas ϕy′,z′ . The
same applies to formulas ψy′,z′ . Hence both infinite con-
junctions in (2) are equivalent to finite ones, and therefore
without loss of generality we may assume that Φ and Ψ are
well-formed formulas.

Finally, let

α↑ = [Φ]↑n and α↓ = ↓m[Ψ].

By construction, vd(α↑α↓) ≤ (r̂, ŝ), nd(α↑α↓) ≤ k̂. Further-
more, T , x |= 〈ε = α↑α↓〉 and T ′, x′ 6|= 〈ε = α↑α↓〉, but this

contradicts the fact that T , x ≡l
r̂,ŝ,k̂

T ′, x′.

Corollary 3.17. ↔lr,s,k has finite index.

Proof. Immediate from Theorem 3.16 and Proposition 3.12.

B. PROOFS OF SECTION 4
Theorem 4.1.

1. Let † ∈ {↓, l}. T , u →† T ′, u′ implies T , u V† T ′, u′.
The converse holds when T ′ is finitely branching.

2. T , u→↓` T
′, u′ iff T , uV↓` T

′, u′.

3. T , u→lr,s,k·(r+s+2) T
′, u′ implies T , uVlr,s,k T

′, u′.

4. T , uVlr,s,k T
′, u′ implies T , u→lr,s,k T

′, u′.

Proof. The proofs are straightforward adaptations of
the proofs of Propositions 3.8 and 3.9 and Propositions A.4
and A.5 respectively, and are ommitted here. In particular,
for the ‘if’ part, in the adaptation of the proofs of Proposi-
tions 3.9 and A.5, the simulations are defined by

xZix
′ iff T , xV↓i T

′, x

xZ k̂r̂,ŝx
′ iff T , xVl

r̂,ŝ,k̂
T ′, x

respectively, and the conditions (a) and (b) on page 5 be-
come now

(a) [∃i ∈ {0, . . . , n} ∃ϕ ∈ XPath↓+= ] dd(ϕ) ≤ h− i∧ T , vi |=
ϕ ∧ T ′, v′i 6|= ϕ; or

(b) [∃j ∈ {0, . . . ,m} ∃ϕ ∈ XPath↓+= ] dd(ϕ) ≤ h−j∧T , wj |=
ϕ ∧ T ′, w′j 6|= ϕ,

and

(a) [∃i ∈ {0, . . . n} ∃ϕ ∈ XPathl+= ] vd(ϕ) ≤ (r̂ + i, ŝ − i) ∧
nd(ϕ) ≤ k − 1 ∧ T , vi |= ϕ ∧ T ′, v′i 6|= ϕ; or

(b) [∃j ∈ {0, . . .m} ∃ϕ ∈ XPathl+= ] vd(ϕ) ≤ (r̂ + j′, ŝ− j′)
for j′ = n−m+j ∧nd(ϕ) ≤ k−1∧T , wj |= ϕ∧T ′, w′j 6|= ϕ

respectively.

Lemma B.1.

(1) {T ′, u′ | T , u →↓` T
′, u′} is definable by an XPath↓+= -

formula χ+
`,u,T of downward depth ≤ `.

(2) {T ′, u′ | T , u→lr,s,k T
′, u′} is definable by an XPathl+= -

formula χ+
r,s,k,u,T of vertical depth ≤ (r, s) and nesting

depth ≤ k.

Proof. For item (2), let sim
l
r,s,k(T , u) = {T ′, u′ | T , u→lr,s,k

T ′, u′}. Let ΦT ′,u′ be the set of all positive formulas ϕ ∈
XPathl+= of vertical depth at most (r, s) and nesting depth
at most k so that T ′, u′ |= ϕ. Let Ψ be

Ψ =
∨

T ′,u′∈siml
r,s,k

(T ,u)

∧
ΦT ′,u′ .

Since every ΦT ′,u′ is finite up to logical equivalence by Propo-
sition 3.12, it follows that Ψ is a valid formula. We show that

it defines sim
l
r,s,k(T , u).

Let T ′, u′ ∈ sim
l
r,s,k(T , u). Then, T ′, u′ |=

∧
ΦT ′,u′ and

thus T ′, u′ |= Ψ. If on the other hand T ′, u′ |= Ψ we have

that T ′, u′ |=
∧

ΦT ′′,u′′ for some T ′′, u′′ ∈ sim
l
r,s,k(T , u) and

then T ′, u′ ≡lr,s,k T
′′, u′′. By Theorem 3.16-3 we then have

that T ′, u′ ↔lr,s,k T
′′, u′′, and in particular T ′′, u′′ →lr,s,k
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T ′, u′. Since T , u →lr,s,k T
′′, u′′ and T ′′, u′′ →lr,s,k T

′, u′,

then T , u→lr,s,k T
′, u′ (by transitivity of →lr,s,k) and thus

T ′, u′ ∈ sim
l
r,s,k(T , u).

Item (1) is shown in a similar way, making use of Propo-
sition 3.1 and Theorem 3.7-2.

Theorem 4.3.

1. ϕ ∈ XPath↓= is→↓-invariant [resp.→↓` ] iff it is equivalent

to a formula of XPath↓+= [resp. `-XPath↓+= ].

2. ϕ ∈ XPathl= is →l-invariant iff it is equivalent to a for-
mula of XPathl+= .

3. If ϕ ∈ XPathl= is→lr,s,k-invariant then it is equivalent to

a formula of (r, s, k)-XPathl+= .

4. If ϕ ∈ XPathl= is equivalent to a formula of (r, s, k)-

XPathl+= then ϕ is→lr,s,k′ -invariant, for k′ = k·(r+s+2).

Proof. We start with item (1), for the case of→↓` . The
‘if’ part is straightforward from Theorem 4.1-2, and here
we focus on the ‘only if’ part. Let ϕ be preserved under
→↓` . Let {(Ti, ui)}i≤n be the set of all pointed models of ϕ

modulo↔↓` (which is finite due to Theorem 3.7-2 together
with Proposition 3.1). We claim that

T , u |= ϕ iff Ti, ui→↓` T , u for some i ≤ n. (3)

On the one hand, if T , u |= ϕ then there is i ≤ n such that

Ti, ui↔↓` T , u, and so Ti, ui →↓` T , u. On the other hand,

suppose Ti, ui→↓` T , u. Since ϕ is preserved under→↓` and
Ti, ui |= ϕ, we conclude T , u |= ϕ.

Let χ`,ui,Ti ∈ XPath↓+= , dd(ψi) ≤ `, be as in Lemma B.1-
(1). Using (3) one shows that

∨
i≤n χ`,ui,Ti ≡ ϕ.

For the case of →↓ of item (1), the ‘if’ direction follows
from Theorem 4.1-1. For the ‘only if’ direction, let ϕ be
preserved under →↓. It is easy to see that ϕ is preserved
under→↓ iff it is preserved under→↓dd(ϕ). We can then apply

the same reasoning as before and the statement follows.

Item (3) follows the same argument as item (1) but this
time using Corollary 3.17 and Lemma B.1-(2).

Item (4) is straightforward from Theorem 4.1-3.

Item (2) follows from items (3) and (4) and the observa-

tion that ϕ is preserved under→l iff it is preserved under

→lr,s,k·(r+s+2) for vd(ϕ) = (r, s) and nd(ϕ) = k.

Proposition B.2. Any↔↓-invariant ϕ(x) ∈ FO(σ) over

[finite] data-trees that is `-local, is↔↓` -invariant.

Proof. Let ϕ(x) be `-local and↔↓-invariant. Suppose

T , u↔↓` T
′, u′ and T |= ϕ(u). By `-locality, T |`u |= ϕ(u).

Now

T , u↔↓` T
′, u′ iff (T |`u), u↔↓` (T ′|`u′), u′ (Prop. 3.6)

iff (T |`u), u↔↓ (T ′|`u′), u′. (Prop. 3.5)

By↔↓-invariance, T ′|`u′ |= ϕ(u′) and by `-locality again,
T ′ |= ϕ(u′).

Proposition B.3. If ϕ(x) ∈ FO(σ) is↔↓` -invariant over

[finite] data-trees, then there is ψ ∈ `-XPath↓= such that
Trx(ψ) is logically equivalent to ϕ over [finite] data-trees.

Proof. By Corollary 3.2, for every data tree T and u ∈ T
there is an `-XPath↓= formula χ`,T ,u such that T , u ≡↓` T

′, u′

iff T ′, u′ |= χ`,T ,u. Let

ψ =
∨

T |=ϕ(u)

χ`,T ,u.

Since χ`,T ,u ∈ `-XPath↓= and, by Proposition 3.1, ≡↓` has
finite index, it follows that ψ is equivalent to a finite dis-
junction.

We now show that ϕ ≡ Trx(ψ). Let us see that ϕ |=
Trx(ψ). Suppose T |= ϕ(u). Since T , u |= χ`,T ,u, we have
T , u |= ψ and so T |= Trx(ψ)(u). Let us now see that
Trx(ψ) |= ϕ. Assume T |= Trx(ψ)(u), and so T , u |= ψ.
Then there exists T ′, u′ such that T ′ |= ϕ(u′) and T , u |=
χ`,T ′,u′ . By the property of χ`,T ′,u′ , we have T , u ≡↓` T

′, u′

and since ϕ is↔↓` -invariant (and hence ≡↓` -invariant by The-
orem 3.7-2) we conclude T |= ϕ(u).

C. PROOFS OF SECTION 5

Theorem 5.1.Let † ∈ {↓↓∗, ll∗}.

1. T , u↔† T ′, u′ implies T , u ≡† T ′, u′. The converse
also holds when T ′ is finitely branching.

2. T , u →† T ′, u′ implies T , u V† T ′, u′. The converse
also holds when T ′ is finitely branching.

Proof. The proof that T , u↔↓ T ′, u′ ⇒ T , u ≡↓↓∗ T ′, u′
follows from a simple adaptation of Proposition 3.8 to the
logic XPath↓↓∗= and Lemma A.1. The fact that for finitely
branching, T , u ≡↓↓∗ T ′, u′ ⇒ T , u↔↓ T ′, u′ is straightfor-
ward from Theorem 3.7-1 since ≡↓↓∗ ⊆ ≡↓.

The cases for XPathll
∗

= , XPath↓↓∗= and XPathll
∗+

= are
analogous.

D. PROOFS OF SECTION 6

Proposition 6.1.For any XPathl=- [resp. XPath↓=-] path

expression α there is an equivalent XPathl=- [resp. XPath↓=-]
path expression α′ in simple normal form. Further, α′ can
be computed in polynomial time from α.

Proof. The translation is straightforward, given the fol-
lowing equivalences:

ε ≡ [>]

α ≡ [>]α ≡ α[>]

α[ϕ][ψ]β ≡ α[ϕ ∧ ψ]β

where > denotes any fixed tautology, for example a∨¬a, for
some a ∈ A.

Lemma 6.5.The FO(σ)-formula

(∃x) Pa(x)

is↔l-invariant though not logically equivalent over [finite]

data-trees to any XPathl=-formula.

Proof. Let ϕ(x) be the FO(σ)-formula for there is a node
labeled a in the tree, i.e.,

ϕ(x) = (∃y) Pa(y).

16



We prove that ϕ is↔l-invariant over [finite] data-trees, though
it is not logically equivalent over [finite] data-trees to any

XPathl=-formula.
To see that ϕ is↔l-invariant over [finite] data-trees, take

T , u and T ′, u′ such that T , u ↔l T ′, u′ and T |= ϕ(u).
Furthermore, suppose that T , u |= ↑m↓na for adequate n
and m. By Theorem 3.16, T ′, u′ |= ↑n↓ma and so T ′ |=
ϕ(u′).

Assume by contradiction that there is ψ ∈ XPathl= such
that T , u |= ψ iff T |= ϕ(u) for all data-tree T and u ∈ T .
Suppose vd(ψ) = (r, s) and nd(ψ) = k. Let T be a data
tree formed by a chain of length r + 1 starting from the
root u with all its nodes containing a label b except the
leave, which has label a (the data values are irrelevant).

By Proposition 3.15 we have T , u↔lr,s,k (T |sru), u. Since

T , u |= ψ, by Theorem 3.16, we have (T |sru), u |= ψ, and so
T |sru |= ϕ(u). This last fact is a contradiction because no
node of T |sru is labeled with a.

Proposition 6.6. Let k′ = k ·(r+s+2). If ϕ(x) ∈ FO(σ)

is↔lr,s,k′ -invariant over [finite] data-trees, then there is ψ ∈
(r, s, k)-XPathl= such that Trx(ψ) is logically equivalent to ϕ
over [finite] data-trees.

Proof. By Corollary 3.13, for every data tree T and u ∈
T there is an (r, s, k)-XPathl= formula χr,s,k,T ,u such that

T , u ≡lr,s,k T
′, u′ iff T ′, u′ |= χr,s,k,T ,u. Let

ψ =
∨

T |=ϕ(u)

χr,s,k,T ,u.

As χr,s,k,T ,u ∈ (r, s, k)-XPathl= and, by Proposition 3.12,

≡lr,s,k has finite index, it follows that ψ is equivalent to a

finite disjunction. The proof that ϕ(x) ≡ Trx(ψ) is simi-
lar to Proposition B.3, as we show next. Let us see that
ϕ |= Trx(ψ). Suppose T |= ϕ(u). Since T , u |= χr,s,k,T ,a,
we have T , u |= ψ and so T |= Trx(ψ)(u). Let us see that
Trx(ψ) |= ϕ. Assume T |= Trx(ψ)(u), and so T , u |=
ψ. Then there exists T ′, u′ such that T ′ |= ϕ(u′) and
T , u |= χr,s,k,T ′,u′ . By the property of χr,s,k,T ′,u′ , we have

T , u ≡lr,s,k T
′, u′ and since ϕ is↔↓r,s,k·(r+s+2)-invariant (and

hence ≡↓r,s,k-invariant by Theorem 3.16-2) we conclude T |=
ϕ(u).

Lemma 6.7.The FO(σ)-formula

(∃y, z) [y ≈ z ∧ Pa(y) ∧ Pb(z)]

is↔l-invariant though not logically equivalent over [finite]

data-trees to any XPathlE= -formula.

Proof. Let ϕ(x) be the FO(σ)-formula for there are two
nodes with same data value and labels a and b respectively,
i.e.,

ϕ(x) = (∃y, z) [y ≈ z ∧ Pa(y) ∧ Pb(z)].

We show that ϕ cannot be expressed in XPath↓,↑,E= . Sup-
pose, by means of contradition, that there is a formula ψ ∈
XPath↓,↑,E= expressing ϕ, with vd(ψ) = (r, s) (vd(·) for XPath↓,↑,E=

is defined as in Table 2 plus the clause vd(Eϕ) = vd(ϕ)).
Let n = r + s, and let T be the chain-like data-tree

u0 → u1 → · · · → un

such that label(u0) = a, label(un) = b, label(ui) = c for
i ∈ {1, . . . n− 1} and data(ui) = i for i ∈ {0, . . . , n}. Let T ′
be the chain-like data-tree

u′0 → u′1 → · · · → u′n

such that label(u′i) = label(ui) for i ∈ {0, . . . n}, data(u′i) =
data(ui) for i ∈ {0, . . . , n− 1} and data(u′n) = 0. Note that
T 6|= ϕ(u0) and T ′ |= ϕ(u′0). However, one can show that
for all i ∈ {0, . . . , n} we have T , ui |= ψ iff T ′, u′i |= ψ.
Hence, ψ does not express ϕ and thus ϕ is not expressible
in XPath↓,↑,E= .

E. PROOFS OF SECTION 7
Theorem 7.2. For all `, k ≥ 0, i ≥ 1,

≡↓`,0 ) ≡↓`,1 ) · · · ) ≡↓`,` = ≡↓`,`+i, and

≡↓`,k ) ≡↓`+i,k.

Proof. Consider the data trees defined in Figure 12 for
every k. Note that ≡↓`,k+1 ⊆ ≡

↓
`,k and ≡↓`+1,k ⊆ ≡

↓
`,k by

definition. We show that ≡↓`,k 6= ≡
↓
`,k+1 for all ` ≥ k + 1.

For this purpose, we show that T 1
k , x

1
k ≡↓k+1,k T

′1
k , x

′1
k but

T 1
k , x

1
k 6≡↓k+1,k+1 T

′1
k , x

′1
k .

The fact that T 1
k , x

1
k 6≡↓k+1,k+1 T

′1
k , x

′1
k comes from the

fact that the property “there is a path of length k+1 ending
with a label a whose every pair of consecutive nodes have
distinct data value” is definable with the following formula
ϕk+1 of depth k + 1 and nesting depth k + 1,

ϕ1 = 〈ε 6= ↓[a]〉
ϕi+1 = 〈ε 6= ↓[ϕi]〉 for i > 0.

Since T 1
k , x

1
k |= ϕk+1 but T ′1k , x′1k 6|= ϕk+1, it follows that

T 1
k , x

1
k 6≡↓k+1,k+1 T

′1
k , x

′1
k .

To show T 1
k , x

1
k ≡↓k+1,k T

′1
k , x

′1
k we actually use Proposi-

tion 7.1 and show T 1
k , x

1
k↔↓k+1,k T

′1
k , x

′1
k . Note that T 1

k and

T 2
k (resp. T ′1k and T ′2k ) are equal modulo renaming of data

values, so we are also showing that the roots of any two data
trees with subindex k are (k + 1, k)-bisimilar.

Observation E.1. Note that the set of immediate sub-
trees of the roots of T 1

k , T ′1k , T 2
k , T ′2k are the same as those

of T ′1k , T 2
k , T ′2k (and of T 1

k , T ′1k , T ′2k ) by construction.

We now show T 1
k , x

1
k↔↓k+1,k T

′1
k , x

′1
k . For every j ≤ k+ 1,

t ≤ k, let Zj,t be the set of all pairs (x, y) ∈ T 1
k × T ′1k so

that x and y are some xik′ or x′ik′ for i ∈ {1, 2} and k′ ≥ t.2

Observe that

Zj+1,t ⊆ Zj,t for all j, t ≤ k. (4)

We show that (Zj,t)j≤k+1,t≤k verify the bisimulation condi-
tions. We proceed by induction on j + t. The base case,
j = t = 0, is trivial. The case l > 0, t = 0 is also straight-
forward.

Suppose then that t > 0. Let (u, u′) ∈ Zj,t. Again, Har-
mony is met since Zl,t relates only nodes with label a. Let
us suppose that u is some x1

t′ and u′ is x′1t′ for some t′ ≤ t,
the other cases being similar or simpler.

2Note that xik′ or x′ik′ do not necessarily uniquely identify
one node, but many possible. The intended meaning is that
x, y can be any of them.
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Figure 12: Definition of data trees T in, T ′in (n ≥ 0, i ∈ {1, 2}) for proof of Theorem 7.2.

Let us now show Zig. Let v, w be so that x1
t′
n→v and

x′1t′
m→w with n,m ≤ j.

• If v is inside the subtree T 2
t′−1 of T 1

t′ , but it is not

x2
t′−1, then we choose v′ as the corresponding3 node

inside the subtree T 1
t′−1 of T ′1t′ . Note that data(v) =

data(v′) by Observation E.1. Further, since every node
of T 1

t′−1 is in a Zj,t−1-relation with the correspond-

ing node in T 2
t′−1 by construction of Zj,t−1, it follows

that (
i→v)Zj,t−1(

i→v′) for all i ≤ n. Thus, by (4),

(
i→v)Zj−n+i,t−1(

i→v′) for all i ≤ n.

• If, on the other hand, v is x2
t′−1, we choose v′ as the

root of T ′2t′−1, x′2t′−1. Again, we have that data(v′) =
data(v) and by construction that vZj,t−1v

′. Thus, by
(4), vZj−1,t−1v

′.

• Finally, if v falls outside T ′2t′−1, we choose v′ as the

same node in T ′1t′ , where of course we will have that

data(v) = data(v′) and that (
i→v)Zj,t−1(

i→v′) for all

i ≤ n. Thus, by (4), (
i→v)Zj−n+i,t−1(

i→v′) for all
i ≤ n.

We do the same with w and w′. Since in every case we
can reach a node with the same data value and so that the
corresponding nodes in the path are Zj,t−1-related, it follows
that the Zig condition is satisfied. The Zag condition is only
easier, and hence we conclude that T 1

k , x↔↓k+1,k T
′
k

1
, x′ for

every k.
We therefore have that ≡↓`,k+1 ( ≡↓`,k for all ` ≥ k + 1.

The fact that ≡↓`+1,k ( ≡↓`,k is of course trivial, formulas
of depth `+1 can express “the tree has at least depth `+1”,
which cannot be expressed by formulas of depth `.

3Remember that T 1
t′−1 and T 2

t′−1 are isomorphic modulo a
renaming of data values, so by corresponding we mean the
node in the same position in the tree

It remains to show that ≡↓`,k = ≡↓`,k+1 for all ` ≤ k. To

show this, we prove T , x↔↓`,k+1 T
′, x′ for every T , T ′ so

that T , x↔↓`,k T
′, x′. We prove it by induction on ` + k.

The base case is easy.
For the inductive case, let Zj,t =↔↓j,t for all j ≤ `, t ≤

k. Hence, (Zj,t)j≤`,t≤k verify the bisimulation conditions.
Let Z`,k+1 = {(x, x′)}. We show that Z`,k+1 together with
(Zj,t)j≤`,t≤k verifies the bisimulation conditions. Harmony
follows from xZ`,kx

′. We show Zig since Zag is equivalent.

Suppose x
n→v, x

m→w with n,m ≤ `. Then, since Z`,k verifies

Zig, there are x′
n→v′, x′m→w′ where

(1) data(v) = data(w′) iff data(v′) = data(w′),

(2) (
i→v)Z`−n+i,k−1(

i→v′) for all i ∈ {0, . . . , n− 1}, and

(3) (
i→w)Z`−m+i,k−1(

i→w′) for all i ∈ {0, . . . ,m− 1}.

Since ` ≤ k, then `−n+i ≤ k−1. Further, `−n+i+k < `+k,
which means that we can apply the inductive hypothesis.

Hence, by inductive hypothesis, T , ( i→v)↔↓`−n+i,k T
′, (

i→v′)
and thus (

i→v)Z`−n+i,k(
i→v′). By an indentical reasoning,

T , ( i→w)↔↓`−n+i,k T
′, (

i→w′) and thus (
i→w)Z`−n+i,k(

i→w′).
Thus, the Zig condition for↔↓`,k+1 is verified. The Zag con-
dition holds by symmetry.

With respect to vertical XPath, note that since ≡lr,s,k ⊆
≡lr′,s′,k′ for all (r, s, k) ≤ (r′, s′, k′), as a consequence of
Proposition 3.11 we obtain that for every r, s, k with r+s ≥ 2

there is some k′ > k so that ≡lr,s,k ) ≡lr,s,k′ . In fact, we

conjecture that ≡lr,s,k ) ≡lr,s,k+1 for every k. We argue

that this can be proven through the models (Tn)n in the

proof of Proposition 3.11, by showing that Tk, xr′,s′ ≡lr,s,k
Tk+1, xr′,s′ but Tk, xr′,s′ 6≡lr,s,k+1 Tk+1, , xr′,s′ for every (r, s) ≥
(r′, s′). The fact that≡lr,s,k ) ≡lr+1,s,k and≡lr,s,k ) ≡lr,s+1,k

are straightforward. We then obtain the following.
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Claim E.2. ≡lr,s,k ) ≡lr′,s′,k′ for all (r, s, k) < (r′, s′, k′),
r + s ≥ 2.
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