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1. Introduction

In this Proceedings volume various situations are met in which the dy-
namical motion of collections of bodies subject to unilateral constraints of
non-interpenetrability has to be calculated.

After the pioneering work of P. Cundall [3], motivated by geomechani-
cal problems, the most popular numerical techniques used for this purpose
depend on the approximate replacement of the unilateral constraints by
repulsion laws which enter into action as soon as a pair of bodies come
sufficiently close to each other. Also, some additional effects governed by
nonsmooth laws, such as dry friction and possible collisions may be approx-
imated through analogous regularization procedures. The dynamics of the
approximate system is then governed by differential equations with suffi-
cient regularity to be handled through standard numerical techniques.

The drawback is that the need of precision calls for the use of stiff ap-
proximate laws. Hence the time-stepping schemes applied have to resort to
very small step-length and possibly also have to enforce numerical stability
by introducing artificial damping or artificially increasing inertia. In some
applications, the effect of such alterations of the mechanical data may blur
the picture. For this reason, a number of authors [11][14][2][15][1] have pre-
ferred to base the computation on the strict handling of unilaterality and
nonsmoothness. It was not before a paper of E. Delassus [4] that some atten-
tion was paid to the problems raised by the discussion of contact persistence
when several unilateral constraints are present. As Delassus’ arguments to-
day seem difficult to read, the same questions were investigated again in
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[8][9] with the help of Convex Analysis and Complementarity theory, which
currently remain the favorite tools in the domain.

In the author’s experience, the rather subtle concurrence of inequality
conditions and of evolutions governed by differential equations has gener-
ated frequent misunderstandings. The present paper is meant to clear up
certain points without exhibiting too cumbersome technicalities.

2. The differential handling of inequality conditions

2.1. TWO LOCAL STATEMENTS

Let ϕ denote a real function defined on the interval [0, T [ with ϕ(0) = 0 and
the right-derivative ϕ′+(0) assumed to exist. The definition of this derivative
readily entails the following.
• If ϕ ≥ 0 on a neighbourhood of 0 in [0, T [, then ϕ′+(0) ≥ 0.
• If ϕ′+(0) > 0, there exists an interval ]0, ε[ on which ϕ > 0.

Clearly, the respective converses of these two implications are false.
Let t ∈ [0, T [ be the time and let ϕ(t) express the normal gap between

two bodies which lie in contact at instant 0. The above shows that the
prediction of contact to persist or to break cannot be reduced to the evalu-
ation of derivatives at t = 0. Invoking derivatives of order higher than one,
if they exist, does not evade the occurence of some non conclusive cases.

In these local statements, we have considered the operation of derivat-
ing a real function as a point operation. In the usual theory of Differential
Equations, the derivative of a function, considered globally over a whole in-
terval, is rather viewed as ‘what allows one to retrieve the function through
integration’, a standpoint emphasized below.

2.2. PRIMARY EXAMPLE OF A DIFFERENTIAL INCLUSION

Let us investigate a moving point in Rn, i.e. a mapping q : [0, T [→ Rn. We
want q(t) to comply for every t with some inequality requirement

f(t, q(t)) ≤ 0, (1)

where f : [0, T [×Rn → R denotes a C1 real function. It is assumed that, for
every t in [0, T [ and every x in Rn, the gradient ∇f(t, x) := (∂f/∂x1, . . . ,
∂f/∂xn) is not identically zero. Put

Γ(t, x) :=
{
{v ∈ Rn | ∂f/∂t + v.∇f(t, x) ≤ 0} if f(t, x) ≥ 0
Rn otherwise.

Suppose q is locally absolutely continuous on the interval [0, T [. Equiv-
alently, the derivative dq/dt exists almost everywhere and equals a locally
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Lebesgue-integrable function u : [0, T [→ Rn such that, for every t ∈ [0, T [,
one has q(t) = q(0) +

∫ t
0 u(s) ds.

THE INTEGRATION LEMMA [11]. Assume that inclusion

dq

dt
∈ Γ(t, q(t)) (2)

holds for almost every t in [0, T [ and that inequality (1) is verified for t = 0.
Then the same inequality is verified for every t ∈ [0, T [.

Proof. Put ϕ(t) = f(t, q(t)), a locally absolutely continuous real function,
since f is C1. Through the chain rule, its derivative is expressed almost
everywhere as ϕ′ = ∂f/∂t + u.∇f . Imagine the existence of τ in [0, T [ such
that ϕ(τ) > 0 and look for contradiction.

Since ϕ(0) ≤ 0, continuity imposes on ϕ to take the value 0 on a non-
empty subset of [0, τ [. Let σ denote the l.u.b. of this subset; by conti-
nuity ϕ(σ) = 0, while ϕ is positive on the interval ]σ, τ ]. As u = dq/dt
verifies (2), ϕ′ should be ≤ 0 almost everywhere on this interval, hence
ϕ(τ) =

∫ τ
σ ϕ′(t) dt ≤ 0, which is a contradiction.2

A condition of the form (2), imposed on a function q : [0, T [→ Rn, is
called a differential inclusion.

By imagining some selection rules for the multifunction (t, x) → Γ(t, x),
one may construct differential equations whose solutions a fortiori verify
(2). Here is a simple example.

2.3. SWEEPING

Let Γ be defined as above. For every (t, x) in [0, T [×Rn, denote by γ(t, x)
the element of minimal norm in Γ(t, x). If f(t, x) < 0, this simply equals
the zero of Rn. If f(t, x) ≥ 0, the set Γ(t, x) is a half-space which contains
the origin or not, depending on the sign of ∂f/∂t. If the latter is ≤ 0, γ(t, x)
again equals the zero of Rn. Otherwise, the zero of Rn lies outside of the
half-space and γ(t, x) = −((∂f/∂t)/‖∇f‖2)∇f .

The motion of a point q verifying the differential equation

dq

dt
= γ(t, q(t)) (3)

and initially f(0, q(0)) ≤ 0 may be described as follows. Owing to the
Integration Lemma, q belongs for every t to the moving region Φ(t) := {x ∈
Rn | f(t, x) ≤ 0}. As long as it lies in the interior, the point stays at rest.
It is only when the boundary of Φ(t), i.e. the hypersurface with equation
f = 0, moves inward and reaches q that the point takes on a velocity in
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inward normal direction, so as to go on belonging to Φ(t). The magnitude
of this velocity vector equals the ‘normal speed’ of the hypersurface.

Here is another characterization of this motion. If, at time t, a point
x lies in the hypersurface f = 0, the vector ∇f(t, x) (we have assumed it
nonzero) is known to be normal to this hypersurface and directed outward
of the region Φ(t). The half-line emanating from the origin, generated by
∇f(t, x), is said to constitute the normal cone to Φ(t) at point x; notation:
NΦ(t)(x) (the definition of a normal cone for less regular sets than Φ is a vast
subject; some other cases will be met in the sequel). For x in the interior
of Φ(t), it proves consistent to define NΦ(t)(x) as reduced to the zero of
Rn, while the cone shall be defined as empty if x /∈ Φ(t). By discussing
the various cases occuring in the calculation of γ(t, x), one sees that every
solution q to the differential equation (3) verifies, for almost every t, the
differential inclusion of the Sweeping Process [7][13]

−dq

dt
∈ NΦ(t)(q(t)). (4)

Unexpectedly, the converse is true, i.e. the inclusion (4), in spite of its
right-hand side not reducing to a single element, actually is equivalent to
the differential equation (3).

In fact let q, locally absolutely continuous of [0, T [ into Rn, be a solu-
tion to (4). For almost every t, the derivative dq/dt exists, so the right-hand
side is nonempty and, consequently, q(t) ∈ Φ(t). The same is true for every
t, by continuity. For t such that q(t) lies in the interior of Φ(t), (4) im-
plies dq/dt = 0, which makes that (3) is also satisfied. Otherwise, suppose
that q(t) belongs to the boundary, i.e. the function τ → f(τ, q(τ)) van-
ishes at τ = t. Then the right-derivative ∂f/∂t + q′+(t).∇f(t, q(t)), if it
exists, is ≤ 0 while, symmetrically, the left-derivative is ≥ 0. Therefore
the bilateral derivative q′(t), which exists with the possible exception of a
Lebesgue-negligible subset of [0, T [, satisfies ∂f/∂t + q′(t).∇f(t, q(t)) = 0,
i.e. it belongs to the boundary of the half-space Γ(t, q(t)). Furthermore, (4)
entails that this vector is directed as the inward normal to the half-space,
a property which elementarily characterizes it as equal to γ(t, q(t)).

3. Duality

3.1. PAIRED LINEAR SPACES

Let X and Y denote two real linear spaces. The concept of a bilinear form,
say x ∈ X, y ∈ Y 7→ 〈x, y〉 ∈ R, placing these spaces in duality has long
been implicit in Mechanics: if X is a space of velocities and Y a space of
forces, such a bilinear form expresses the power associated with the pair
x, y. Equivalently, the elements of X may be infinitesimal displacements,
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that is the products of velocities by a certain formal time-increment, in
which case the bilinear form expresses an infinitesimal work.

This mathematical structure takes its full interest with the infinite-
dimensional spaces of Functional Analysis and the connection of duality
with the definition of topologies on these spaces. In this paper, we shall re-
strict ourselves to finite-dimensional spaces, so that the definition of topolo-
gies on X and Y is standard and unambiguous, securing the continuity of
every linear function. For brevity, we suppose that the duality is separating,
i.e. every linear form on X can uniquely be represented as x 7→ 〈x, y〉, with
y ∈ Y , and symmetrically with X and Y exchanged. In other words, by
referring to the bilinear form 〈. , .〉, one may identify each of the two spaces
X and Y with the dual of the other.

As soon as some bases are chosen in the respective spaces, the bilinear
form may be calculated from the components of the two vectors as 〈x, y〉 =
bijx

iyj . A simplification occurs if the two bases are suitably paired: with
every base in one of the spaces, another one is uniquely associated in the
other space, called the conjugate base, such that bij = δij , i.e. the expression
of 〈x, y〉 reduces to the standard scalar product xiyi of Rn.

3.2. INNER PRODUCT AND SELF-DUALITY

As a special case, X and Y may consist of the same space, say E, so that
the bilinear form becomes an inner product, more commonly denoted with
a simple dot. In this case, it makes sense to assume the symmetry x.y = y.x.
If, in addition, x.x > 0 for every nonzero element x (an assumption which is
found to secure that the corresponding duality of E with itself is separating)
the linear space E is said Euclidean.

Such is the space of the vectors of the three-dimensional space of ele-
mentary Geometry and Physics, denoted in the sequel by E3.

Many usual operations performed in Rn rest on the standard Euclidean
structure of this n-dimensional linear space. So is, for instance, the construc-
tion of a pseudo-inverse for a noninvertible linear map, a tool sometimes
useful in the handling of mechanical constraints. Actually, the mechanical
problems in view intrinsically pertain to some linear spaces, the representa-
tion of which in terms of Rn results from the choice of a base. In common
practice, this choice is based on calculation convenience, so no mechanical
significance should be attributed to such Euclidean operations.
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4. Parametrization of a Multibody System

4.1. CONFIGURATIONS AND VELOCITIES

Let the possible configurations of a mechanical system be parametrized,
at least locally, through generalized coordinates, say q1, . . . , qn. The choice
of this parametrization is governed by convenience and any differentiable
change of parameters is mechanically admissible. In other words, the set Q
of the possible configurations of the system may be viewed as a Differential
Manifold. Such a close connection exists between Analytical Dynamics and
Differential Geometry that, in spite of computation finally dealing only
with elements of Rn, we think it a good precaution to keep some basic
geometrical concepts in mind. For instance, this may prevent from paying
undue attention to calculation artefacts devoid of mechanical significance.

Define a motion of the system by making q1, . . . , qn depend on the time
t in a differentiable way. For every instant, say t1, the values of the n
derivatives qi′(t1) are commonly called the generalized velocity components
of the system. If the differential geometric standpoint is adopted, these n
real numbers properly are the components of an element of some abstract
n-dimensional linear space, called the tangent space at the considered point
q of Q, that we shall denote by Q′

q. If a differentiable change of parameters
is performed, the time-derivatives at t1 of the new parameters, for the same
motion as before, are connected with the time-derivatives of the former ones
through linear formulas, the coefficients of which constitute the Jacobian
matrix of the change of variable. From the differential geometric standpoint,
this linear transform merely reflect a change of base in the tangent space:
the time derivatives of the n new parameters are the new components of
the same element of Q′

q as before, intrinsically called the system velocity.
When the considered motion is smoooth enough for the second deriv-

atives qi′′(t1) to exist, it is common in Computation literature to refer to
these quantities as the ‘acceleration components’, but one should recall
that, in case of a change of parameters, they do not remain the components
of a definite element of Q′

q. In fact, the first derivatives qi′(t) equal the
components of the velocity, an element of Q′

q(t), but the latter does not
consist of the same linear space when t varies, so one cannot rely on the
traditional concept of the derivative of a vector function.

4.2. CONTACT KINEMATICS

For the sake of reducing the number n, the parametrization (q1, . . . , qn) may
be constructed with account of possible permanent, frictionless linkages
imposed on the members of the system. After that, the constraints of non-
interpenetrability are additionally considered. The consequent geometric
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restriction on the system positions is assumed expressed by a finite set of
inequalities

fα(t, q) ≤ 0, α ∈ {1, . . . , κ}, (5)

where f1, . . . , fκ are given functions. Through the presence of t as an argu-
ment of fα, provision is made for the inequality to describe the confinement
of a part of the system by some external boundary with prescribed motion.

Suppose that inequality fα ≤ 0 expresses the local non-interpenetration
of some pair of members of the system, say B and B ′, so that equality
fα = 0 correspond to these bodies touching each other at some point of
space denoted by Mα. This we shall assume to be an isolated contact point,
but other contacts, associated with different values of α, may also be in
effect between the same bodies at the same instant. For every imagined
motion t 7→ q(t) bringing the system through the considered contacting
position for some value of t, the velocity vectors Vα and V ′

α, relative to
the chosen reference frame, of the respective particles of B and B′ passing
at point Mα let themselves be expressed as affine functions of the system
velocity u ∈ Q′

q. The same is thus true for the relative velocity Uα = Vα−V ′
α

of B with respect to B ′ at this point, say

Uα = Gα u +Wα, (6)

where Gα : Q′
q → E3 denotes a linear mapping, depending on t and q. No

attention is paid at this stage to the imagined motion preserving contact
or not. The term Wα ∈ E3, a known function of t and q, vanishes in the
familiar case of a time-independent parametrization.

Similar formula holds if inequality fα ≤ 0 expresses the confinement of
a part B of the system by some external boundary with prescribed motion.
Assume that equality fα = 0 corresponds to contact taking place at some
point, here again denoted by Mα. The local velocity, at this point, of the
body B with respect to the boundary has the same form as Uα in (6), where
Wα now reflects the known velocity of the boundary (for a time-independent
parametrization, Wα equals the negative of this velocity vector).

At the contact point Mα, we assume that a common tangent plane to
the respective surfaces of the concerned bodies has been defined (this does
not require of both surfaces to be smooth; for instance, contact may take
place between a smooth body and the extremity of a spike of the other). Let
nα denote the unit vector to this plane, directed toward B. In computation,
as well as in existential studies, it proves useful that the definition of the
above elements would be conventionally extended to a neighbourhood of the
concerned value of (t, q) in R×Q. This allows one to express as a function of
(t, q) the normal gap, say gα(t, q), between B and B′, counted as negative in
the case of overlap. Classically, the derivative of the function t 7→ gα(t, q(t))
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is found equal to Uα.nα, the normal component of the relative velocity of
the contacting bodies at point Mα.

Sometimes, in Computation literature, the second derivative of the same
function is improperly referred to as the ‘normal relative acceleration’. Ac-
tually, since the material particles involved in the definition of Uα are not
the same from an instant to the other, this second derivative has in general
nothing to do with the relative acceleration vector.

4.3. THE COTANGENT SPACE

Let a real function F be defined on the manifold Q and let F̂ : Rn → R
its expression in the parametrization (q1, . . . , qn). If F̂ is differentiable at
a point of Rn, the function F is said differentiable at the corresponding
point q of Q and the partial derivatives ∂F̂ /∂qi are declared to constitute
the components of its gradient, denoted by ∇F . The latter is an element
of some linear space Q′∗

q , the cotangent space to Q at point q. If, similarly
to that was done in the preceding, a differentiable change of parameters
is performed, the function F assumes a new representation, and the new
partial derivatives may be calculated from the former ones through linear
formulas. These partial derivatives make the components of the same object
∇F as before relatively to a new base of Q′∗

q .
The relationship between Q′

q and Q′∗
q is made clear by considering the

same moving point as in Subsec. 4.1, passing through the considered con-
figuration at time t1. The derivative of the real function t 7→ F (q(t)) is
expressed through the chain rule as qi′(t1)∂F̂ /∂qi. That this derivative
should not depend on the parametrization in use results in the following
statements:

• a bilinear form, denoted by 〈. , .〉, places the two spaces in duality,
• the elements qi′(t1) and ∂F̂ /∂qi of Rn respectively make the compo-

nents of q′(t1) in Q′
q and of ∇F in Q′∗

q relatively to a pair of bases which
are conjugate with regard to this bilinear form,

• the derivative of t 7→ F (q(t)) at t1 equals 〈q′(t1),∇F 〉.

4.4. NORMALITY

Assume that the configuration q of the system at time t satisfies fα(t, q) = 0,
i.e. the contact with label α is in effect. For this value of t, the points of
Q satisfying the same equality make a hypersurface Sα. If the element
∇fα(t, q) of Q′∗

q is nonzero, it may be said normal to this hypersurface in
the following sense: for every differentiable chain of points, say q̂ : R → Sα

such that q̂(0) = q, this element is orthogonal, in the sense of the duality
form 〈. , .〉, to the tangent vector q̂′(0) ∈ Q′

q. This immediately results from
the expression given above to the chaine rule. Furthermore, ∇fα(t, q) is also
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able to meet the same need as the gradient does in the traditional Euclidean
setting, that of distinguishing between the two sides of the hypersurface. In
fact, if a differentiable chain of points τ 7→ q̂(τ) ∈ Q, with q̂(0) = q, satisfies
〈q̂′(0),∇fα(t, q)〉 > 0, then the point q separates an arc τ < 0 which lies in
the region fα < 0 from an arc τ > 0 which lies in the region fα > 0.

Let Φ(t) denote the feasible region at time t, i.e. the set of the positions
complying with the non-interpenetration conditions (5). Put

J(t, q) := {α ∈ {1, . . . , κ} | fα(t, q) ≥ 0}. (7)

If q ∈ Φ(t), this is the set of the values of α such that the condition
fα(t, q) ≤ 0 holds as equality. The (outward) normal cone NΦ(t) is defined as
the convex cone generated in Q′∗

q by the elements ∇fα(t, q) with α ∈ J(t, q).
This generated cone reduces to the zero of Q′∗

q if J(t, q) is empty, i.e. if q
lies in the interior of Φ(t).

4.5. CONTACT FORCES

The technique of Analytical Dynamics requires that every collection of
forces, say e1, e2, . . . ∈ E3, applied to particles of the system in a given con-
figuration q be represented, with regard to the parametrization q1, . . . , qn

in use, by n real numbers c1, . . . , cn, called the covariant components (or
‘generalized components’) of this collection of forces. The definition of this
element of Rn rests, similarly to that was done in the preceding Subsec.,
on the consideration at fixed t, of a differentiable chain of configurations
τ 7→ q̂(τ) ∈ Q, with q̂(0) = q : this is traditionally called a virtual dis-
placement at time t. Correspondingly, the material particle to which the
forces are applied have positions P1(τ), P2(τ), . . ., relative to the chosen
reference frame, which depends differentiably on the variable τ . The deriv-
atives P ′

1(0), P ′
2(0), . . . ∈ E3, called the virtual velocities of these particles

are used to calculate P ′
1(0).e1 +P ′

2(0).e2 + . . . (Euclidean scalar products in
E3), called the virtual power. This is required to equal q̂i′(0).ci, whatever
the differentiable chain q̂ is. Consequently, the ci are the components of an
element of Q′∗

q independent of the parametrization in use.
There is no conceptual difficulty in extending this definition of the co-

variant components to more general ‘efforts’ than simple forces, for example
to the concentrated torques commonly invoked in the phenomenological de-
scription of the resistance to rolling: the power of such a torque is defined
through the spin vector of the concerned body.

What precedes applies in particular to the situation of Subsec.4.2. Two
members B and B′ of the system being in contact at point Mα, the contact
force Rα exerted by B′ upon B and its counterpart −Rα exerted by B upon
B′ together have a virtual power equal to the scalar product of Rα by the
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relative virtual velocity of the contacting bodies at point Mα. Expressing
the latter from the derivative q̂′(0) requires the same calculation as for
Equ. (6), except that, the virtual displacement taking place at fixed t, the
term Wα is absent. Therefore, in the differential geometric setting, the
pair of contact forces is represented by the element rα of Q′∗

q such that
〈q̂′(0), rα〉 = Gα q̂′(0).Rα, whatever is q̂′(0) in Q′

q, i.e.

rα = G∗
αRα, (8)

where the linear mapping G∗
α : E3 → Q′∗

q equals the transpose of Gα with
regard to the duality 〈Q′

q,Q′∗
q 〉 and to the self-duality of E3.

Similar formula is found to hold if equality fα = 0 characterizes the con-
tact of a part B of the system with some external boundary with prescribed
motion. Then rα in (8) makes the covariant representation of the force Rα

alone, acting on B. Its counterpart exerted by B upon the boundary is not
a force experienced by the system.

5. Dynamics

5.1. LAGRANGE EQUATIONS

The system Dynamics is governed by

A(t, q)
du

dt
= F (t, q, u) +

∑
α

rα, (9)

where A denotes the inertia matrix. The expression F comprises standard
terms of the Lagrange equations and the covariant components of some
applied forces, supposed given as functions of the time, the position of the
system and its velocity. The elements rα, α ∈ {1, 2, . . . , κ}, are made of the
covariant components of the contact forces as expressed in (8).

Equ. (9) must be read as an equality of elements of Rn (in the differential
geometric formalism, as explained before, the symbol du/dt would have no
meaning). The components of the velocity function t 7→ u do not necessarily
equal the derivatives of the components of the configuration function t 7→ q.
For instance, when dealing with 3-dimensional rigid bodies, it is usual to
attach to each of them a frame of principal axes of inertia emanating from its
center of mass. Then one may choose to enter, as members of the Rn-valued
function u, the components relative to these axes of the spin vector of the
rigid body, instead of the time-derivatives of some directional parameters.
This amounts to use in the tangent space Q′

q a base different from the one
induced by the parametrization of Q, with the considerable advantage of
generating a contribution in the matrix A which is diagonal and constant
with regard to t and q. Retrieving from the spin components the evolution of
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the directional parameters of the rigid body is only the matter of integrating
some standard kinematical formulas.

To the above equation, the geometric conditions (5) of non-interpenetra-
tion are to be adjoined and also some phenomenological information con-
cerning each possible contact, called a contact law, for which we assume
the form

lawα(t, q,Uα,Rα) = true. (10)

The local relative velocity Uα and the contact force Rα are respectively
connected with u and rα through (6) and (8).

Here is the simplest example of such a law.

5.2. FRICTIONLESS CONTACT

In the notations of Subsec. 4.5, the assumption of no friction at the contact
with label α consists in asserting that the contact force Rα is normal to
the tangent plane. Assume in addition that contact exhibits no cohesion
(gluing) effect, in other words ∃ρα ≥ 0 : Rα = ραnα. It has been agreed
to extend the definition of nα to the cases where gα, the normal gap, takes
nonzero values and to put Rα=0 if gα > 0. Define

Kα(t, q) :=
{
{V ∈ E3 | V.nα ≥ 0} if gα(t, q) ≤ 0
E3 otherwise.

This is the set of the values of the local right-velocity of B relatively to B′

(the latter may be an external boundary) which are compatible with non-
interpenetration. In the first line, Kα equals a half-space, so the normal
cone NKα , evaluated at the origin 0 of E3, equals the half-line generated
by −nα. In case Kα = E3, the cone NKα(0) reduces to the set {0}.

Therefore, at time t, the no-friction and no-gluing assumptions, includ-
ing the event of no-contact, are equivalent to assert

−Rα ∈ NKα(t,q)(0). (11)

Let us consider a locally absolutely continuous motion t 7→ q(t) in the
course of which the non-interpenetration condition gα(t, q(t)) ≥ 0 remains
satisfied, with a contact force verifying (11) for almost every t. Then the
following is verified for almost every t

−Rα ∈ NKα(t,q)(Uα). (12)

In fact, this trivially holds when gα(t, q(t)) > 0, in view of the definition
of Kα. At t such that gα(t, q(t)) = 0, the right- and left-derivatives of the
function τ 7→ gα(τ, q(τ)), if they exist, respectively are ≥ 0 and ≤ 0, so that
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the (bilateral) derivative, namely Uα.nα, which exists for almost every t, is
zero. In this case, Kα is a half-space and Uα lies on its boundary, making
that NKα(t,q)(Uα) = NKα(t,q)(0).

Conversely, (12) implies (11) since the normal cone to Kα at any point
of E3 is a subset of NKα(t,q)(0).

Inclusion (12) is a stronger requirement than (11). In particular, it com-
pels NKα(t,q)(Uα) to be nonempty, i.e. Uα ∈ Kα(t, q(t)). In view of the def-
inition of Kα and of the identity Uα.nα = ∂gα/∂t + 〈q′,∇gα〉, this reduces
to the situation analyzed in Subsec. 2.2. By making f = −gα, one obtains:

Assume that (12) holds for almost every t and that the non-interpenetra-
tion inequality gα ≥ 0 holds at the initial instant. Then this inequality holds
at every further instant.

This generally will be true whenever the contact with label α is governed
by a contact law involving, among other stipulations

in all cases Uα ∈ Kα. (13)

If, in addition, this law secures the implication

Uα ∈ interior Kα ⇒ Rα = 0, (14)

as precisely (12) does, we call it a complete contact law.
Properties (13) and (14) are of importance in the construction of time-

stepping algorithms and also in the treatment of possible collisions [10][11].
Concerning the formulation of the Coulomb law of dry friction in the form
of a complete contact law, see [11][5].

5.3. ELIMINATION OF FRICTIONLESS CONTACT FORCES

The following relationship is found to hold [11] between the element ∇fα

of Q′∗
q and the normal unit vector nα at point Mα to the contacting bodies,

directed toward B

∃λα ≥ 0 such that G∗
α nα = −λα∇fα. (15)

The proof of this rests on a ‘unilateral’ version of the algebraic theorem
of Lagrange multipliers, known in Convex Analysis as Farkas’ lemma.

In the sequel, we shall assume that the mapping Gα is surjective of Q′
q

onto E3; equivalently, its transpose G∗
α is injective of E3 into Q′∗

q . Then λα

in (15) is nonzero. Some special positions of certain linkages may give rise
to ‘wedging’ effects which contradict this assumption.

This allows one to apply Equ. (8), in order to eliminate the contact
forces between the equation of Dynamics (9) and the law of frictionless
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contact (11), so obtaining the differential inclusion

F (t, q, u)−A(t, q)
du

dt
∈ NΦ(t)(q). (16)

The normal cone NΦ(t) to the feasible region at time t has been defined in
Subseq. 4.4.

If, instead of (11), one invokes the complete law (12), the elimination of
the contact forces rests on the definition of

W (t, q) := {v ∈ Q′
q | ∀α ∈ J(t, q) :

∂fα

∂t
+ 〈v ,∇fα〉 ≤ 0}, (17)

namely the set of the values of the right-derivative q′+(t) compatible with
q remaining in Φ(t). This is a closed convex polyhedral subset of Q′

q whose
normal cone at any point consists of a subset of Q′∗

q . One then obtains the
differential inclusion

F (t, q, u)−A(t, q)
du

dt
∈ NW (t,q)(u). (18)

Provided the non-interpenetration conditions (5) are satisfied at the intial
instant, this differential inclusion, assumed to hold for almost every t, im-
plies through the Integration Lemma that these conditions remain satisfied.

5.4. TIME-STEPPING APPROXIMATION

Let some initial conditions q(t0) = q0 ∈ Φ(t0) and u(t0) = u0 ∈ W (t0, q0)
be imposed on a solution to the differential inclusion (18). Denote by [ti, tf ]
a time-step, with length h. From the computed values ui and qi of the
functions u and q at t = ti, which result from the preceding computation
step, one has to predict uf and qf corresponding to tf .

The given functions F and A in (18) usually depend smoothly on their
arguments, so we approximate their values throughout the concerned time-
step by fixing t as the ‘midtime’ tm := ti + h/2 and q as the ‘midposition’
qm := qi + hui/2 while u is made equal to ui.

Similarly, the detection of the contacts to be treated as effective in the
time-step is based on the values that the functions fα take at point (tm, qm),
i.e. the set of the ‘active’ values of α is estimated to be Jm := J(tm, qm)
and W (t, q) to equal Wm := W (tm, qm).

We propose to evaluate the unknown uf through a procedure of the
implicit type. By using (uf − ui)/h as an approximant of du/dt, this yields

h F (tm, qm, ui)−A(tm, qm)(uf − ui) ∈ NWm(uf) (19)

(the right-hand side being a cone, the multiplier h > 0 has been dropped).
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Therefrom uf may be calculated as the solution of a Quadratic Program-
ming problem. In fact there is no loss of generality by making A equal the
identity matrix, since this amounts to equip Rn with the ‘kinetic’ Euclid-
ean metric. In view of a standard characterization of the proximal point of
a point to the convex set Wm, inclusion (19) is found equivalent to

uf = prox(Wm , ui + hFm). (20)

Finally, one completes the computation step with qf = qm + h
2 uf .

The above implicit time-stepping scheme provides a primitive example
of the approach entitled ‘Contact Dynamics’. Of course, more realistic con-
tact laws than (12) may be introduced [11], in which case it proves efficient
to avoid the elimination of the local variables Uα, Rα and apply a nonlin-
ear relaxation technique à la Gauss-Seidel [13]. This has been used in the
simulation of Granular Materials involving thousands of bodies [12].
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