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A LOCAL REGULARIZATION OPERATOR
FOR TRIANGULAR AND QUADRILATERAL FINITE ELEMENTS

C. BERNARDI† AND V. GIRAULT†

Abstract. This paper develops a local regularization operator on triangular or quadrilateral
finite elements built on structured or unstructured meshes. This operator is a variant of the reg-
ularization operator of Clément; however, ours is constructed via a local projection in a reference
domain. We prove in this paper that it has the same optimal approximation properties as the
standard interpolation operator, and we present some applications.
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Introduction. Let Ω be a two-dimensional bounded open set with a polygonal
boundary Γ. Let Th be a triangulation or quadrangulation of Ω, and let Θh be a
standard associated finite element space. The purpose of this paper is to construct
an operator Rh that associates, with any function u in L1(Ω), an element Rh(u) in
Θh and satisfies the same local approximation properties as the usual interpolation
operator when u is sufficiently smooth. Since this operator must also act on functions
that are not necessarily continuous, it replaces the nodal values of the function that
is interpolated by adequate averages.

For triangular meshes, such operators were introduced by Clément in [7] and
generalized by Bernardi in [2]. However, in contrast to [7], the averages in the present
paper are computed in some reference domain; this idea was used in [2] to treat curved
(isoparametric) triangles or simplices and also allows for an extension to quadrilateral
meshes. In contrast to [2], they are computed on spaces of piecewise polynomial
functions. Indeed, we will show by a simple counterexample that this is necessary to
recover the usual interpolation error when the function that must be approximated is
smooth.

Several modified versions of these operators exist; see [4, Chap. 4]. For instance,
Scott and Zhang [14] use averages on the boundary of the elements, in particular when
the associated degrees of freedom are on the boundary. The advantages are that, on
one hand, the corresponding operator preserves the nullity of traces and that, on
the other hand, it leaves invariant the functions of the discrete space. However, the
drawback is that it is only defined on more regular functions, i.e., sufficiently smooth
to have a trace on the boundary of elements. For this reason, we prefer first to
construct a general operator and second to modify it in order that the new operator
preserves the nullity of traces.

This paper is organized as follows. In section 1, we make precise the notation
and we recall some basic results. We have chosen to treat separately, in sections 2
and 3, the discussion of the averaging process on triangular finite elements and on
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quadrilateral finite elements, because the techniques involved are somewhat different,
especially in the case of non-Cartesian quadrilateral meshes. In section 4, the error es-
timates for these averages are used to derive the error estimates for the corresponding
regularization operator. Section 5 is devoted to some applications.

1. Preliminaries and notation. Let O be a bounded domain in R2 with a
Lipschitz-continuous boundary ∂O. We denote by |O| the measure of O. For any
nonnegative integer m and any number p with 1 ≤ p ≤ ∞, we use the standard
Sobolev spaces

Wm,p(O) =
{
v ∈ Lp(O) ;

∂k v

∂xi
1∂x

k−i
2

∈ Lp(O) , 0 ≤ i ≤ k , 1 ≤ k ≤ m
}
,

equipped with the two seminorms

|v|Wm,p(O) =

(
m∑
i=0

∥∥∥ ∂m v

∂xi
1∂x

m−i
2

∥∥∥p
Lp(O)

)1/p

,

[v]Wm,p(O) =
(∥∥∥∂m v

∂xm
1

∥∥∥p
Lp(O)

+
∥∥∥∂m v

∂xm
2

∥∥∥p
Lp(O)

)1/p

and norm

‖v‖Wm,p(O) =

(
m∑

k=0

|v|p
Wk,p(O)

)1/p

,

with the usual modification for p = ∞. By interpolation, this definition can be
extended to nonintegral values of m. In particular, for 1 ≤ p < ∞, fractional or-
der spaces include the trace space of functions of W 1,p(O), that is, W 1−1/p,p(∂O),
equipped with the norm

‖μ‖W 1−1/p,p(∂O) = inf
v∈W 1,p(O),v|∂O=μ

‖v‖W 1,p(O) .

The reader is referred to Lions and Magenes [12, Chap. 1] for fractional-order Sobolev
spaces.

Finally, let us recall two fundamental results of polynomial interpolation. For
any nonnegative integer k, let Pk be the space of polynomials in two variables of total
degree less than or equal to k, and let Qk be the space of polynomials in two variables
of degree less than or equal to k in each variable. Note that Pk and Qk coincide for
k = 0, but otherwise Qk is a subspace of P2k. For any nonnegative integers k and �,
the polynomial spaces Pk and Qk are contained in W �,p(O), and we can define the
quotient spaces W �,p(O)/Pk and W �,p(O)/Qk, which are also Banach spaces equipped
with the quotient norms

∀v̇ ∈ W �,p(O)/Pk, ‖v̇‖W �,p(O)/Pk
= inf

r∈Pk

‖v + r‖W �,p(O),

∀v̇ ∈ W �,p(O)/Qk, ‖v̇‖W �,p(O)/Qk
= inf

r∈Qk

‖v + r‖W �,p(O) .
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The next two theorems state important properties of these quotient spaces. The first
one is proven in Deny and Lions [8] (cf. also Nečas [13, Chap. 1]) and the second
one in Ciarlet and Raviart [6]. A more general result, in the finite union of star-
shaped domains with respect to balls, is proven by Dupont and Scott [9] and also by
Durán [10] in a constructive way. This construction, inspired by Sobolev’s explicit
representation of a function as a polynomial plus a remainder term, is based on the
representation of a function as an averaged Taylor’s series. We refer to [4] for more
details.

Theorem 1.1. Assume that O is a bounded and connected open set in R2 with a
Lipschitz-continuous boundary. For each integer k ≥ 0 and number p with 1 ≤ p ≤ ∞,
there exists a constant C such that

(1.1) ∀v ∈ W k+1,p(O), ‖v̇‖Wk+1,p(O)/Pk
≤ C |v|Wk+1,p(O) .

Theorem 1.2. Assume that O is a bounded and connected open set in R2 with a
Lipschitz-continuous boundary. For each integer k ≥ 0 and number p, with 1 ≤ p ≤ ∞,
there exists a constant C such that

(1.2) ∀v ∈ W k+1,p(O), ‖v̇‖Wk+1,p(O)/Qk
≤ C [v]Wk+1,p(O) .

2. A projection operator on triangular meshes. Let h be a positive dis-
cretization parameter. Recall (cf. Ciarlet [5, Chap. II]) that a triangulation Th of Ω
is a partition of Ω into nondegenerate triangles T with diameter bounded by h, such
that each pair of triangles T1 and T2 of Th are either disjoint or share a vertex or a
complete side. We denote by hT the diameter of T , by ρT the diameter of the circle
inscribed in T , and we set

σT =
hT

ρT
.

We assume that the family of triangulations (Th)h is regular, i.e., there exists a con-
stant σ, independent of h, such that

∀T ∈ Th, σT ≤ σ.

Let us fix a positive integer k, and let Θh be the standard finite element space

(2.1) Θh =
{
θh ∈ C0(Ω); ∀T ∈ Th, θh|T ∈ Pk

}
.

This definition must be completed by specifying the degrees of freedom of the
functions of Θh: for the sake of simplicity, we assume that, in each triangle T , the
degrees of freedom of a function θh in Θh are the values of θh on the principal lattice
of order k, as in the example of Figure 1. In other words, the degrees of freedom of
θh are its values at a set of particular nodes of the triangulation Th. Let N be the
number of these nodes and let {ai, 1 ≤ i ≤ N} denote this set of nodes. For any node
ai, let the macroelement Δi be the union of the triangles of Th that share this node
ai, as in Figure 2.

Remark 1. The results below still hold for more general degrees of freedom defined
by linear functionals, if these functionals are continuous on functions in C0(Ω). But
our proofs are not valid for Hermite-type finite elements, for instance.
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Fig. 1

Δi

ai

T

Fig. 2

We set

hΔi
= sup

T⊂Δi

hT , ρΔi
= inf

T⊂Δi

ρT , σΔi
=

hΔi

ρΔi

.

Since the family of triangulations (Th)h is regular, it can be proved that (cf. Bernardi
[2], Clément [7])

(i) there exists a constant L, independent of h, such that, for 1 ≤ i ≤ N , Δi

consists of at most L triangles T (more precisely, if ai lies in the interior of T , then
Δi coincides with T ; if ai lies on one side of T , then Δi consists of either two triangles,
or only one if that side is a part of Γ, and if ai is a vertex of T , then Δi has at most
L triangles);

(ii) there exists a constant ĉ1, independent of h, such that, for 1 ≤ i ≤ N ,

(2.2) ∀T ⊂ Δi, hΔi ≤ ĉ1 hT ;

(iii) there exists a constant ĉ2, independent of h, such that, for 1 ≤ i ≤ N ,

(2.3) σΔi
≤ ĉ2 σ .
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Δi

Fi

Δ

Fig. 3

Note also that
(iv) there exists a constant K, independent of h (in fact, K = (k + 1)(k + 2)/2),

such that any T in Th belongs to at most K macroelements Δi.
Consider a macroelement Δi made of, say, J triangles; we associate with Δi a

reference macroelement Δ̂i, made of J equal isosceles reference unit triangles T̂j , as in

Figure 3. Owing to property (i), there exists only a fixed number L̂ of different refer-
ence macroelements Δ̂i, for 1 ≤ i ≤ N , where L̂ is independent of h. Therefore, since
all the geometric characteristics of these reference macroelements can be bounded by
constants independent of h, to alleviate notation we shall not distinguish them and
suppress their index i, thus denoting them indifferently by Δ̂. It can be easily proved
that, for each macroelement Δi, there exists a continuous and invertible mapping Fi

that is affine on each reference triangle T̂ of Δ̂:

∀x̂ ∈ T̂ , Fi(x̂) = BT x̂ + bT ,

such that

Δi = Fi(Δ̂) .

It follows from the above construction that each matrix BT is nonsingular and

(2.4) ‖BT ‖ ≤ ĉ3 hT , ‖B−1
T ‖ ≤ ĉ4

ρT
, ĉ5ρ

2
T ≤ |det(BT )| ≤ ĉ6 h

2
T .

We associate with Θh the local finite element spaces

(2.5) Θ(Δ̂) =
{
θ̂ ∈ C0(Δ̂) ; ∀T̂ ⊂ Δ̂, θ̂|T̂ ∈ Pk

}
,

(2.6) Θ(Δi) =
{
θ ∈ C0(Δi) ; ∀T ⊂ Δi, θ|T ∈ Pk

}
.

Then, for any function û in L1(Δ̂), we define r̂(û) in Θ(Δ̂) by

(2.7) ∀θ̂ ∈ Θ(Δ̂),

∫
Δ̂

(r̂(û) − û)θ̂ dx̂ = 0 ,

and, for any function u in L1(Δi), we define ri(u) in Θ(Δi) by

(2.8) ri(u) ◦ Fi = r̂(u ◦ Fi) ,
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a relation that is often denoted symbolically in the literature by

r̂i(u) = r̂(û) .

Clearly, r̂ is a projection operator from L1(Δ̂) onto Θ(Δ̂) (orthogonal in L2(Δ̂)). But
in general, the operator ri, which is continuous from L1(Δi) onto Θ(Δi), is not an
orthogonal projection operator for the scalar product of L2(Δi). Our first theorem
establishes an Lp-error estimate for ri.

Theorem 2.1. Assume that (Th)h is a regular family of triangulations. For any
integers k and � with k ≥ 1 and 0 ≤ � ≤ k + 1 and any number p with 1 ≤ p ≤ ∞,
there exists a constant C, independent of h, such that, for any macroelement Δi, any
triangle T contained in Δi, and any function u in W �,p(Δi), the following inequality
holds:

(2.9) ‖u− ri(u)‖Lp(T ) ≤ C h�
T |u|W �,p(Δi) .

Proof. The discussion depends upon the value of �. First suppose that � is equal
to zero, i.e., that u belongs to Lp(Δi). Let us fix a triangle T0 in Δi; we have

‖u− ri(u)‖Lp(T0) = |det(BT0
)|1/p‖û− r̂(û)‖Lp(T̂ ) ≤ |det(BT0

)|1/p‖û− r̂(û)‖Lp(Δ̂) .

But by the definition (2.7),

‖r̂(û)‖2
L2(Δ̂)

≤ ‖û‖Lp(Δ̂) ‖r̂(û)‖Lp′ (Δ̂) ,

where p′ denotes the dual exponent of p:

1

p
+

1

p′
= 1 .

Note that all norms are equivalent on the finite element space Θ(Δ̂), since it has a
finite dimension, and that the equivalence constants are bounded by a fixed constant
(as Δ̂ can only take a fixed number of configurations). Therefore, since r̂(û) belongs
to Θ(Δ̂), for each number p with 1 ≤ p ≤ ∞, there exist positive constants ĉp and

Ĉp, which depend only on p and the dimension of Θ(Δ̂), such that

(2.10) ĉp‖r̂(û)‖Lp(Δ̂) ≤ ‖r̂(û)‖L2(Δ̂) ≤ Ĉp‖r̂(û)‖Lp(Δ̂) .

Hence,

(2.11) ‖r̂(û)‖Lp(Δ̂) ≤
1

ĉp′ ĉp
‖û‖Lp(Δ̂) ,

which proves that r̂ is stable in Lp(Δ̂) for all p with 1 ≤ p ≤ ∞. As a consequence,

‖u− ri(u)‖Lp(T0) ≤ |det(BT0
)|1/p

(
‖û‖Lp(T̂ ) +

1

ĉp′ ĉp
‖û‖Lp(Δ̂)

)

≤
(
1 +

1

ĉp′ ĉp

)
|det(BT0)|1/p‖û‖Lp(Δ̂) .

But

‖û‖Lp(Δ̂) =

(∑
T⊂Δ

1

|det(BT )| ‖u‖
p
Lp(T )

)1/p

.
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Therefore, using (2.4) and the definition of σΔi
, we obtain

(2.12) ‖u− ri(u)‖Lp(T0) ≤ Ĉ1

(
1 +

1

ĉp′ ĉp

)
σ

2/p
Δi

‖u‖Lp(Δi) .

Now, consider the case where � is equal to one, and take u in W 1,p(Δi). As r̂ is
a projection, observe that

∀θ̂ ∈ Θ(Δ̂), û− r̂(û) = û− θ̂ − r̂(û− θ̂) .

Therefore, (2.11) yields, for all numbers p, 1 ≤ p ≤ ∞,

(2.13) ∀θ̂ ∈ Θ(Δ̂), ‖û− r̂(û)‖Lp(Δ̂) ≤
(
1 +

1

ĉp′ ĉp

)
‖û− θ̂‖Lp(Δ̂) .

Let θ̂ run through the constant functions on Δ̂. Then Theorem 1.1 with k = 0 and
(2.13) give

‖û− r̂(û)‖Lp(Δ̂) ≤ Ĉ2

(
1 +

1

ĉp′ ĉp

)
|û|W 1,p(Δ̂) ,

where the constant Ĉ2 depends only on Δ̂. But

(2.14) |û|W 1,p(Δ̂) ≤
(∑

T⊂Δ

‖BT ‖p
|det(BT )| |u|

p
W 1,p(T )

)1/p

.

Therefore,

(2.15) ‖u− ri(u)‖Lp(T0) ≤ Ĉ3σ
2/p
Δi

hΔi |u|W 1,p(Δi) .

Finally, let � be ≥ 2 and take u in W �,p(Δi). Then û is continuous, and we can

choose in (2.13) θ̂ equal to Î(û), the standard interpolant of û in Θ(Δ̂). Furthermore,
û belongs to W �,p(T̂ ) for all T̂ contained in Δ̂, and as � ≤ k + 1, it follows from
Theorem 1.1 that

‖û− Î(û)‖Lp(Δ̂) =

(∑
T̂⊂Δ̂

‖û− Î(û)‖p
Lp(T̂ )

)1/p

≤ Ĉ4

(∑
T̂⊂Δ̂

|û|p
W �,p(T̂ )

)1/p

.

Hence, we easily derive from (2.13) that

‖u− ri(u)‖Lp(T0) ≤ Ĉ5σ
2/p
Δi

h�
Δi

( ∑
T⊂Δi

|u|p
W �,p(T )

)1/p

≤ Ĉ5σ
2/p
Δi

h�
Δi

|u|W �,p(Δi),

since u belongs to W �,p(Δi).
The next theorem uses the argument of Theorem 2.1 to derive a W 1,p-error esti-

mate for ri.
Theorem 2.2. Assume that (Th)h is a regular family of triangulations. For any

integers k and � with k ≥ 1 and 1 ≤ � ≤ k + 1 and any number p with 1 ≤ p ≤ ∞,
there exists a constant C, independent of h, such that, for any macroelement Δi, any
triangle T contained in Δi, and any function u in W �,p(Δi), we have

(2.16) |u− ri(u)|W 1,p(T ) ≤ C h�−1
T |u|W �,p(Δi).
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Proof. Here again, the discussion depends upon the value of �. Take first � equal
to one, and u in W 1,p(Δi). We have

|u− ri(u)|W 1,p(T0) ≤ |det(BT0
)|1/p‖B−1

T0
‖ |û− r̂(û)|W 1,p(Δ̂) .

For any θ̂ in Θ(Δ̂), we can write

|û−r̂(û)|W 1,p(Δ̂) ≤ |û−θ̂|W 1,p(Δ̂)+|r̂(û−θ̂)|W 1,p(Δ̂) ≤ |û−θ̂|W 1,p(Δ̂)+Ĉ1‖r̂(û−θ̂)‖Lp(Δ̂)

because all norms are equivalent on Θ(Δ̂) and the equivalence constant Ĉ1 depends
only on Δ̂. Then (2.11) implies that

(2.17) ∀θ̂ ∈ Θ(Δ̂), |û− r̂(û)|W 1,p(Δ̂) ≤
(
1 +

Ĉ1

ĉp′ ĉp

)
‖û− θ̂‖W 1,p(Δ̂) .

As previously, letting θ̂ run through the constant functions yields

(2.18) |û− r̂(û)|W 1,p(Δ̂) ≤ Ĉ2|û|W 1,p(Δ̂).

Therefore,

|u− ri(u)|W 1,p(T0) ≤ Ĉ2|det(BT0
)|1/p‖B−1

T0
‖|û|W 1,p(Δ̂) ≤ Ĉ3σ

1+2/p
Δi

|u|W 1,p(Δi).

When � is ≥ 2, we choose θ̂ = Î(û) in (2.17). This choice gives

|û− r̂(û)|W 1,p(Δ̂) ≤ Ĉ4

(∑
T̂⊂Δ̂

|û|p
W �,p(T̂ )

)1/p

.

Therefore,

|u− ri(u)|W 1,p(T0) ≤ Ĉ5σ
1+2/p
Δi

h�−1
Δi

|u|W �,p(Δi) .

This proves the theorem.
Observe that when � is ≥ 2, the W �,p-norm of û is never taken on Δ̂ but only

separately on each T̂ . The reason for this is that, although u belongs to W �,p(Δi),
û = u ◦ Fi does not belong, in general, to W �,p(Δ̂). This lack of regularity explains

why θ̂ is chosen in the local finite element space Θ(Δ̂) and not in Pk. In fact, the
following counterexample shows that this last choice does not yield the estimates of
Theorems 2.1 and 2.2.

A counterexample. Let h be any positive real number; define the two consecutive
intervals I1 = [0, 2h] and I2 = [2h, 3h], and set Δ = I1 ∪ I2. We associate with Δ
the reference macroelement Δ̂ = Î1 ∪ Î2, where Î1 = [−1, 0] and Î2 = [0, 1]. The
continuous piecewise affine mapping F that maps Δ̂ onto Δ is

F (t) =

{
2h(1 + t) on Î1,

2h + ht on Î2.

Now, consider the function v(x) = x, and let p = r̂(v̂) be the projection of v̂ = v ◦ F
onto P1 for the L2(Δ̂) scalar product; i.e.,∫ 1

−1

p(t) dt =

∫ 1

−1

(v ◦ F )(t) dt and

∫ 1

−1

t p(t) dt =

∫ 1

−1

t (v ◦ F )(t) dt.

8



An easy calculation gives

p(t) =
7

4
h +

3

2
h t,

and

(v ◦ F )(t) − p(t) =

{
h(1

4 + 1
2 t) on Î1,

h( 1
4 − 1

2 t) on Î2.

Then, on one hand,

‖v − p ◦ F−1‖L2(Δ) =
1

4
h3/2,

and on the other hand,

|v|H2(Δ) = 0, |v|H1(Δ) =
√

3h, ‖v‖L2(Δ) = 3h3/2 .

As a consequence,

‖v − p ◦ F−1‖L2(Δ)

‖v‖H2(Δ)
=

h

4
√

3(1 + 3h2)1/2
,

which is exactly of the order of h and not of the order of h2.
Remark 2. The results of this section can readily be extended to tetrahedral

triangulations of three-dimensional domains with polyhedral boundaries.
Remark 3. The statement of Theorem 2.1 (resp., Theorem 2.2) extends to the case

where u belongs to W �,q(Δi) for any q such that W �,q(Δi) is continuously embedded
in Lp(Δi) (resp., W 1,p(Δi)). More precisely, under the assumptions of Theorem 2.1,
if u belongs to W �,q(Δi), the following bounds hold:

(2.19)

if q ≥ p, ‖u− ri(u)‖Lp(Δi) ≤ C h�
Δi

h
2/p−2/q
Δi

|u|W �,q(Δi);

if q < p, ‖u− ri(u)‖Lp(Δi) ≤ C h�
Δi

1

ρ
2/q−2/p
Δi

|u|W �,q(Δi).

Theorem 2.2 has a similar extension. Note that these local estimates are optimal.
However, for q ≥ p, summing up the first estimate on all macroelements and using
the Hölder’s inequality does not lead to a global optimal estimate, while for q < p
summing up the second bound leads to an optimal estimate, of order h�+2/p−2/q,
thanks to the Jensen’s inequality.

Remark 4. The argument used in Theorem 2.2 for proving (2.18) can be readily
extended to show that

|û− r̂(û)|W s,p(Δ̂) ≤ Ĉ ′
2|û|W t,p(Δ̂),

for any real numbers s and t with 0 ≤ s ≤ 1 and s ≤ t ≤ 1. It also holds for 1 < t ≤ 2
by letting θ̂ run through piecewise affine functions. So, the following estimate holds
for any real numbers s and t with 0 ≤ s ≤ 1 and s ≤ t ≤ k + 1 and any number p
with 1 ≤ p ≤ ∞, provided that the function u belongs to W t,p(Δi):

(2.20) |u− ri(u)|W s,p(T ) ≤ C ht−s
T |u|W t,p(Δi).
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This estimate can also be derived from the principal theorem of interpolation between
Banach spaces (see [12, Chap. 1]) with the seminorm | · |W t,p(Δi) replaced by the norm
‖ · ‖W t,p(Δi) in the right-hand side. The proof of the following result, concerning the
approximation on sides f of elements T , relies on similar arguments: for any real
numbers s, t, and p with 0 ≤ s ≤ 1, s+ 1

p < t ≤ k+1, and 1 ≤ p < ∞, if the function

u belongs to W t,p(Δi), we have the estimate

(2.21) |u− ri(u)|W s,p(f) ≤ C h
t−s− 1

p

T |u|W t,p(Δi).

3. A projection operator on quadrilateral meshes. Let Th be a quadran-
gulation of Ω made of convex and nondegenerate quadrilaterals T (i.e., not reduced to
triangles) with diameter bounded by h. Let T be one of these quadrilaterals, let ai be
its vertices, 1 ≤ i ≤ 4, numbered counterclockwise, and let Si denote its subtriangle
with vertices ai−1, ai, ai+1, the indices being numbered modulo four, as in Figure 4.
Let hi be the diameter of Si, and ρi the diameter of its inscribed circle. We set

hT = sup
1≤i≤4

hi, ρT = 2 inf
1≤i≤4

ρi, and σT =
hT

ρT
.

Clearly, hT is the diameter of T , and σT is a measure of the nondegeneracy of T .
Here also, we assume that the family of quadrangulations (Th)h is regular, i.e., there
exists a constant σ, independent of h, such that

∀T ∈ Th, σT ≤ σ.

In contrast to triangular finite element spaces, in the case of quadrilaterals, the
finite elements are defined first on the reference square T̂ = [0, 1] × [0, 1] and, af-
ter they are transformed into functions (generally, not polynomials), defined on the
quadrilateral T by a transformation from T onto T̂ . More precisely (cf. [6]), as T
is convex and nondegenerate, there exists an invertible, bilinear mapping FT (i.e.,
with components in Q1) that maps T̂ onto T with ai = FT (âi), 1 ≤ i ≤ 4, where
â1 = (0, 0), â2 = (1, 0), â3 = (1, 1), and â4 = (0, 1) are the vertices of T̂ . Let DFT
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and JT (resp., DF−1
T and J−1

T ) denote the Jacobian matrix and the Jacobian of FT

(resp., F−1
T ). In the case of quadrilaterals none of these quantities are constant, but

they satisfy the following bounds:

(3.1) ‖JT ‖L∞(T̂ ) = 2 sup
1≤i≤4

|Si| ≤
√

3

2
h2
T , ‖J−1

T ‖L∞(T ) =
1

2 inf1≤i≤4 |Si|
<

8

πρ2
T

,

(3.2) ‖DFT ‖L∞(T̂ ) ≤ C1 hT , ‖DF−1
T ‖L∞(T ) ≤ C2

σT

ρT
.

Then we define the function space Qk(T ) by

Qk(T ) =
{
q = q̂ ◦ F−1

T ; q̂ ∈ Qk

}
.

The corresponding standard finite element space, for a positive integer k, is

(3.3) Θh =
{
θh ∈ C0(Ω); ∀T ∈ Th, θh|T ∈ Qk(T )

}
.

Here also, for the sake of simplicity, we assume that, in each T , the degrees
of freedom of any function of Θh are its values at the principal lattice of order k.
Let N be the number of nodes where these degrees of freedom are defined, and let
{ai, 1 ≤ i ≤ N}, denote this set of nodes. Here again, for any node ai, let the
macroelement Δi be the union of the quadrilaterals of Th that share this node ai, and
define

hΔi
= sup

T⊂Δi

hT , ρΔi
= inf

T⊂Δi

ρT , σΔi
=

hΔi

ρΔi

.

If the mesh is Cartesian, the situation is simpler than that of the previous section,
because for all nodes ai, Δi consists of one, two, or four quadrilaterals (or possibly
three if ai is a boundary node) and the reference macroelement associated with any
Δi is made of at most four unit squares. But we do not necessarily choose a Cartesian
mesh, and at a node where the mesh is not Cartesian, the reference macroelement
cannot consist of unit squares. Indeed, let ai denote a node where the mesh is not
Cartesian, and suppose that the corresponding macroelement Δi has J elements.
Consider one element T in Δi, and to simplify the discussion, let ai = a1, as in the
example of Figure 5, and let S = S1 and S′ = S3 be the two corresponding subtriangles
of T . Let Di be the auxiliary macroelement consisting of all these subtriangles S with
common vertex ai, and let D̃i be the corresponding auxiliary reference macroelement
consisting of J equal isosceles unit triangles as in Figure 3.

Let S̃ be one of these triangles with vertices denoted by ã1 = (0, 0), ã2, and ã4,
as in Figure 5. Since T is convex and not reduced to a triangle, there exists a unique
affine invertible mapping FS such that S = FS(S̃) and ai = FS(ãi), i = 1, 2, 4:

x = FS(x̃) = BS x̃ + a1 .

We construct an auxiliary reference element T̃ by means of the mapping FS in the
following way. Let ã3 = F−1

S (a3), and let S̃′ denote the triangle with vertices ã2, ã3,

and ã4. We associate with T the auxiliary reference element T̃ = S̃ ∪ S̃′. Clearly,
T̃ is also convex and not reduced to a triangle, and therefore, there exists a unique
bilinear mapping FT̃ such that T̃ = FT̃ (T̂ ) and ãi = FT̃ (âi), 1 ≤ i ≤ 4. In fact,

FT = FS ◦ FT̃ .

11



Fig. 5

Let D̃′
i be the union of the triangles S̃′ associated with all the triangles S̃ in D̃i; we

take for reference macroelement

(3.4) Δ̃i = D̃i ∪ D̃′
i.

Observe that Δ̃i is a variable macroelement because the triangles S̃′ constituting
D̃′

i do not have a regular shape; as a consequence, we cannot apply directly on Δ̃i

any result that depends upon the shape of the domain. In order to take into account
the geometry of D̃′

i, we introduce first the affine invertible mapping FS̃′ that maps S̃

onto S̃′ and leaves invariant f̃ , the diagonal separating S̃ and S̃′; i.e., S̃′ = FS̃′(S̃),

f̃ = FS̃′(f̃), and ã3 = FS̃′(ã1):

ỹ = FS̃′(x̃) = BS̃′ x̃ + ã3 .

And finally, let FS′ denote the affine invertible mapping such that S′ = FS′(S̃) and
a3 = FS′(ã1):

x = FS′(x̃) = BS′ x̃ + a3 .

Note that S′ = FS(S̃′) = FS ◦ FS̃′(S̃):

x = BSBS̃′ x̃ + BSã3 + a1 = BSBS̃′ x̃ + a3 ;

12



therefore,

BS′ = BSBS̃′ ,

and this equality allows one to estimate the geometrical parameters related to BS̃′ .
Indeed, denoting by hU the diameter of any triangle U , by ρU the diameter of the
circle inscribed in U , and setting naturally σU = hU/ρU , we have

‖BS‖ ≤ hS

ρS̃
, ‖B−1

S ‖ ≤ hS̃

ρS
, |det(BS)| =

|S|
|S̃|

,

‖BS′‖ ≤ hS′

ρS̃
, ‖B−1

S′ ‖ ≤ hS̃

ρS′
, |det(BS′)| =

|S′|
|S̃|

.

Thus, as BS̃′ = B−1
S BS′ , we obtain

(3.5) ‖BS̃′‖ ≤ σS̃

hS′

ρS
≤ 2σS̃σT , ‖B−1

S̃′ ‖ ≤ 2σS̃σT , |det(BS̃′)| =
|S′|
|S| ≤ 4

√
3

π
σ2
T ,

and since the family of quadrangulations is regular, these three quantities can be
bounded independently of h.

Similarly, the fact that FT̃ = F−1
S ◦FT , and hence DFT̃ = B−1

S ·DFT , allows one
to estimate the geometrical parameters related to FT̃ :

(3.6)
‖DFT̃ ‖L∞(T̂ ) ≤ C3σT , ‖DF−1

T̃
‖L∞(T̃ ) ≤ C4σ

2
T ,

‖JT̃ ‖L∞(T̂ ) ≤ C5σ
2
T , ‖J−1

T̃
‖L∞(T̃ ) ≤ C6σ

2
T .

Owing to the above construction, there exists a continuous and invertible mapping
Fi, that is affine on each “reference” quadrilateral T̃ of Δ̃i and coincides with FS on T̃ :

∀x̃ ∈ T̃ , Fi(x̃) = FS(x̃).

Moreover, Fi is such that

Δi = Fi(Δ̃i).

Since the family of quadrangulations is regular, properties (i)–(iii) of section 2 obvi-
ously hold here and, as in the preceding section, all geometric constants of Δ̃i can
be bounded by constants independent of i; therefore, we drop the index i. Similarly,
property (iv) holds with K = (k + 1)2.

Then we associate with Θh the local finite element spaces

(3.7) Θ(Δ̃) =
{
θ̃ ∈ C0(Δ̃); ∀T̃ ⊂ Δ̃, θ̃|T̃ ∈ Qk(T̃ )

}
,

(3.8) Θ(Δi) =
{
θ ∈ C0(Δi); ∀T ⊂ Δi, θ|T ∈ Qk(T )

}
,

and we define the projection operator r̃ in analogy to the preceding section. More
precisely, for any function ũ in L1(Δ̃), we define r̃(ũ) in Θ(Δ̃) by

(3.9) ∀θ̃ ∈ Θ(Δ̃),

∫
Δ̃

(r̃(ũ) − ũ)θ̃ dx̃ = 0 ,
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and for any function u in L1(Δi), we define ri(u) in Θ(Δi) by

(3.10) ri(u) ◦ Fi = r̃(u ◦ Fi) ,

which we denote symbolically by r̃i(u) = r̃(ũ).

Looking back at the proofs of the previous section, we see that we need two equiv-
alences of norms satisfied by functions of Θ(Δ̃), and we think of applying Theorem 1.1
on Δ̃ (observe that Theorem 1.1 is relevant here because the mapping Fi is piecewise
affine). But since Δ̃ is composed of variable quadrilaterals, these equivalences are no
longer simple consequences of the finite dimension of Θ(Δ̃), and neither does Theorem
1.1 apply directly on Δ̃. These results are established in the next three lemmas.

Lemma 3.1. Assume that (Th)h is a regular family of quadrangulations. For each
number p with 1 ≤ p ≤ ∞, there exist positive constants ĉp and Ĉp, independent of h,

such that, for all Δ̃, we have the following equivalence:

(3.11) ∀θ̃ ∈ Θ(Δ̃), ĉp‖θ̃‖Lp(Δ̃) ≤ ‖θ̃‖L2(Δ̃) ≤ Ĉp‖θ̃‖Lp(Δ̃) .

Proof. We have

‖θ̃‖Lp(Δ̃) =

(∑
T̃⊂Δ̃

‖θ̃‖p
Lp(T̃ )

)1/p

≤
(∑

T̃⊂Δ̃

‖JT̃ ‖L∞(T̂ )‖θ̃ ◦ FT̃ ‖
p

Lp(T̂ )

)1/p

≤ Ĉ1σ
2/p
Δi

(∑
T̃⊂Δ̃

‖θ̃ ◦ FT̃ ‖
p

Lp(T̂ )

)1/p

by applying (3.6). But since θ̃ ◦FT̃ belongs to the finite-dimensional space Qk on the

reference square T̂ , there exists a constant Ĉ2 such that

‖θ̃ ◦ FT̃ ‖Lp(T̂ ) ≤ Ĉ2‖θ̃ ◦ FT̃ ‖L2(T̂ ) .

Thus, reverting to each T̃ and applying again (3.6), we obtain

‖θ̃‖Lp(Δ̃) ≤ Ĉ3σ
2/p+1
Δi

‖θ̃‖L2(Δ̃) .

This establishes the first part of (3.11). The proof of the second part is
similar.

Lemma 3.2. Assume that (Th)h is a regular family of quadrangulations. For each
number p with 1 ≤ p ≤ ∞, there exists a positive constant Ĉp, independent of h, such

that, for all Δ̃, we have the following inverse inequality:

(3.12) ∀θ̃ ∈ Θ(Δ̃), |θ̃|W 1,p(Δ̃) ≤ Ĉp‖θ̃‖Lp(Δ̃) .

Proof. We have

|θ̃|W 1,p(Δ̃) ≤
(∑
T̃⊂Δ̃

‖JT̃ ‖L∞(T̂ )‖DFT̃ ‖
p

L∞(T̂ )
|θ̃ ◦ FT̃ |

p

W 1,p(T̂ )

)1/p

.
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Again, since θ̃ ◦FT̃ belongs to the finite-dimensional space Qk on the reference square

T̂ , there exists a constant Ĉ1 such that

|θ̃ ◦ FT̃ |W 1,p(T̂ ) ≤ Ĉ1‖θ̃ ◦ FT̃ ‖Lp(T̂ ) .

Therefore, in view of (3.6), we obtain

|θ̃|W 1,p(Δ̃) ≤ Ĉ2σ
4/p+1
Δi

‖θ̃‖Lp(Δ̃) ,

thus proving (3.12).
The next result is a special case of some inequalities of [9] and [10]; we give the

proof for the sake of completeness.
Lemma 3.3. Assume that (Th)h is a regular family of quadrangulations. For any

function θ̃ in L1(Δ̃), define the average

c(θ̃) =
1

|D̃|

∫
D̃

θ̃ dx̃ .

For each number p with 1 ≤ p ≤ ∞, there exists a positive constant Ĉp, independent

of h, such that for all Δ̃, we have

(3.13) ∀θ̃ ∈ W 1,p(Δ̃), ‖θ̃ − c(θ̃)‖Lp(Δ̃) ≤ Ĉp|θ̃|W 1,p(Δ̃) .

Proof. We write

(3.14) ‖θ̃ − c(θ̃)‖Lp(Δ̃) ≤ (‖θ̃ − c(θ̃)‖p
Lp(D̃)

+ ‖θ̃ − c(θ̃)‖p
Lp(D̃′)

)1/p .

Since D̃ has a regular shape that can assume only a fixed number of configurations,
and c(θ̃) = θ̃ when θ̃ is a constant function, we can apply Theorem 1.1 with k = 0 on
D̃: there exists a constant Ĉ1, independent of D̃, such that

(3.15) ‖θ̃ − c(θ̃)‖Lp(D̃) ≤ Ĉ1|θ̃|W 1,p(D̃) .

It remains to estimate the second term of (3.14). Consider a triangle S̃′ in D̃′, and
let us switch to S̃:

‖θ̃ − c(θ̃)‖Lp(S̃′) = |det(BS̃′)|1/p‖θ̃ ◦ FS̃′ − c(θ̃)‖Lp(S̃) .

But since S̃ has a regular shape, there exists a constant Ĉ2 such that

∀v ∈ W 1,p(S̃), ‖v‖W 1,p(S̃) ≤ Ĉ2(|v|pW 1,p(S̃)
+ ‖v‖p

Lp(f̃)
)1/p.

Therefore,

‖θ̃ ◦ FS̃′ − c(θ̃)‖Lp(S̃) ≤ Ĉ2(|θ̃ ◦ FS̃′ |p
W 1,p(S̃)

+ ‖θ̃ ◦ FS̃′ − c(θ̃)‖p
Lp(f̃)

)1/p .

On one hand, for any function v, v ◦ FS̃′ coincides with v on f̃ because FS̃′ reduces

to the identity mapping on f̃ , and hence,

‖θ̃ ◦ FS̃′ − c(θ̃)‖Lp(f̃) = ‖θ̃ − c(θ̃)‖Lp(f̃) ≤ Ĉ3‖θ̃ − c(θ̃)‖W 1,p(S̃)
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by applying a trace theorem on S̃. On the other hand, reverting to S̃′,

|θ̃ ◦ FS̃′ |W 1,p(S̃) ≤ |det(BS̃′)|−1/p ‖BS̃′‖|θ̃|W 1,p(S̃′) ≤ 2σS̃σT |det(BS̃′)|−1/p|θ̃|W 1,p(S̃′) .

Hence,

‖θ̃ − c(θ̃)‖Lp(S̃′) ≤ Ĉ4(σ
p
T |θ̃|

p

W 1,p(S̃′)
+ |det(BS̃′)|‖θ̃ − c(θ̃)‖p

W 1,p(S̃)
)1/p,

and summing over all triangles of D̃′,

‖θ̃ − c(θ̃)‖Lp(D̃′) ≤ Ĉ5(σ
p
Δi

|θ̃|p
W 1,p(D̃′)

+ σ2
Δi

‖θ̃ − c(θ̃)‖p
W 1,p(D̃)

)1/p.

Then (3.15) gives

‖θ̃ − c(θ̃)‖Lp(D̃′) ≤ Ĉ6σ
max(2/p,1)
Δi

|θ̃|W 1,p(Δ̃) ,

thus proving (3.13).
The following theorems are analogues of Theorems 2.1 and 2.2. We skip their

proofs because, owing to Lemmas 3.1, 3.2, and 3.3, they are very similar to those of
Theorems 2.1 and 2.2.

Theorem 3.4. Assume that (Th)h is a regular family of quadrangulations. For
any integers k and � with k ≥ 1 and 0 ≤ � ≤ k+1 and any number p with 1 ≤ p ≤ ∞,
there exists a constant C, independent of h, such that, for any macroelement Δi,
any quadrilateral T contained in Δi, and any function u in W �,p(Δi), the following
inequality holds:

(3.16) ‖u− ri(u)‖Lp(T ) ≤ C h�
T |u|W �,p(Δi).

Theorem 3.5. Assume that (Th)h is a regular family of quadrangulations. For
any integers k and � with k ≥ 1 and 1 ≤ � ≤ k+1 and any number p with 1 ≤ p ≤ ∞,
there exists a constant C, independent of h, such that, for any macroelement Δi, any
quadrilateral T contained in Δi, and any function u in W �,p(Δi), we have

(3.17) |u− ri(u)|W 1,p(T ) ≤ C h�−1
T |u|W �,p(Δi).

Remark 5. Similar arguments to those of section 2 yield that, under the same
assumptions, estimates (2.19) to (2.21) still hold for quadrilateral meshes.

4. A regularizing operator. We shall first study the regularization of functions
with no imposed value on the boundary. Let Th be a triangulation or quadrangulation
of Ω as defined in sections 2 or 3, let Θh be the finite element space defined by (2.1)
or (3.3) for some positive integer k, and let {ai, 1 ≤ i ≤ N} denote the set of nodes
of Th where the degrees of freedom of the functions of Θh are defined. For 1 ≤ i ≤ N ,
let ϕi denote the basis function of Θh that takes the value one at the node ai and
zero at all other nodes.

For any number p with 1 ≤ p ≤ ∞ and any nonnegative integer �, let u be a given
function in W �,p(Ω), and for any integer i with 1 ≤ i ≤ N , let ri(u) be defined by
(2.8) or (3.10). Then we define the regularizing operator Rh from W �,p(Ω) into Θh

by

(4.1) ∀u ∈ W �,p(Ω), Rh(u)(x) =
N∑
i=1

[ri(u)](ai)ϕi(x).
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Clearly Rh is continuous from W �,p(Ω) into Θh. The next two theorems establish
error estimates satisfied by Rh.

Theorem 4.1. Assume that (Th)h is a regular family of triangulations or quad-
rangulations of Ω. For any integers k and � with k ≥ 1 and 0 ≤ � ≤ k + 1 and any
number p with 1 ≤ p ≤ ∞, there exists a constant C, independent of h, such that

(4.2) ∀u ∈ W �,p(Ω), ∀T ∈ Th, ‖u−Rh(u)‖Lp(T ) ≤ C h�
T |u|W �,p(ΔT ) ,

where ΔT denotes the union of all elements in Th which share at least a corner with T .
Proof. Suppose that ΔT contains n macroelements Δi, which, for the sake of

simplicity, we number from 1 to n. Then, owing to the support of the basis functions
ϕi, we have

Rh(u)|T =
n∑

i=1

[ri(u)](ai)ϕi|T .

Therefore, we can write

[u−Rh(u)]|T = u|T −
n∑

i=1

[r1(u)](ai)ϕi|T −
n∑

i=2

[ri(u) − r1(u)](ai)ϕi|T .

But

n∑
i=1

[r1(u)](ai)ϕi|T = r1(u)|T ,

hence,

(4.3) [u−Rh(u)]|T = [u− r1(u)]|T −
n∑

i=2

[ri(u) − r1(u)](ai)ϕi|T .

Therefore,

‖u−Rh(u)‖Lp(T ) ≤ ‖u− r1(u)‖Lp(T ) +
n∑

i=2

|[ri(u) − r1(u)](ai)| ‖ϕi‖Lp(T ) .

The first term on the right-hand side is estimated by Theorems 2.1 or 3.4, and it
remains to evaluate the sum. On the one hand, if T is a triangle,

‖ϕi‖Lp(T ) = |det(BT )|1/p‖ϕ̂i‖Lp(T̂ ) ,

or if T is a quadrilateral,

‖ϕi‖Lp(T ) ≤ ‖JT ‖1/p

L∞(T̂ )
‖ϕ̂i‖Lp(T̂ ) .

In both cases, ‖ϕ̂i‖Lp(T̂ ) is a constant independent of T and h. Thus we have

(4.4) ‖ϕi‖Lp(T ) ≤ Ĉ1 |det(BT )|1/p or ‖ϕi‖Lp(T ) ≤ Ĉ2‖JT ‖1/p

L∞(T̂ )
,

according to whether T is a triangle or a quadrilateral. On the other hand,

|[ri(u) − r1(u)](ai)| ≤ ‖ri(u) − r1(u)‖L∞(T ) = ‖r̂i(u) − r̂1(u)‖L∞(T̂ )

≤ Ĉ3‖r̂i(u) − r̂1(u)‖Lp(T̂ )
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since r̂i(u) − r̂1(u) belongs to a space of finite and fixed dimension on the reference
set T̂ . Therefore,

|[ri(u) − r1(u)](ai)| ≤ Ĉ3(‖r̂i(u) − û‖Lp(T̂ ) + ‖r̂1(u) − û‖Lp(T̂ )) .

Then, if T is a triangle, by virtue of Theorem 2.1 we have

(4.5)
‖r̂i(u) − û‖Lp(T̂ ) = |det(BT )|−1/p‖ri(u) − u‖Lp(T )

≤ Ĉ4 h
�
T |det(BT )|−1/p|u|W �,p(Δi) ,

and if T is a quadrilateral, by virtue of Theorem 3.4 we have

(4.6)
‖r̂i(u) − û‖Lp(T̂ ) ≤ ‖J−1

T ‖1/p
L∞(T )‖ri(u) − u‖Lp(T )

≤ Ĉ5 h
�
T ‖J−1

T ‖1/p
L∞(T )|u|W �,p(Δi) .

Therefore, combining (4.5) or (4.6) with (4.4), we obtain, if T is a triangle,

|[ri(u) − r1(u)](ai)|‖ϕi‖Lp(T ) ≤ Ĉ6 h
�
T (|u|W �,p(Δi) + |u|W �,p(Δ1)) ,

or, if T is a quadrilateral,

|[ri(u) − r1(u)](ai)|‖ϕi‖Lp(T ) ≤ Ĉ7 h
�
T ‖JT ‖

1/p

L∞(T̂ )
‖J−1

T ‖1/p
L∞(T )(|u|W �,p(Δi) + |u|W �,p(Δ1))

≤ Ĉ8 σ
2/p
T h�

T (|u|W �,p(Δi) + |u|W �,p(Δ1)) .

This proves the theorem.
In view of Theorems 2.2 and 3.5, the argument of Theorem 4.1 can easily be

extended to prove the following estimate.
Theorem 4.2. Assume that (Th)h is a regular family of triangulations or quad-

rangulations of Ω. For any integers k and � with k ≥ 1 and 1 ≤ � ≤ k + 1 and any
number p with 1 ≤ p ≤ ∞, there exists a constant C, independent of h, such that

(4.7) ∀u ∈ W �,p(Ω), ∀T ∈ Th, |u−Rh(u)|W 1,p(T ) ≤ C h�−1
T |u|W �,p(ΔT ) .

Remark 6. Clearly, the statement of Theorem 4.1 (resp., Theorem 4.2) extends
immediately to the case where u belongs to W �,q(Ω), for any q such that W �,q(Ω) is
continuously embedded into Lp(Ω) (resp., W 1,p(Ω)). For instance, in view of (2.19),
under the assumptions of Theorem 4.1, if u belongs to W �,q(Ω), we have, for all T in
Th,

(4.8)

if q ≥ p, ‖u−Rh(u)‖Lp(T ) ≤ C h�
T h

2/p−2/q
T |u|W �,q(ΔT ) ;

if q < p, ‖u−Rh(u)‖Lp(T ) ≤ C h�
T

1

ρ
2/q−2/p
T

|u|W �,q(ΔT ) .

Remark 7. Combining the final remarks of sections 2 and 3 with the inequality,
valid for any nonnegative real number s

|ϕi|W s,p(T ) ≤ c h
2
p−s

T ,
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we derive that, for any real numbers s and t with 0 ≤ s ≤ 1 and s ≤ t ≤ k + 1 and
any number p with 1 ≤ p ≤ ∞, the following estimate holds for any function u in
W t,p(Ω):

(4.9) |u−Rh(u)|W s,p(T ) ≤ C ht−s
T ‖u‖W t,p(ΔT ) .

Similarly, if f is a side of an element T , for any real numbers s, t, and p with 0 ≤ s ≤ 1,
s + 1

p < t ≤ k + 1, and 1 ≤ p < ∞, the following estimate holds for any function u in

W t,p(Ω):

(4.10) |u−Rh(u)|W s,p(f) ≤ C h
t−s− 1

p

T ‖u‖W t,p(ΔT ) .

Now we turn to the regularization of functions with imposed values on some part
of the boundary. More precisely, let Γ0 denote a connected subset of Γ with positive
measure. For 1 ≤ p < ∞ and � ≥ 1, we want to approximate functions of the space

W �,p
Γ0

(Ω) =
{
v ∈ W �,p(Ω) ; v = 0 on Γ0

}
.

To this end, we assume that Ω is triangulated or quadrangulated so that the end
points of Γ0 coincide with nodes of the triangulation. Then we number first the nodes
of Th that lie on Γ0, say from 1 to N0, and next we number the remaining nodes from
N0 + 1 to N . To ensure that the finite element functions vanish on Γ0, we consider
the finite element space spanned by the set of basis functions {ϕi; N0 + 1 ≤ i ≤ N},
that is,

Θh,Γ0 =
{
θh ∈ C0(Ω); ∀T ∈ Th, θh|T ∈ Pk or Qk(T ) and θh = 0 on Γ0

}
.

The regularization operator Rh,Γ0 is defined by

(4.11) ∀u ∈ W �,p
Γ0

(Ω), Rh,Γ0
(u)(x) =

N∑
i=N0+1

[ri(u)](ai)ϕi(x).

Clearly, Rh,Γ0
is continuous from W �,p

Γ0
(Ω) into Θh,Γ0

. Let us show that it satisfies
the analogues of Theorems 4.1 and 4.2.

Theorem 4.3. Assume that (Th)h is a regular family of triangulations or quad-
rangulations of Ω. For any integers k and � with k ≥ 1 and 1 ≤ � ≤ k + 1 and any
real number p with 1 ≤ p < ∞, there exists a constant C, independent of h, such that

(4.12) ∀u ∈ W �,p
Γ0

(Ω), ∀T ∈ Th, ‖u−Rh,Γ0(u)‖Lp(T ) ≤ C h�
T |u|W �,p(ΔT ).

Proof. It suffices to consider the elements T that have some nodes on Γ0. Suppose
again that ΔT contains n macroelements Δi. We agree to number first, say from 1
to n0, the nodes ai that lie on Γ0 and from n0 + 1 to n the remaining nodes. Then,
owing to the support of the basis functions ϕi, we have

Rh,Γ0(u)|T =

n∑
i=n0+1

[ri(u)](ai)ϕi|T = Rh(u)|T −
n0∑
i=1

[ri(u)](ai)ϕi|T .

Hence,

(4.13) ‖u−Rh,Γ0
(u)‖Lp(T ) ≤ ‖u−Rh(u)‖Lp(T ) +

n0∑
i=1

|[ri(u)](ai)| ‖ϕi‖Lp(T ) .
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Next, we observe that each boundary node ai, 1 ≤ i ≤ n0, belongs to a side f of a
triangle or quadrilateral T ′ contained in Δi (T ′ does not necessarily coincide with T ).
Thus, we have

|[ri(u)](ai)| ≤ ‖ri(u)‖L∞(f) = ‖r̂i(u)‖L∞(f̂)

≤ Ĉ1 ‖r̂i(u)‖Lp(f̂) = Ĉ1 ‖r̂i(u) − û‖Lp(f̂) ≤ Ĉ2 ‖r̂i(u) − û‖W 1,p(T̂ ) .

Here we have used first the fact that r̂i(u) belongs to a finite-dimensional space on T̂ ,

next the fact that û vanishes on f̂ , and finally the trace theorem on T̂ . Therefore, if
T ′ is a triangle,

(4.14) |[ri(u)](ai)| ≤ Ĉ3|det(BT ′)|−1/p(‖ri(u)−u‖Lp(T ′)+‖BT ′‖ |ri(u)−u|W 1,p(T ′)) ,

or if T ′ is a quadrilateral,

(4.15)
|[ri(u)](ai)| ≤Ĉ4|J−1

T ′ |1/pL∞(T ′)(‖ri(u) − u‖Lp(T ′)

+ ‖DFT ′‖L∞(T̂ ) |ri(u) − u|W 1,p(T ′)) .

Then (4.12) follows readily from (4.14) or (4.15) combined with (4.4), the fact that
T and T ′ belong to the same macroelement Δi, and Theorems 2.1 and 2.2 or 3.4 and
3.5.

Since the gist of the above proof consists in deriving an upper bound for |[ri(u)](ai)|,
it is clear that this proof can be easily adapted to establish the next result.

Theorem 4.4. Assume that (Th)h is a regular family of triangulations or quad-
rangulations of Ω. For any integers k and � with k ≥ 1 and 1 ≤ � ≤ k + 1 and any
real number p with 1 ≤ p < ∞, there exists a constant C, independent of h, such that

(4.16) ∀u ∈ W �,p
Γ0

(Ω), ∀T ∈ Th, ‖u−Rh,Γ0(u)‖W 1,p(T ) ≤ C h�−1
T |u|W �,p(ΔT ).

Remark 8. Estimates (4.8) to (4.10) still hold with the operator Rh replaced by
Rh,Γ0

.
Thus, we have exhibited two regularization operators, the second one being de-

signed for handling functions that vanish on part of the boundary. They have optimal
approximation properties in a large number of Sobolev norms, and the optimality
concerns both the order of the approximation and its local behavior (the ratio of the
diameter of ΔT to the diameter of T is bounded independently of h).

5. Applications to a lifting operator and residual error indicators. A
regularizing operator is a very useful theoretical tool. Among its best-known appli-
cations is the proof of the “inf-sup” condition that must be satisfied by spaces that
discretize the Stokes or Navier–Stokes problem; cf. [11, Chapter II], for instance. But
it is far from being its only application, and to illustrate this point, we have chosen
to describe, on one hand, the construction of a discrete lifting operator that was sug-
gested by O. Widlund [17] and, on the other hand, the derivation of optimal estimates
for a family of residual indicators.

Construction of a lifting operator. Again let Γ0 denote a subset of Γ with positive
measure, and assume that Ω is triangulated, by a regular family of triangulations (or
quadrangulations) (Th)h, in such a way that the end points of Γ0 coincide with nodes
of the triangulation. Here also, we number first the nodes of Th that lie on Γ0, say
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from 1 to N0, and next we number the remaining nodes from N0 + 1 to N . Then
we associate with Th the finite element space Θh, defined by (2.1) or (3.3) for some
integer k ≥ 1, and we denote by Wh the space of traces on Γ0 of all functions of
Θh. For 1 ≤ p < ∞, we wish to construct an operator Lh from Wh into Θh that
lifts the trace (for all wh in Wh, the trace of Lh(wh) on Γ0 coincides with wh) and
that is continuous with a norm independent of h. To this end, we introduce first a
standard lifting operator L that is continuous from W 1−1/p,p(Γ0) into W 1,p(Ω). Next,
we regularize L(wh) by the operator Rh defined by (4.1). Finally, since the values of
Rh(L(wh)) do not necessarily coincide with those of wh on Γ0, we correct them by
the technique of the preceding section; thus we set

(5.1) Lh(wh)(x) =

N0∑
i=1

wh(ai)ϕi(x) +

N∑
i=N0+1

[Rh(L(wh))](ai)ϕi(x) .

Obviously, the trace of Lh(wh) on Γ0 coincides with wh. The next theorem establishes
the uniform stability of Lh.

Theorem 5.1. Assume that (Th)h is a regular family of triangulations or quad-
rangulations of Ω, and let Lh be defined by (5.1). For any integer k ≥ 1 and any real
number p with 1 ≤ p < ∞, there exists a constant C, independent of h, such that

(5.2) ∀wh ∈ Wh, ‖Lh(wh)‖W 1,p(Ω) ≤ C ‖wh‖W 1−1/p,p(Γ0).

Proof. For any wh in Wh, we write

(5.3) ‖Lh(wh)‖W 1,p(Ω) ≤ ‖Rh(L(wh))‖W 1,p(Ω) + ‖Rh(L(wh)) − Lh(wh)‖W 1,p(Ω) .

The first term is estimated by Theorems 4.1 and 4.2 with � = 1 and by the standard
property of the lifting operator L,

(5.4) ‖Rh(L(wh))‖W 1,p(Ω) ≤ C1‖L(wh)‖W 1,p(Ω) ≤ C2‖wh‖W 1−1/p,p(Γ0).

By construction, the second term has the expression

Rh(L(wh)) − Lh(wh) =

N0∑
i=1

[Rh(L(wh)) − wh](ai)ϕi.

Then we proceed as in the preceding section. Let T be an element of Th such that
some nodes of T lie on Γ0. Suppose again that ΔT contains n macroelements Δi. We
agree to number first, say from 1 to n0, the nodes ai that lie on Γ0 and from n0 + 1
to n the remaining nodes. Then, owing to the support of the basis functions ϕi, we
have

‖Rh(L(wh)) − Lh(wh)‖W 1,p(T ) ≤
n0∑
i=1

|[Rh(L(wh)) − wh](ai)| ‖ϕi‖W 1,p(T ) .

On one hand, if T is a triangle,

‖ϕi‖W 1,p(T ) ≤ |det(BT )|1/p(‖ϕ̂i‖pLp(T̂ )
+ ‖B−1

T ‖p|ϕ̂i|pW 1,p(T̂ )
)1/p ,

and since the leading term is the one with the factor ‖B−1
T ‖, we can write

(5.5) ‖ϕi‖W 1,p(T ) ≤ Ĉ1|det(BT )|1/p‖B−1
T ‖ .
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Similarly, if T is a quadrilateral, we have

(5.6) ‖ϕi‖W 1,p(T ) ≤ Ĉ2‖JT ‖1/p

L∞(T̂ )
‖DF−1

T ‖L∞(T ) .

On the other hand, to simplify the discussion, we assume that ai belongs to a side f
of T that lies on Γ0. Then

|[Rh(L(wh)) − wh](ai)| ≤ ‖Rh(L(wh)) − wh‖L∞(f) = ‖ ̂Rh(L(wh)) − ŵh‖L∞(f̂)

≤ Ĉ3‖ ̂Rh(L(wh)) − ŵh‖Lp(f̂) ≤ Ĉ4‖ ̂Rh(L(wh)) − L̂(wh)‖W 1,p(T̂ ) ,

where in the last inequality, we have used the fact that

L̂(wh) = ŵh on f̂

in order to apply the trace theorem on T̂ . Therefore, if T is a triangle,

(5.7)
|[Rh(L(wh)) − wh](ai)| ≤ Ĉ5|det(BT )|−1/p(‖Rh(L(wh)) − L(wh)‖pLp(T )

+ ‖BT ‖p|Rh(L(wh)) − L(wh)|pW 1,p(T ))
1/p ,

and if T is a quadrilateral,

(5.8)
|[Rh(L(wh)) − wh](ai)| ≤ Ĉ6‖J−1

T ‖1/p
L∞(T )(‖Rh(L(wh)) − L(wh)‖pLp(T )

+ ‖DFT ‖pL∞(T̂ )
|Rh(L(wh)) − L(wh)|pW 1,p(T ))

1/p .

Then (5.2) follows from (5.3), (5.4), and (5.7) combined with (5.5) if T is a triangle,
or (5.8) combined with (5.6) if T is a quadrilateral, together with Theorems 4.1 and
4.2.

Residual indicators on a quadrilateral mesh. The residual indicators for the Pois-
son equation are known to satisfy optimal estimates when associated with a standard
conforming discretization on a triangular mesh (or tetrahedral mesh in three dimen-
sions); see [16] or [3]. The aim of this section is to extend these results to the case of
any mesh made of convex quadrilaterals.

So, assuming that the data g belong to L2(Ω), we consider the Poisson equation

(5.9)

{
−Δu = g in Ω,

u = 0 on ∂Ω.

Since the domain Ω has a polygonal boundary, we introduce a regular family (Th)h of
quadrangulations of Ω, and, for the discrete space Θh defined in (3.3), we set

(5.10) Θ0
h = Θh ∩ H1

0 (Ω).

Then, the discrete problem reads

(5.11)

Find uh in Θ0
h such that

∀vh ∈ Θ0
h,

∫
Ω

graduh .grad vh dx =

∫
Ω

g(x)vh(x) dx.

The standard a priori estimate is

|u− uh|H1(Ω) ≤ c h�−1 |u|H�(Ω)
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when the solution u is supposed to belong to H�(Ω), 1 ≤ � ≤ k + 1.
Next, for a nonnegative integer m, we introduce the finite element space

Λh =
{
λh ∈ L2(Ω); ∀T ∈ Th, λh|T ∈ Qm(T )

}
,

and we choose an approximation gh of the data g in Λh. Also, with each quadrilateral
T of Th, we associate the set ET of sides of T which are not contained in the boundary
of Ω and we denote by hf the length of each f in ET .

We are now in a position to define the family of indicators (ηT )T∈Th
:

(5.12) ηT = hT ‖gh + Δuh‖L2(T ) +
1

2

∑
f∈ET

h
1
2

f

∥∥∥[∂uh

∂n

]∥∥∥
L2(f)

,

where [∂uh

∂n ] denotes the jump of ∂uh

∂n across f . The following two theorems sum up
the optimal properties of these indicators.

Theorem 5.2. The family of indicators defined in (5.12) satisfies

(5.13) |u− uh|H1(Ω) ≤ c

( ∑
T∈Th

(
η2
T + h2

T ‖g − gh‖2
L2(T )

)) 1
2

.

Proof. It relies on the formula

(5.14) |u− uh|H1(Ω) = sup
w∈H1

0 (Ω)

∫
Ω

grad (u− uh) .gradw dx

|w|H1(Ω)
.

It follows from (5.11) that, for any wh in Θ0
h,∫

Ω

grad (u− uh) .gradw dx =

∫
Ω

grad (u− uh) .grad (w − wh) dx

=
∑
T∈Th

∫
T

grad (u− uh) .grad (w − wh) dx,

so that integrating by parts and using a Cauchy–Schwarz inequality leads to∫
Ω

grad (u− uh) .gradw dx

≤
∑
T∈Th

⎛
⎝‖g + Δuh‖L2(T )‖w − wh‖L2(T ) +

1

2

∑
f∈ET

∥∥∥∥
[
∂uh

∂n

]∥∥∥∥
L2(f)

‖w − wh‖L2(f)

⎞
⎠ .

Now, we take wh = R0
hw, where R0

h denotes the regularization operator Rh,Γ0 for
Γ0 = ∂Ω, and we derive from (4.16) and the analogue of (4.10) that∫

Ω

grad (u− uh) .gradw dx

≤ c
∑
T∈Th

⎛
⎝hT ‖g + Δuh‖L2(T ) +

1

2

∑
f∈ET

h
1
2

f

∥∥∥∥
[
∂uh

∂n

]∥∥∥∥
L2(f)

⎞
⎠ |w|H1(ΔT ).

Using once more a Cauchy–Schwarz inequality and also inserting gh with a triangular
inequality, we obtain (5.13).
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The arguments for deriving an upper bound for the ηT are strictly the same as
in the case of a triangular mesh, so we refer to Verfürth [15], [16], [3] for the proof of
the following theorem.

Theorem 5.3. The family of indicators defined in (5.12) satisfies, for all T in
Th,

(5.15) ηT ≤ c
(
|u− uh|H1(ΩT ) + ‖g − gh‖L2(ΩT )

)
,

where ΩT denotes the union of all quadrilaterals in Th which share at least a side with
T .

The main consequence of Theorem 5.2 is that a bound for the error can be com-
puted explicitly, up to a multiplicative constant, without any further assumption on
the regularity of the exact solution. However, the constant is not easy to evaluate;
we refer to Babuška, Durán, and Rodŕıguez [1] for interesting tentatives in this di-
rection. And, by combining the two theorems, each indicator ηT appears to be fairly
representative of the local error, thus leading to an efficient refinement of the mesh.
Complete results are given by Verfürth (see [16] and the references therein).
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