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1 l NTRODUCT l ON 

1. a ORIENTATION 

Three intermingled themes run i n  a l l  t h e  following : v a r i a t i o n a l  

s ta tements ,  t h e  d u a l i t y  i n  paired l i n e a r  spaces, the  convexity of s e t s  o r  

funct ions.  These a r e  p rec i se ly  t h r e e  leading themes of Optimization 

Theory, a s  it has been developed f o r  severa l  decades ; i n  f a c t  the study 

of opt imizat ion problems s t a r t e d  many progresses of modern convexity 

theory ,  i n  which d u a l i t y  p lays  a n  e s s e n t i a l  par t .  

I n  Mechanics these  t h r e e  themes have been present  f o r  more than 

two cen tur ies .  There i s  no need t o  r e c a l l  t h e  importance of v a r i a t i o n a l  

i d e a s  i n  t h e  development of Analyt ical  Dynamics. Observe, however, t h a t  

these  ideas  o f t e n  served a s  a mere scaffolding,  t o  be removed before the 

end of t h e  construct ion.  Lagrange equations a rose  from the v a r i a t i o n a l  

p r o p e r t i e s  of a mechanical system subject  t o  f r i c t i o n l e s s  c o n s t r a i n t s  

and conservat ive fo rces  only ; but a c t u a l l y  Analyt ical  Dynamics has a 

much wider scope, so  t h a t  some modern t r e a t i s e s  on the subject  may deve- 

l o p  i t  i n  t h e  framework of D i f f e r e n t i a l  Geometry, without reference t o  

any properly v a r i a t i o n a l  f a c t .  Var ia t iona l  ca lcu lus  acted here  i n  sug- 

ges t ing  some mathematical s t r u c t u r e  which eventual ly supplanted i t .  I n  

another  domain a s imi la r  evo lu t ion  took place q u i t e  recen t ly  when the  
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variational approach of partial differential equations gave rise to the 

theory of Variational Inequalities which have not much to do with extre- 

mum problems. 

The ciassical Calculus of Variations,developed in the context 

of differentiability, automatically involves the duality of linear spa- 

ces', possibly without formalizing it. In Statics, for instance, it is 

usual to characterize the equilibrium configurations of a "frictionless" 

system with finite freedom, by equalling to zero the partial derivatives 

of the potential energy. This induces to consider these partial deriva- 

tives as the "components1' of mechanical actions or "forces", in a genral 

sense ; in fact this constitutes the correct way to formulate calculation 

rules about forces, which are preserved under the change of variables ; 

for example if some evolution of the system takes place, one obtains a 

simple,expression for the work or the power of forces. This benefit in 

calculation (and also the possible connection with Thermodynamics) pro- 

moted the use of energy methods in many domains ; however these methods 

may have been a hindrance when they happened to prevent scientists from 

considering phenomena which could not be described by means of potential 

functions. Here again one improves by forgetting the variational stimulus 

and considering respectively displacements and forces as the elements of 

two linear spaces placed in duality by the bilinear form "work". Such 
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was a l r e a d y  t h e  unde r ly ing  i d e a  of t h e  t r a d i t i o n a l  method of v i r t u a l  

work. - 
About convex i ty ,  on t h e  o t h e r  hand, i t  must be  noted  t h a t  

Mechanics was probably t h e  f i r s t  p h y s i c a l  domain t o  make use  of t h i s  con- 

c e p t  ; t h i s  was i n  fo rmula t ing  t h e  e q u i l i b r i u m  c o n d i t i o n  of a  heavy s o l i d  

body l y i n g  on a  h o r i z o n t a l  p l a n e  : t h e  v e r t i c a l  l i n e  drawn from t h e  c e n t r e  

of mass must meet t h e  convex h u l l  of t h e  p o i n t s  o f  suppor t .  T h i s  i s  ty -  

p i c a l l y a r e s u l t  concerning u n i l a t e r a l  c o n s t r a i n t s .  I n  f a c t  t h e  s tudy  o f  

dynamical problems f o r  sys tems of f i n i t e  o r  i n f i n i t e  freedom wi th  u n i l a -  

t e r a l  c o n s t r a i n t s  (e .g .  t h e  i n c e p t i o n  of c a v i t a t i o n  i n  a  p e r f e c t  incom- 

p r e s s i b l e  f l u i d  ; s e e  MOREAU 171,  [PI, [ 9 ] )  i n i t i a l l y  mot ivated  t h e  

p a r t  t a k e n  by t h e  a u t h o r  i n  t h e  development of convex i ty  theory .  I t  must 

be  s t r e s s e d  t h a t  convex i ty  i s  invo lved  i n  t h e  t h e o r y  of u n i l a t e r a l  cons- 

t r a i n t s  i n  a n  e s s e n t i a l  way ; i t  i s  no t  used a s  a  convenience  assumpt ion 

made t o  f a c i l i t a t e  mathemat ica l  t r e a t m e n t ,  a s  i t  o f t e n  happens,  f o r  i n s -  

t a n c e ,  i n  Opt imizat ion .  

These l z c t u r e s  do  n o t  d e a l  w i th  dynamics,  but on ly  wi th  equi-  

l i b r i u m  o r  q u a s i - s t a t i c  e v o l u t i o n ,  i . e .  e v o l u t i o n  p r ~ b l e m s  where i n e r t i a  

i s  n e g l i g i b l e .  The motion of a  system i s  s t u d i e d  when r e s i s t a n c e  pheno- 

msna, such a s  f r i c t i o n  o r  t h e  r e s i s t a n c e  of a  p l a s t i c  system t o  y i e l d i n g ,  

a r e  t aken  i n t o  account .  Here a g a i n  co?vexity i s  involved from t h e  s t a g e  
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of formulating the resistance law itself. Many mechanists feel that the 

occurrence of convexity in this connection is essential, probably with 

some thermodynamical significance. 

Classical Coulomb's law of friction enters into our general 

scheme of resistance laws admitting a (convex) pseudo-potential. It will 

be objected that this law gives only a rather rough approximation of the 

friction phenomena ; experimentally, when the sliding velocity increases 

frop zero the friction coefficient begins with decreasing, while the 

existence of a superpotential would only allow it to increase. The au- 

thor's position in this matter is the following. 

Traditional physics almost always starts from linear laws as 

first approximations to which improvements have possibly to be added by 

taking terms of "higher order'' into account. The common habit of assu- 

ming differentiabity in formulations is connected with the same tendency, 

as the meaning of differentials is precisely to describe some "tangent1' 

linear mappings. On the contrary Coulomb's law of friction is radically 

nonlinear and nondifferentiable ; nevertheless there is no doubt that 

this law agrees with the fundamental features of the friction phenomenon 

and as such it is always used in practice as the first approximation, 

possibly subject to further imprwements. For instance the augmented 

friction when the sliding velocity is small or vanishes is frequently 
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explained as a sort of welding which takes place between the bodies in 

contact, and has to be broken when sliding occurs. 

Let us suggest that, in plasticity as well as in friction, our 

pseudo-potential formalism describes the primary phenomenon exactly as 

in other domains of physics the primary phenomena admit linear formula- 

tions. This causes no conceptual difficulty ; on the other hand, the 

considerable amount of work which has been devoted in recent decades to 

optimization techniques makes now available the computational methods 

permitting to deal numerically with "subdifferential calculus" and con- 

vex analysis. 

1. b SUMMARY OF CHAFTER 2 

The preparatory Chapter 2 presents the elements of the duality 

theory of convex functions and the subdifferentials of such functions. 

The articulation of the concepts is sufficiently detailed but the proofs 

of the main statements are not given. Except otherwise indicated the 

reader may find them in MOREAU [lo], a multigraph report. Some are also 

given in the recent book of P. J. LNJRENT [l], which devotes a chapter 

to this subject. Of course, the book of R.T. RCCKAFELLAR [2], yet res- 

tricted to finite dimensional spaces, supply much of the fundamental 

informations. 
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The s e t t i n g  i s  t h a t  of a  p a i r  of r e a l  l i n e a r  spaces,  say (X,Y), 

placed i n  d u a l i t y  by a  b i l i n e a r  form denoted a s  <.,.>. This  d u a l i t y  i s  

spposed separat ing,  i . e .  t h e  two l i n e a r  forms defined on X by 

w < x , y >  and X-<x ,yf>  a r e  i d e n t i c a l  only i f  the  elements y and 

y '  of Y a r e  equal ,  and the symmetric assumption i s  made whith exchan- 

ging the  r o l e s  of the  two spaces. Therefore,  i f  one of t h e  two spaces 

has a  f i n i t e  dimension, the  dimension of the o ther  i s  t h e  same ; i n  t h i s  

case ,  every l i n e a r  form defined on one of the  two spaces can be represen- 

t e d  i n  t h e  preceding way and i s  continuous with regard t o  t h e  n a t u r a l  to- 

pology of f i n i t e  dimensional l i n e a r  spaces. The s i t u a t i o n  i s  more compli- 

ca ted  f o r  i n f i n i t e  dimensional spaces. Recal l  i n  t h a t  case t h a t  each of 

t h e  two spaces, say X f o r  instance,  may be endowed with various l o c a l l y  

convex topologies  which a r e  compatible with t h e  d u a l i t y  (X,Y) i n  t h e  

sense t h a t  r e l a t i v e l y  t o  any of them, the continuous l i n e a r  forms a r e  

exact ly the func t ions  x-<x,y> with a r b i t r a r y  y i n  Y.  By the  sepa- 

r a t i o n  assumption made above, these topologies  a r e  Hausdorff ; it i s  a  

c l a s s i c a l  f a c t  t h a t  among them the  weak t o p o l o a  q (X,Y) i s  the  coar- 

s e s t  and the Mackey topology z (X,Y i s  the f i n e s t .  Observe t h a t ,  by 

usual separa t ion  arguments, the closed c o w e x  s e t s  a r e  t h e  same r e l a t i -  

vely t o  a l l  these  topologies , thus i n  the  following we s h a l l  sometimes 

r e f e r  t o  closed convex s e t s  without specifying the topology. Same remnrk 
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f o r  t h e  lower semi-continuous convex functions. 

1. c SUMMARY ,QF CHHAPTER 3 

Chapter 3 takes  up Mechanics by the  study of mate r ia l  systems 

whose s e t  of possible  conf igura t ions ,  denoted by U ,  i s  endowed with a 

l i n e a r  space s t ruc ture .  Such is  i n  p a r t i c u l a r  t h e  c a s e ,  due t o  the use 

of l i n e a r  approximation, i n  many p r a c t i c a l  s i t u a t i o n s  where i t  i s  suppo- 

sed t h a t  the  considered system presents  only " i n f i n i t e l y  small deviation;' 

from some reference s t a t e  which c o n s t i t u t e s  t h e  ze ro  of the l i n e a r  space 

. By t h e  b i l i n e a r  form "work" t h e  l i n e a r  space U i s  placed i n  dua- 

l i t y  with another l i n e a r  space a whose elements represen t ,  i n  a general  

sense,  f o r c e s  appl ied t o  t h e  system. An example i n  9 3. a shows why t h i s  

d u a l i t y  may be supposed separat ing.  

I n  t h i s  framework a s t a t i c a l  law i s  a r e l a t i o n ,  a r i s i n g  from 

t h e  study of some of t h e  physical  processes i n  which t h e  system i s  in- 

volved, formulated between t h e  possible  configurat ion,  say u E U ,  of 

t h e  system and some, say f E , among t h e  f o r c e s  it experiences i f  i t  

happens t o  come through t h i s  configurat ion.  Such a r e l a t i o n  may depend 

on time. The concept of a s t a t i c a l  law which admits a p o t e n t i a l  func t ion  

i s  reca l led .  

A t  t h i s  s tage  it i s  s t ressed  t h a t  t h e  word c o n s t r a i n t  
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possesses i n  Mechanics a  s t r i c t e r  sense than i t  rece ives ,  f o r  ins tance ,  

i n  Optimization (observe t h a t  the  French mechanical term i s  "l ia ison",  

while "cOntraintet '  has  o ther  meanings). Describing a  mechanical cons- 

t r a i n t  requ i res  fundamentally more information than defining some s e t  

of permitted conf igura t ions  ; some prec i s ions  must be given about the 

confining process ,  i n  the formulation of which t h e  force of c o n s t r a i n t  

o r  reac t ion  i s  involved. Paragraphs 3. c  and 3. d  emphasize, i n  the 

l i n e a r  framework of t h i s  Chapter, t h a t  f r i c t i o n l e s s  c o n s t r a i n t s ,  b i l a -  

t e r a l  o r  u n i l a t e r a l ,  a r e  s t a t i c a l  laws. Prec i se ly  they come i n t o  the  

general  c l a s s  of t h e  s t a t i c a l  laws which possess  a  superpoten t ia l ,  i .e .  

the  r e l a t i o n s  between u  and f  which can be wr i t t en  under t h e  form 

- f  E a $ (u ) ,  where #I denotes a  convex numerical funct ion,possibly 

taking i n  some p a r t  of the space U t h e  value + m . The c l a s s i c a l  laws 

possessing a  p o t e n t i a l  funct ion a l s o  belong t o  t h i s  c l a s s ,  a s  f a r  a s  t h e  

p o t e n t i a l  funct ion i s  convex. 

If a l l  t h e  mechanical a c t i o n s  experienced by the  system (possi- 

bly excepting f o r c e s  which vanish i n  any exp-cted equi l ibr ium) a r e  re-  

presented by t h e  conjunct ion of s t a t i c a l  laws admit t ing time-independent 

superpo ten t ia l s ,  t h e  equi l ibr ium confi ,<urat ions t r i v i a l l y  possess some 

extremum proper t ies  i n  the  space U . Paragraph 3. f  supposes t h a t  a l l  

these  mechanical a c t i o n s  have been grouped i n  order  t o  be summarized a s  
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the conjunction of two statical laws admitting the respective super- 

potentials and +2 ; then u E U is an equilibrium configuration 

if and only if there exists fl E such that - fl E a (u) and 

fl E a 4, (u). The determination of f priorto that of u is classically 
1 

called a statical approach to the equilibrium problem ; the duality theo- 

ry of convex functions immediately yields some extremum formulation for 

* * 
this problem. This involves the respective dual function and +2 

of and +2 , generalizing the so-called complementary energy of 

linear elastostatics. Similar correspondances between extremum problems 

formulated in two paired linear spaces are a familiar feature in convex 

optimization, as well Fs familiar the connection of such a pair of pro- 

blems with a saddle-point property concerning some f ~inction called a 

Lagrangian. In fact, Paragraph 3. g gives a simultaneous characteriza- 

tion of u and fl as a saddle-point in the product space U x F  . As 
all the preceding pattern may usually be applied to each definite mecha- 

nical system in several different ways, it is able to generate a great 

number of extremal or saddle-point characterization of equilibrium. The 

foregoing concepts were first published as a short Note (MOREAU [ll]) 

in wriich proofs were not given. 

/ Paragraph 3. h illustrates the formalism by some examples of 

one-dimensional systems. Paragraphs 3. i and 3. j emphasize the 
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appl ica t ion  t o  a l a t t i c e  of b a r s  ; t h i s  introduces two p a i r s  of f i n i t e  

dimensidnal l i n e a r  spaces (X,Y and (E,S), a l i n e a r  mapping D from 

* 
X i n t o  E and t h e  a d j o i n t  mapping D from S i n t o  Y : t h i s  i s  a 

very common a lgebra ic  p a t t e r n  i n  e l a s t o s t a t i c s .  Various ways of  exploi- 

t i n g  i t  are '  presented ; i n  p a r t i c u l a r  t h e  l a s t  one i s  meant t o  prepare 

f o r  the  evolut ion problem of e l a s t o p l a s t i c s ,  t o  be t r e a t e d  i n  Chapter 6. 

More d e t a i l s  about continuous media and t h e  func t ion  spaces involved i n  

t h e i r  study a r e  given by B. Nayroles i n  h i s  l ec tures .  

1. d SUMMARY OF CHAmR 4 

T h i s  Chapter,  devoted t o  r e s i s t a n c e  laws does not requ i re  a 

l i n e a r  space s t r u c t u r e  f o r  the s e t  of the poss ib le  configurat ions.  In  

f a c t  i t  is  a constant  f e a t u r e  i n  Mechanics t o  a s s o c i a t e  with each con- 

f i g u r a t i o n  of a system a r e a l  l i n e a r  space ')r ; t h e  elements of y cons- 

t i t u t e ,  i n  some sense,  the values t h a t  may take the ve loc i ty  of t h e  sys- 

tem i f  it comesthrough the considered configurat ion.  A second l i n e a r  

space r i s  a l s o  assoc ia ted  lrith each configurat ion ; t h e  elements of 

form, i n  a general ized sense, t h e  poss ib le  values of fo rces  which may 

be appl ied t o  t h e  system a t  an i n s t a n t  it happens t o  have t h e  considered 

configuration. The spaces ?" and a corresponding t o  a given configu- 

r a t i o n  a r e  placed i n  d u a l i t y  by a b i l i n e a r  form : < v , f >  denotes t h e  
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power of t h e  fo rce  f  E i f  t h e  system possesses the  ve loc i ty  v  E Y. 

I n  t h e  s p e c i a l  case of Chapter 3, i t  t u r n s  out t h a t  may be i d e n t i f i e d  

with U and t h e  same a is  assoc ia ted  with every configurat ion.  

We c a l l  i n  general  res i s tance  law a  r e l a t i o n  formulated between 

t h e  possible  ve loc i ty  v  E and a  fo rce  say f  E F , a r i s i n g  from some 

of t h e  physical  processes i n  which t h e  system i s  involved. This  i s  pro- 

p e r l y  a  res i s tance  phenomenon i f  t h e  r e l a t i o n  i s  d i s s i p a t i v e ,  i . e .  i f  i t  

impl ies  <v,f> < O. 

Here again,  t h e  case  where i t  e x i s t s  a  func t ion  4 defined on 

Y , c a l l e d  t h e  pseudo-potential of t h e  r e s i s t a n c e  law, such t h a t  t h e  

r e l a t i o n  takes the  form - f  E a $I (v)  deserves spec ia l  a t t en t ion .  I f ,  

i n  P a r t i c u l a r  0 E 8 $ (01, the r e l a t i o n  i s  sure  t o  be d i s s i p a t i v e  ; t h e  

pseudo-potential i s  c a l l e d  i n  t h i s  s p e c i a l  c a s e  a  r e s i s t a n c e  func t ion  

and one may suppose w i t h o u t l o s s  of g e n e r a l i t y ,  t h a t  $ (0)  = 0. An e le -  

mentary example i s  t h a t  of v i s c o s i t y  laws : then 4 i s  a quadrat ic  form, 

t r a d i t i o n a l l y  c a l l e d  t h e  Rayleigh function. 

The main appl ica t ion  of these  ideas  concerns dry f r i c t i o n  and 

p l a s t i c i t y  ; t h i s  corresponds t o  a funct ion $ which is  sub l inear ,  i . e .  

convex and pos i t ive ly  homogeneous. Equivalent ly,  i s  the  Support func- 

t i o n  of a  c losed convex subset  of F , denoted by -C , containing t h e  

o r i g i n .  An e s s e n t i a l  f a c t  i n  such a  case i q  t h a t  the  considered 
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r e s i s t a n c e  law, namely - f E 8 r#~ ( v ) ,  n e i t h e r  def ines  f a s  a s ingle-  

valued func t ion  of v nor v a s  a single-valued func t ion  of f ; t o  

v = 0 ,  i n  p a r t i c u l a r ,  correspond a s  poss ib le  values f o r  f a l l  the  po in t s  

of C . This  i s  a f a m i l i a r  f e a t u r e  of t h e  Coulomb law f o r  dry 

f r i c t i o n  o r  of t h e  Prandt l  - Reuss law f o r  per fec t  p l a s t i -  

c i t y .  I n  t h e i r  conventional formulation they may, a t  f i r s t  s i g h t ,  look 

l i k e  a pdecing toge ther  of heterogeneous empir ical  da ta  ; t h e  p resen t  

formulation on t h e  con t ra ty  revea l s  t h e  s t rong  mathematical consistency 

of each of these  laws. The r e s t  of t h e s e  l e c t u r e s  i s  meant t o  d i sp lay  

t h e  e f f ic iency  of such an approach. The reader  w i l l  see,  on t h e  o ther  

hand, i n  P. GERMAW [l] how our pseudo-potential formalism may take 

place i n  the more f a m i l i a r  s e t t i n g  of a textbook on Continuum Mechanics. 

For what concerns Coulomb's law of dry f r i c t i o n  it w i l l  be 

objected t h a t ,  i n  most p r a c t i c a l  problems, the  normal component of t h e  

contact  fo rce ,  which e n t e r s  here i n  t h e  expression of 6 a s  a cons tan t ,  

i s  unknown. Our p o s i t i o n  i s  t o  consider  t h i s  quant i ty  a s  one of t h e  s ta-  

t e  var iab les  of t h e  system. 

Paragraph 4. d comes back t o  p e r f e c t  c o n s t r a i n t s  a s  they were 

introduced by Chapter 3. I n  t h e  presen t  kinematical context ,  these  cons- 

t r a i n t s  a r e  manifested a s  r e l a t i o n s  between t h e  ve loc i ty  of t h e  system 

and some force  a c t i n g  on it, namely t h e  r e a c t i o n  of t h e  cons t ra in t .  These 

r e l a t i o n s t o o  can be represented by means of pseudo-potentials and t h e  
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same is true for the nonholonomic perfect constraints of traditional 

Mechanics (actually an extreme case of friction) : we propose to refer 

to such relations as velocity constraints. 

Friction or plasticity.laws, as well as viscosity laws, exhibit 

a very usual property : the corresponding dissipated power - <v,f> can 

be expressed as a single-valued function of the velocity, classically 

called the dissipation function. There is a priori no reason for this 

function to be related to the pseudo-potential if it exists ; paragraph 

4. f characterizes the resistance laws for which such a relation holds. 

The chapter ends with remarks about viscoplasticity : adding 

some viscosity to a resistance law of the plasticity or friction type 

descri.bed above, amounts to replace the indicator function 
$rC 

of the 
C 

set C (the function taking the value 0 on this set and +, outside) 

by a penalty function of the same set. 

1. e SUMMARY OF CHMTER 5 

This is a purely mathematical part. The application of the 

foregoing mechanical formalism to evolution problems requires, in parti- 

cular, some investigations about the motion of a set. 

By means of Hausdorff distance, the classical concept of the 

variation of a function defined on a real interval is adapted to moving 
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sets in a metric space ; the absolute continuity of such sets is similar- 

ly introduced. 

As convex subsets of a normed space may be described in terms 

of their support functions, a special approach of moving sets is develo- 

ped for this case. In the same setting of normed spaces and convex mo- 

ving sets, Paragraph 5. c establishes an intersection theorem which 

formulatessufficient conditions for the intersection of two absolutely 

continuous convex moving sets to be itself absolutely continuous. 

The rest of the Chapter is restricted to Hilbert spaces. 

Paragraph 5.  b considers among other topics the distance from a moving 

point t H  z(t) to a moving convex set t* C(t) ; if both are absolu- 

tely continuous the distance is an absolutely continuous numerical func- 

tion and some inequality involving derivatives is established, as a pre- 

paration for the following. 

Paragraph 5 .  c introduces the sweeping process associated 

with a moving convex set in the Hilbert space H. This gives a fundamen- 

tal example of an evolution problem under unilateral constrairit ; from 

the mathematical standpoint this process features also as a constituent 

of several more complicated situations ; in particular it will bemet 

again in the treatment of the elastoplastic problem of Chapter 6. The 

author has already devoted several studies to this problem, mainly 
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pub l i shed  a s  mul t igraph seminar  r e p o r t s  ( c f .  MOREAU [ 171 , [ 181 , [20] , 

[21] 1. The method used i n  5 5. g  t o  e s t a b l i s h  a n  e x i s t e n c e  theorem con- 

sists i n  a  r e g u l a r i z a t i o n  t echn ique ,  e q u i v a l e n t  i n  t h e  p resen t  c o n t e x t  

t o  r e p r e s e n t i n g  t h e  g iven  moving convex s e t  by p e n a l t y  func t ions .  

The Chapter  ends  wi th  an  a lgo r i thm of  t ime d i s c r e t i z a t i o n  f o r  

t h e . s o l u t i o n  of t h e  sweeping problem ; t h e  convergence of t h i s  a lgo r i thm 

i s  proved by u s i n g  aga in  r e g u l a r i z a t i o n ,  bu t  w i th  a  time-dependent 

"penal ty  c o e f f i c i e n t " .  

1. f  SUMMARY OF CHAPTER 6 

T h i s  f i n a l  Chapter  shows how a l l  t h e  fo rego ing  o p e r a t e s  when 

a p p l i e d  t o  t h e  q u a s i - s t a t i c  e v o l u t i o n  problem f o r  e l a s t o p l a s t i c  systems. 

T h i s  i n v o l v e s  a  l i n e a r  space  U a s  c o n f i g u r a t i o n  space  and ,  accord ing  

t o  t h e  conven t iona l  concep t ion  of  e l a s t o p l a s t i c i t y ,  t h e  system i s  t r e a t e d  

a s  formed by two components : t h e  "v i s ib l e"  o r  "exposed" component, deno- 

t e d  by x  E U , and t h e  "hidden" o r  "p la s t i c "  component denoted by 

p  E L1 . The e l a s t i c  r e s t o r i n g  f o r c e  depends only  on t h e  d i f f e r e n c e  x-p. 

The component x undergoes p e r f e c t  c o n s t r a i n t s  and l o a d s ,  both  depen- 

d i n g  on t ime i n  a  g iven way. The component p  undergoes a  r e s i s t a n c e  

r e l a t e d  t o  i t s  "ve loc i ty"  6 by a  law of the  type  s t u d i e d  i n  6 4. 

T h i s  i s  only  p e r f e c t  p l a s t i c i t y ,  but  a  very  s imple  example sugges t s  t h a t  
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s t r a i n  hardening t o o  could  be taken i n t o  account  by a s i m i l a r  p a t t e r n ,  

provided a s u f f i c i e n t l y  l a r g e  space  would be a f f e c t e d  t o  t h e  "hidden" o r  

I t .  ~ n t e r n a l "  v a r i a b l e  p ; t h i s  po in t  of  view i s  adopted by s e v e r a l  

au thor s .  

Great  s i m p l i f i c a t i o n  i s  brought  by a n o t a t i o n  t r i c k  by which 

t h e  c o n f i g u r a t i o n  space  U and t h e  f o r c e  space  9 a r e  i d e n t i f i e d  wi th  

a s i n g l e  H i l b e r t  space  H ; t h e  norm i n  H i s  r e l a t e d  t o  t h e  e l a s t i c  

energy.  

An e x i s t e n c e  theorem i s  proved by r e d u c t i o n  t o  t h e  sweeping 

p r o c e s s  of Chapter  5 ; thereby a t i m e - d i s c r e t i z a t i o n  a lgo r i thm i s  
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2 DUAL1 TY ANC SUBDl FFERENTI ALS OF  CdNVEX FdNCTIO;4S 

2. a POLAR FUNCTIONS 

Let X , Y be a pair of real linear spaces placed in separating 

duality by the bilinear form <.,.>. Let f be a function defined, for 

- 
instance, on X, with values in R = [ -  =, + m] .  Consider the affine 

function defined on X by 

with y fixed in Y, called the slope of this affine function, and p 

fixed in R ; such is the general form of the affine functions which are 

continuous for some, then for any, locally convex topology on X compa- 

tible with the duality. 

An usual question is that of determining wether this affine 

function is a minorant of f ; a trivial necessary and sufficient con- 

dition for that is 

(2.2) p 3 SUP [<x,y> - f(x) I . 
X E X  * 

Attention is drawn thereby to the function f defined on Y by 

f* (y) = sup [(x,y> - f(x)] 
X E X  

called the polar function of f. 

* 
In particular the equality f (y) = + m ,  for some y E Y, 

means that f possesses no affine minorant having y as slope ; such is 
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t h e  case ,  f o r  ins tance ,  whichever is  y ,  i f  f  t akes  somewhere i n  X 

t h e  value - . 
EX$dAE!I%. Let A be a  subset of X ; t ake  a s  f  t h e  i n d i c a t o r  func t ion  

JrA of A, i .e .  

Its po la r  func t ion  

Jr; ( Y )  = SUP r<x,y> - JrA(x)1 = SUP <x,y> 
x E X x E A  

i s  c l a s s i c a l l y  known under the ( r a t h e r  improper) name of t h e  a u u ~ o r t  

funct ion of A. Take y d i f f e r e n t  from zero  i n  Y and p E R ; t h e  af- 

f i n e  funct ion (2.1) i s  a  minorant of Jr i f f  the  closed h a l f  space 
A 

[ x E X : < x ,  y, - p < 01 contains  A. I n  v i e r  of condit ion (2.2 ) t h i s  

* 
i s  possible  only if @A (y )  < + - ; i n  such a  case  taking e x a c t l y  

* 
p = JrA(y) y i e l d s  a  half-space which i s  minimal, with regard t o  inclu-  

s ion ,  among t h e  half-spaces containing A ; but t h a t  does not mean t h i s  

half-space i s  necessary a  "supporting half-space". : i t s  boundary h y p e r  

plane need 'not  meet A, even when A i s  c losed  and convex. 

2. b  PAIRS OF DUAL FUNCTIONS 

For t h e  cons t ruc t ion  of t h e  supremum i n  (2.3) one may equiva- 

l e n t l y  consider  only t h e  values of x  such t h a t  f ( x )  ( + m . Therefore,  
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whichever i s  f ,  t h e  f u n c t i o n ,  f* belongs t o  t h e  s e t ,  denoted by 

r (Y,X), of the  func t ions  on Y which a r e  t h e  pointwise suprema of col-  

l e c t i o n s  of a f f i n e  func t ions  l i k e  y I+ <x,y> - a, x E X ,  c E R . Using 

Hahn-Banach's theorem, one proves t h a t ,  besides t h e  cons tan t  - ( i t  

i s  t h e  supremum of an empty c o l l e c t i o n ) ,  t h e  s e t  T (Y,X) c o n s i s t s  

e x a c t l y  of the  func t ions  on Y ,  with values i n  1- m ,  + -1, which a r e  

convex and 1.s.c. f o r  some l o c a l l y  convex topology on Y compatible 

with t h e  d u a l i t y  (Y,X), then 1.s.c. f o r  a l l  such topologies.' 

The spaces X and Y play here syrmnetric r o l e s  i t h e r e  i s  no 

* 
inconvenience i n  denoting i n  t h e  same way by t h e  s t a r  the  funct ion 

defined on X a s  t h e  po la r  of a  given func t ion 'on  Y. Then t h e  bPpolar 

of  f  i s  defined o n  X by 

f** ( X I  = SUP [<x,Y, - f* ( Y ) ]  . 
Y E Y  

The cons t ruc t ion  of t h i s  supremum may be equiva len t ly  be r e s t r i c t e d  t o  , 
*. * * 

t h e  va lues  o'f y  such t h a t  f  ( y )  i s  f i n i t e  ; t h a t  means f  is  t h e  

supremum of t h e  a f f i n e  func t ions  l i k e  (2.11, with P ver i fy ing  e q u a l i t y  

** 
i n  (2.2) ; they a r e  t h e  maximal a f f i n e  minorant of f ,  s o  t h a t  f  may 

a l s o  be  defined a s  t h e  pointwise supremum of a l l  t h e  a f f i n e  func t ion  of 

t h e  form (2.1) which minorize f .  Th is  supremum i s  equiva len t ly  charac- 

t e r i z e d  a s  t h e  g r e a t e s t  element of r (X,Y) minorizing f  o r  T- h u l l  
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For ins tance ,  i f  A i s  a subset  of X, t h e  r - h u l l  of t h e  

i n d i c a t o r  func t ion  *A is  the  i n d i c a t o r  func t ion  of the  closed convex 

The preceding implies t h a t  i f  i t  is a p r i o r i  supposed t h a t  

f E r (X,Y) g E I? (Y,X) one has  t h e  equivalence 

* * 
f = g  ( = ) f  = g .  

Then f ' e n d  e; at?? s a i d  mutually po la r  o r  conjugate  o r  dual  funct ions.  In  

t h i s  way the s t a r  * induce4 a one-tstone correspondance between I' (X,Y) 

and P (Y,X) ; a s  t h e  constant  + , correspond6 t o  t h e  cons tan t  - m ,  

t h e  correspondance i s  a l s o  one-to-one between t h e  elements of F (X,Y) 

and r (Y,X) o t h e r  than these  s ingula r  cons tan ts  : these elements a r e  

c a l l e d  t h e  proper c losed  convex func t ions  on X and Y ;  t h e . s e t s o f  them 

w i l l  be denoted by Po (X,Y) and To (Y,X) respect ively.  

From the  d e f i n i t i o n  of p o l a r i t y  i t  immediately fol lows 

c a l l e d  Fencl iel ts  inequal i ty .  

RIMARK ON TERMINOLOGY. Most of the  words introduced by t h e  preceding 

d e f i n i t i o n s  a r e  t h e  English t r a n s c r i p t i o n s  of Piranch terms c u r r e n t l y  used 

by French speaking people a f t e r  the  a u t h o r ' s  multigraph r e p o r t  of 1966 

(MOREAU [ 101 1. T h i s  involves but s l i g h t  discrepancies  from t h e  book of 

R.T. ROCKAFELIAR [2]  : following t h e  1949 i n i t i a t i n g  paper of 
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W. FENCHEL [ I], Rockafel lar  p r e f e r s  t h e  locu t ions  "con jugate func t ionc  " 

t o  "dual functionsH. I t  may be inconvenient t o  c a l l  a l s o  conjugate of f ,  

a s  he  does, t h e  func t ion  f* assoc ia ted  by (2.3)  with some f which 

does not  necessar i ly  belong t o  l' ( X , Y ) . d  t h i s  s o  c a l l e d  "conjugacy" i s  

no more a symmetric correspondance, t h e  author  chose i n  the  1966 r e p o r t ,  

t o  use i n  t h i s  connotat ion t h e  term pola r  funct ion.  Unfortunately, i n  t h e  

meantime, Rockafel lar  app l ied  t h e  word polar t o  another  kind of corres-  

pondance (c f .Sec ;  15 of h i s  book) concerning nonnegative closed convex 

f u n c t i o n s  vanishing a t  t h e  o r i g i n ,  which genera l izes  some c l a s s i c a l  con- 

jugacy of - func t ions  ( s e e  5 2. h below) ; but  t h e r e  does not seem 

t o  be much r i s k  of confusion. 

2. c IMAGES OF PROPERTIES OR RELATIONS 

Many proper t ies  o r  r e l a t i o n s  concerning func t ions  defined,  f o r  

ins tance ,  on X ,  imply some proper t ies  o r  r e l a t i o n s  concerning the  po la r  

of them. Here we r e s t r i c t  ourse lves  t o  a few of t h e s e  "images by po la r i -  

ty'' considering exc lus ive ly  func t ions  f ,  f l ,  f 2 ,  . . . which bzlong t o  

r (X,Y) and denoting by g, gl,  g2, . . . t h e i r  p o l a r  ( i . e .  d u a l )  func- 

t ions .  

Easy c a l c u l a t i d n  y i e l d s  : 

lo Homothety. I f  d E R i s  a non zero cons tan t ,  t h e  i d e n t i t y  
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V X 6 X : fl(x) = f2(d X) 

is equivalent to 

1 
V y E Y : gl(y) = g2(; Y) . 

2' Multiplication by a positive constant. If h is a strictly positive 

constant, the identity 

V x E X : fl(x) = A f2(x) 

is equivalent to 

1 
V y E Y  : gl(y) = Ag2(Ty) ; 

the right member is sometimes written as a :'right product by A'' : 

notation gl = g2 A . 
In particular a function g belonging to I' (Y,X) is the 

support function of a subset of X (or equivalently the support function 

of the closed convex hull of this subset) if and only if its dual f is 

an indicator, i.e. this dual takes only the values 0 and +, . That 
means f remains unchanged under the multiplication by any A > 0 ; in 

view of the preceding, this is equivalent to g being positively homo- 

geneous (i,e. sublinear, due to the assumed convexity of g). A more 

special situation is that of a function g belonging to r (Y,X) which 

at the same time is an indicator function and is sublinear : this hap 

pens if and only if f possesses the same properties ; in such a case 

f and g are respectively the indicator functions of two mutually polar 



(closed, convex) cones, P and Q, i.e. 

Q = Iy E Y : V x E P , <x,y>< 01 

and symmetrically 

P = ~ x E  X ' :  V y E  Q , <X,Y><O) . 
3 O  Translation. If a E X and n E R, the identity 

V x E X  : f (x) = f (x-a)+a 1 2 

is equivalent to 

V Y E Y  : gl(y) = g(y)+<a,y>-a . 
40 Product spaces. Let (X Y 1, i = 1, 2, ... , n, be n pairs of real i' i 

linear spaces placed in duality by n bilinear forms respectively deno- 

ted by If x =  (x x2, ..., xn) denotes the generic element 

of the linear space 

X = X x X x ... 1 2  'n 

and Y = ( Y ~ ,  y2, ...' yn) the generic element of the linear space 

Y = Y x Y x ... x Yn 1 2  

the bilinear form 

(x,y> = cxl'~l,l + (x2'~2>2 + . . . + <x~'Y,>~ 

places X and Y in duality. For each i, denote by fi, gi a pair of 

functions defined respectively on Xi and Yi and mutually polar with 

regard to the bilinear form <.,.>i. It is easy to see that the functions 

f and g defined on X and Y respectively by 
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f(x) = fl(xl) + f2(x2) + ... + fn(xn) 

P(Y) = gl(yl) + g2(y2) + . .. + gn(yn) 

are mutually polar with regard to (. , . >. 

The following result is less trivial (see proofs in MOREAU 

[3] or [ 101 ) : 

5' Continuity. The setting is again that of single pair of lEnear spaces 

f inite and 
(X,Y). The function f E T,(X,Y) is continuous at the origin for some 

A 

locally convex topology on X compatible with the duality (then for the 

Mackey topology z (X,Y) which is the finest of themj if and only if the 

dual function g E T,(Y,X) is inf-compact, i.e. for any k E R the 

('level set" or "slice" y E Y : g(y) < kl is compact for some (local- 

ly convex) topology on Y compatible with the duality (then for the 

weak topology c (Y,X) which is the coarsest of them). Note that, due to 

the convexity of g, a sufficient condition for that is the existence of 

some k > inf g such that this compactness holds. 

Using translation (cf. 3' above) one concludes that the conti- 

nuity of f at some point x E X is equivalent to the compactness of 

the "oblique slices of g with slope xot', i;e. the sets 

)y E Y : g(y) -<xo, y><k] . 

2. d INF - CONVOLUTION AND THE IMAGE OF ADDITION 

Let us denote by + the commutative and associative operation - 
extending classical addition to any pair of elaments of R = [-coy + -1 
by putting (- m) 1 (+ ra) = + m (symmetrically the operations i extends 
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c l a s s i c a l  add i t ion  by the  convention (- ,) t (+ ,) = - , ). 

Let f l ,  f 2  be func t ions  defined on t h e  l i n e a r  space X with 

- 
va lues  i n  R ; t h e  func t ion  f def ined on X by 

(2.4) f ( x )  = i n f  [ f  ( u )  ; f (X - u)]  = i n f  [ f l ( x  - v )  ; f2(v,)] 
U E X  

1 2 
V E X  

i s  c a l l e d  t h e  inf imal  convolute, o r  s h o r t l y  inf-convolute, of f l  and 

f 2  ; i t  i s  denoted by f l  V f 2  ( o r  a l s o  f 1 0  f 2 ,  a s  i n  ROCKAFELLAR [2] ,  

when t h e r e  i s  no r i s k  of confusion with the  suprema1 convolute f l A  f a ,  

which would be symmetrically defined by using "sup1' and t) .  This  opera- 

t i o n  i s  commutative and a s s o c i a t i v e  ; if f l  adn f 2  a r e  convex, s e  

f l  V f 2 ,  e t c . .  . 

Example 1. I f  f 2  is  t h e  i n d i c a t o r  func t ion  of a s ing le ton  l a ] ,  then 

f l  V f2  i s  a t r a n s l a t e  of f l ,  namely t h e  func t ion  

x * f l f x - a )  . 
Example 2. I f  A i s  a subse t  of X and (1.1) a norm on t h i s  l i n e a r  

space, then (#A V 11.11 ) (XI is  t h e  d i s tance  from t h e  point  x t o  t h e  

s e t  A. - 
Example 3. I f  A and B a r e  two subse t s  of X ,  t h e  inf-convolute 

V gB i s  t h e  i n d i c a t o r  func t ion  of the  s e t  

A + B  = ~ X E X  : 3 a ~ ~  , 3 b ~ ~  , x = a + b j .  

Coming back t o  t h e  s e t t i n g  of the  p a i r  of spaces (X,Y) i n  dua- 

l i t y ,  t h e  computation of po la r  func t ions  y i e l d s  e a s i ? y  
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Suppose now that fl and f2 belong to l' (X,Y) and that 

gl and g2 are their polar (i.e. dual) functions ; taking the polars 

of both members of the preceding. equality leads to 

Addition f is a composition law in F (Y ,X) ; (2.5) describes the com- 

position law in l' (X,Y) which is the image of it by the one-to-one 

mapping *; this composition law is the l' - hull of inf-convolution (cf. 
# 2. b abwe) ; we denote it by 1 ; it may be called r -convolution. 

Of practical importance are the cases where fl V f2 happens 

to belong to I? (X,Y) so that the double star may be omitted in (2.5). 

Let us just formulate here the two most usual of them. 

It is sell asmmed that f and f2 belong to r (X,Y ). 

lo Suppose that the set, denoted by cont fl, of the points where fl 

is finite and continuous, for some topology compatible with the duality, 

and the set 

dom f2 = I X  E X : f2(x) ( + m ]  

are such that 

cont f l +  dom f2 = X . 
Then fl V f2 is either the constant - m or is finite and continuous 

everywhere in X for the considered topology ; therefore 



fl v f2 E r (x,Y), hence fl V f2 = fl 1 f2 . 
2O Suppose that there exists a point yo in Y at which both func- 

tions gl and g2 are finite, one of them continuous at this point (for 

some topology compatible with the duality) ; then fl V f2 E r (X,Y) ; 

furthermore this %nf-~onvolution is exact, i.e., whichever is x, the 

infimum in (2.8) is a minimum. Note that the hypothesis is equivalent to 

the following : both functions xt+ fl(x) - <x, yo> and 

x I+ f2(x) - <x, yo> are bounded from below and one of them is inf- 

compact for the weak topology U (X,Y) (cf. 6 2 c) . 

2. e SUBGRADIENTS AND SUBDIFFERENTIALS 

- 
Let f denote a function defined on X, with values in R ; an 

element y of Y is called a subgradient of f at the point x E X if 

y is the slope of an affine minorant of f e g  at the point x, i.e. 

taking at this point the same value as f. This requires that the value 

f(x) is finite and that the expected minorant has the form 

Using condition (2.2) for an affine function to minorize f, one obtains 

the following representation for the set, denoted by 8 f(x), of the sub- 

gradients of f at the Point x 

i, f(x),= [y E Y : f*(Y) -(x,y><-f(x)j . 
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This set is called the subdifferential of f at the point x. The con- 

vexity and the lower semiebntinuity of f* imply that af(x) is a con- 

vex, possibly empty, subset of Y, closed for the topologies compatible 

with the duality (Y,X). If af(x) is not empty the function f is said 

to be subdifferentiable at the point x. 

Trivially the function f possesses a finite minimum attained 

at the point x if only if af(x) contains the zero of Y. 
A 

Recall that the function f is said weakly differentiable, or 

G;teaux-differentiable, at the point x, relatively to the duality (X,Y 1, 

if there exists y E Y (necessarily unique) such that for any u E X I  

the function tl+ f(x + t u) of the real variable t possesses for 

t = 0 a derivative equal to <u,y> ; the element y is called the w& 

gradient, or G;teaux-gradient, of the function f at the point x, rela- 

tively to the duality (X,Y). If in addition the function f is convex, 

one easily finds that the subgradient af(x) consists of the single 

element y. When X is a normed space, Y its topological dual, all this 

a fortiori holds if f is ~rgchet-differentiable at the peint x. 

Subdifferentiability finds its clearest setting when a pair of 

dual, i.e. mutually polar functions f E To (X,Y) and g E To (Y,X) is 

considered. Then, for x in X and y in Y the three following pro- 

perties are equivalent : 
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(2.6) Y E a f ( x )  

(2 .7)  . x E ag(y)  

(2.8) f ( x )  + g(y)  - <X,Y, = 0 ; 

observe t h a t ,  by ~ e n c h e l ' s  i n e q u a l i t y ,  the = s ign  above may equivalen- 

t l y  be replaced by < . I f  t h e s e  p r o p e r t i e s  hold,  the p o i n t s  x and y 

a r e  da id  conjugate  r e l a t i v e  t o  t h e  p a i r  of mutually p o l a r  func t ions  ( f , g ) .  

EXAMPIE. Take a s  f the i n d i c a t o r  func t ion  #C of a nonempty closed convex 

subse t  of X. Then the  r e l a t i o n  y E 8 # C ( ~ )  i s  t r i v i a l l y  equivalent  t o  

t h e  fol lowing : t h e  point x belongs t o  C and t h e  set 

i u  E X : < U  - X ,  yb < 01 c o n t a i n s  C. I f  y d i f f e r s  from t h e  ze ro  of 

Y t h i s  set i s  a c losed half-space whose boundary i s  a support ing h y ~ e r -  

plane of t h e  s e t  C a t  t h e  po in t  x ; then one c l a s s i c a l l y  says t h a t  

Y E Y i s  an  outward normal vec to r  a t  t h e  point x of t h e  convex s e t  

C C X. Let us  agree t o  t ake  t h i s  locu t ion  i n  a weak sense,  by consider ing 

a l s o  t h e  ze ro  of Y a s  a normal vec to r  a t  the p o i n t  x i f  it belongs t o  

a #,(x) ; t h u s  t h e  s e t  8, JrC(x) w i l l  be c a l l e d  t h e  outward normal cone 

a t  t h e  po in t  x. T h i s  cone i s  empty if x $? C ; i f  x E C i t  con ta ins  a t  

l e a s t  t h e  ze ro  of Y and reduces t o  t h i s  s i n g l e  element,  i n  p a r t i c u l a r ,  

when x i s  an  i n t e r n a l  po in t  of C ( i . e .  every s t r a i g h t  l i n e  drawn t o  

x i n t e r s e c t s  C along a segment t o  which x i s  i n t e r i o r ) .  I n  terms of 
6 

t h e  support  func t ion  #* of C, condi t ion  ( 2 . 8 )  y i e l d s  t h a t  if x 
C 
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belongs t o  C one has  

a q C ( x )  = [ Y  E Y : qf(Y) = <x,y> I 

= [ Y   Y : * i c y )  < ( X , Y >  ] . 
REMARK. For a p a i r  of spaces (X,Y) with f i n i t e  dimension and convex 

func t ions  f ,  g which a r e  d i f f e r e n t i a b l e ,  r e l a t i o n s  (2.61, (2.7),  (2.8) 

show t h a t  t h e  correspondance between f and g reduces t o  t h e  c l a s s i c a l  

Legendre transform. 

Let us  come back t o  t h e  case  of a n  a r b i t r a r y  f and possibly 

i n f i n i t e  dimensional spaces. By a s s o c i a t i n g  with every x E X the  subset  

af.(x) of Y one def ines  a multimapping ( a l s o  c a l l e d  a mult i funct ion,  o r  

a multivalued mapping, o r  a set-valued mapping) fmm X i n t o  Y. Indepen- 

d e n t l y  of t h e  fo rmal iza t ion  of subgradients  and t h e  "subdi f fe ren t ia l  c a l -  

cu&usl' (MOREAU [2] ; s imi la r  ideas  were a l s o  present  i n  Rockafel lar ' s  

Thes i s ,  Harvard, 1963) t h i s  multimapping was considered i n  G . J .  M I N T Y  

[l] a s  t h e  leading example of monotone, possibly multivalued, operator .  

I n  f a c t  whichever a r e  x and x '  i n  X ,  whichever ar: y i n  a f ( x )  

and y '  i n  a f ( x ' ) ,  i f  any, one f i n d s  e a s i l y  

< x  - x ' ,  y - y f >  2 0 

which i s ,  by d e f i n i t i o n ,  the  monotony property of the multimapping 8 f .  
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2. f  ADDITION RULE 

The main c a l c u l a t i o n  r u l e  f o r  s u b d i f f e r e n t i a l s  concerns a= 

t z .  I f  f l  and f 2  a r e  two numerical funct ions,  def ined f o r  ins tance  

on X ,  t h e  inclusion 

i s  t r i v i a l .  I f  t h i s  inc lus ion  holds a s  an e q u a l i t y  of s e t s  the func t ions  

fl and f 2  a r e  sa id  t o  possess  t h e  a d d i t i v i t y  of t h e  s u b d i f f e r e n t i a l s  

a t  t h e  point  x  . 
Let us  ind ica te  two usua l  s u f f i c i e n t  condi t ions  f o r  t h a t  : 

lo I f  both funct ions f l  and f 2  a r e  convex, one of them weakly d i f f e -  

r e n t i a b l e  a t  t h e  point x, inc lus ion  (2.9) ho lds  a s  an equa l i ty  of se t s .  

2O I f  both func t ions  f l  and f 2  a r e  convex and i f  the re  e x i s t s  a  

po in t  x  i n  X a t  which one of them is  continuous, with both values 
0 

f  (X and f2(xo)  f i n i t e ,  inc lus ion  (2.9) holds a s  a n  equa l i ty  of s e t s  
1 0  

f o r  every x iq X. Continui ty must be understood here i n  t h e  sense of 

some ( l o c a l l y  convex) topology compatible with t h e  d u a l i t y  (X,Y) : thus  

t h e  l e s s  s t r i n g e n t  hypothesis  is  obtained by t a k i n g  t h e  f i n e s t  of them, 

i .e.  t h e  Mackey topology z (X,Y ). 

EXAMPIE. Make f l  = f ,  a  func t ion  defined on X ,  with va lues  i n  

1- -, + -1 and f = (lC, t h e  i n d i c a t o r  func t ion  of  a  non empty subset 
2  

C of X. The problem of minimizing t h e  r e s t r i c t i o n  of f  to C is 
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clearly equivalent to that of minimizing, wer the whole of X, the func- 

tion f + gC ; a minimizing point x is characterized by 

a condition which is implied by 

When the additivity of the subdifferentials holds, conditions (2.10) and 

(2.11 are equivalent. 

Such is the case for instance, by 1' above, if the set C i> 

convex, and the function f convex, everywhere weakly differentiable : 

then (2.111, written as 

(2.12) - - grad f(x) E a #C(~) 

is a necessary and sufficient condition for x to be a solution of our 

"constrained minimization problem". Make in particular X = Y = H, a 

separated pre-Hilbert space with the inner product (.I. ) Playing the 

role of the bilinear form <.,.>. Let a be an arbitrary element of H ; 

define the function f by 

1 1 
f (x) = (x-a I x-a) = - 11x-a11~ . 2 

Elementary calculation Droves that this function is convex and weakly 

differentiable relatively to the duality (H,H), with 

grad f(x) = x - a . 
Then (2.12) yields a necessary and sufficient condition for x t* 
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t h e  n e a r e s t  point  t o  a & C! 

(2.13) a - x E 8 SC!x) ; 

such a n  x i s  denoted by projC(a)  o r  * p r o j  ( a ,  C), i f  it exi;sts. Uni- 

queness of t h i s  po in t s  r e s u l t s  from f being s t r i c t l y  convex ; r e c a l l  

on t h e  o t h e r  hand t h a t  i f  H is  complete, i.e. i f  it i s  a H i l b e r t  smc?, 

t h e  ex i s tence  of projC a i s  secured f o r  any a E H. 

2. g IMAGES BY LINEAR MAPPINGS 

Let (FjG) be another  p a i r  of l i n e a z  spaces ,  placed i n  separa- 

t i n g  d u a l i t y  by a b i l i n e a i  form denoted by &.,.>>. Let A be a l i n e a r  

mapping irdm F I ~ t o  X,  weakly continuous ( i .e .  cont inuous from F 

endowed with any t ~ p n l o g y  compatible with the  d u a l i t y  (?;GI, t o  X en- 

dowed w i t h  the  weak topology cr ( x , ~ ) ) .  Weak c o n t i n u i t y  impl ies  the  exis-  

t ence  of the  a d j o i n t  ( o r  t r anspose)  of A ,  i .e .  t h e  l i n e a r  mapping A* 

from Y i n t o  G such t h a t  

* 
V U C F  , V y F Y  : ( A u , y \  = <Cur A Y,, . 
Let f E T (X,Y) ; c l e a r l y  the  func t ion  

f o A  : u H f ( A u )  

belongs t o  r (F,G) ; one proves ( s e e  ROCKAFELLAR [3]  ) t h a t  i ts  dua l  

func t ion  ( f  u A)* i s  t h e  I? - h u l l  of the func t ion  def ined on G by 

(2.14) v + + i n f i J ( y )  : ~ * y  = v j  . 
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If in addition there exists a point in the range of A at - 
which f is finite and continuous (for some topology compatible with the - 
duality (x,Y)) E n  (f o A)* equals the function (2.14) itself. Under 

the same assumption, for everp u E F, the subdifferential a(f o A) (u) 

is the image of af (A u) C Y under the mapping A* ; this may be expres- 

sed by writing 

* 
(2.15) acf O A )  = A o a f  O A  . 

2. h CONJUGATE GAUGE FUNmIONS AND QUASI - HOMOGENEOUS CONVEX 

FUNCTIONS 

The setting is again that of a single pair of spaces (X,Y). 

Let A be a closed convex subset of X containing the origin ; denote 

by B the polar set of A, i.e. 

B = Iy E Y : V x  A , (x,~,< I]. 

Then A is, symmetrically, the polar set of B. It is easily seen that 

the gnuge function of A, namely the function a defined on X by 

1 a(x) = inf { A  E 10, + -[ : ~x A 1 , 
is the support fdnction of B ; symmetrically the gauge function b of 

B is the support function of A. We shall refer to this situation by 

saying that (a, b) is a pair of conjugate gauge functions. 

For sake of simplicity &et us restrict ourselves here to the 



J. J. Moreau  

case where both functions take only finite values ; this means that A 

is absorbent in X (i.e. the origin is an internal point) and that it is 

bounded relatively to the topologies compatible with the duality ; equi- 

valently B possesses the same properties in Y. Such is the case, for 

instance if X is a given normed space, Y its dual endowed with the 

usual norm : the respective norms form a pair of conjugate gauge func- 

tions and the corresponding mutually polar sets are the closed unit balls 

of the two spaces. 

One finds 

and the symmetrical relation (this can be extended to possibly infinite 

valued conjugate gauge functions, under some notational precautions). 

Consider on the other hand a mapping 4 from [0, + CO[ into 

[0, + r] possessing the following properties : 4 is convex, non de- 

creasing, lower semi continuous and 4 (0) = 0 (actually 4 is conti- 

nuous on the interior of dom = 15 E [0, + -[ : 4 ( c )  ( + O D ]  ). Clas- 

sically, with such a function is associated itsYoung conjugate y defi- 

ned on [0, + ar[ by 

y ( 8 )  = SUP (5 7 - 4 (5)) 

which possesses the same properties ; 4 is, in turn, the Young conju- 

gate of ' y . 
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Examples : 

lo 1 P $(El =:E 1 q 
I Y (77) =y77 

where p and q denote two constants in 11, + m[ , such that 

where A E [0, + ,[ is a constant. 

Exclude the singular case where one of the two functions $ 

and y is the constant zero. Then one proves that the functions 

f = $ o a  , g =  y o b  res~ectively definedon X and Y, i s  

f(x) = $(a(x)) , g(y) = y(b(y)) 

are a.pair of dual functions in the sense of the preceding paragraphs. 

Each of these functions is said quasi-homogeneous (or gauge- 

like in ROCKAFELLAR [2 ]  ) ; in fact in the special case where 

1 $( 5 )  = - cP, the function f is positively homogenous with degree p. 
P 

The functions defined in this way, for instance on X, may be characteri- 

zed as follows : they are the elements of r (X,v) such that the va- 

rious sets {x E X : f (x) < k] (the "slices" of f 1, for k F R 

are homothetic to A (they are empty for k C 0). 

Concerning the determination of the subdifferentials of these 

functions, let us only indicate : Two points x E X a s  y E Y are 
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con juga te  r e l a t i v e l y  t o  ( f  , g )  i f  and only i f  

6 ( a ( x ) )  + y ( b ( y ) )  = a ( x )  b ( y )  = 4 x , y >  . 
The f i r s t  e q u a l i t y  may be i n t e r p r e t e d  by saying t h a t  t h e  r e a l  numbers 

a (XI and b ( y )  a r e  con juga te  p o i n t s  wi th  regard  t o  the  p a i r  of 

Young conjugate  func t ions  (r$,y) ; i f  x and y a r e  d i f f e r e n t  from t h e  

r e s p e c t i v e  o r i g i n s  of X and Y, t h e  second one expresses  a proper ty  

of t h e  "rays" ( i . e .  one-dimensional cones) they genera te  i n  X and Y ; 

such r a y s  may be s a i d  con juga te  r e l a t i v e  t o  t h e  p a i r  of conjugate  gauge 

f u n c t i o n s  a and b. 
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3 SUPEHPC)TEI\~TI ALS AIiD PERFECT CONSTKA I NTS 

3. a CONFIGURATIONS AND FORCES 

In this Chapter is considered a mechanical system 6 whose set 

of possible configurations,denoted by U , is endowed with a linear space 

structure. Such is traditionnally the case, due to the use of linear ap- 

proximation, if the system presents only "small deviations" from a cer- 

tain reference configuration which constitutes the zero of U . 
The bdlinear form w& places the linear space ?.& in duality 

with a linear space F whose elements constitutes, in a general sense, 

the possible values of forces experienced by the system. Precisely<u,f> 

denotes the work of the force f E % for the displacement u E of the 

system. For sake of clarity, weshall in some cases comply with the habit 

of denoting a displacement by such a symbol as 6 u ; this symbol is 

meant to recall that the considered displacement equals the difference 

between two elements of ?.f representing some configurations ; actually, 

in the present framework, due to the existence of the privileged confi- 

guration "zero", configurations as well as displacements are elements of 

u, thus have the same algebraic nature. 
After replacing, if necessary, the considered spaces by some 

quotients, it may be supposed that this duality is separating. 
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EXAMPLE. Take a s  6 a p e r f e c t l y  r i g i d  body performing only " i n f i n i t e l y  

small" motions i n  the  neighborhood of the  reference configurat ion.  From 

t h i s  reference s t a t e ,  each possible  conf igura t ion  of the body may be des- 

c r ibed  by the  corresponding f i e l d  of displacement vec tors ,  say 

+ 
u : X H  u(x) .  Due t o  t h e  r i g i d i t y  of the  body and t o  the f a c t  t h a t  d i s -  

placements a r e ,  by apvroximation, t r e a t e d  a s  i n f i n i t e l y  small t h i s  f i e l d  

possesses  the  property of equipro. ject ivi tx  ; t h e  t o t a l i t y  of equiprojec- 

t i v e  vec tor  f i e l d s  i s  wel l  known t o  form a l i n e a r  space of dimension 6 : 

such i s  U i n  t h e  present  case.  For sake of b rev i ty  l e t  us accept only 

a s  a c t i n g  on $ f i n i t e  f a m i l i e s  of fo rces  i n  t h e  sense of elementary 

Mechanics. Such a family may be described a s  a vec tor  f i e l d  4 : X* J(x)  

t ak ing  the  value zero everywhere except on a f i n i t e  s e t  of po in t s  and i t s  

work f o r  a displacement f i e l d  u E U i s  c l a s s i c a l l y  defined a s  t h e  f i n i -  

t e  sum w = 2 :(XI. J(x) .  For a f ixed I$ t h e  mapping u u  w i s  c l e a r l y  

a l i n e a r  form on the  space U ; on the o ther  hand, the s e t  $ of the 

poss ib le  I$' s i s  n a t u r a l l y  endowed with a l i n e a r  space s t r u c t u r e  which 

makes t h a t ,  f o r  a f ixed  u, t h e  work w i s  a l i n e a r  form of  4. But the 

space c l e a r l y  has an i n f i n i t e  dimension, s o  t h a t  t h i s  b i l i n e a r  form 

cannot place U and @ i n  separa t ing  dua l i ty .  The c l a s s i c a l  procedure 

c o n s i s t s  i n  t r e a t i n g  a s  equ iva len t  two f a m i l i e s  of fo rces ,  say I$ and 

I$', such t h a t  

V u E 24 : C :(XI. $(XI = C ;(X). $ ' ( X I .  
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The corresponding equivalence classes are called torsors. In other words, 

if Go denotes the linear subspace of @ formed by the families of for- 

ces which yield a zero work for any u E U , torsors are the elements of 

the quotient space O / Oo, with dimension 6. Such is a in the present 

case ; the duality between U and is then separating. 

PRODUCT SPACES. Suppose the mechanical system CP consists in the con- 

junction of n possibly interacting systems dl, &2, . . . , dn whose res- 
pective configuration spaces are the linear spaces 2(1, U2, . . . , un . 
Then the configuration space of & is the product space U x u  x ... 

1 2  

. . x u n  , naturally endowed with a linear space structure. Denote by a .  

the force space corresponding to the system doi , a linear space placed 

in separating duality with Ui by the bilinear form <.  ,.>i . A force f 

exerted on the total system @ is a n-tuple (f19 f2, . . . , fn) , 
fi E T i  ; this is the generic element of the product space 

3 = 7  x 7 x . . x 3 . The work of f for a displacement 

u = (u u2, . . . , un) of 2( is by definition the sum 

<u,f> = C <ui, fi>i 
i 

in which we recognize the natural bilinear form placing the product spa- 

ces U an 7 in separating duality (cf. 5 2. c). 

This construction of U and a as the products of the respec- 

tive spaces corresponding to subsystems of fl is a customary procedure 

in computation. It prepares also for the application of our general 
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p a t t e r n  t o  continuous media, a s  developed i n  B. Nayroles 's  l e c t u r e s  : 

then  U and a  a r e  some l i n e a r  spaces of measurable func t ions ,  with 

regard  t o  a  c e r t a i n  non-negative measure. The sum which above d e f i n e s  

t h e  work i s  replaced by an  i n t e g r a l .  

3. b  STATICAL LAWS 

A s t a t i c a l  law i s  a  r e l a t i o n ,  denote it by R ,  between t h e  

conf igura t ion  u  E U t h a t  t h e  system dJ may occupy and some, say 

f 6 a ,  among t h e  f o r c e s  it may experience when i t  comes through t h i s  

conf igura t iun .  Such a  r e l a t i o n  a r i s e s  from the s tudy of some of t h e  phy- 

s i c a l  processes  i n  which t h 2  system i s  involved. 

Instead of r e l a t i o n s  a s  2,  one may aquimikntly speak of multi-  

m a p p i n ~ s  from one of the  two spaces i n t o  t h e  o t h e r  ; f o r  i n s t a n c e , b e v e r y  

u  i n  21 corresponds t h e  (poss ib ly  empty) s e t ,  denote i t  by R(u), o f  

t h e  elements f  of wh.,n a r e  r e l a t e d  t o  u  by R . 

I n  p a r t i c u l a r  it may happen t h a t  t h e  s e t  R(u) c o n s i s t s ,  f o r  

e - - h  u ,  of a  s i n g l e  element ; then +he s t a t i c a l  law i s  descr ibed a s  a  

s ingle-valued mapping u- f  from u i n t o  a .  I f ,  i n  add i t ion ,  t h e r e  

e x i s t s  a  numerical f u n c t i o n  W : U + R  such t h a t  t h i s  mapping is expres- 

sed by 

f = - grad W(u) 

(weak grad ien t  o r  " ~ i t e a u x  d i f f e r e n t i a l "  r e l a t i v e  t o  t h e  d u a l i t y  def ined 
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above) it is  c l a s s i c a l l y  s a i d  t h a t  t h e  considered s t a t i c a l  law admits W 

a s  p o t e n t i a l .  

The s i r  p l e s t  s t a t i c a l  law imposes t h e  value f o  E a of a  cer- 

t a i n  fo rce  a c t i n g  on t h e  system, independently of the  c o n f i g u r a t i o ~ t  u. 

Such 6 cons tan t  mapping from U i n t o  a ev iden t ly  admits the p o t e n t i a l  

W expressed by 

W(u) = -<a, fo> . 
EQUILIBRIUM. Suppose t h a t  a l l  the  phys ica l  processes  i n  which t h e  system 

@ t a k e s  p a r t  imply fo rces ,  a c t i n g  on i t ,  which e i t h e r  vanish i n  any ex- 

pected equ i l ib r ium o r  a r e  n  f o r c e s  f l ,  f 2 ,  . . . , f n  r e s p e c t i v e l y  r e l a -  

t e d  t o  t h e  conf igura t ion  u by n s t a t i c a l  lawindependent  of t i m e ,  

denoted by F! R 2 ,  . . . , R n  . Then t h e  equ i l ib r ium problem c o n s i s t s  i n  

determining t h e  va lues  of u i n  U possesslng t h e  fol lowing property : 

t h e r e  e x i s t  f l ,  f a ,  . . . , f+ i n  5 respec t ive ly  r e l a t e d  t o  u  by t h e  

r e l a t i o n s  'Y2, . . . , Rn and such t h a t  f  + f 2  + . . . + f n  = 0. 1 

According t o  t h e  ' 'pr inciple  of v i r t u a l  work" and due t o  t h e  way i n  which 

F has  been cons t ruc ted  a s  a  q u o t i e n t  space placed i n  separa t ing  dua ' i ty  

with a, these  va lues  of u  correspond i n  f a c t  t o  the  equ i l ib r ium c?n- 

f i g u r a t i o n s  o f @ ,  i . e .  the  conf igura t ions  i n  ihich immobility i s  a  mo- 

t i o n  compatible with our  physical  information about t h i s  system. 

Equivalent ly ,  i f  R1, La,  . . . , Rn denote the multimappings 

corresponding a s  above t o  t h e  n s t a t i c a l  laws, the  equ i l?br i tv - . I  
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conf igura t ions  a r e  charac te r ized  by 

0 f R (u)  + R2(u) + ... + R,(u) . 
1 

Let us  s t r e s s  a t  l a s t  t h a t  t h e  concept of s t a t i c a l  law, a s  we 

j u s t  def ined i t ,  i s  not r e s t r i c t e d  t o  the  study of equi l ibr ium problems. 

I n  evo lu t ion  problems a l s o ,  s t a t i c a l  laws w i l l  be considered, possibly 

depending on time. 

3. C FRICTIONLESS BILATERAL CONSTRAINTS 

The descr ip t ion  of a cons t ra in t  i n  Mechanics requ i res  fonda- 

mental ly  more information than merely defining a s e t  of permitted confi-  

gurat ions.This  descr ip t ion  always includes some i n d i c a t i o n  concerning 

t h e  f o r c e s  of c o n s t r a i n t  o r  reac t ions  experienced by the system and i m -  

p l i e d  by t h e  mater ial  process  which r e s t r i c t s  i t s  freedom. Let us  empha- 

s i z e  t h a t  per fec t ,  i .e .  frictionless,con~traints a r e  a spec ia l  type of 

s t a t i c a l  law. 

Consider f o r  ins tance  the  s i t u a t i o n  described i n  t h e  language 

of elementary Mechanics a s  follows : a c e r t a i n  p a r t i c l e  s of t h e  system 

@ i s  maintained b i i a t e r a l l y ,  without f r iCt ion ,on  a given regula r  mate- 

r i a l  sur face  S. Let 

(3.1)  h (2)  = 0 

+ 
be t h e  equat ion of S, where x denotes t h e  gener ic  element of a three-  

dimensional frame of re fe rence  E3, t r ea ted  a s  a three-dimensional 
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linear space, and h a smooth numerical function defined on E3, with 

+ 
nonzero gradient. Let po denote the position of the particle s in 

E3 when the system fl presents the configuration corresponding to the 

zero of U . For the configuration corresponding to some element u of 

+ U ,  this position is p and, due to our framework of small deviations 

+ + 
and linearization, the mapping : u- p - po is treated as linear 

from U into E3 ; in all the following, this linear mapping is suppo- 

sed continuous with regard to some locally convex topology compatible 

with the duality (U, ), thus continuous for all such topologies. S'imi- 

larly, the linearization procedure replaces the function h by its 

+ 
first order expansion in the neighborhood of p so that the condition 

+ 
p E S takes the form 

-+ + -t 
h(go) + (p - po) . grad h(co) = 0 

(scalar product and gradient are understood here in the sense of the 

three-dimensional Euclidien space E ) i.e. 3 

4 + 
(3.2) h(go) + ?(u) . grad h(p 1 = 0 . 

0 

-r 
Here arises the need of an addi'tional hypothesks concerning e 

for the continuous linear form UH ?(u). grad h(co) not to be identi- 

---t * 
cally zero ; as the vector grad h(po) has been supposed different from 

zero, the sufficient assumption we shall make in all the following is : 

+ 
the linear mapping e from U info the three-dimensional space of the 

"physical" vectors is surjective. One may express this by saying that the 
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particle s of the system is regular regarding the use of a as the 

configuration space of the system. Then the values of u satisfying 

(3.2) constitute a closed hyperplane 

(3.3) 6: = U + a  , 

where a represents some known element of U and U denotes the linear 

subspace with codimension 1 

u = lu E U : f?(u). g= h(Fo) = 01 . 
For the particle s to be maintained in S it must experience 

+ 
in addition to other possible actions, the.force of constraint R, or 

reaction, arising from this material surface. In the language of the pair 

of spaces (U,a) the representation of this force consists, by defi- 

nition, in the element r E Possessing the following property : for 

any 6 u E , to which corresponds in the "physic~l" space E3 the 

+ 
displacement 6 = e(6 u) of the particle s, the work of R equals 

(6 u, r> , i.e. 

(3.4) 4611, r> = f(6 u). . 
Let us make use now of the hypothesis that the constraint is 

+ 
frictionless. By definition this means R is normal to the surface S 

+ 
at the point p ; equivalently R yields a zero work for any displace- 

+ 
ment vector 6 p which is tangent to S at this point. Due to the li- 

nearization procedure which replaces the equation of S by (3.2), this 

amounts to 
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(3.5) V S u E U  : 46 u, r> = 0 . 
I n  o ther  words r belongs t o  V,  t h e  subspace of a orthogonal t o  U. 

I t  w i l l  be supposed t h a t  conversely any value of r ,  i ;e .  of 

-P 
R ,  s a t i s f y i n g  t h i s  condit ion can be produced bv t h e  device enforc inv  t h e  

constra'nt.  Phys ica l ly ,  t h i s  means f i r s t  t h e  c o n s t r a i n t  i s  b i l a t e r a l  : 

t h e  p a r t i c l e  s should more exac t ly  be v i sua l ized  a s  guided without 

f r i c t i o n  between two p a r a l l e l  sur faces  i n f i n i t e l y  c l o s e  * t o  each o ther  ; 

secondly these s u r f a c e s  a r e  s t rong  enough t o  e x e r t  a r b i t r a r i l y  l a r g e  

normal react ions.  We propose t o  summarize these  f a c t s  by saying t h a t  the  

considered perfect ,  c o n s t r a i n t  i s  f a  (c f .  MOREAU [14], vol.  2 ,  5 9. 2 )  

Except otherwise s t a t e d ,  firmness w i l l  always be i m p l i c i t e l y  assumed i n  

t h e  following. 

I n  s h o r t , a l l  our information about the c o n s t r a i n t  i s  contained 

i n  the two condi t ions  u  E 6: , r E V ; equiva len t ly  i t  may be s a i d  t h a t  

t h e  p a i r  ( u , r )  belongs t o  the  subse t  6: x V of a x 8  and t h i s  indeed 

c o n s t i t u t e s  a  s t a t i c a l  law i n  t h e  sense defined by 5 3. b, i .e .  a  r e l a t i o n  

between t h e  poss ib le  configurat ion u  of t h e  system and some of t h e  

f o r c e s  it undergoes. 

This  r e l a t i o n  i s  s u b d i f f e r e n t i a l .  

I n  f a c t  cons ider  t h e  i n d i c a t o r  func t ion  @6: 
of t h e  a f f i n e  ma- 

n i f o l d  described by (3.3)  ; the  s u b d i f f e r e n t i a l  of t h i s  c losed convex 

func t ion  is  e a s i l y  found t o  be 



J. J. Moreau 

V i f  u ,  
a g,(u) = 1, i f u , P  . 

Therefore t h e  r e l a t i o n  ( u , r )  E P x V i s  equiva len t  t o  

which i s  another  way of conveying the  whole of our information about t h e  

considered cons t ra in t .  The minus s ign  i n  the  l e f t  member is immaterial 

a s  t h e  r i g h t  member is a l i n e a r  space : t h i s  i s  only f o r  sake of consis-  

tency with f u r t h e r  developments. 

More genera l ly ,  t h e  system 4 may be submitted a t  t h e  same 

t ime t o  severa l  c o n s t r a i n t s  of t h e  preceding s o r t ,  r espec t ive ly  defined 

by n closed hyperplanes 5. = Ui + ai , i = 1, 2 ,  ..., n. The s e t  of 

t h e  permit ted conf igura t ions  is  then n 5.  ; i f  t h i s  i n t e r s e c t i o n  i s  not 
i 

empty l e t  us  use again t h e  no ta t ion  5 = U + a t o  represent  it, where 

U i s  now t h e  i n t e r s e c t i o n  of t h e  closed l i n e a r  subspaces Ui,  each with 

codimension 1. A s  t h e  r e a c t i o n  ri implied by t h e  i - t h  c o n s t r a i n t  be- 

longs t o  Vi,  t he  one-dimensional subspace orthogonal t o  Ui i n  % ,  t h e  

sum r of t h e  n r e a c t i o n s  belongs t o  V ,  t h e  subspace orthogonal t o  U 

Conversely, any element of V possesses a t  l e a s t  one decompostion i n t o  

a sum F r i, ri E Vi ( t h i s  i s  merely the  c l a s s i c a l  theorem of Lagrange 
i 

m u l t i p l i e r s  : t h e  d u a l i t y  between and being separa t ing ,  t h e  bi-  

orthogonhl of a f i n i t e l y  generated subspace equa ls  t h i s  subspace i t s e l f ) .  

Therefore,  each of t h e  n p e r f e c t  c o n s t r a i n t s  being assumed f i rm,  t h e  
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j o i n t  e f f e c t  of them i s  f u l l y  represented by t h e  same w r i t i n g  a s  (3.6) 

and t h i s  i s  a l s o  t r i v i a l l y  t r u e  i n  t h e  case  6: i s  empty. 

Thereby w e  a r e  induced t o  cons ider ,  i n  general ,  s t a t i c a l  laws 

expressed under t h e  form (3.61, where 6: represen ts  a c losed  a f f i n e  

manifold whose codimension i s  not necessar i ly  f i n i t e  : w e  s h a l l  r e f e r  t o  

such s t a t i c a l  laws a s  ( f i rm)  p e r f e c t  a f f i n e  cons t ra in t s .  

Note a t  l a s t  t h a t ,  when s tudying evolut ion problems, a per fec t  

c o n s t r a i n t  descr ibed a s  above may be moving : i .e .  t h e  a f f i n e  manifold - 
6: may depend on time i n  a given way. J u s t  keep i n  mind a t  such event  

t h a t  t h e  so-called displacements, l a b e l l e d  i n  t h e  preceding by t h e  symbol 

6 ,  merely express  t h e  comparison between poss ib le  conf igura t ions  a t  a 

d e f i n i t e  i n s t a n t  ; t r a d i t i o n n a l l y  they a r e  q u a l i f i e d  a s  v i r t u a l  i n  con- 

t r a s t  with the  real displacements which occur a s  a consequence of the  

a c t u a l  motion. In  most p r a c t i c a l  cases  t h e  subspace U which d e f i n e s  t h e  

dimension and t h e  d i r e c t i o n  of 6: i s  independent of time ; only t h e  

element a of U i s  moving ; we s h a l l  meet such a s i t u a t i o n  i n  Chap- 

t e r  6. 

3. d PERFECT UNILATERAL CONSTRAINTS 

With the same no ta t ions  a s  i n  the preceding, suppose now t h a t  

t h e  p a r t i c l e  s of the  sys tem@, i n s t e a d  of being b i l a t e r a l l y  main- 

t a ined  i n  the  sur face  S ,  i s  only confined by some impenetrable block 
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whose S constitutes the boundary. Suppose the function h chosen in 

+ 
such a way that the region of E3 permitted thereby to the position p 

of s is defined by the inequality 

h(G) > 0 . 
Then, using the same linearization procedure as before, the set of the 

permitted values of u is characterized by the inequality 

(3.7) h(G0) + t(u). g a  h(po) 0 

whidh defines in U a closed half-space 9 with the affine manifold 2 

as boundary. 

Here again, the description cf the mechanical situation requi- 

., 
res some information about the force of constraint R that the block 

must exert on s to prevent penetration ; this information will rather 

be formulated by means of the element r E which represents the force 

according to (3.4). 

First, this reaction vanishes when s does liot touch the block, 

i.e. when (3.7) holds as a strict inequality ; in other words one has the 

implication 

(3.8) u E i n t 9  9 r = O  . 
When, on the contrary, s lies in contact with the boundarp S, 

+ 
we still make the no-friction hypothesis, i.e. R is normal to S. In 

addition the unilaterality of the contact imposes that the yeetor ii is 

directed toward the permitted region i.e. dipected in concordance with - 
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t h e  vector  grad h(p) .  I n  terms of work t h i s  is expressed a s  fol lows : 

+ + 4. + 
any 6 p such t h a t  6 P . gra3  h ( p )  > 0 y i e l d s  6 p . 8 >  0. Now, 

+ 
r e c a l l i n g  t h e  r e g u l a r i t y  assumption made about t h e  mapping e-, t ake  a s  

-+ 
6 p t h e  displacement of s i n  E3 assoc ia ted  a s  before with t h e  ele-  

ment 6 u 6f U by 6 $ = (6 u). The contac t  between s and t h e  

block means t h a t  (3.7) holds a s  an equa l i ty .  Besides, due t o  t h e  l i n e a r i -  

d 
za t ion  procedure, grad h(p)  i s  t r e a t e d  a s  independent of  p. Then 

6 . h > 0 holds i f  and only i f  P ( 6  u). ga h(<) > , 0  ; 4 

p u t t i n g  u' = u + 6 u t h e  l a t t e r  is  equivalent  t o  . u '  E 0 s o  t h a t ' f i -  

nally, i n  view of (3.41, a l l  our information about 3 comes t o  be equivai 

l e n t  t o  t h e  fol lowing 

(3.9) 

This  a c t o a l l y  implies a l s o  (3.8) ; i n  f a c t ,  i f  u E i n t  9 t h e  

d i f fe rence  u'- u , f o r  u' E 9 can be a non zero  element o f  U with 

a r b i t r a r y  d i r e c t i o n ;  hence r = 0 f o r  t h e  d u a l i t y  i s  separat ing.  

I n  conclusion t h e  geometric condi t ion  u E 0 of t h e  c o n s t r a i n t  

i s  expressed j o i n t l y  with (3.9) by w r i t i n g  

(3.10) - r E a #9(u) . 
Here a s  i n  $ 3. c l e t  us  make conversely the  f i rmness assump- 

t i o n  : t h e  block i s  supp&ed s t rong  enough t o  e x e r t  any value of  3 

agreeing with t h e  preceding requirements ; i n  o ther  words any va lue  of r 

s a t i s f y i n g  (3.9) i s  possible .  Then r e l a t i o n  (3.10) conveys a l l  our  
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information about t h e  considered cons t ra in t .  

More genera l ly  suppose the  system 8 subjected t o  n  cons- 

t r a i n t s  of t h e  preceding s o r t ,  corresponding t o  half-spaces YJi , 

i = 1, 2 ,  ..., n. Then t h e  s e t  of the  permit ted configurat ions i s  t h e  

closed convex s e t  c = n 9.. AS each of t h e  reac t ions  ri s a t i s f i e s  a  
i 

r e l a t i o n  of the  form (3.101, t h e i r  sum r s a t i s f i e s  

- r a @ ,  ( ~ ) + a # ,  ( u ) +  ...+ a # , ( u )  . 
1 2 n  

The r i g h t  member i s  t r i v i a l l y  contained i n  a @ C ( ~ )  ; a c t u a l l y  t h i s  sum 

of s e t s  equals  exac t ly  a #C(u)  because of the  "un i la te ra l "  counte rpar t  

of t h e  m u l t i p l i e r s  theorem ( a s  t h e  d u a l i t y  (U, 8 ) 1s separa t ing ,  a  

f i n i t e l y  generated convex cone i n  B is  c losed ,  thus  equal t o  i t s  bi- 

p o l a r ) .  I n  conclusion t h e  conjunct ion of our  n  u n i l a t e r a l  c o n s t r a i n t s  

i s  equivalent  t o  t h e  fol lowing s t a t i c a l  law 

(3.11) - r F 8 tLc(u) . 

Hence we a r e  induced t o  consider  more general ly  t h e  s t a t i c a l  

laws defined i n  the  same way by taking a s  C a r b i t r a r y  closed convex 

s u b s e t s  of U : w e  c a l l  these  laws (f i rm) p e r f e c t  convex cons t ra in t s .  

Evidently t h e  b i l a t e r a l  cbab t ra in t  s tud ied  ,in $3. e  are a  

-sgeCial case' of t h i d  : . t ake  as C a  closed a f f i n e  manifold. 

3. e  SUPERPOTENTIALS 

We s h a l l  say t h a t  a  s t a t i c a l  law admits a  funct ion 
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d F ro(U,a ) as superpotential if this law consists in the following 

relation between the configuration u and some force f 

In particular, if a statical law admits some numerical function 

W as potential, W ,  is also a superpotential if and only if this func- , 

tion is convex. For instance the constant law f = f (independent of d 

admits as superpotential the linear form u- - (u, fo>. 

Another fundamental example is that of a perfect convex cons- 

traint, as presented in the preceding paragraph : (3.11) means that the 

function (1. is a superpotential for such a statical law ; by taking as 
C 

C a closed affine manifold, this includes, according to 5 3. c, the tra- 

ditional bilateral contraints. 

Suppose the system subjected at the same time to a finite fami- 

ly of statical laws admitting the respective superpotentials $ ,, d,, .. 
. . , dn , Then the sum of f = f + f + .. . 1 2  + fn of the corresponding 

forces is related to u by 

- f E a  dl (u) + a  +2 (u) + ... + a  $n (u) . 
This relation implies 

(3.12) - f E a + $2 + .. . + 4 ~ ~ )  (u) 

but is equivalent to it only if some conditions ensuring the additivity 

of subdifferentials are fulfilled ; according to 5 Z.f, the usual case 

where such additivity holds is described as follows : lo some of the - 
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functions $i are weakly differentiable everywhere in ; 2' there 

exists a point u E U at which the others, but possibly one, are finite 

and continuous for some topology compatible with the duality (Q, 8 )  ; 

3' the last one is finite at uo . 
EQUILIBRIUM. Suppoae first that all the mechanical actions to which the 

system is subjected (except possibly those which vanish in any expected 

equilibrium) are sunmarized under the form of a single statical law ad- 

mitting a superpotential $ independent of time. Then, as explained in 

5 3. b, the equilibrium configurations are characterized by 

O E ~ + ( U )  ; 

this is a necessary and sufficient condition for u to be one of the 

points of SA, where the numerical function $ attains its infimum 

(cf. 5 2. e). Such values of u form a closed convex subset of ?I,, pos- 

sibly empty. 

Suppose more generally that the considered mechanical actions 

are described by the conjunction of n statical laws admitting as above 

the respective superpotentials +i, independent of time. A necessary and 

sufficient condition for u to be an equilibrium configuration is now 

0 E 8 (u) + 8 +2 (u) + ... + 8 4n (u) . 
This implies 0 E i) + (u), with 4 equal to the sum of the functions 

+i ; therefore this sum attains its fnfimum at the point u. But the 

converse may not be true, unless the additivity of subdifferentials 
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holds. ~ c t u a l l y  such a  rese rve  does no t  seem t o  be of g r e a t  p r d i c a l  

importance and B. Nayroles sugges l s in  h i s  l e c t u r e s  a  l o g i c a l  a t t i t u d e  

which would overcome t h e  d i f f i c u l t y .  

EXAMPLE. Make n = 2 and suppose t h a t  $ = gC , t h e  s u p e r p o t e n t i a l  of 
1 

a p e r f e c t  convex c o n s t r a i n t .  Then equ i l ib r ium is  c h a r a c t e r i z d  by 

o E a #c (u )  + s $2 ( u )  . 
T h i s  imp1j .e~ t h a t  u  i s  a  point  i n  C where t h e  r e s t r i c t i o n  of t h e  

func t ion  t o  t h i s  set a t t a i n s  i ts infimum ; i n  the  vocabulary of 

mathematical programming, u  is  one of t h e  solut ionsof  a  "constrained" 

minimization problem. But the  converse may not be t r u e ,  u n l e s s  t h e  addi- 

t i v i t y  of s u b d i f f e r e n t i a l s  holds  ; p a r t i c u l a r i z i n g  the s i t u a t i o n  descr i -  

bed above, one f i n d s  t h a t  any of t h e  t h r e e  fol lowing condi t ions  ensures  

t h i s  a d d i t i v i t y  : 

lo The func t ion  4 i s  weakly d i f f e r e n t i a b l e  everywhere i n  %, i .e .  i t  
2 

i s  a  p o t e n t i a l  i n  t h e  c l a s s i c a l  sense. 

2' There e x i s t s  a  po in t  i n  t h e  i n t e r i o r  of C where the func t ion  $ 2 

t a k e s  a  f i n i t e  value. 

3 O  There e x i s t s  a  po in t  i n  %, a t  which t h e  func t ion  g2 i s  f i n i t e  and 

continuous and which belongs t o  C. 

Reca l l  t h a t  " in te r io r"  o r  "continuous" may here  be understood 

i n  the  sense of any l o c a l l y  convex topology compatible with the  d u a l i t y  

(U, 9; )  : the  weakest assumption i s  t h u s  obtained by choosing the  f i n e s t  
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of t h e s e  topologies ,  i . e .  t h e  Mackey topology ~(7.6, 8 ) ; t h i s  remark i s  

of course without ob jec t  i n  f i n i t e  dimensional cases .  

3. f DUAL MINIMUM PROPERTIES 

This  paragraph i s  devoted t o  t h e  equi l ibr ium problem, i n  t h e  

c a s e  where a l l  t h e  mechanical a c t i o n s  exerted on t h e  system C f  (except 

poss ib ly  those which vanish a t  any expected equi l ib r ium)  a r e  expressed 

a s  t h e  conjunction of two s t a t i c a l  laws r e s p e c t i v e l y  admit t ing t h e  super- 

p o t e n t i a l s  and $2, independent of time. Of course,  each of these 

two superpoten t ia l s  may i n  i t s  t u r n  describe t h e  conjunct ion of several  

laws ; i n  p r a c t i c a l  s i t u a t i o n s  t h e r e  a r e  usual ly var ious  p o s s i b i l i t i e s  of 

c l a s s i f y i n g  the  mechanical a c t i o n s  i n t o  such two groups, so t h a t  the  

s tatements  oresented below can generate a g r e ~ t  number of d i f f e r e n t  va- 

r i a t i o n a l  p roper t i es .  I t  may be imagined t h a t  and $2 correspond 

t o  two d i f f e r e n t  s o r t s  of mechanical a c t i o n  : f o r  ins tance  i s  t h e  

superpoten t ia l  of a p e r f e c t  c o n s t r a i n t ,  while $2 represen ts  "act ive 

forces". 

An element u of % i s  an equi l ibr ium configurat ion i f  and 

only i f  t h e r e  e x i s t  f l  E - 8 ( u )  and f 2  E - 8  $2 ( u )  such t h a t  

f + f = 0. The determinat ion of such 1 2  f l  ( o r  equ iva len t ly  f ) p r i o r  2 

t o  t h a t  of u, i s  sometimes c a l l e d  a s t a t i c a l  approach of the  equi l ibr ium 

problem (we should pre fe r  t o  c a l l  i t  s then ic ,  an a d j e c t i v e  meaning 
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" r e l a t i v e  t o  fo rces" ) .  P r iv i leg ing  l e t  us  agree t o  c a l l  an e q u i l i -  

brium f o r c e  any value of f l  
a ssoc ia ted  i n  t h i s  way with some e q u i l i -  

brium configurat ion.  

PROPOSITION 1. Lte yl and y2 be the  respec t ive  po la r  ( i .e .  dua l )  

func t ions  of a* $2, r e l a t i v e  t o  t h e  d u a l i t y  (u, 8 ) ; denote by 

Ayl t h e  func t ion  f u  yl(- f )  ( i t  i s  t h e  polar  func t ion  of 

$, : u- $, (- u) ) .  Then any equi l ibr ium f o r c e  minimizes t h e  func t ion  

A y1 + y2 over F ; conversely, Lf f i s  a minimizing point  of t h i s  sum 

A and i f  yl and y2 possess t h e  a d d i t i v i t y  of s u b d i f f e r e n t i a l s  a t  t h i s  

p a t ,  f l  i s  an equi l ibr ium force.  

I n  f a c t  i f  f l   B corresponds t o  some u E 16 such t h a t  

- f l  E d 41 ( u )  and f l  E 8 $2 ( u )  one has equivalent ly u  a y2 ( f l )  

A and u E 8 yl (- f l )  ; t h e  l a t t e r  is t h e  same a s  - u E 8 yl  ( f l )  ; 

the re fore  

A o e a Y, (I,) + a 7, ( i l l  c 8 dl + yZ) ( f l )  . 
Conversely, the  assumption t h a t  f l  i s  a minimta$ng point  of 

A 
y1 + y2 means t h a t  t h e  ze ro  of %& belongs t o  a y + y 2 ) ( f l )  ; i f  t h i s  C 1 

A s e t  equa ls  a yl ( f l )  + A y2 ( f l ) ,  one has 

o E a y2 ( f l )  - a  y1(-fl) - 

which p r e c i s e l y  expresses  the ex i s tence  of some u assoc ia ted  with f 
1 

i n  t h e  preceding way. 

A s  f a r  a s  we can see t h i s  Proposi t ion conta ins  a s  s p e c i a l  cases, 
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a l l  t h e  extremal p roper t i es  of " s t a t i c a l "  type i n  e l a s t o s t a t i c s .  Observe 

i n  t h i s  connection t h a t  i f  +2, f o r  instance,  i s  the  superpotent ial  of 

t h e  per fec t  b i l a t e r a l  c o n s t r a i n t  defined by the  a f f i n e  manifold 

S, = U + a (c f .  6 3. e b  i ts dua l  funct ion i s  defined by 

y2 ( f )  = (I'V ( f )  + ( a , f >  . 
A Thus minimizing y A + y2 over 3 i s  the  same a s  minimizing yl + ( a , .  > 

over  V ,  t h e  l i n e a r  subspace of 3 .orthogonal t o  U. 

On t h e  o ther  hand, i n  the  usual  s i t u a t i o n s  of l i n e a r  e las to -  

s t a t i c s ,  one may take a s  the  p o t e n t i a l  of e l a s t i c  fo rces ,  which i s  

a nonnegative quadrat ic  form on U.  ~ k l c u l a t i n ~  i t s  dua l  yl (equal t o  

Q1, s ince  quadrat ic  forms a r e  even func t ions)  y i e l d s  a nonnegative qua- 

d r a t i c  form defined on some l i n e a r  subspace of 3 and + e outside of 

t h i s  subspace ; a s p e c i a l  property of t h e  quadra t ic  case is  t h a t ,  i f  u 

and - f a r e  conjugate p o i n t s  with regard t o  1, Y1, One has 

1 ( u )  = y ( f )  = - - < u , f >  . 
1 2 

Thus, yl may be i n t e r p r e t e d  a s  "the expression of t h e  e l a s t i c  energy i n  

terms of t h e  e l a s t i c  force" and sometimes c a l l e d  t h e  complementar~ 

energy. This  does not hold anymore i n  non l i n e a r  e l a s t i c i t y  ; howeve* i n  

t h e  very usual  case where t h e  e l a s t i c  p o t e n t i a l  i s  a quasi- 

homogeneous convex funct ion,  t h e r e  i s  s t i l l  a r e l a t i o n  between +1 ( u )  

A and yl ( f ) ,  i f  f  i s  t h e  e l a s t i c  fo rce  corresponding t o  u. 
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3. g SADDLE - POINT PROPERTY 

The notations are the same as in the preceding paragraph. De- 

termining the equilibrium configurations of cf as minimizing points of 

+ $2 
(cf. 6 3. e) and determining the equilibrium forces as minimi- 

A zing points of y + y2 may be considered as dual extremum problems. 

This is a familiar feature of convex programing and it is habitual to 

relate such a pair of vroblems to a saddle-point property for a function 

called Lagrangian. 

PROPOSITION. Define the concave-convex function L on the product spa- 

c e u x B  2 - 
A 

L(u,~ ) = ( u,f> + y1 (f - $2 (u) . . 

with the convention + as - as = + (or equivalently the convention 

+ - m = - w). A point u E is an equilibrium configuration of pf , - 0 

with fl E B as corresponding equilibrium foace, if and only if the - 

element (u0, fl) Of %,x B is a saddle point of L with finite va- 

lue, & L(uo, f ) is finite and for any u E u a n d  any f E B , 1 

In fact, suppose first that u is an equil-ibrium configura- 
0 

A tion with fl as equil-ibrium force, i.e. - uo E 8 yl (fl) and 

fl f 8 $2 (uo) ; the former of these conditions means 

and the latter 
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(3.15) V u F %& : (u - uo, fl> + +2(~d< +2(~3 . 

Adding the finite number - $2(~o) to both members of (3.14) yields the 

A second of inequalities (3.13) ; adding the finite number y (f ) to both 
1 1  

members of (3.15) yields the first one. The value L(uo, fl) is clearly 

finite. 

A Conversely, supposing L(uo, fl) finite implies that yl(fl) 

and $2(~o) are finite ; then the preceding calculation may be effected 

backward to deduce (3.14) and (3.15) from (3.13). 

REMAFtK. Exchanging the roles of +I and +2 would yield a quite dif- 

ferent function L. Since, in practical situations, there are usually se- 

veral ways of classifying mechanical action into two groups corresponding 

to +1 and +,-, since, on the other hand the (el(,, T ) pattern may usual 

ly be applied in several ways (see $ 3. j below), the preceding proposi- 

tion generates a pretty great number of saddle point characterisations 

of the equilibrium in elastostatics. ., 

3. h ONE - DIMENSIONAL EXAMPLES 

We consider in this paragraph a system @f whose configuration 

can be specified by a single numerical variable : it is for instance a 

rectilinear bar or a string, as far as we are only interested in the 

distance between its extremities. Denote by Xo + e this distance ; in 
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other words, e denotes the elongation of the bar by comp~rison with some 

reference state in which the length was 6. AS we are only concerned 
with static or quasi-static situations, the state of stress of the bar is 

sufficiently described by the tension s. Classically, for the applica- 

tion of the principle of virtual worktq systems comprising the considered 

bar, the expression of the work of the internal actions must be - s 6 e. 

Thus the pattern of the preceding paragraph applbby taking for the li- 

near space ?./, a copy of the real line R, with e as generic element, 

and for the linear space B another copy of R, with s as generic 

element ; these two one-dimensional linear spaces are placed in separa- 

ting duality by the bilinear form <. , . > 

(3.16 ) (e,s> = - e s  . 
This unpleasant minus sign merely comes from our Complying with the com- 

mon habit in solid mechanics of measuring the state of stress by a posi- 

tive number when it is properly a tension, by a negative number when it 

is a proper pressure. It has nothing to do with the fact that the consi- 

dered "actions" are internal : in our formalism,stress is a "force" like 

any other mechanical action. 

This framework permits the formulation of usual behavioral laws 

of the rectilinear system. 

lo Regular elasticity. Suppose that the behavioral law of the bar 
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d e f i n e s  t h e  tension s a s  a  continuous s t r i c t l y  increas ing  func t ion  of 

t h e  el.ongation e ,  namely s = j ( e )  o r  equivalent ly s  = 0 ' ( e ) ,  where 

9  denotes  a  pr imit ive of j ; observe t h a t  9  i s  then a  convex f u n c t i o n  

Let eo be some d e f i n i t e  value of e  and s = B ' ( e  1. The a f f i n e  func- 
0 0 

t i o n  

e  I+ ( e  - eo)  so+ 9  (eo) 

i s  tangent t o  0 a t  t h e  po in t  eo ; now, with regard t o  the  d u a l i t y  de- 

f i n e d  by (3.16), t h e  slope of t h i s  a f f i n e  func t ion  i s  - s  I n  o ther  
0' 

words t h e  r e l a t i o n  s = 9 ' ( e )  may be w r i t t e n  a s  

- s =  g r a d B ( e )  . 
T h i s  means t h a t  0 i s  a  p o t e n t i a l  f o r  t h e  considered s t a t i c a l  law (and 

a l s o ,  a s  usual ,  t h e  expression of the  p o t e n t i a l  energy) ; due t o  t h e  con- 

v e x i t y  of 9  it i s  a l s o  a  superpotent ial .  A s  we have supposed the  func- 

t i o n  8 '  = j continuous and s t r i c t l y  increas ing ,  it possesses a n  inverse  

func t ion  j-l, defined on t h e  range of j ; t h i s  range i s  an i n t e r v a l  I ,  

poss ib ly  unbounded o r  not c losed.  The c h a r a c t e r i z a t i o n  of e  and - s 

a s  conjugate  points  

X 
9 ( e )  + 9  (- S )  = <- S, e> 

* 
permits  the  c a l c u l a t i o n  of 0  by t h e  formula 

- 1 
e X ( -  S )  = s j ( s )  - e c j - l ( s ) ]  

v a l i d  f o r  any s  i n  I .  The func t ion  9  takes  t h e  value + ss outs ide  
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of the closure of -I. 

2' Elastic string. We agreed that 4 + e represented the distance bet- 

ween the extremities of the considered one-dimensional system. If 6 
denotes exactly the length at rest of an elastic string, the correspon- 

ding statidlaw has the form s = j(e) where the function j takes now 

the value zero for e < 0 . A primitive of j is a superpotential ; its 

dual function O* with regard to the bilinear form (3.16) takes the va- 

* 
lue + , on lo,+ -[ ; the values of 0 (- s) for s belonging to the 

range of j are constructed as above if j' is continuous and strictly 

inareasing on [0, + ,[ . 
3O Inelastic string. This may be considered as a boundary case of the 

preceding. Supposirng that is the proper length of the string and 

that the breaking load is infinite, one finds the following superpoten- 

tial for the relation between e and s 

This is the indicator function of the closed convex subset C = 1- m ,  01 

o f u ,  so that the present law comes to be a perfect convex constraint. 

.. 
As C is actually a convex cone (see 6 2. c) the dual function 8- is 

the indicator function of the polar cone, i. e. the subset 1- -, 01 of 

7 (it is the set of the possible values of - s). 
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The reader will study other examples such as a cylindrical he- 

lix spring, enclosed in a guide tube to prevent buckling ; the length of 

this spring cannot be less than the length it has when all the spires 

come into contact. The corresponding behavioral law is equivalent to the 

conjunction of a law of elasticity and of a perfect convex constraint. 

This gives a very elementary model of an elastic solid with limited com- 

pressibility, a type of material which was studied in generality by 

W. PRAGER [l] ; the behavior of such a material can be formulated as a 

statical law admitting a superpotential. 

3. i AN EXAMPIE OF COMPOUND SYSTEM 

Take as @' a lattice of bars (a truss) whose extremities are 

articulated with one another through spherical joints. The joints are 

represented by n points Al, A2, . . . , An the nodes of the lattice. To 

make the description simpler suppose that between each pair of nodes, 

say Ai and A with i < j to avoid repetition, there exists one of 
j 

the bars denoted by 1 Bij, thus - n (n-1) bars in all. The behavior of 2 

each bar is treated as one-dimensional ; denote by s the tension of 
i j 

the bar B and by e its elongation with respect to the "zero" 
ij i 3 

state. 

Any configuration of the system @ is fully determined by the 
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corresponding positions of the n nodes Ai relative to some three- 

dimensional Cartesian frame ; these respective positions may be descri- 

+ 
bed by the n three-dimensional displacement vectors x by which they i 

differ from the positions corresponding to the "zero" configuration of 

the system. Thereby we are induced to consider as the configuration spa- 

ce of @ the 3 n-dimensional linear space X whose generic element x 

+ + 
consists in the n-tuple (tl, x2, . . . , x ). n 

Here again we restrict ourselves to linearized geometry, by 

treating the displacements as infinitely small with regard to the 

+ 
lengths of all the bars. Denote by a (with i ( j) the unit vector 

i j 

of the oriented line A.A (taken, to fix the ideas, in the zero confi- 
1 j 

guration ; but this precision is imnaterial since the bars present only 

infinitesimal rotations). The el-ongation of the bar B is related to 
i j 

u by 

(three-dimensional scalar product). 

+ + + 
An external action is a n-tuple of forces (yl, y2, ..., yn) 

respectively exerted on the n nodes ; this n-tuple of three- 

dimensional vectors, denoted by y, constitutes the generic element of 

a 3 n-dimensional linear space Y. The bilinear form "work", placing the 

spaces X and Y in separated duality will be noted (( . , . >> to 
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a b i l i n e a r  form which p l a c e s  t h e  two l i n e a r  spaces  E and S i n  sepa- 

r a t i n g  d u a l i t y  : keep i n  mind t h a t  i t  d i f f e r s  by the  Dresence of t h e  

minus s i g n  from t h e  n a t u r a l  " s c a l a r  aroduct"  between two spaces  whose 

1 elements  a r e  such - n(n-1)- tuples  of r e a l  numbers. 
2 

A t  t h e  p r e s e n t  s t a g e ,  where p l a s t i c i t y  i s  no t  t aken  i n t o  

account ,  t h e  behav io ra l  laws of  t h e  b a r s  a r e  r e l a t i o n s  between e and 
i j 

s fo rmula ted  i n  t h e  same ways a s  i n s  3. h .Th i s  i n t r o d u c e s ,  f o r  each 
i j  

( i , j ) ,  i < j, a s u p e r p o t e n t i a l  8 .  which i s  a c l o s e d  convex f u n c t i o n s  
13 

on R and t h e  corresponding s t a t i c a l  laws t a k e s  t h e  form 

By t h e  remarks made i n  $ 2. c about  t h e  product of l i n e a r  spaces ,  t h e  

f u n c t i o n  e d e f i n e d  on E by 

pe rmi t s  t o  summarize the  I n ( n - 1 )  r e l a t i o n s  (3.20) by w r i t i n g  
2 

(3 .21)  - s f ? @  ( e l  . 

3. j VARIOUS TREAMFNTS OF THE EQUILIBRIUM PROBLEM 

Let  u s  pursue  t h e  s tudy of  t h e  system desc r ibed  above. Conti-  

nuously d i s t r i b u t e d  e x t e r n a l  a c t i o n s ,  such a s  g r a v i t y ,  a r e  not  t aken  i n t o  

account ,  s o  t h a t  t h e  equ i l ib r ium c o n d i t i o n  of t h e  system c o n s i s t s  i n  t h e  
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vanishing of the total force experienced by each of the n nodes, i.e. 

for each value of i = 1, 2, ..., n the following three-dimensional 

vector equation 

(3.22 ) 

On tpe other hand, equalities (3.17) define a linear mapping 

from X into E which will be denoted by D. By definition the ad- 

it 
joint D of D is the linear mapping from S into Y defined by 

Referring to the definitions of <. , . > and << . , . >>, then identifying 

the terms of each member yields that the element D* s of Y consists 

of the n-tuple of'three-dimensional vectors (D* sIi 

Therefore the equilibrium condition (3.22) takes the form 

which of course is equivalent to the principle of virtual work, namely 

(3.24) V x E X : (< x,y>> + (D X,S> = 0 . 
lo The method of big spaces. 

We give this name to the method which consists in using the 

pair (x,e), denoted by u as the element which specifies the configu- 

ration of our system. Then, with the notations of 6 3, a the configu- 

ration space is U = X x E ; the corresponding B is the space Y x S, 
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whose generic element is the pair (y,s) denoted by f. These spaces are 

placed in separating duality by the expression of the total work 

(<x,y>> + (e,s>, to be denoted by (u,f>. 

Clearly the whole of the space (26 is not permitted to u, sin& 

the pair (x,e) must belong to the following linear subspace of 

i.e. the graph of D. Let us show that this restriction of freedom may be 

treated as a perfect constraint. 

In fact the equilibrium condition of the system is not the 

vanishing of the element f = (y,s) but merely equality (3.23). Putting 

we observe that V is precisely the subspace of X orthogonal to U : 

this is the same as the equivalence between (3.23) and (3.24). Condition 

(3.23) is equivalent to asserting the existence of some r in V such 

that f + r vanishes. Interpreting r as the reaction associated with 

the considered constraint agrees with our general definition of a per- 

fect affine constraint. 

Actually this conception may be related to a physical realiza- 

tion of the constraint : considering X x E as the configuration space 

amounts to regarding our system as the conjunction of the following sub- 

systems : the nodes Ai, whose respective configurations are described 
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+ 
by t h e  three-dimensional v e c t o r s  x and the b a r s  Bij, whose respec t ive  

i 

s t a t e s  a r e  described by t h e  elongat ions e .  The c o n s t r a i n t  whose geome- 
lj. 

t r i c  e f f e c t  i s  expressed by (3.17) merely c o n s i s t s  i n  connecting t h e  b a r s  

with t h e  nodes. However, our main motivation i n  developing the  present  

example i s  t o  prepare f o r  t h e  case  of continuous media, (c f .  B. Nayro- 

l e s ' s  l e c t u r e s )  ; i n  t h i s  case  x i s  replaced by a f i e l d  of displace- 

ment v e c t o r s  defined on a reg ion  of R~ and e i s  replaced by a f i e l d  

of s t r a i n  t ensors  ; then e = D x i s  the condi t ion  of geometric compa- 

t i b i l i t y  between displacements and s t r a i n s  ; t h i s  r e s t r i c t i o n  of freedom 

may be formally considered a s  a p e r f e c t  c o n s t r a i n t  i n  the  same way a s  

above but i t  does not seem wise t o  t r y  and v i s u a l i z e  R mechanical r e a l i -  

z a t i o n  f o r  it. 

Suppose t h a t  t h e  s t a t i c a l  laws concerning t h e  e x t e r n a l  a c t i o n s  

experienced by t h e  system (poss ib ly  including c o n s t r a i n t s  a c t i n g  on t h e  

nodes) can  be g loba l ly  described i n  the  framework of t h e  spaces (X,Y) 

by a superpoten t ia l  E To (X,Y) ; i n  o ther  words t h e  e x t e r n a l  fo rce  

y f Y i s  r e l a t e d  t o  t h e  "external" conf igura t ion  x E x by 

(3.25) - y ~ a z ( z )  , 

where t h e  s u b d i f f e r e n t i a l  i s  understood i n  t h e  sense of t h e  d u a l i t y  

(X,Y). Suppose on the o t h e r  hand t h a t  the  i n t e r n a l  s t a t i c a l  laws a r e  ex- 

pressed by (3.21). By the  r u l e s  formulated i n  6 2. c about product 
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spaces,  (3.21) and (3.25) a r e  equ iva len t ly  summarized a s  

- f ~ a $  cu) 

i n  t h e  sense of t h e  d u a l i t y  between t h e  b i g  spaces with u = ( x , e ) ,  

f = ( y , s ) ,  and the  superpo tep t ia l  $ def ined  by 

b 4 ( u )  = g ( X I  + e ( e )  . 
The equi l ibr ium of t h e  system may then be s tud ied  by t h e  me- 

thods of $$ 3. e, f ,  g. 

2' The e l imina t ion  of (E ,S 

As t h e  conf igura t ion  of t h e  system i s  f u l l y  s p e c i f i e d  when 

x E X i s  given, one may p r e f e r  t o  consider  only X a s  t h e  conf igura t ion  

space, and Y as t h e  f o r c e  space. Then every mechanical a c t i o n  experien- 

ced by t h e  system must be described i n  terms of elements of Y : p r e c i s e l y  

it i s  represented by t h e  element y of Y such t h a t  f o r  every d i sp la -  

cement 6 x of t h e  system, t h e  work of t h e  considered a c t i o n  i s  

<<F x, y>>. I n  t h i s  way an i n t e r n a l  S t r e s s  s E S i s  represen ted  by t h e  

element y of Y such t h a t  

V F  x E X  : ((8 x, ys>> = ( D 6  x,  s> , 

i. e. 

* 
(3.26) y , = D s  . 
Thus the  s t a t i c a l  law (3.21) i s  t r a n s c r i b e d  i n  terms of t h e  p a i r  of spa- 

c e s  (X,Y) a s  fo l lows  
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* 
(3.27) - Y, E D ( a  e (D XI) . 
'If, in particular, there exists a point in the range of D at which 13 

is finite and continuous (for some topology compatible with the duality 

(E,S)), the calculation rule (2.15) holds,so that (3.27) amounts to 

(3.28 - ys E D (0 o D) (x) 

in the sense of the duality (X,Y) ; this constitutes a statical law ad- 

mitting the function 00 D as superpotential. In this way the techniques 

of the foregoing paragraphs may be applied with regard to the pair of 

spaces (X,Y 1. 

3' The elimination of (X,Y) 

The mapping D : X + E is not injective ; this means that the 

element e = D x does not convey enough information to specify complete- 

ly the configuration of the system. However one may wish to determine the 

equilibrium values of e or s prior to that of x or y and in some 

instances one may be interested in these elements only (in order to dis- 

cuss strength, for example). 

In the principle, the elimination is similar to that of the 

preceding case. Suppose that all the external laws to which the system 

is jointly submitted are summarized under the form 

(3.29) x E P(y) 

where P denotes a given multimapping from Y into X. Similarly suppose 
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t h a t  a l l  t h e  i n t e r n a l  laws a r e  summarized a s  

(3.30) s = R ( e )  

where R denotes  a  given multimapping from E i n t o  S. A system of va- 

l u e s  of x, y ,  e ,  s def ines  an equ i l ib r ium s t a t e  i f  and only i f  it sa- 

t i s f i e s  e  = D x  and (3.23), (3.29), ( 3 ~ 3 0 ) .  Thus, a s  f a r  a s  e  and 

s only a r e  concerned, t h e  equi l ibr ium condi t ion  ( i .e .  a  necessary and 

s u f f i c i e n t  c o n d i t i o n  f o r  the  ex i s tence  of a t  l e a s t  one p a i r  (x ,y)  as- 

soc ia ted  wi th  (e ,  s )  i n  such a  way t h a t  t h e  preceding equ i l ib r ium condi- 

t i o n s  hold)  c o n s i s t s  i n  t h e  conjunct ion of (3.30) with 

(3.31) e E D (P (- D* s ) )  . 
I n  the p r i n c i p l e ,  (3.31) may a s  w e l l  be w r i t t e n  under t h e  form 

(3.32) - s E Q ( e )  . 
Now a s  f a r  a s  t h e  i n t e r e s t i n g  unknown i s  e, t h e  conjunct ion of i3.30) 

with (3.32) i s  equ iva len t ly  formulated a s  fol lows : t h e r e  e x i s t  sl a& 

s2 12 S such t h a t  

s1 E R ( e l  

sZ E Q ( e l  

S 1 + S 2  = 0 . 
Formally w e  a r e  reduced t o  the  usual  p a t t e r n  of the equ i l ib r ium of a 

system submitted t o  two s t a t i c a l  laws. From t h i s  s tandpoint  t h e  r e l a t i o n  

s E ~ ( e )  should be considered a s  t h e  " i n t e r n a l  imagev' of t h e  e x t e r n a l  
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s t a t i c a l  law (3.29). 

The reader i s  i n v i t e d  t o  apply t h i s  procedure t o  an e x t e r n a l  

law of  t h e  form - y E a 5: (x) ,  equivalent ly w r i t t e n  a s  x E a 5:* (-y 1. 

Here aga in  t h e  c a l c u l a t i o n  r u l e  (2.15), under some cont inu i ty  assumption, 

w i l l  y i e l d  an image i n  (E,S) which admits a superpotential.: A s  a f i r s t  

example, t ake  a s  e x t e r n a l  s t a t i c a l  law a given load y E Y* app l ied  t o  
0 

t h e  system ; t h i s  may be w r i t t e n  under t h e  form (3.29) with 

Another primary example i s  t h a t  of a p e r f e c t  a f f i n e  c o n s t r a i n t  formulated 

r e l a t i v e l y  t o  t h e  p a i r  (X,Y). 

But i t  w i l l  be more i n  t h e  s p i r i t  of t h i s  Chapter t o  opera te  

with t h e  p a i r  (E,S) i n  t h e  fol lowing way : 

Since we choose t o  dea l  only with informations formulated i n  

t h e  framework of t h e  pa i red  spaces (E,S) ,  we accept  only t o  speak of 

t h e  s t a t e  of t h e  system i n  terms of e ; on t h e  o t h e r  hand, a mechanical 

a c t i o n  experienced by t h e  system w i l l  be taken i n t o  account only i f  it 

can be represented by an element 5 E S , i n  such a way t h a t  t h e  work of 

t h i s  a c t i o n  f o r  every displacement of the system has t h e  expression 

C6 e ,  a>. Therefore, i f  i n  p a r t i c u l a r  the  considered a c t i o n  19 a n  ex te r -  

n a l  f o r c e  y E Y t r e a t e d  a s  given, the corresponding d must be Such 
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t h a t  

(3.33) V 6 x E  X : <<6 x ,  y>> = (D6 x ,  a> 

Such a a does not necessar i ly  e x i s t  ; an evident condi t ion  f o r i t s  

* 
existence i s  t h a t  y belongs t o .  D S, t h e  image of S under the l i n e a r  

* 6 * 
mapping D . The l i n e a r  subspace D S of Y i s  the  orthogonal,  i n  t h e  

sense of t h e  d u a l i t y  (X,Y), of t h e  subspace Ker D of X. Actually t h e  

imposs ib i l i ty  of represent ing i n  t h e  (E,S) framework a load y which 

* 
would not belong t o  D S does not  make any hindrance. I n  f a c t  suppose, 

f o r  sake of s i m p l i c i t y ,  t h a t  t h i s  load i s  t h e  only e x t e r n a l  a c t i o n  exer- 

t e d  on the  system ; c l e a r l y  by (3.23) o r  by (3.241, y E D* s is  a n 2  

cessary condi t ion  f o r  t h e  ex i s tence  of a n  equi l ibr ium ; t h i s  i s  a fami- 

l i a r  f a c t  : only a family of e x t e r n a l  f o r c e s  with ze ro  r e s u l t a n t  and zero 

moment i s  compatible with equilibrium. 

Another fundamental remark about t h e  use of t h e  (E,S) p a t t e r n  

i s  t h a t  a l l  t h e  va lues  of e a r e  not  permit ted,  s ince necessar i ly  e 

belongs t o  t h e  subspace D X ( t h e  subspace of E c o n s i s t i n g  of t h e  

" s t a t e s  of strainl 'which a r e  "geometrically compatible1'). On the  o ther  

hand, i f  s E S denotes the sum of a l l  the  elements of S represen t ing  

t h e  mechanical act ionsexerted on t h e  system, t h e  equi l ibr ium condi t ion  i s  

not s = 0 ,  but t h e  p r inc ip le  of v i r t u a l  work,namely - 
V 6  x E X  : (D6 x, s> = 0 
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which means t h a t  s belongs t o  t h e  subspace of S orthogonal t o  D X 

* 
( a c t u a l l y  t h e  kerne l  of D ). 

I n  conclusion t h e  equi l ibr ium problem i n  (E,S) must be t rea -  

t e d  by considering the  condi t ion  e  E D X a s  a p e r f e c t  cons t ra in t .  

The reader  w i l l  check t h a t  given e x t e r n a l  loads and e x t e r n a l  

p e r f e c t  a f f i n e  c o n s t r a i n t s  a r e  t ranscribed i n  t h e  (E,S) language by 

given f o r c e s  and p e r f e c t  a f  f i n e  cons t ra in t s .  

I t  is  from t h i s  s tandpoint  t h a t  t h e  e l a s t o p l a s t i c  evolut ion 

problem w i l l  be s tudied i n  Chapter 6. 
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4 LAWS OF RESISTANCE 

4. a VELOCITIES AND FORCES 

A h a b i t u a l  procedure, when studying a mechanical system, i s  t o  

assoc ia te  with each possible  conf igura t ion  of t h i s  system a l i n e a r  space 

- l e t  us  denote it by p- whose elements c o n s t i t u t e ,  i n  a general  sense, 

t h e  possible  va lues  of the  ve loc i ty  of the  system i f  it happens t o  pass 

through the  considered configurat ion.  Roughly speaking, may be i n t e r -  

preted a s  t h e  tangent  space a t  t h e  corresponding point of t h e  configura- 

t i o n  manifold but t h i s  need not be made more prec i se  here. This  space i s  

of i n f i n i t e  dimension i f  the system has an i n f i n i t e  degree of freedom. 

I n  t h e  spec ia l  framework of Chapter 3, where t h e  c o n f i ~ u r a t i o n  

manifold i s  t r e a t e d  a s  a l i n e a r  space ?,I!,, a motion of t h e  system i s  des- 

cr ibed by a mapping t I+ u ( t )  from some i n t e r v a l  of time i n t o  k.  The 

ve loc i ty  i s  n a t u r a l l y  defined i n  t h i s  case  a s  the  d e r i v a t i v e  u ( t )  ( t a -  

ken i n  the  sense of some topology on u)  i f  i t  e x i s t s  ; then Y) = U ,  t h e  

same f o r  a l l  t h e  configurat ions.  

Let us  come back t o  the  general  se t t ing .  With each configura- 

t i o n  i s  a l s o  assoc ia ted  a l i n e a r  space -denote it  by a -  whose elements 

represent  i n  a more o r  l e s s  a b s t r a c t  way, t h e  mechanical ac t ions  which 

may be exer ted  on the  system when i t  happens t o  come through t h e  consi- 
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dered configuration : see the construction of the space of torsors in 

6 3. a. By extension, the elements of 8 are called forces. An essential 

feature in the practice of Mechanics is that several forces are usually 

applied to the system at the same time. This produces a fondamental dis- 

symmetry between the roles played by ?.& and 8. 

To any pair v E Y), f E 8 corresponds the power of the force 

f if the system possesses the velocity v, a real number denoted by 

<v,f> ; this defines a bilinear form'which places and B in duality. 

In the linear framework of Chapter 3 where = U, there is 

no inconsistency in considering the single space 8 as the force space 

associated with any configuration and in using the same bracket as above 

to denote by (6 u,f> the work of f E 8 corresponding tothedisplace- 

ment 6 u E U. In fact, suppose this displacement results from a motion 

t t+ u(t) with velocity ; (derivative understood in the sense of some 

topology compatible with the duality ( 'LL, 8 )) taking place during a time 

interval [tl, tall while f is constant in 8. The general definition 

of work as the integral of power yields 

4. b PSEUDO - POTENTIALS 

Let us agree to call a resistance l.aw a relation,-denote it by 
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9, formulated between the possible velocity v E of the considered 

system in the considered configuration and one, say f E 8 ,  of the for 

ces it experiences at the same instant. Such a law arises from the study 

of some of the physical processes in which the system takes part. 

It will be said that the law 9 is dissipative if the follo- 

wing implication holds 

(4.1) v R f  =$<v,f><0 , 

which makes it a resistance law in the usual sense. 

It will be said that R admits a function $ E To()'? F )  as 

pseudo-potential if the relation R is equivalent to 

(4.2) - f a $ ( v )  . 
Recall that any subdifferential relation is monotone ; then a 

law R of the form (4.2) ensures the implication : 

( 4 . 3 )  v .P f , v' fR f' 3<v-v' , f-f'><0 . 
Make in addition the frequently verified hypothesis that zero 

is among the valves that the relation 9 permits to f when v is 

zero, i.e. 

(4.4) O E ~ $ ( O ,  . 
hen (4.1) ensues from (4.3) : the corresponding resistance law is dissi- 

pative. Observe that (4.4) implies that C$ (0) is finite and constitutes 

',e minimal value of C$ ; since adding a finite constant to 4 does not 
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affect the subdifferential, there is no loss of generality in supposing 

here 

(4.5) $ ( O )  = 0  ; 

then the function $ takes only nonnegative values. 

In the following, we shall refer to the situation characterized 

(4 .21 ,  (4 .41 ,  ( 4 . 5 )  by saying that the pseudo-potential $ is the 

resistance function of the considered law. 

Recall that, a priori, the pair of linear spaces (VJ, is 

relative to a definite configuration of the system, so that the foregoing 

concerns only this configuration. However in the usual linear case of 

Chapter 3, by making = ?.k and considering the single force space , 

it will be possible to formulate resistance laws independently of confi- 

gurations. 

REMARK. The example developed in5 3. i, 3. j makes understand also 

that the pattern of the present Chapter may usually be applied to a de- 

finite mechanical situation in several different.ways. 

A similar example is t! of a continuous medium, occupying in 

the considered configuration a region R of the physical space. A first 

possibility is to interpret as v the vector field defined on R by 

the velocities of the various particles forming the medium : then the 

linear space yd will consist of vector fields satisfying some assumptions 
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of i n t e g r a b i l i t y ,  d e r i v a b i l i t y ,  e tc . . .  But i n  some t h e o r i e s  it w i l l  be 

more convenient t o  consider  v a s  t h e  s t r a i n  r a t e  t ensor  f i e l d  of t h e  

medium. Or e l s e ,  a s  i n  9 3. j, one may t a k e  f o r  a ''big space" whose 

generic  element i s  t h e  couple of a v e l o c i t y  vector  f i e l d  and of  a t ensor  

f i e l d  presumeb t o  be t h e  s t r a i n  r a t e  f i e l d  ; then t h e  geometric compati- 

b i l i t y  between v e l o c i t y  f i e l d  and s t r a i n  r a t e  f i e l d  w i l l  be seen a s  a 

cons t ra in t .  To t h e s e  various s tandpoin t s  correspond n a t u r a l  choices f o r  

t h e  elements f forming t h e  space B : r a t e s  of d i s t r i b u t e d  forces ,  

s t r e s s  t ensor  f i e l d s ,  e t c . . .  

The same p a t t e r n  w i l l  a l s o  be appl ied t o  formulate l& laws : 

a point  of t h e  continuous medium being spec i f ied ,  one cons iders  a s  

t h e  l i n e a r  space of dimension 6 whose elements a r e  the  poss ib le  values 

of t h e  l o c a l  s t r a i n  r a t e  tensor  d of t h e  medium ; t h e  assoc ia ted  is  

t h e  l i n e a r  space formed by the  poss ib le  va lues  of the  l o c a l  s t r e s s  ten- 

sor  a ; t h e  b i l i n e a r  form which p laces  t h e s e  two spaces i n  d u a l i t y  i s  

t h e  c l a s s i c a l  expression of t h e  dens i ty  of i n t e r n a l  power. A l o c a l  law, 

i.e. a r e l a t i o n  between the  s t r a i n  r a t e  t ensor  and the  s t r e s s  t ensor  a t  

t h e  considered po in t  of t h e  medium, w i l l  be formulated by means of a 

l o c a l  pseudo-potential,  which is  a numerical funct ion defined on v. This 

being done f o r  each point  of the medium, i t  generates  a behavioral  law 

of t h e  medium a s  a whole, i .e.  a r e l a t i o n  between elements of two 
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function spaces whose generic elements are the strain rate tensor field 

and the stress tensor field. Under suitable integrability assumptions, 

these two function spaces are placed in separating duality by the bili- 

near form defined as the integral of the density of internal power. This 

permits the description of the considered behavioral law by means of a 

superpotential which is an integral convex functional. The reader will 

refer to B. Nayroles's lecture for more details about this mechanical 

situation and to C. Castaing's lecture for more details about the func- 

tional analytic aspect. The basic mathematical material may be found in 

R. T. ROCKAFELLAR [ 11 , [ 31 , [ 41 . 

4. C VISCOUS RESISTANCE 

As a first example consider a relation 9 of the form 

(4.6) - f  = L v  

where L denotes a linear mapping from into 8 .  In all the phenomena 

classified as viscosity effects it is always admitted that L is self- 

adjoint (or "symmetric") with regard to the duality &. ,.>, i.e., for any 

v and v' in : 

cv, L v', = <v', L v> . 

From this, one easily deduces that L v is the weak gradient 

at the point v of the quadratic form $I defined on by 



J. J. Moreau 

1 4 (v) = (v, L v> 

This quaaratic form is usually called the Rayleigh function of the consi- 

dered viscosity law. 

Making the additional assumption that the viscosity law ie 

dissipative yields that this quadratic form is nonnegative, thus convex. 
- 

And at any point v the weak gradient L v constitutes the whole of the 

subdif ferential 8 4 (v). This means that in the present case, the rela- 

tion (4.6) may equivalently be written as 

-fEi)+(v). 

Thus + is pseudo-potential and, more precisely, resistance function of 

the considered law. 

The power of the force f associated with v in this way is 

<v,f> = - Cv, L v> = - 2 + (v) ; 

the negative of it is frequently called the dissipated power correspon- 

ding to v ; hence the name of dissipation function which is given in 

the present case to the quadratic form v I+ 2 4 (v). 

REMARK. Gyroscopic forces give an example of a law of the form (4.6) 

with a linear mapping L which is not self-adjoint ; on the contrary 

(v, L v'> = -<v', L v> . 

Such a law admits no pseudo-potential unless L is the zero mapping ; 

the dissipated power is essentially zero, so that (4.1) is satisfied : 
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this law may be said dissipative. 

4. d VEIDCITY CONSTRAINT 

Take back the framework of 5 3. e, i.e. the example of the 

firm perfect constraint whose geometric condition is u  2, with 

2 = U + a, a possibly moving affine manifold. The linear subspace U is 

supposed independent of time thus also V which is the subspace of 

orthogonal to U. This geometric condition may equivalently by written, 

for every t, 

V w E V  : L u - a , w >  = 0 . 
Supposing that the known function t I+ a possesses a weak derivative a, 

this yields, by choosing w independent of t, that the velocity v = ; 

satisfies 

V w E V  : <;-Li,w> = 0 

i.e. 

(4.7) V U + & .  

Recall on the other hand that, by the definition of a firm perfect cons- 

traint, the reaction r  % exerted on the system by the enforcing de- 

vice may be an arbitrary element of V. Exactly like in 5 3. b, this 

fact may be expressed jointly with (4 .7 )  by writing : 
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where P denotes the affine manifold U + a . 

This constitutes a resistance law admitting the function # 
6: 

as pseudo-potential. Let us call it a velocity constraint. 

It is no place to explain how, in the general setting of a 

configuration-depgnding pair of spaces(r,a) 1 the usual differen- 

tiability assumptions let any firm perfect bilateral smooth constraint 

be expressed under the form (4.8). This form includes more generally the 

relations between reaction and velocity classically known as n x  

holonomic: perfect constraints ; the standard example of it consists in 

the perfect rolling without sliding of solid bodies, actually an extreme 

case of friction. 

4. e FRICTION AND PLASTICITY 

Suppose given a weakly closed non empty convex subset C of 

F .  Let us formulate a relation 9 between v and f by the principle 

of maximal dissipation namely : the values of f E g which this relation 

associates with a given v E are the elements of C which minimize 

the power, i.e. minimize the function (v,.>. In other words v f 

means 
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which is immediately found equivalent to 

v f' 9;: -<v, ff-f> +$rc (f)<*, (f') 

which in turn is equivalent to 

(cf. 4 2. e and also to 

* 
Denote by I$ the function v -  #C (- v), i.e. 

$(v) = sup 4-v, f>= sup <v, g> ; 
f E C  g E -C 

it is the support function of the set. -12. 

Then (4.10) is transcribed as 

this means that the considered resistance law admits $ as pseudo- 

potential (or resistance function in the usual case where C contains 

the origin of ; such is the condition for the present law to be d= 

siwtive 1. 

Relation (4.11) may equivalently be written as 

in other words the values of f that the considered relation associates 
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with a  given v a r e  those elements of  C f o r  which t h e  d i s s i p a t e d  

power - C v ,  f, equa ls  exact ly 4 (v ) .  

The reader  w i l l  check t h a t  a l l  t h e  preceding p a t t e r n  app l ies  

t o  Coulomb's law of f r i c t i o n  between two s o l i d  bodies dl and % , 
when t h e  pressure  N, i .e .  t h e  normal component of the  reac t ion ,  i s  t rea-  

t e d  a s  known. Take a s  v t h e  s l i d i n g  v e l o c i t r  of d2 with respec t  t o .  

C/; ; then i s  t h e  l i n e a r  space of dimension 2 c o n s i s t i n g  of the  vec- 

t o r s  whose d i r e c t i o n  is  contained i n  t h e  common tangent plane t o  t h e  two 

bodies a t  t h e  point  of contact  ( t h i s  space i s  not exac t ly  t h e  v e l o c i t y  

space f o r  t h e  considered system a s  a  whole, but it is  v i s i b l y  isomorphic 

t o  a  subspace of  i t ) .  Take a s  f  t h e  t angent ia l  component of t h e  reac- 

t i o n  t h a t  v2 undergoes from 4 s o  t h a t  7 may be considered' a s  t h e  

same space a s  t h e  b i l i n e a r  form (. , .> reducing then t o  t h e  conven- 

t i o n a l  Euc l id ian  s c a l a r  product. The customary Coulomb law of i so t ro-  

p ic  f r i c t i o n  c o n s i s t s  i n  taking a s  C the  cl.osed d i sk  centered a t  t h e  

o r i g i n ,  with r a d i u s  equal  t o  the  product of N by the  f r i c t i o n  coef f i -  

c i e n t .  But a n i s o t r o p i c  f r i c t i o n  may be described a s  well, by using convex 

s e t s  of d i f f e r e n t  shape. See MOREAU [12] about t h e  a p p l i c a t i o n  of t h i s  

t o  d i scuss  t h e  s l i d i n g  of a  veh ic le  wheel when brake i s  appl ied  : i f  the  

i n e r t i a  of t h e  wheel i s  neglected, t h e  r e s u l t i n g  e f f e c t  comes t o  be equi- 

va len t  t o  some an iso t rop ic  f y i c t i o n  which would take place d i r e c t l y  
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between the vehicle  and t h e  ground. 

However, the  main domain of app l ica t ion  of t h e  preceding i s  

p l a s t i c i t y .  In  i t s  l o c a l  form the  c l a s s i c a l  law of per fec t  p l a s t i c i t y  

( i .e .  without s t r a i n  hardening) i s  formulated a s  a  r e l a t i o n  between t h e  

l o c a l  valuesof the  s t r e s s  t ensor  o- and of t h e  p a a s t i c  s t r a i n  r a t e  E . 
P 

Giving t h e  y i e l d  locus d e f i n e s  a  closed convex s e t  C i n  t h e  six- 

dimensional space of t h e  v a r i a b l e  b ; among var ious  equivalent  formu- 

l a t i o n s ,  t h e  considered law may be s t a t e d  a s  a  p r i n c i p l e  of maximal d i s -  

s i p a t i o n  which was P r e c i s e l y  t h e  s t a r t i n g  po in t  of t h i s  paragraph. From 

t h e  l o c a l  law one ob ta ins  t h e  global  one by t h e  func t iona l  a n a l y t i c  pro- 

cedure described a t  t h e  end of § 4. b. 

I n  the  study of p l a s t i c i t y  a s  well a s  i n  t h a t  of f r i c t i o n ,  

a n  e s s e n t i a l  f e a t u r e  i s  t h e  occurence of a  r e l a t i o n  between the ve loc i -  

t y  v  and t h e  fo rce  f which cannot be "solved" t o  def ine  one of these  

two elements a s  a  func t ion  of the  o ther  : t o  t h e  value zero of v  cor-  

respond f o r  f  a l l  t h e  po in t s  of C and t o  a  value of f  corresponds 

as va lues  of v  a l l  t h e  elements of t h e  cone - a ( f ) .  This  causes 
C 

much t r o u b l e  i n  t r a d i t i o n a l  t reatments  ; our purpose i n  Chapter 6 ,  w i l l  

be t o  show t h a t  such formulat ions a s  (4 .0 ) ,  (4.10) o r  (4.11) permit a  

very e f f i c i e n t  handling i n  t h i s  s i t u a t i o n .  
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4. f DISSIPATION FUNCTION 

The relation 9 between v and f may equivalently be written 

under the form 

f E R ( v )  

where R denotes a multimapping from into a . Given v in , 

there is a priori no reason for all the values of f in the set R (v) 

to yield the same value for the dissipated power -<v, f>. However this 

precisely happens in many practical instances : in such cases, the dissi- 

pated power appears as a single-valued numerical function of the variable 

v, defined on dom R = lv E : R (v) f $ 1. Let us denote by D this 

function, usually called the dissipation function of the considered law. 

In the case of viscous resistance presented in 5 4. c, the set 

R (v) reduces to a single element for each v in ; hence the exis- 

tence of a dissipation function is trivial. In fact we found 

D (v) = 2 4 (v) . 

In the case of friction or plasticity presented in 5 4. e, 

(4.12) proves the existence of a dissipation function expressed now, for 

every v in dom 8 4 , as 

D (v) = 4 (v) 

Both preceding examples exhibit a close connection between the 

superpotential, or resistance function, 4 and the dissipation 
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function D. Actually in both cases, the resistance function 4 happens 

to be positively homogeneous, with degree m ; this implies 

- CV, f> = m 4 (v), which may be considered as a generalization of 

Euler's identity to "subdifferential calculus". Many practical resistance 

functions possess such a homogeneity (e.g. usual laws of creep). More 

generally : 

PROPOSITION. Let 4 be a resistance function (i& 4 is the mudo- 

potential of a resistance law, w z  0 E a 4 (0) a x  4 (0) = 0 )  ; 

suppose a 4 (v) f 6 whichever is v i_n v. For the existence of a 
function h : R + R  ensuring the implication 

- f E a 4 cv) -=> - cv, f> = h(4 (v)) 

(in other words, for the function l2 o to be dissipation function) 2 

is necessary and sufficient that 4 has the quasi-homogeneous form 

4 = a o j , z e  j is an everywhere subdifferentiable gauge function 

on and a a convex differentiable mapping from [0, + e[ into - 
itself, with a (0) = 0. - 

A sketched proof is given in MOREAU [13], and for more de- 

tails [ 1 6 ] .  It may be remarked that the function h is then strictly 

increasing. The dissipation function D = h o 4 is not convex in gene- 

ral, but only quasi-convex i,e. its "slices1' Iv  'y3 : D (v) < for 

p E R , are (closed) convex sets ; all these sets are homothetic of 
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J = fv  : j(v)< 11, the set whose j is the gauge. 

By the facts indicated in 6 2. h , the dual function of 
* 

$ = a o j is also a quasi-homogeneous function, namely $ = o k , 

where p is the Young conjugate of a and k the gauge function of 

the polar set K of J. 

In the case of plasticity or friction the function a is 

identity , so that P is the indicator function of the subset [0,1] 

of [0, + ,,,[ and K =-C. 

4. g SUPERPOSITION OF RESISTANCE LAWS 

It is usual to take into account at the same time several 

resistance laws in the same pair ( p ,  a of linear spaces. Let and 

$2 
the respective pseudo-potentiak of two such resistance 1aws.For every 

v in p, the set of the possible values of the sum of the two for- 

ces is b dl (v) + :, $2 (v). This is contained in a ($ + + ) (v). and, 1 2  

in particular, if the functions and +2 possess the additivity of 

the subdifferentials, the conjunction of the two resistance laws amounts 

exactly to the single following one 

(4.13) - f E a + 4,) (v) . 
* 

Suppose for instance 4 (v) = $h (- v), i. e. the resigtance 1 C 
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dendte the resistance function of some viscosity law (cf. 5 4. c : it 
+ 

is a nonnegative 1.s.c. quadratic form on the spacev ) ; choose a strict- 

ly positive constant A and take more generally 

1 $2(v) = A q(v) = q(A v) , * 

so that A may be interpreted as a viscosity coefficient. As a dondition 

ensuring the additivity of subdifferentials make, for instance, the fol- 

lowing assumption (cf. 2. f) : the function is continuous at the 

origin, at least for the Mackey topology z (2/; a) ;by$ 2. c, 5 O ,  this 

means the convex set C is compact for the weak topology d (8 ,r). Then 

the resulting viscoplastic law may be expressed under the form (4.13). 

Now the assumptions made imply, by 5 2. d, that the polar 
* * 

function of + $2 is the infimal convolute V (Pz. AS already 

* 
mentioned in Chapter 3, the dual q of the quadratic form q consists 

in a positive definite quadratic form, defined on some subspace of 8 , 

and extended with the value + outside of this subspace. By '$ 2 .c , 
1 * 

2', the dual Of m2 is ~q . On the other hand, the dual & of 

is the indicator function of the set - C. Thus using the equivalence 

between (2.6) and (2.7) (5 2. e) the viscoplastic resistance law (4.13) 

amotints to 

1 * 
V E ~  crl-,vrq) (-f) , 

while the corresponding purely plastic resistance law would be written as 
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By d e f i n i t i o n ,  f o r  every j E F , 
1 * 1 * 8 -q l ( y )  = in f  [#-C(z) + 9 (Y-2) 1 

(*-c A + z E Y  
1 * = i n f  - q (y-z) 

z E-C A 

and, due t o  the assumed ,.compactness o f  C, t h e  infimum i s  a minimum. 

Clear ly  t h i s  expression takes  t h e  value 0 f o r  y  E -C and it takes 

1 * 
s t r i c t l y  p o s i t i v e  values otherwise ; it may be sa id  t h a t  (l-C V - q  A 

1 is  a penal ty func t ion  f o r  t h e  s e t  - C and t h e  penalty c o e f f i c i e n t  - 
A 

i s  the  r e c i p r o c a l  of the  v i s c o s i t y  c o e f f i c i e n t  (o ther  remarks about pe- 

n a l t y  func t ions  w i l l  be given, f o r  t h e  s p e c i a l  case of H i l b e r t  space, 

Due t o  quadra t ic  forms being even funct ions,  one may equiva- 

l e n t l y  speak of t h e  s e t  C ins tead  of  - C ; i n  shor t  adding some vis-  

c o s i t y  e f f e c t s  t o  a  p l a s t i c i t y  law i s  equivalent  t o  rep lac ing  t h e  ind i -  

c a t o r  func t ion  of t h e  " r i g i d i t y  s e t "  C, by a  penalty func t ion  o f  t h i s  

s e t  ; t h e  smaller  i s  t h e  v i s c o s i t y  c o e f f i c i e n t ,  the l a r g e r  i s  the penalty - 
coef f ic ien t .  



5.  dOVIilG SETS 

5. a HAUSDORFF DISTANCE AND VARIATION 

Let t*+ A(t) denote a multimapping or multifunction (i.e. a 

set-valued mapwing) from the compact inteqal [o,T] into a metric space 

(E,d). As in the following the real variable t will be interpreted as 

the Oime, we may refer to A as a moving set in E. 

A natural way of formulating regu.1arity assumptions about such 

a multimapping consists in using the Hausdorff distance between subsets 

of the metric space E. 

If A and B are two subsets of E, we call the excess of A 

over B the expression 

(5.1) e(A,B) = sup d(a,~) = sup inf d(a,b) 
a  A aEA M B  

The considered sets may be empty ; let us agree that "sup" add "inf" abo- 
1 

ve are understood in the sense of the ordered set f = [o, + m ]  : the 

supremum of an empty collection of elements of this ordered set is 0 

and the infimum is + m . Expression (5.1) defines a non symmetric e- ; 

it satisfies the triangle inequality. Clearly e(A,B) = 0 if and only 

if A is contained in the closure of B. 

The Hausdorff (improper) distance of A and B is then defi- 

ned as the symmetric expression 

~(A,B) = max {~(A,B), ~(B,A)] 
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with value in E+ . This is zero if and only if A and B have the sa- 

me closure. 

By means of Hausdorff distance, the classical concept of v- 

t&n may be a~plied to moving sets. Let [s,t] be a compact subinterval 

of [o,T] ; for any finite subdivision of this interval, namely 

The supremum of V(S) for S ranging over all the finite subdivisions 

of [s,t] is called the variation of A on this interval ; notation 

var (A ; s,t). From h satisfying the triangle inequality one easily 

deduces that 

(5.2) s < t < u +var(A ; s,u) = var(A ; s,t) + var(A ; t,u) . 
In particular if var(A ; 0,T) ( + 00 , the variation is also finite on 

any subinterval of [o,T] ; in this case, introducing the non decreasing 

function v from [o,T] into R 

(5.3) v(t) = var(A ; 0,t) 

yields 

(5.4) 

The numerical function v is Lipschitz with patio A if and 

only if the multimapping A satisfies itself the Lipschitz condition, 

with ratio A, i.e., for any s and t in [o,T] , 

h(A(s), ~(t)) < h 1 t-sl 
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The numerical function v is absolutely continuous on [o,T] 

if and only if the multimapping A possesses itself the absolute conti- 

nuity, as formulated by means of Hausdorff distance, i.e. : for any 

E > 0, there exists 7  > 0 such that the implication 

2  IT,- ail ( o a 2  h(A(di), A(ti))<~ 
i i 

holds for any finite family Id ,z [ of non overlapping subintervals of 
i i 

[o,T]. In this case the numerical function v is almost everywhere dif- 

ferentiable ; the derivative, denoted by ; , is a nonnegative element 
1 

of L (0,T ; R) which may be called the speed function of the moving 

set A. Clearly - 
t 

(5.5) s <  t 3 h(A(s), ~(t)) < dz . 
s 

Let us restrict ourselves now to the case where, for any t, 

the set A(t) is closed ; then the non decreasing function v is cons- 

tant aver some subinterval of [o,T] if and only if the multimapping A 

is also constant over this subinterval. This implies the existence of a 

multimapping & from [o,v(T)] into E yielding the factorization 

A(t) = (v(t)) . 
Evidently, for 6 < ~  in [o,v(T)], one has 

var(fi ; s,z) = z - c 
so that c?Q: is Lipschitz with ratio 1. 

5 .  b THE CASE OF CONVEX SETS IN A NORMED SPACE 

Let E denote a real normed linear space and F its 
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topo log ica l  dua l  endowed with the usua l  norm. This  c o n s t i t u t e s  a dual  

p a i r  a s  considered i n  Chapter 2 (keep i n  mind t h a t  the  norm topology on 

E i s  c p p a t i b l e  with the d u a l i t y ,  bu t  not  the  norm topology on F un- 

l e s s  E is  a r e f l e x i v e  Banach space) .  

Let .? and C' be'two non empty convex subse t s  of E ; a s  we 

b 

a r e  t o  d e a l  with d i s t a n c e s ,  i t  is  immaterial t o  suppose t h e s e  sets clo-  

sed o r  not. Let y and y '  be t h e  respec t ive  support func t ions  of C 

and C '  which a r e  posi t i t re ly  homogeneous elements of F (F ,E) ,  vanishing 
0 

a t  t h e  o r i g i n  of F. 

Denoting by B t h e  c losed  u n i t  b a l l  of F , one f i n d s  

(5.6) e(C,C') = sup (y (y)  - y f ( y ) )  
YCB 

(with t h e  convent ion m - or = - or). 

T h i s  i s  e a s i l y  proved by observing t h a t ,  f o r  p E R ,  t h e  ine- 

q u a l i t y  p > e(C,Cf)  means t h a t ,  i f  p ( p )  denotes  t h e  c l o s e d  b a l l  cen- 

- 
t e r e d  a t  the  o r i g i n  with rad ius  p , t h e  set C' + (p ) c o n t a i n s  C ; 

express  then t h i s  inc lus ion  i n  terms of support  funct ions.  Another way 

of proof.would s t a r t  from t h e  fol lowing formula g iv ing  t h e  d i s t a n c e  of 

a point  a of E t o  t h e  set C' 

(5 .7)  d ( a , c l )  = sup [<a,y> - y ' ( y ) ]  . 
Y B 

I n  f a c t  (cf.  5 2 . )  

Since the  func t ion  1 .  I i s  everywhere f i n i t e  and continuous, s i n c e  t h e r e  



J. J. Moreau - 
exists at least one point where 

#C, 
takes a finite value (namely the 

value zero) and since both functions are convex, the inf-convolute 

p l '  V 1 . is convex, everywhere finite and continuous (cf. 4 2 ) 

thus it equals its bipolar, i.e. 

(pl'C, V ( . I  )(a) = sup [(a,y> - y'(y) - gg(y)] 
YE F 

= sup [<a,y> - y.'(y)] . 
YEB 

which is equality (5.7). 

Equality (5.6) implies that the Hausdorff distance between the 

non empty convex sets C and C' is finite only if dom y and dom y' 

(i.e. the sets of the points of F where y and y' take finite va- 

lues) consist in the same set denoted by D and then 

( 5 . 8 )  h(C,C') = sup ly(y) - y'(y)l . 
JIEm D 

Note that D is a conic convex subset of F ; its polar cone in E is 

the recession cone of C and C'. Recall that D equals the whole of 

F if and only if C and C' are boundea. 

The expression ( 5 . 8 )  of the Hausdorff distance yields the 

following : 

Let t H  C(t) be a multimapping from [o,T] into the normed 

space E, with non empty convex values ; denote by y H y(t,y) the sup- 

port function of C(t). This multimapping is absolutely continuous (resp. 

Lipschitz with ratio A )  if and only if the set D = dom y(t,.) is in- 

dependant of t, with the existence of a finite non decreasing numerical 
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func t ion  p : [ o ~ T I  + R , abso lu te ly  continuous (resp. L ipsch i tz  with 

r a t i o  A), such t h a t  f o r  any y E D and any s u b i n t e r v a l  [s ,  t] of 

[o,T] one h a s  

I y ( t , y )  - y ( s , y ) )  < lyl  ( p ( t )  - p ( s ) )  

(1 . I d eno tes  h e r e  the  norm i n  F). 

Equivalent ly  t h e r e  e x i s t s  , a nonnegative element of 

1 
L (0,T ; R )  such t h a t  f o r  any y i n  D, t h e  numerical func t ion  

t I+ y ( t , y )  i s  abso lu te ly  cont inuous and i ts d e r i v a t i v e  y s a t i s f i e s  f o r  

almost every t 

(5.9) I + ( ~ , Y ) I  < Iyl P ( t )  

(resp. t h e  same inequa l i ty  with 6 = A). I f  such is  the  c a s e  one may 

take  a s  6 t h e  speed func t ion  of t h e  moving s e t  C. 

Charac te r iz ing  t h e  r e g u l a r i t y  of t h e  motion of a  (c losed)  con- 

vex set t e  C ( t )  by means of i ts  support  func t ion  y ( t , . )  i s  q u i t e  a  

n a t u r a l  procedure. I n  f a c t  an  e s s e n t i a l  f e a t u r e  i n  l o c a l l y  convex topolo- 

g i c a l  l i n e a r  spaces  i s  t h a t  a  c losed  convex set equals  t h e  i n t e r s e c t i o n  

of a l l  t h e  c losed  half-spaces con ta in ing  i t ,  o r  equ iva len t ly  the  i n t e r -  

s e c t i o n  of t h e  minimal ones among t h e s e  half-spaces, i. e. t h e  half-spaces 

which have i n  t h e  p resen t  c a s e  the  form l x  E E : ( x , ~ >  < ~ ( t , ~ ) !  , with 

lyl = 1. Fixing here  y  y i e l d s  a  moving h a l f  space whose boundary hyper- 

plane keeps a  cons tan t  d i r e c t i o n  ; t h e  d e r i v a t i v e  + ( t ,  Y )  may be 

i n t e r p r e t e d  a s  the  speed of t h i s  moving hyperplane , o r  a s  

t h e  speed of t h e  moving half-space i t s e l f .  Then ( 5 . 9 )  expresses  a uniform 
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majoration of the speeds for the minimal half-spaces of all directions. 

Example. Take as C(t) a convex set mwing by translation, i.e. 

C(t) = Co + w(t) 

where Co denotes a fixed convex set and w a fonction defined on 

[o,T~ with values in E. Then, if y is the support function of 
0 Co 

y(t,y) = y0(y) + <w(t),y> . 
One concludes that the multimapping is absolutely continuous if (and 

only if, in the case where Co is bounded) the function t H w(t) is 

absolutely continuous. When E is a reflexive Banach space, the absolute 

continuity of w is known to imply for almost every t the existence of 

the strong derivative \; (cf. KOMURA [I]) and this yields for the speed 

v of C the majoration 

(5.10) ;< 
(equality when Co is bounded). 

5. c INTERSECTION OF TWO MOVING CONVEX SETS 

The practical use of the preceding concepts requires some cri- 

teria of absolute continuity for multimappings. The object of this para- 

graph is to establish the following one (already published in MOREAU 

[221 or, for more details, [ 191 ) : 

PROPOSTTION. Let t b At a s  t Bt denote two multimappings from the 

compact interval [o,T] into the normed space E, with convex values. 
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Suppose that for any t E [o,T] the set At has a nonempty intersection 

with the interior of Bt and that the diameter of At Bt is finite. 

Then if the two multimappings are absolutely continuous (resp. Lipschitz) 

such is also the multimapping t I+ At n Bt. 

W$ shall decompose the proof into several lemmas which may be 

of use by themselves. 

IEMMA 1. Let B1, B2 denote two convex subsets of the normed space E 

and A1, A2 two arbitrary subsets of E ; then (e denoting the "excess" 

as in 5 5. a) - 
(5.11) e ( A 1 , E \ B 1 ) < e ( A 2 , E \ B Z ) + e ( A l , A 2 ) + e ( B 1 , B 2 ) .  

Let.us prwe first that for any a F E 

(5.12 d(a,E\B1) < d(a,E\B2) + e(B 1 2  ,B ) . 
m e  makes calculation easier by performing a translation reducing to the 

case where a is the origin of E. Let gl, g2 be the support functions 

of B1 and B2 , defined on the dual F of E. Let p be an arbitrary 

positive number satisfying the inequality P < d(O,E\ B1), which means 

that the open ball with center 0 and radius p is contained in B - 1 '  

in terns of support functions this inclusion is equivalent to p < gl(y) 
for any y belonging to C , the unit sphere of F. Now (5.6) implies 

V y E C : gl(y) < g2(y) + e(Bl,BZ) ; 

therefore P - e(B ,B ) < %(y) ; inequality (5.12) (trivial if 1 2  

e(B ,B ) = + follows. From it one obtains (5.11) by taking suprema 
1 2  
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f o r  a  ranging over A1, t hen  us ing  the f a c t  t h a t  t h e  $car t  e  s a t i s f i e s  

t h e  t r i a n g l e  inequa l i ty .  

LEMMA 2. Let A and B denote two convex s u b s e t s  of the normed space 

E ; suppose t h a t  B  c o n t a i n s  an  open b a l l  with r a d i u s  p > 0, with cen- 

ter a  belonging t o  A. Then 

(5.13) 'd X E E : d(x ,  A f? B )  < ( 1  +Ix-a/)(d(x,A) + d ( x , B ) ) .  
P 

P-f : Denote i n d i f f e r e n t l y  by 1 . I  t he  norm i n  E o r  t h e  dual norm 

i n  F  ; let f  and g  be the  support func t ions  of A and B. Similar-  

l y  t o  (5 .7 )  we have 

d ( x , ~ )  = sup ~ < x , u >  - f ( u )  : U f F , 1 ul < 1! 
and t h e  corresponding express ion  f o r  d(x,B). Define a  p o s i t i v e l y  homo- 

geneous func t ion  $ on F x F by 

For  a n  a r b i t r a r i l y  chosen cons tan t  k  > 0 t h i s  y i e l d s  

(5.14) k(d(x,A) + d(x,B))  = sup i$(u,v)  : 1 ul < k  , Ivl < k] . 
The hypotheses i n  t h e  Lema t o  be proved imply, by elementary 

- 
arguments, t h a t  t h e  c l o s u r e  An B of An B e q u a l s  t h e  i n t e r s e c t i o n  

of t h e  c l o s u r e s  and of A and B. Then, t h e  support func t ion  of 

A n B i s  t h e  dual  func t ion  of r / r -  + $- , i.e. t h e  r -hu l l  of f  V g  ; 
A B 

by t h e  f a c t s  summarized i n  5 2. d ,  t h i s  r -hu l l  i s  t h e  func t ion  f  V g  

i t s e l f ,  i.e. 

(f  V g )  (w) = i n f  f f ( u )  + g(v)  : u  + v =  w] . 
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Using a g a i n ' t h e  expression (5 .7 )  f o r  t h e  d i s t a n c e  from a po in t  t o  a con- 

vex s e t ,  t h i s  y i e l d s  

(5.15) d (x ,  A n B )  = SUP ~ < x , w >  - ( f  v g ) (w)  : l w )  < l j  

= sup I$(u,v)  : J u  + vl < 11 . 
Let u s  make c a l c u l a t i o n  e a s i e r  by supposing t h a t  a t r a n s l a t i o n  

has  been performed i n  E such t h a t  a = 0 ; then the  hypotheses made 

about A and B a r e  expressed by f 0 and g >  p ( . I  , hence 

I u + v l  < l  3 $ ( u , v ) <  1x1 - p  Ivl . 
As $(0,0) = 0 and i n  view of (5.15) t h i s  implies  

~ ( x , A  n B )  < SUP ! ~ ( u , v )  : I V I  < , 1.1 < l + + ~ .  
P 

A f t e r  p u t t i n g  k = 1 + i n  (5.141, t h e  comparison of the  s e t s  over 
P 

which t h e  suprema a r e  taken y i e l d s  (5.13). 

REMARK. I n  t h e  c a s e  where E is  a H i l b e r t  space one may use trigonome- 

t r y  t o  e s t a b l i s h  a s l ight ly  b e t t e r  i n e q u a l i t y  ; see  MOREAU [19] . 
LEMMA 3. Let A and B denote two convex subsets  of E ; take a 

and p g 10, + -[ such t h a t  a < p < e(A, E B). T x n ,  f o r  any x - 
i n  E such t h a t  d(x,A) + d(x,B) < a , one has - 

+ diam (A f' B) 
~ ( x , A  n B )  <-f' ( ~ ( x , A )  + ~ ( x , B ) )  . 

P - a  

This  r e s u l t s  from (5.13) and from the  inequa l i ty  

I X  - a1 < diam (A f' B) + d(x,A f' B) . 
Bringing toge ther  these  lemmas one ob ta ins  e a s i l y  : 

LEMMA 4. Let T denote a topo log ica l  space ; l e t  t I+ A and t I+ Bt - t - 
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be  two multimappings from T i n t o  t h e  normed space  E ,  w i th  convex va- 

les. Let s E T such t h a t  

diam ( A ~  n B ~ )  ( + 0 , 

l i m  e(At, A ) =  0 ( resp .  l i m  e(As, At) = 0 )  , 
t - s  t - s 

l i m  e(Bt,  B ) = 0 ( resp .  l i m  e(B B ) = 0 )  . 
t -9 s t -+ s 

s' t 

l i m  e(Atn Bt, A n  B = 0 ( resp .  l i m ,  e(Asn B,, A t n B t )  = 0 )  s S t + s  t - s 
and t h e  two numerical f u n c t i o n s  t I+ diam (At I3 Bt) and t h e(At ,E\Bt)  

a r e  upper  semicontinuous ( r e sp .  lower semicont inuous)  a t  t h e  p o i n t  s. 

Let u s  now complete  t h e  proof of  t h e  P r o p o s i t i o n  : 

The hypotheses  imply t h a t  t h e  two multimappings t I+ At 

and t b  Bt a r e  con t inuous  i n  t h e  sense  of Hausdorff d i s t a n c e .  The f i -  

n i t e  numerical  func t ion  t b diam ( A t n  Bt) i s  con t inuous  by Lemma 4 

on t h e  compact i n t e r v a l  [ o , T ~  , t h u s  major ized by some c o n s t a n t  R ( + m. 

By t h e  same lemma t h e  numerical  f u n c t i o n  t w  e(At,  E \ B  ) i s  con t inuous  t 

u n  [o,T] , wi th  s t r i c t l y  p o s i t i v e  va lues  s i n c e  At n i n t  Bt f 6 , t h u s  

minor ized ,by some c o n s t a n t  p > 0. Choose a F ; t h e  f u n c t i o n s  

tct v a r  ( A  ; 0 , t )  and t I-+ v a r  (B ; 0 , t )  be ing  f i n i t e  and con t inuous ,  

t h e r e  e x i s t s  F \ 0 such t h a t  f o r  c and z i n  [ O , T ~ ,  t h e  c o n d i t i o n  

Ic - z l  ( 6 ensures  t h a t  h(Ae, AT) and h(Be, Bz) a r e  l e s s  than  5 
2 '  

Then Lemma 3 impl i e s  
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h(lcn B ~ ,  ATn B=) <* (h(~~, A ~ )  + n ( ~ ~ ,  B~-)) 

which yields the expected majorations. 

5. d DISTANCE AND PENALTY FUNCTION IN A HILBERT SPACE 

Let H be a real Hilbert space ; denote by (. 1. ) the scalar 

product in id and by 1 .  I the norm. By means of this scalar product, H 

may be identified by its dual ; in other words (. I . ) is a bilinear form 

on H x H which places d in duality with itself and the norm-topology 

is compatible with this duality. 

Easy computation yields that the function 

1 2  
Q : xl-t-1x1 2 

which clearly belongs to l' (H,H) equals its own dual (actually it can 

be Paoved that Q is the only fonction equal to its dual). 

Let C be a non empty closed convex subset of H ; denote by 

q the numerical function defined on H by 

1 2 
q(x) = 5 [dcx,~)] = (QC V Q) (x). 

Elementarily this function is convex, everywhere finite, continuous, 

FrBchet-differentiable with gradient 

(5.16) grad q(x) = x - projC x , 

where projC x denotes the nearest point to x in C. (All this is a 

speatal case of a theory in which the indicator function QC is repla- 

ced by an arbitrary .element of To(H,S) ; see MOREAU [6]. 
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1 Choose a s t r i c t l y  p o s i t i v e  constant  A ; then x I+- q(x)  de- 
h 

f i n e s  what is  commonly c a l l e d  a penalty func t ion  of t h e  s e t  C ,  i . e .  a 

f i n i t e  punction which t a k e s  t h e  value 0 when x E C and rapidly 

growing p o s i t i v e  values when t h e  d i s tance  from x t o  C increases.  So 

t o  speak, t h e  smaller i s  t h e  constant  A , the  g r e a t e r  is  the  penalty f o r  

x of  l y i n g  a t  a d i s tance  from C. The penalty func t ion  may be considered 

as a n  approximation of #C i n  a sense which concerns a l s o  the  subdiffe-  

r e n t i a l s  a s  follows : Denote by A t h e  multimapping x I+ a (I (x )  from 
C 

H i n t o  i t s e l f ,  which c o n s t i t u t e s  a spec ia l  case  of  maximal monotone 

operator .  I n  general ,  f o r  a chosen A > 0 , t h e  s i n g l e  valued, everywhere 

def ined  mapping 

(5.17) I - ( I  + A ~ 1 - l  5 = .  A. 9 

where I denotes i d e n t i t y ,  i s  c l a s s i c a l l y  c a l l e d  4 Yosida approximation, 

1 o r  Yosida regu la r iza t ion ,  of  A ; it is  Lipschi tz  with r a t i o  7 .  Here 

AA 
may e a s i l y  be e x p l i c i t e d  ; by d e f i n i t i o n  t h e  e q u a l i t y  

y = ( I  + A A ) - ~ ( x )  means x E (I + A A)(y) o r  equ iva len t ly  x-y E a # ( y )  

f o r  a g ( y )  is a cone s o  t h a t  the f a c t o r  h may be omitted. This  is  

wel l  known t o  charac te r ize  y a s  equal t o  projC x ; hence (5.17) be- 

comes 

(5.18) 
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5. e MOVING CONVEX SET IN A HILBERT SPACE 

With the same notations as in the preceding paragraph, suppose 

t I+ C(t) is an absolutely continuous multimapping from [o,T] into H, 

with non empty closed convex values ; put 

1 2 
q(t,x) = 2 [d(x, ~(t))] . 

Let t #+ z(t) be an absolutely continuous mapping from [o,T] 

into H. 

Classically the continuity of t t+ C(t) in the sense of 

Hausdorff distance and the continuity of t u  z(t) imply the continuity 

of the mapping 

The proof of it is based on some majoration of the square of the displa- 

cement of the projection which implies nothing about the absolute conti- 

nuity of this map~ing ; however : 

LEMMA 1. If t I+ C(t) a& t - z(t) are absolutely continuous, 

[o,T] so is the numerical function k : t F, d(z(t), C(t)). 

In fact, with the notation e of 5 5. a, one has 

d(z,~) = e(jzj, C) 

so that, using the triangle inequality concerning the &cart e , one ob- 

tains finally, for arbitrary c and z in [o,T] , 
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It just remains to apply the definition of absolute continuity. 

This lemma implies that the function k possesses for almost 

every t a derivative denoted by &(t) ; thus the function 

1 2 
t I+ (k(t)) = q(t, ~(t)) 

possesses, for the same values of t, a derivative equal to k(t) i(t.1. 

The absolute continuity of the multimapping C means that its 

variation function v : t I+ var (C ; Opt) is absolutely continuous, 

thus possesses a derivative ;(t) for almost every t. Similarly the 

absolute continuity of the vector function t H  z(t) implies the exis- 

tence of its strong derivative i(t) for almost every t (by virtue of 

H being a reflexive Banach space ; see KOMURA [ 11 ). 

Let us prove now the following, which will be of use in next 

paragraph : 

LEMMA 2. For any t g [o,T] such that the derivatives Act), ;(t), 

i(t) exist, one has 

(5.20) Ik(t) i(t) - (i(t)l grad q(t, z(t))l < k(t) ;(t) . 
In fact for such a value of t the hypotheses imply the exis- 

tence of 

,im q(s, zC.5)) - q(t, z(t)) = k(t) ,&t) . 
s - + t  s - t  

Now 

(5.21) 
q(s,z(s)) - q(t,z(t)) - q(s,z(s)) - q(s,z(t)) + 

s - t  s - t  
s(s,z(t)) - q(t,z(t)J . 

s - t  
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As the numerical function X H  q(s,x) is convex on H, its 

gradient at some point is also a subgradient ; this yields 

The mapping s I+ proj (x,'C(s)) is continuous, the mapping 

b 

x H proj (x, C(S)) is nonexpanding, thus the mapping 

(S,X)H grad q(s,x) = x - proj (x, C(s)) 

from [o,T] x H into H is continuous ; hence one obtains the existence 

lim q(s'z(s)) - q(s'z(t)) = (k(t) I grad q(t, z(t)) . s - t  
s-'t 

Therefore the last term in (5.21) possesses also a limit which may be 

interpreted as the derivative at the point t for the function 

(5 .22 )  
1 2 

s H q(s, z(t)) = - [d(z(t), ~(s)] . 2 

Writing the same inequality as in (5.191, but with constant z , yields 

Id(z(t), C(s)) - d(z(t), ~(t))l < h(C(s), C(t)) 

< Iv(s) - v(t)J 

so that the derivative of the function ( 5 . 2 2 )  has its absolute value ma- 

jorized by k(t) ;(t) ; this completes the proof of (5.20). 

5. f THE SWEEPING PROCESS 

Suppose given an absolutely continuous multimapping t I+ C(t) 

from [o,T] into the real Hilbert space H, with nonempty closed convex 
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values ; denote by x *  #(t,x) the indicator function of C(t). 

We put the problem of finding an absolutely continuous (single 

valued) mapping u : [o,T] + H agreeing with some initial condition 

~(0) = a , given in C(0) 

and whose derivative u satisfies for almost every t 1 2  [o,T] 

Interpreting u as a moving point in H , we call it a solu- 

tion of the sweeping process by the moving convex set C. The reason of 

this name lies in the following mechanical image of condition (5.24) : 

As a $r(t,x) is empty when x f C , this condition implies 

u(t) E C(t) for almost every t, thus for every t, by virtue of our 

continuity assumptions. Suppose, to make things clearer, that the moving 

convex set C possesses a nonempty interior. As long as the point u(t) 

lies in this interior, the subdifferential a $r(t,u(t)), i.e. the cone 

of normal outward vectors at the point u(t) of the convex set (cf. 

5 2. e) reduces to the single element 0 ; then (5.24) implies that the 

moving point u remains at rest. It is only when u is caught up with 

by the boundary of C that it may take a nonzero veloc.ity, so as to go 

on belonging to C, and by (5.24) this velocity possesses an inward n o r  

ma1 direction with regard to C. In other words, condition (5.24) governs 

the quasistatic evolution of a material point u subject to the follo- 

wing mechanical actions : 
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lo some resistance acting along the line of its velocity and 

opposite in direction ; 

2 O  the moving perfect constraint whose geometric condition is 

u E C(t) (cf. 5 3. d). 

Elementarily the initial value problem formulated above pos- 

sesses at most one solution. Such uniqueness property holds more generally 

with "evolution equations" of the form 

where A(t,. denotes, for each t E [o,T] , a monotone multimapping (or 

multivalued operator) from H into itself. In fact, monotonicity imme- 

diately implies that if ul, u2 , absolutely continuous, are solution of 

(5.25), the function 

t - lul(t) - U2(t)J 

is non increasing ; therefore these two solutions are equal if they agree 

with the same initial value. 

Equations such as (5.25) have already been studied, but mainly 

under hypotheses involving that the set 

dom ~(t,.) = [ x  E H : A(t,x) f $j 

is independant of t ; see references in BREZIS [l]. Here, on the con- 

trary, the problem becomes trivial if dom 8 #(t,.), namely C(t), is 

constant ; thus the simple equation (5.24) furnishes the occasion of 

focusing upon the difficulties which arise from the variation of the 
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domain. In the same line must beVquoted : 

lo H. BREZIS [2] who studied by a "double regularization'' technique 

the case 

with 4 E r (H,H) independent of t and under some hypotheses invol- 

b 

ving the projection mapping x h  proj (x, C(t)) ; they do no seem direct- 

ly comparable with our absolute continuity assumption. 

2' C. PERALRA [I], [2] who succeeded in generalizing to the case 

A = 8 4 , with + E To(H,H) depending on time in a suitable way, the 

author's regularization method (see MOREAU [ 171 ). 

Because of its insertion in this context we also choose a re- 

gularization technique, i.e. the use of penalty functions, to prove, in 

'next paragraph, an existence theorem. Another advantage of doing so re- 

fers to the application of equation (5.24) to elastoplastic mechanical 

systems. developed in Chapter 6 below : as explained in 5 4.g; when 

the considered convex is the rigidity set defining a law of plasticity, 

the replacement of its indicator function by some penalty function comes 

to take into account some additional viscosity. The reasoning used below 

could then be adapted to prove that the solution of an elasto-visco- 

plastic problem tends to the solution of the elastoplastic problem when 

viscosity tends to zero. From the physical standpoint this may be as 

important as the existence question itself. 
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The existence theorem obtained will supply the needs of Chap- 

ter 6. Actually a deeper insight into the sweeping process can be gained 

from a discretization method (published as multigraph in MOREAU [IS] ) 

which consists in proving first the convergence of the "catching up 

algorithmt' (cf. 5 5.  h below) ; this method permits weaker hypotheses, by 

replacing the concept of the variation of a multimapping by that of 

retraction : use instead of Hausdorff distance the "unilateral" Qcart e. 

On the other hand, a generalization of the arocess can be defined in this 

line for the case of a possibly discontinuous moving convex set C, pro- 

vided its variation (resp. retraction) is finite. 

On the application of the discretization method to equations 

of the form (5 .251 ,  with A(t,.) = Ao(.) - f(t) see J. NECAS [l] . 

5 .  g EXISTENCE THEOREM 

The study of equation (5 .24)  is made greatly easier by the 

following remark : the sweeping process associates the chain of the po- 

sitions of the moving point u to the chain of the positions of the 

moving se't C in a way which does not depend on the timing. More preci- 

sely, the change of variable in Lebesgue integral, along with the fact 

that the set a # is a cone, i.e. the multiplication by a nonnegative 

scalar sends it into itself, implies : let n denote a non decreasing 

absolutely coritinuous mapping from [o,T] onto an interval [o,T'~; 
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suppose C = C-'o n , i& 

(5.26) V t E [o,T] : C ( t )  = C ' ( T  ( t ) )  

where C' is  an abso lu te ly  continuous multimapping from [o,T'] into 

H , with nonempty c losed  convex values ;let u'  : [o,T'] + H be a solu- 

t i o n  of t h e  sweeping process  f u r  C '  ; then t h e  mapping u = u '  o IT 

a s o l u t i o n  of t h e  sweeping process f o r  C. 

A s  explained i n  5 5. a ,  taking f o r  n t h e  v a r i a t i o n  fonc t ion  

v of t h e  given multimapping C y i e l d s  a f a c t o r i z a t i o n  of the  form 

(5.26), with C '  L ipsch i tz  with r a t i o  1. T h i s  reduces t h e  e x i s t e n t i a l  

s tudy of t h e  sweeping problem t o  t h e  Lipsch i tz  case ,  i .e.  t h e  case  where 

t h e  speed funct ion of t h e  moving convex s e t  belong t o  L- (0,T ; R), o r  

even i s  merely a constant .  

Let us  now proceed t o  e s t a b l i s l i  : 

PROPOSITION. For any a &I C(0) t h e  sweeping problem, a s  formulated 

i n  t h e  preceding paragraph, possesses a (unique) solut ion.  

Let n be p o s i t i v e  in teger .  Denote by un : [o,T] + H t h e  

s o l u t i o n  of t h e  d i f f e r e n t i a l  equat ion 

(5.27) -; = n grad q ( t ,  u n ( t ) )  n 

f o r  t h e  i n i t i a l  condi t ion  

I n  f a c t  t h e  expression (5.16) of grad q implies ,  under t h e  hypotheses 

made concerning t I+ C ( t ) ,  t h a t  the  mapping ( t , x )  I+ n' grad q ( t , x )  i s  
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continuous.relatively to t and is Lipschitz with ratio n relatively 

to x ; hence classically the existence and the uniqueness of u which 
n 

is a continuously differentiable function from [o,T] into H. 

Observe that the construction of the ordinary differential 

equation (5.27) consists in replacing the right member A = a I+? of 

(5.24) by its Yosida regularization (5.181, with h = A ;  equivalently, 

the indicator function of C is replaced by the penalty ftinction n q : 

thus the moving point un(t) is allowed to not belong to C(t) but theq 

in view of the expression (5.14) of grad q , it must have a velocity 

directed toward its projection on ~ ( t )  ; the magnitude of this velocity 

is proportional to the distance from u (t) to C(t) and proportional 
n 

to the penal4y coefficient n . 
LEMMA 1. If the speed function ; of the moving set , C  belong& to 

L~ (0,T ; R ), the sequence of the derivatives ; is bounded in 
n 

Denote by h (t) the common value of 
n 

1 - Iin(t)l = lgrad q(t, un(t))l = d(un(t), C(t)) . n 

Inequality (5.20) ($ 5. e, Lemrna 2 )  yields, for almost every t , 

Ihn(t) in(t) - (Gn(t) I grad q(t, un(t)))l < hn(t) ;(t) 

hence, due to (5.271, 

(5.29) hn(t) <(t) + n (hn(t)12 < hn(t) ;(t). 

As a E C(O), one has h,(O) = 0, thus, by integration over [o,T] , 
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Denoting by 11.11 t h e  norm i n  L~ (0,T ; R )  a s  we l l  a s  the  norm i n  

L2 (0,T ; HI, t h i s  y i e l d s  

which proves t h e  lemma. 

b 

REMARK. More may be ob ta ined  from i n e q u a l i t y  (5.29). Suppose only t h e  

e b s o l u t e  con t inu i ty  of t- C ( t )  s o  t h a t  t h e  d e r i v a t i v e s  ; ( t )  and 

( t )  e x i s t  f o r  almost every t. For t h e  va lues  of t such t h a t  
n .  

h n ( t )  # 0  , inequa l i ty  (5.29) implies  

and t h i s  i s  a l s o  t r u e  when h  ( t )  = 0  ( then h  ( t )  = 0  s ince  ze ro  i s  n  n  

t h e  lhinimal value of h  1. The elementary t reatment  of t h i s  d i f f e r e n t i a l  n  

' inequa l i ty ,  with t h e  i n i t i a l  cond i t ion  hn(0)  = 0 , y i e l d s  : 

(5.31) 

f o r  almost every t. 

I n  p a r t i c u l a r ,  i f  v  E L' (0,T ; R )  , with  1 < p  < + , , t h e  

same i n e q u a l i t y  a s  (5.30) ho lds  f o r  LP norms. 

From such majorat ions,  t h e r e  a r e  many ways of e s t a b l i s h i n g  t h e  

convergence of t h e  sequence u  t o  a  func t ion  which is  a  so lu t ion  of t h e  n  

sweeping process. I n  view of our  L~ framework, t h e  most e f f i c i e n t  

seems t o  make use of t h e  fol lowing elementary property of H i l b e r t  spaces ,  

due t o  M. CRANDALL and A. PAZY [l] : 
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Consider a r e a l  H i l b e r t  space with s c a l a r  product noted < . I  .> 

and norm noted 1 1 . 1 1  . kt ( r  ) be a sequence of p o s i t i v e  r e a l  numbers ; 
n 

let (2,) be a sequence of elements bf t h i s  Hi lber t  space such t h a t  

V n , V m :  < z n - z m  I m z n - r m z m > < O  

Then : 

I f  m i s  s t r i c t l y  i n c r e a s i n g  i n  n , llz 11 i s  decreas ing  and - n 

l i m  z e x i s t s .  
n -  

n + m  

If m i s  s t r i c t l y  decreasing,  11zA1 i s  inc reas ing  ; 

addi t ion  1)z,)1 i s  bounded, l i m  zn e x i s t s .  
n + ~  

From t h i s  we a r e  t o  Prove : 

LEMMA 2. J_f E L2 (0,T ; R) t h e  sequence i s  s t rong ly  convergent 
n 

i n  L' (O,T ; H). - 
I n  f a c t ,  let m and n be two p o s i t i v e  i n t e g e r s  ; f o r  any t 

i n  [o,T] , t h e  va lues  of the func t ions  urn, Gm, un, Gn s a t i s f y  

d 
(5.32) - d t  Ium - unI2 = 2(um - un I im - An) . 
benote by pm , pn t h e  respec t ive  p r o j e c t i o n s  of u m ( t )  and u n ( t )  on 

C ( t )  ; by (5.16) and (5.27) one has 

-I? = m(um - pm)  E a # c t ,  pm) m 

and the  same f o r  n ; due t o  the  monotonicity of a # , t h i s  y i e l d s  by 

easy c a l c u l a t i o n  

1 .  1 .  . 
( u r n  u I ; - ; ) < -(; urn - - u n  I urn - An) n m n  n 

Recal l  t h a t  um(0) = u ( 0 )  = a , i n t e g r a t e  ( 5 . 3 2 )  over [o,T] , denote 
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by (. I . > t h e  s c a l a r  p roduc t  o f  t h e  H i l b e r t  space  L2 (0,T ; H) and 

by (1.11 i t s  norm ; t h i s  i n e q u a i i t y  impl i e s  

1 2 1 1 
o < ~ ~ u ~ ( T )  - u,(T)I < - ( ; u m - - u  I urn - un> • 

1 The sequence r = - i s  s t r i c t l y  d e c r e a s i n g  ; t h e  sequence n n 

IIuAI i s  bounded accord ing  t o  Lemma 1 ; apply CRANDALL and PAZY1s 

2 r e s u l t  i n  L (0,T ; HI. 

Next : 

LEMMA 3. If ; E L2 .(OPT ; R) t h e  sequence o f  f u n c t i o n s  un converges  

uniformly on [o,T] to  a n  a b s o l u t e l y  con t inuous  f u n c t i o n  u whose d e r i -  

v a t i v e  is t h e  'L2 - l i m i t  o f  t h e  sequence . t h i s  f u n c t i o n  i s  s o l u t i o n  
n '  

o f  t h e  sweeping p rocess  f o r  t h e  i n i t i a l  c o n d i t i o n  u ( 0 )  = a; . 
Furthermore, f o r  a lmost  every t ,  

I n  f a c t ,  deno te  by 6 t h e  l i m i t  o f  ;n i n  L2 (0,T ; H) and 

d e f i n e  u : [o,T] + H by 

s o  t h a t  u is  a b s o l u t e l y  cont inuous wi th  a s t r o n g  d e r i v a t i v e  e q u a l  t o  u 
b 

a lmos t  everywhere. S t i l l  deno t ing  by 11.11 t h e  norm i n  L2 (0,T ; HI, t h e  
C-1 

shows t h a t  u i s  t h e  uniform l i m i t  o f  u 
n ' 

I t  remains . t o  prove t h a t  u and u v e r i f y  (5.24) almost 
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eveiywhere. Put  

p n ( t )  = p r o j  ( u n ( t ) ,  C ( t ) )  . 
Then, i n  view of (5.16) and (5.27) 

u n ( t )  - p n ( t )  = grad q ( t ,  u ( t ) )  = -1; ( t )  n n n 

(5.34) -An(t) E a c t ,  p n ( t ) )  

2 and, i n  view4of (5.30), t h e  func t ions  Pn converge t o  u i n  L (0,T ; H). 

2 
The convergences i n  L (O,T ; H) imply t h e  ex i s tence  of H', 

an i n f i n i t e  subse t  of N ,  such t h a t  f o r  any t which d-not, belong t o  

a c e r t a i n  subse t  o of [o,T] with ze ro  measure, t h e  l i m i t  of p,, ( . t)  

i n  H, f o r  u tending t o  i n f i n i t y  i n  N ' ,  i s  u ( t )  and t h e  l i m i t  of 

; ( t )  i n  H i s  i ( t ) . A s t h e  graph of t h e  multimapping x * a  $ f ( t , x )  

i s  closed i n  H x H , (5.34) impl ies  t h a t  (5.16) holds f o r  any t $ o . 
On the  o ther  hand (5.33) fol lows from (5.31). 

From t h i s  lemma, t h e  proof of t h e  formulated Propos i t ion  i s  

completed, by performing an abso lu te ly  continuous change a v a r i a b l e  redu- 

c ing  t o  t h e  c a s e  ; E L- (0,T ; R ) ,  which a f o r t i o r i  implies  

; E L~ (0,T ; R). 

REMARK. Inequa l i ty  (5.33) i s  c l e a r l y  preserved by such a change of va- 

r i a b l e ,  so t h a t  i n  general  f o r  any s o l u t i o n  u of the  sweeping process 

1 i ( t ) l  < A t )  . 
By i n t e g r a t i o n ,  t h i s  y i e l d s  t h a t  t h e  length of t h e  path t r a v e l e d  by t h e  

moving point  u during an i n t e r v a l  of time [tl,t2] i s  majorized b z  
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var (C ; t t 1. This property becomes specially suggestive in the spe- 1' 2 

cia1 case where C moves by translation i.e. 

with w absolutely continuous. Then, in view of 5 5. b, example, 

The association of the function u , a solution of the sweeping process, 

with the given function w defining the translation imposed to C , may 

be visualized as a driving affected with plax ; (5.35) expresses that 

such a play makes the driven point travel a path which cannot be longer 

than the path traveled by the driving device. 

5. h DISCRETIZATION ALGORITHM 

A method of "time discretization" for the approximate solution 

of the preceding problem consists in choosing a subdivision of [o,T], 

namely 0 = to< tl ( ...  ( t = T and constructing a sequence 

Xor X1, ..., X of points of H such that xi constitutes an approxi- n 

mation of u(ti). Adopting (xi- as an approximation of 
t. - ti-l 

;(ti) induces to replace (5.24) by 

(5.36 xi-,- xi E (ti- ti-l) R #(tipxi) 

which is a recurrence condition of "implicit" type concerning the desired 

sequence (an "explicit" method would consist in interpreting the same 

quotient as an approximation of u(tiVl) ; but this yields an unworkable 
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recurrence condit ion) .  A s  R $ ( t . , x . )  i s  a  cone, t h e  s t r i c t l y  p o s i t i v e  
1 1  

f a c t o r  ti- t. i n  t h e  r i g h t  member of (5.36) may be omitted and t h i s  
1-1 

condit ion equiva len t ly  amounts t o  

(5.37) xi = p r o j  C ( t i ) )  . 
Thus, s t a r t i n g  with x = a , t h e  point  sequence (xi) i s  cons- 

t r u c t e d  by successive pro jec t ions  on t h e  sequence of closed convex s e t s  

C( t  1. I t  i s  a s  i f  t h e  moving point  u, ins tead  of being swept along with 
i 

the  moving s e t  C was l e f t  behind except t h a t ,  from time t o  time, it 

ca tches  up with t h i s  s e t  intantaneously,  by the  s h o r t e s t  way. We propose 

t o  c a l l  t h i s  t h e  catching up algorithm. 

The ques t ion  i s  wether t h e  s t e p  funct ion x : [o,T] -, H def i -  

ned from t h i s  sequence by 

(5.38) x ( t )  = x I f o r  t E ti] 9 

converges t o  t h e  s o l u t i o n  u of t h e  sweeping process, f o r  t h e  same in i -  

t i a l  value a ,  when f i n e r  and f i n e r  subdivis ions of [o,T] a r e  consi- 

dered. 

A d i r e c t  proof of the  convergence of t h i s  family of s t e p  func- 

t i o n s  may be given, y i e l d i n g  another  way t o  e s t a b l i s h  t h e  ex i s tence  of 

t h e  so lu t ion  u i t s e l f  (cf.  MOREAU [ 171, [18] 1. A s  t h i s  ex i s tence  has 

been obtained above by a  regu la r iza t ion ,  o r  penal ty,  technique we think 

. i t  i n t e r e s t i n g  and unusual t o  study a l s o  t h e  d i s c r e t i z a t i o n  algorithm by 

some extension of the  penalty method : the t r i c k  c o n s i s t s  i n  making t h e  
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pena l ty  c o e f f i c i e n t  vary with t (cf .  MOREAU [17] ). 

PROPOSITION. For any E > 0 t h e r e  e x i s t s  17 . 0 such t h a t  t h e  ma jo- 

r a t i o n  

SUP (ti' ti-l) < R 
i 

( resp .  t h e r e  e x i s t s  R' > 0 such t h a t  t h e  majorat ion 

sup war (C ; ti-l, t i )  < R ' 
i 

ensures  

V t E [o,T] : l u ( t )  - x ( t ) l  < E . 
Let p : [o,T] + R+ a nonnegative r u l e d  func t ion  ( a c t u a l l y  i t  

w i l l  sufficein t h e  fol lowing t o  take a s  p a s t e p  funct ion) .  The c l a s s i -  

c a l  theory of d i f f e r e n t i a l  equat ions ensures  t h e  ex i s tence  of 

u  : [o,T] + H, s o l u t i o n  of  
P 

-u ( t )  = p ( t )  grad q ( t ,  u  ( t ) )  
P P 

agree ing  with the  i n i t i a l  condi t ion  u (0)  = a. Denote by h t h e  abso- 
P P 

l u t e l y  continuous llumerical funct ion 

h ( t )  = d(u ( t ) ,  C ( t ) )  = lgrad q ( t ,  u  ( t ) ) l  . 
P P P 

The same ca lcu la t ion  a s  i n 5  5. g, proof of Lenma 1, y i e l d s  the  d i f fe ren-  

t i a l  inequa l i ty  

(5.39) + p  h <; , 
P P 

from which elementary techniques l eads  t o  : 

LEMMA 1. I f  t h e  speed func t ion  v of C i s  majorized by some cons tan t  

M 0 , t h e  funct ion,  h  is  majorized by t h e  cons tan t  M J(P ) , w h e r e  
P 
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J (p  ) denotes  t h e  supremum over  [o,T] of the  n u m e ~ i c a l  f u n c t i o n  k  

def ined on t h i s  i n t e r v a l  by t h e  d i f f e r e n t i a l  equat ion k + p k  = 1 WE 

t h e  i n i t i a l  c o n d i t i o n  k(0)  = 0. 

6 
Consider now another  func t ion  s i m i l a r  t o  p and t h e  corres-  

P 

ponding u  and hq . The same i n e q u a l i t y  a s  i n  5 5. b, proof of Lemma 
0- 

2,  y i e l d s ,  f o r  any t i n  [o,T] , 
t 

Iu ( t )  - uq(t) lZ ( - ( p a d  q ( s , u  ( s ) )  - grad q ( s , u i ( s ) ) l  
2  P 10 P 

p ( s )  grad q ( s , u  ( s ) )  - b ( s )  grad q (s ,uq(s ) ) )  d s .  
P 

The integrand i s  a  s c a l a r  product i n  H, majorized by 

2  (h  + hq)(p h  + b  h  ) = p ha + b  h q +  ( p . + b )  h  h 
P P 0- P P 6 '  

Now from Lemma 1 and inequa l i ty  (5.39) one o b t a i n s  

2  h  + p h  (M J ( p )  
P P P 

h  i + p h  h ( M J ( b )  
0- P G P  

anrJ two symmetrical inequalities. Adding them toge ther  and i n t e g r a t i n g  

g ives  t h e  proof o f  t h e  following : 

LEMMA 2. I f  t h e  func t ion  ; is  majorized by some c o n s t a n t  M > 0  o x  

&, f o r  every t ip [o,T] , 

(5.40) I u  ( t )  - uq(t)12 ( 4 t  2 ( J (p )  + J ( a ) )  . 
P 

I f ,  i n  p a r t i c u l a r ,  q is  a  cons tan t  m 

1 -rnT 1 
J(a )= ; ; ; ( l - e  )(; . 

By 3 5. g, t h e  s o l u t i o n  u  of t h e  sweeping process  i s  t h e  l i m i t  of the  

corresponding u when m ( f o r  i n s t a n c e  an  i n t e g e r )  t ends  t o  i n f i n i t y  ; 
d 
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t h u s  (5.40) implies  

For the  con t inua t ion  take a s  p t h e  s t e p  func t ion  assoc ia ted  

with t h e  subdivis ion 

a s  fo l lows  : denoting by mi t h e  middle point  of t h e  i n t e r v a l  

where A js a constant  independent of i. 

Denote by p t h e  supremum of t h e  t .  1+1 - ti ; studying t h e  

f u n c t i o n  k assoc ia ted  with p a s  i n  Lemma 1 y i e l d s  : 

LEMMA 3. I_f p i s  defined by (5.42) a s  A >  4 one has 

1 Hint : t h e  funct ion K : t I+ max I-, k ( t ) ]  possesses  f o r  almost every - 
J;i- 

t. a d e r i v a t i v e  & t ) .  When t E ]ti, mi[ one has  

1 
k t )  < -1 i f  K(t)  .- 

6 
K(t )  = 0 1 i f  K ( t ) = -  . 

6 
When t E [mi,  ti+l ] one h a s  

From these lemmas we can proceed t o  t h e  proof of t h e  Propositioq. 
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Observe f i r s t  t h a t  t h e  two a l t e r n a t i v e  statements of t h i s  Proposi t ion a r e  

equivalent  s i n c e  the  v a r i a t i o n  func t ion  v of C i s  continuous on [o,T] i 
thus  uniformly continuous. 

The statement concerning v a r i a t i o n s  i s  v i s i b l y  i n d i f f e r e n t  t o  

any (abso lu te ly  continuous) non decreasing change of v a r i a b l e  ; we take 

p r o f i t  of t h i s  f a c t  i n  supposing t h a t  a change of v a r i a b l e  has  been per- 

formed reducing t o  t h e  case where t h e  speed funct ion v of C i s  t h e  

constant  1 ( s e e  5 5. a ) .  

F i r s t  s tep.  Denote by R t h e  fol lowing a b s o l u t e . 1 ~  continuous non de- 

c reas ing  mapping from t h e  i n t e r v a l  [o,T] onto i t s e l f  (m denotes a s  
i 

before the  middle point  of [ti, ti+l] ) 

and put 

C(R(t))  = ~ ' ( t )  . 
I n  o t h e r  words, on each i n t e r v a l  of t h e  form [ti, mi] t h e  convex s e t  

C '  remains f i x e d ,  equal  t o  C( t i )  ; on t h e  next i n t e r v a l  [mi ,  ti+l] , 

it runs through t h e  same chain of conf igura t ions  a s  C on [ t i ,  ti+l], 

with a timing ad jus ted  i n  such a way t h a t  C' catches up with C a t  t h e  

i n s t a n t  t .  C a l l  u' t h e  s o l u t i o n  of the  sweeping process  f o r  t h e  1+1' 

moving convex s e t  C '  and the  same i n i t i a l  value a a s  u ; i n  view of 

t h e  change of v a r i a b l e  one has 
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u ' ( t )  = u(?r(t))  . 
By v i r t u e  of (5.311, the function u i s  Lipschitz with r a t i o  1 ; thus, 

f o r  any t E [o,T], 

(5.43) l u ( t )  - u ' ( t ) l  < $ 

Second step. Put 

1 2 
q ' ( t , x )  = 5 (d(x ,C ' ( t ) )  . 

Defining p by (5.421, denote by u' the solut ion of 
P 

(5.44) - u ' ( t )  = pCt) grad q V ( t ,  u ' l t ) )  
P P 

agreeing with the i n i t i a l  condition u' (0) = a. The in tegra t ion  of t h i s  
P 

d i f f e r e n t i a l  equation may be expl ic i ted  : On each in t e rva l  of the form 

[mi ,  tit,] the function p vanishes, so t ha t  

(5.45) t E [mi, ti+1] * ~ ' ( t )  = ut(m . 
P P i 

For t ranging over an in t e rva l  of the form I t  mi[ , P takes the cons- 

t a n t  value A and the  function X H  q t ( t , x )  i s  independent of t ,  with 

grad q ' ( t , x )  = x - pro j  (x,  C( t i ) )  

so t h a t ,  on t h i s  i n t e rva l  

(5.46) ~ ' ( t )  = ,,'(ti) + [yi- u9( t i )1  [ I  - exp ~ ( t ~ -  t ) l  
P P P 

where 

Yi = p r o j  (u ' ( t i ) ,  C(t i))  . 
P 

Supposing A >  4, it r e su l t s  from (5.41) and from Lemma 3 

t h a t ,  f o r  any t E [o,T] 
2 1 

(5.47) l u 1 ( t )  - u ' ( t ) l  < 16 t (- +*) . 
P K 
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Note t h a t  (5.45) and (5.46) y i e l d  

1 
(5.48) = uf(mi) = u f ( t i )  + [yi- u f ( t i ) ] [ l - e x p  I 

P P 2 

Third s tep.  Let A tend t o  + -  ; a s  a l l  t h e  ti- t .  a r e  ( 0 , 1+1 

(5.48) shows t h a t ,  f o r  each i ( n , t h e  d i f fe rence  ~ p ' ( t ~ + ~ )  - yi tends 

t o  zero i n  H. A s  t h e  mapping p r o j  (. , ~ ( t .  ) )  used i n  t h e  d e f i n i t i o n  

of yi is  continuous, t h i s  proves by i t e r a t i o n  t h a t ,  f o r  each i ( n ,  

t h e  value ~ ; ( t ~ + ~ )  tends t o  ~ ( t ~ + ~ )  a s  defined by (5.38). Then (5 .46)  

shows t h a t  u f ( t )  tends t o  x ( t )  f o r  any t i n  ]ti ,  mi] and f i n a l l y  
P 

a l s o  f o r  any t i n  [q, ti+l] by v i r t u e  of (5.46). 

I n  view of (5.47) t h i s  pointwise convergence y i e l d s ,  f o r  any 

t E [o,TI , 

I x ( t )  - u f ( t ) l  < JPTpPTp 

which proves t h e  Proposi t ion,  by comparing with (5.43). 
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6 QUASI -STAT1 C EVOLUTl ON OF AN ELASTOPLASTI C SYSTEM 

6. a FORMULATION OF THE PROBLEM 

The framework i n  e l l  t h i s  Chapter i s  t h a t  of a configurat ion 

space U endowed with a l i n e a r  space s t r u c t u r e  ; thus  t h e  p r a c t i c a l  ap- 

p l i c a t i o n s  of t h e  fol lowing mainly concern systems whose displacements 

a r e  t r e a t e d  a s  " i n f i n i t e l y  small". 

According t o  t h e  usual  conception of e las top las t ic i ty ,every  

s t a t e  of t h e  system i s  represented by two components which both a r e  e l e -  

ments of 21 : 

The v i s i b l e  ( o r  "exposed") component, denoted by x ; it i s  

t h e  p a r t  of the  system which undergoes e x t e r n a l  fo rces ,  c a l l e d  1-, 

and may a l s o  be submitted t o  cons t ra in t s .  

The hidden ( o r  "plast ic")  component denoted by p. * 
S t r i c t l y  speaking, t h e  configurat ion space of the  system i s  

then t h e  product space U x u  . 
The d i f fe rence  x - p = e E 21 w i l l  be c a l l e d  the  e l a s t i c  

deviat ion.  

Let us  denote a s  before by .F t h e  l i n e a r  space of fo rces ,  

placed i n  separa t ing  d u a l i t y  with ; the f o r c e s  experienced by t h e  

component p a r e  : 
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lo The f o r c e  s E X of " e l a s t i c  r e s t o r i n g  toward x" r e l a t e d  t o  e  by 

(6.1) s = A ( e )  , 

where A denotes a  given s e l f a d j o i n t  nonnegative l i n e a r  mapping from 

U i n t o  X . 
2O The f o r c e  of " p l a s t i c  res i s tance"  f  E B r e l a t e d  t o  the  ve loc i ty  

( a t  any i n s t a n t  where t h i s  ve loc i ty  e x i s t s )  by the  r e s i s t a n c e  law studied 

i n  3 4. e .  

(6.2) P E a rjrC (- f )  , 

where C denotes  a  f ixed  nonempty closed convex subset of . 
The f o r c e s  experienced by the  component x a r e  

lo The r e a c t i o n  r E X of a  p e r f e c t  a f f i n e  cons t ra in t  (cf. 6 3. c )  ; 

t h i s  c o n s t r a i n t s  maintains x a t  every i n s t a n t  i n  an a f f i n e  manifold 
e 

which moves i n  a  given way, say 

(6.3) 5: = U + g ( t )  

where U denotes a  f ixed  closed l i n e a r  subspace of U and tH g ( t )  i s  

a  given func t ion  of time, with va lues  i n  U , which may be c a l l e d  the  

guiding ( o r  "driving1'). Such a  c o n s t r a i n t  c o n s t i t u t e s  t h e  s t a t i c a l  law 

(6.4) - r E  P +s ( X I .  

2' The 1 s  c ( t ) ,  a  given time-dependent element of . 
3' The f o r c e  - s of " e l a s t i c  r e s t o r i n g  toward Supposing i n  t h i s  

way t h a t  the  e l a s t i c  fo rce  ac t ing  on x i s  the negative of t h e  e l a s t i c  
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f o r c e  a c t i n g  on p merely means t h a t  the  t o t a l  power of the e l a s t i c  

f o r c e s  vanishes i n  any evolu t ion  which preserves the  e l a s t i c  dev ia t ion  

x - p ; i n  o ther  words t h e  e l a s t i c  energy depends on t h i s  deviat ion only. 

The problem is  t h a t  of' determining t h e  evo lu t ion  of x and p 

z U ,  under t h e  hypothesis t h a t  the motion i s  s u f f i c i e n t l y  slow f o r  

i n e r t i a  t o  be negl igible .  

Therefore, t h e  dynamical equat ions amount t o  express the  quasi-  

equi l ibr ium of x, namely 

(6.5) r + c - s  = 0 

and t h e  quasi-equilibrium of p ,  namely 

(6 .6 )  s + f  = 0 . 
To i l l u s t r a t e  t h e  preceding formulation by a p r a c t i c a l  example, 

t h e  reader  may take back t h e  s i t u a t i o n  of a l a t t i c e  of bars ,  presented i n  

1 $ 3. i, j . If t h e  behavior of each bar  i s  e l a s t o p l a s t i c ,  the  z n(n-1) - 

uple  of t h e i r  respect ive elongat ions,  namely t h e  element e E E , has t o  

be w r i t t e n  a s  a sum, say e '  + p ; here e '  denotes  t h e  " e l a s t i c  par t"  

of e ,  r e l a t e d  t o  t h e  t ens ion  s E S by a l i n e a r  e l a s t i c i t y  law such a s  

(6.1) ; p denotes t h e  " p l a s t i c  part' '  of e : i ts  "velocity" 6 i s  r e l a -  

t e d  t o  s by r e l a t i o n s  of t h e  form (6.21, (6.6).  A t  t h i s  s tage one may 

* 
avoid t h e  e x p l i c i t  cons idera t ion  of t h e  l i n e a r  mappings D and D by 

us ing  t h e  t h i r d  procedure of 5 3. j , namely t h e  e l imina t ion  of (X,Y) : 
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then t h e  sum e '  + p i s  i n t e r p r e t e d  a s  t h e  "vis ible"  conf igura t ion ,  t o  

be denoted here  by x ; f i n a l l y  w r i t e  simply e  ins tead  of e ' .  

The same p a t t e r n  a p p l b t o  an e l a s t o p l a s t i c  continuous medium, 

occWYhg a domain R of t h e  physical  space. Then elements e l  e ' ,  p, s 

a r e  some tensor  f i e l d s  defined on R ; t h e  spaces E and S a r e  some 

funct ion spaces. The corresponding q u a s i s t a t i c  evolut ion problem may be 

t r e a t e d  i n  t h e  l i n e  of t h e  fol lowing paragraphs, but wi th  some compli- 

c a t i o n s  which w i l l  not be inves t iga ted  i n  t h i s  l e c t u r e s  ; t h e  d i f f i c u l t y  

a r i s e s  from t h e  f a c t  t h a t ,  with regard t o  the  Hi lber t  norm defined by 

means of t h e  e l a s t i c  energy ( see  5 6. b )  t h e  convex C possesses  an 

empty i n t e r i o r .  Then the  theorem on t h e  abso lu te  coq t inu i ty  of in te r sec-  

t i o n s  (5 5. c )  p r i l l  be appl ied r e l a t i v e l y  t o  some  norm ; t h e  absolute  

con t inu i ty  of t h e  considered i n t e r s e c t i o n  w i l l  f i n a l l y  hold with regard 

t o  the Hi lber t  norm too,  a s  t h i s  l a t t e r  i s  majorized by the L--norm(mul- 
t ip l i ed  by a constant). 

Observe t h a t  t h e  continuous medium problem i s  s tud ied  by 

G. DUVAUT and J.L. LIONS, [I], Chap. 5 . Thei r  method. i s  t h a t  of va- 

nishing v i s c o s i t y ,  b a s i c a l l y  s imi la r  t o  t h e  r e g u l a r i z a t i o n  technique we 

used i n  $ 5. g ; but they must r e s t r i c t  themselves t o  t h e  s p e c i a l  case 

where t h e  "load", denoted here by c ,  i s  i d e n t i c a l l y  ze ro  ; thus  t h e  mo- 

t i o n  i s  only caused by t h e  "guiding1' g. Paragraph 6. c  below explains  

why t h i s  s p e c i a l  case  i s  more t r a c t a b l e  : i t  corresponds t o  a  s e t  
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(C-c-g) (3 V which moves by t r a n s l a t i o n ,  so t h a t  t h e  i n t e r s e c t i o n  theo- 

rem i s  not required f o r  proving i t s  absolute  c o n t i n u i t y  (c f .  5 5. b) .  

We s h a l l  not dea l  i n  t h e  present  l e c t u r e s  with systems governed 

by behavioral  laws of H e q ' s  type ; the  reader  w i l l  r e f e r  t o  H. Lanchonk 

l e c t u r e s  on t h i s  subject .  H e n M s  law i s  a l s o  s tud ied  i n  the  book of  

DUVAUT and LIONS, by methods involving t h e  d u a l i t y  of convex func- 

t i o n a l ~ .  

I n  order  t o  h e l p  t h e  reader  t o  v i s u a l i z e  t h e  formulated problem 

l e t  u s  f i n a l l y  present  a  very simple model i n  which t h e  dimension of U 

equa ls  2. The considered system c o n s i s t s  of two p a r t i c l e s  x and p 

moving i n  t h e  plane U . The p a r t i c l e  x i s  guided without f r i c t i o n  on 

t h e  mate r ia l  s t r a i g h t  l i n e  U + g ( t ) ,  a  l i n e  which remains p a r a l l e l  t o  

t h e  f i x e d  l i n e  U and moves i n  

a  given way. The p a r t i c l e  p w i l l  

be v i sua l ized  a s  a  p l o t ,  whose 

contac t  with t h e  plane 11 i s  

a f f e c t e d  by a  given f r i c t i o n .  The 

- u 
0 two p a r t i c l e s  a r e  connected by a  

spr ing  whose length i n  t h e  s t a t e  

of ze ro  tension i s  zero. I n  add i t ion ,  a  given f o r c e  c ( t )  i s  appl ied  t o  

x. One s tud ies  motions during which the  various f o r c e s  e q u i l i b r a t e  each 
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other  a t  any i n s t a n t  ; i n  p a r t i c u l a r  t h e  f r i c t i o n  r e s i s t a n c e  undergone 

by p must exac t ly  counterbalance the spr ing  tension. 

I n v e s t i g a t i n g  t h i s  elementary model r a i s e s  an important obser- 

va t ion  : though t h e  f r i c t i o n  between p and the  underlying plane has  t h e  

c h a r a c t e r i s t i c s  of per fec t  p l a s t i c i t r ,  t h e  behavior of the  cmponent  x 

e x h i b i t s  s t r a i n  hardening. I n  f a c t  suppose t h e  l i n e  U + g i s  f ixed ,  f o r  

instance with g i d e n t i c a l l y  zero ; suppose the  f r i c t i o n  of p i s  iso- 

t r o p i c ,  i .e.  i t  obeys elementary Coulomb's law. Clearly any motion during 

which t h e  spr ing  i s  s t ra ined  enough f o r  the  point  p t o  y- ( thbs  i m -  

poses a d e f i n i t e  value f o r  the  d i s t a n c e  between x and p )  necessar i ly  

b r ings  t h i s  po in t  c l o s e r  t o  t h e  l ine .  Therefore t h i s  evo lu t ion  leaves 

t h e  system i n  a s t a t e  f o r  which t h e  e l a s t i c  domain, i . e .  t h e  s e t  of the 

values of t h e  load c .which may be appl ied  without causing y ie ld ,  is  

l a r g e r  than before. 

Such an example suggests  t h a t  s t r a i n  hardening can be described, 

i n  p r a c t i c a l  s i t u a t i o n s ,  by including i n  the  d e f i n i t i o n  of t h e  hidden 

component p a s u f f i c i e n t  number of i n t e r n a l  s t a t e  v a r i a b l e s  and postu- 

l a t i n g  t h a t  t h e  behavior of such a p i s  governed by a law s i m i l a r  t o  

t h a t  of p e r f e c t  p l a s t i c i t y .  T h i s  has been developed, i n  our framework of 

convex pseudo-potentials,  by Q.S. NGWEN [l] (see a l s o ,  f o r  the  use of 

i n t e r n a l  s t a t e  variables  without convexity, J. KRATOCWIL and J. NECAS [ I]). 
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6. b THE HILBERT SPACE NOTATION 

Let us  r e s t r i c t  ourselves f o r  sake of s impl ic i ty  t o  t h e  usual  

c a s e  where t h e  se l f -ad jo in t  l i n e a r  mapping A : U + B  introduced by the  

e l a s t i c i t y  law (6.1) i s  one-to-one. Then one makes t h e  treatment of  t h e  
b 

problem much e a s i e r  by t h e  no ta t ion  t r i c k  which c o n s i s t s  i n  i n t e r p r e t i n g  

t h e  one-to-one mapping A a s  an i d e n t i f i c a t i o n  oS t h e  spaces U and 8 . 
Denote by H t h i s  s i n g l e  space ; t h e  symmetric b i l i n e a r  form defined on 

becomes an inner  product i n  H ,  which w i l l  be denoted a s  (u' 1 u). A s  t h e  
/ 

quadra t ic  form 

represen ts  the  e l a s t i c  energy, it is nonnegative, thus  pos i t ive  d e f i n i t e  

due t o  A being one-to-one. This  means t h a t  a pre-Hilbert norm ( . I i s  

def ined  on H by 

Let us  make t h e  assum#bion t h a t  H is complete r e l a t i v e l y  t o  

t h i s  norm, i .e .  it i s  a H i l b e r t  space. 

This  of course i s  automatical ly  s a t i s f i e d  i n  f i n i t e  dimensional 

)cases .  I n  the  case of continuous media a l so ,  one is  accustomed t o  formu- 

l a t e  t h e  problems i n  s u i t a b l e  func t ion  spaces f o r  t h i s  assumption t o  hold. 
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Observe that the inner product (.I.) in H and the identi- 

fication map A : U + B  are connected in such a way that subdifferential 

relations of the form - f E 8 $(u) may equivalently be understood in the 

sense of the duality (U, 5 ; (. ,.>), with u E U and f E 8 ,  or in the 

sense of the duality (H,H ; (. I . 1) with u and f elements of H. 

Let us write the formulation of the problem in these notations. 

Denote by V the subspace of H orthogonal to U ; observe that (6.1) 

becomes s = e ; eliminate r by (6.5) and f by (6.6) ; the preceding 

conditions take the equivalent form 

(6.7) X E U + g  

(6.8) s E V + c  

(6.9) x = p + s  

(6.10) P E a *, cs) . 
~ i v e n  the compact time interval [o,T], the problem is that of 

determining the three functions t* x , t- p , t~ s , with values in 

HI absolurely continuous on this interval (this makes the derivative 

exist for almost every t) satisfying conditions (6.7) to (6.10) for al- 

most every t, and some initial conditions 

(6.11) x(0) = xo , s(0) = so . 
Let us make now some assumptions about the data. 

ASSUMPTION 1. The given functions 'trr g fffd t* c are absolutely 
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continuous on [o,T] . I n  add i t ton ,  we v i s i b l y  Icnse no genera l i ty  i n  s u p  

posing t h a t  c takes i t s  va lues  i n  U and t h a t  g t akes  i t s  va lues  

ASSUhPTION 2 . The i n i t i a l  d a t a  xo and 'so s a t i s f y  t h e  condi t ions  

ev iden t ly  required by (6.7) and (6.81, and t h e  condi t ion  

t 6 . B )  s E C  
0 

requi red  by (6.10). I n  f a c t  f6,103 makes t h a t  for' Mmest eh$y t ,  t h e  

s e t  a Jr ( t )  i s  non empty, thus  s ( t )  E C, and t h e  l a t t e r  must a l s o  be C 

t r u e  f o r  every t i n  [o,T] , by cont inui ty.  

Observe a l s o  t h a t  (6.8) with (6.10) r e q u i r e s  t h e  moving a f f i n e  

manifold V + c t o  meet t h e  convex s e t  C f o r  almost every t ,  t h u s  f o r  

every t by the con t inu i ty  of c. This  may equiva len t ly  be w r i t t e n  a s  

(6.13) c E p r o j u C  . 
The mechanical meaning of t h i s  nebessary condi t ion  is  c l e a r  : a load c 

( r e c a l l  t h a t  we supposed c E U )  which does not  s a t i s f y  i t  cannot be 

counterbalanced by the f o r c e s  r E V ( the  r e a c t i o n  of the  a f f i n e  p e r f e c t  

c o n s t r a i n t )  and s E C. A s  t h e  law of  p l a s t i c  r e s i s t a n c e  (6.10) only per- 

m i t s  s  C,  t h i s  means t h a t  i f ,  s t a r t i n g  from a conf igura t ion  defined by 

some va lues  of x and p, t h e  system experiences a load c which does 

not v e r i f y  (6.13), i t s  evolu t ion  cannot be quas i - s ta t i c .  bf course,  t h e r e  
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a r e  i n  t h i s  s i t u a t i o n  o ther  necessary conditions,namely x-p 6 V + c ,  

a consequence of (6.8) and (6.9). 

For mathematical convenience, we s h a l l  suppose t h a t  t h e  s e t  C 

possesses a nonempty i n t e r i o r  ; then l e t  u s  agree t o  rep lace  (6.13) by 

the  s t ronger  fol lowing condition. 

ASSUMPTION 3. For any t i n  [o,T] t h e  a f f i n e  manifold V + c ( t )  

i n t e r s e c t s  t h e  i n t e r i o r  of C. 

Without discussing here t h e  physical  meaning of t h i s  assumption, 

l e t  us  c a l l  i t  t h e  "safe load hypothesis". 

I n  add i t ion ,  we s h a l l  avoid some technica l  job of  covering the 

i n t e r v a l  [o,T] and piecing toge ther  l o c a l  so lu t ions ,  by making a l s o  a 

l a s t  i n e s s e n t i a l  hypothesis : 

ASSUMPTION 4. The s e t  C i s  bounded. 

Then : 

LEMMA. Assumptions 3 and 4 and t h e  abso lu te  con t inu i ty  of t h e  func t ion  

t- c imply t h e  following : t h e r e  e x i s t s  a s t r i c t l y  p o s i t i v e  r e a l  cons- 

t a n t  p and an absolutely continuous mapping h : [o,T] -, H such t h a t ,  - 
f o r  every t E [o,T] , one has h ( t )  6 C A (V + c ( t ) )  and t h e  closed b a l l  

with cen te r  h ( t )  and rad ius  p i s  contained i n  C. 

Outlined proof : Using the  no ta t ion  e of 6 5. a ,  arguments s imi la r  t o  

t h a t  of 6 5. c prove t h a t  the numerical funct ion 
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t- e (V + ' c ( t )  , H\C)  

is  continuous on [o,T], with s t r i c t l y  posi t ive values, thus s t r i c t l y  m i -  

norized by some constant p > 0. The se t  

i s  closed and convex, with nonempty in ter ior .  For every t i n  [o,T], 

t h e  a f f i n e  manifold V + c ( t )  i n t e r sec t s  t he  i n t e r i o r  of C . The multi- 
P. 

mapping tw V + c ( t )  i s  absolutely continuous, implying by $ 5. c the 

absolute continuity of the  moving convex se t  t* C n (V + c ( t ) ) .  Take 
P 

a s  h a solut ion of t h e  sweeping process by t h i s  moving non empty closed 

convex s e t  (cf. 5 ti.*' f 1. 
1' 

6. c P E W  UNKNOWN FUNCTIONS 

Conditions (6.71, (6.81, (6.9) may be wr i t ten  a s  

x - g E U  

c - S E C  

( x - g ) + ( c - s )  = p + c - g  ; 

t h i s  mag equivalently be expressed by means of t h e  orthogonal pro jec tors  

r e l a t i v e  t o  the  complementary orthogonal subspaces U and V 

x - g = p r o 4  (P + c - g )  

c - s = p r o 4  (p + c - g)  

or ,  a s  we have supposed c E U and g E V , 
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p r o j U p  = x - c - g  

Let us  define two new unknowns y and z by 

(6.14) y = s - c - g  = - p r o j V p  

(6.15) z = x - c - g  o pro jUp  

which implies 

Due t o  Assumption 1, the functions tw  y and C H  z a r e  absolutely 

continuous i f  only i f  such a r e  t- s and t- p. 

Under t h i s  change of unknowns, conditions (6.7) t o  (6.10) equi- 

valently amount t o  

k - i E a #, (y+c+g) 

Z E U  , y E V  

to .  be s a t i s f i e d  f o r  almost every t i n  [o,T]. 

Let us  f i r s t  draw a consequence of (6.17 ). 

PROPOSITION. I f  conditions (6.17) a r e  ve r i f i ed  f o r  almost evere  t ,  the 

function t~ y s a t i s f i e s  fo r  these values of t 

46.18) - ; a +  (c-C-g) n v ( y j  ; 

i n  other words t h i s  function is  a solut ion of the sweeping process by the 

non empty closed convex moving se t  t- (C-c(t) - g ( t ) )  n v . 
I n  f a c t  the second l i ne  of (6.17) implies - H E U , thus 
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- E a (I, (Y). Elementary c a l c u l a t i o n  concerning t r a n s l a t i o n  i n  the  

space H y i e l d s  

a #, ( Y + c + ~ )  = a *c-c-g ( Y )  

On t h e  o ther  hand 

*(c-C-~) n v = *c-c-g + *v 

t h u s  

a *c-c-g ( Y )  + a FV(y) C a *(C-c-g) n v ( ~ !  - 
Therefore (6.18) fol lows from t h e  f i r s t  l i n e  of (6.17). 

REMARK. AS y and Y e s s e n t i a l l y  belong t o  V, i t  i s  i n d i f f e r e n t  t o  

understand the  s u b d i f f e r e n t i a l  i n  (6.18) i n  t h e  sense of t h e  d u a l i t y  bet- 

ween H and i t s e l f  o r  i n  t h e  sense of t h e  d u a l i t y  between t h e  H i l b e r t  

subspaces V and i t s e l f .  

COROLLARY 1. If two Solu t ions  Of (6.17) agree  with t h e  same i n i t i a l  

condi t ion  y(0)  I Yo they coincide i n  what concerns t h e  func t ion  t~ y. 

AS explained i n  5 5. f ,  t h i s  uniqueness property fol lows from 

t h e  multimapping a *(c-c-g) n V being monotone. 

I n  view of t h e  d e f i n i t i o n  (6.14) of y  t h i s  Corollary i s  equi- 

v a l e n t  t o  

COROLLARY 2. 1f two so3utions of t h e  system of condi t ions  (6.7)  to - 
(6.10) agree  with t h e  same i n i t i a l  condit ion s ( 0 )  = so, these  two solu- 

t i o n s  coincide i n  what concerns t h e  funct ion t ~ +  s. 



J. J. Moreau 

By t h e  way, ( 6 . 1 ~ )  impl ies  under Assumption 1 t h a t  the  func- 

t i o n  t* s r e l a t e d  t o  y by (6.14) v e r i f i e s ,  f o r  almost every t ,  

(6.19) - : E - k + a f l c n  ( v + ~ )  ( s )  , 

an evolut ion ''equationV' analogous t o  t h a t  of t h e  sweeping process. An 

algorithm of time d i s c r e t i z a t i o n  would a l s o  be ava i lab le  f o r  t h e  numeri- 

c a l  so lu t ion  of it. 

6. d EXISTENCE THEOREM 

Let u s  proceed t o  t h e  proof of : 

PROPOSITION. Under Assumptions 1, 3, 4, whichever i s  Yo % 

V fl < C  - c ( 0 )  - g(O)), whichever i s  z i .  U ,  the re  e x i s t s  a t  l e a s t  one 

p a i r  of Functions tw y and t- z,  abso lu te ly  continuous from [o,T] 

i n t o  H, s a t i s f y i n g  (6.17) f o r  almost every t and t h e  i n i t i a l  condit ions 

y t 0 )  = yo , z ( 0 )  = Zo . 
F i r s t  s tep.  Under the  hypotheses made t h e r e  e x i s t s  an abso lu te ly  cont i-  

nuous fonct ion,  l e t  us  already denote i t  by t- y , s a t i s f y i n g  (6.18) 

f o r  almost every t and the  i n i t i a l  condi t ion  y(0)  = yo. I n  f a c t  t h i s  

funct ion is  t h e  so lu t ion  of t h e  sweeping process, f o r  t h i s  i n i t i a l  condi- 

t i o n  ., by t h e  moving convex s e t  t I+ (C - c ( t )  - g( t ) )  fl V.  The ex is tence  

theorem o.f 5 5. g apply because t~ C - c ( t )  - g ( t )  i s  abso lu te ly  con- 
! 
t inuous ( see  5 5. b about a t r a n s l a t i n g  convex s e t ) ,  thus  the considered 
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i n t e r s e c t i o n  i s  a l s o  abso lu te ly  continuous, by v i r t u e  of Assumptions 3 

and 4 and t h e  i n t e r s e c t i o n  theorem of 5 5.  c. Defining y i n  t h i s  way, 

one has  y ( t )  E V f o r  every t ,  t h u s  8 (I. ( y )  = U. The a d d i t i v i t y  of v 

t h e  s u b d i f f e r e n t i a l s  holds  f o r  the  func t ions  $C-c-g and gV s i n c e ,  by 

Assumption 3, V + c + g i n t e r s e c t s  the  i n t e r i o r  of C ( r e c a l l  t h a t  

g E V) s o  t h a t  t h e r e  e x i s t s  a point  a t  which both funct ions a r e  f i n i t e  

and t h e  func t ion  $ i s  continuous ; t h e n  (6.18) implies  f o r  almost 
C-c-g 

every t he ex i s tence  of a t  l e a s t  one element of U ,  which w i l l  be a l -  

ready denoted a s  k ( t ) ,  such t h a t  

(6.20) k t )  - i ( t )  E a ( ~ . ~ - ~ - , ( ~ c t ) )  = a ( ~ . ~ ( y c t )  + c c t )  + g ( t ) ) .  

T h i s  i s  the  f i r s t  of condi t ions  (6.17). 

Second s t e ~ .  For a value of t such t h a t  (6.20) holds  the point  & - 

is a conjugate of t h e  po in t  y + c + g r e l a t i v e l y  t o  t h e  p a i r  of dua l  

func t ions  y ,  namely t h e  support func t ion  of C, and (I. (see 5 2. e ,  C 

Example). Th is  may be w r i t t e n  a s  

(6.21) y ( k - *  y ) - ( k - i j  y + c + g )  = ' O  

which implies  t h a t  f o r  almost every t ,  the  closed convex Set  

(6.22) @ ( t )  = { W  E H : y(w) - (wly+c+g) = 01 

= { W  E H : y(w) - (wly+c+g) < 01 

possesses  a nonempty i n t e r s e c t i o n  with the  a f f i n e  manifold U - y ( t ) .  A s  

y i s  a numerical func t ion  independent of t and a s  t++ Y+C+g i s  a 
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continuous mapping from [o,T] i n t o  H one observes t h a t  t ~ +  @ ( t  i s  

a measurable multimapping from [o,T] i n t o  H ( the  measurabi l i ty  theory 

of multimappings i s  due f o r  a par t  t o  C. CASTAING ; see  h i s  l e c t u r e s  ; 

see a l s o ,  f o r  a n  expos i t ion  of some b a s i c  f a c t s  i n  the  c a s e  of a separa- 

b l e  space, R.T. ROCKAFELLAR [4] 1. Such i s  a l s o  t h e  multimapping 

tr, U-$(t) ,as  t h e  func t ion  tw $ belongs t o  L ~ ( O , T  ; H) ; t h u s  the  

i n t e r s e c t i o n  of  t h e  two multimappings i s  measurable too. Since f o r  a l -  

most every t t h i s  i n t e r s e c t i o n  i s  nonempty, it possesses  a dense col-  

l e c t i o n  of measurable se lec tors .  Denote by t~-+ i ( t )  one of  these  se- 

l e c t o r s  ; a s  b ( t )  E U - $ ( t ) ,  by p u t t i n g  'z( t )  = i ( t )  + i ( t )  one has 

& t )  E U and (6.20) holdsf o r  almost every t. I f  we succeed i n  proving 

1 t h a t  i, thus  k ,  bel.ong t o  L (0,T ; HI, t h e  pr imit ive z of L ad- 

justed t o  the  i n i t i a l  value z(O) = zo, w i l l  c o n s t i t u t e  wi th  t h e  funct ion 

y determined above one of the  des i red  s o l u t i o n s  of (6.17). 

Third s tep.  A s  t- ; ( t )  i s  measurable it$st remains t o  prove t h a t  t h e  

numerical func t ion  t*+ l;(t 11 i s  majorized by an element of L ~ ( o , T ~  ). 

By the  lemma of 9 6 ,  b t h e r e  e x i s t s  a s t r i c t l y  p o s i t i v e  cons tan t  p and 

a continuous func t ion  h : [o,T] -, H such t h a t  f o r  every t one has 

h ( t )  E V + c ( t )  and t h e  b a l l  with c e n t e r  h ( t )  and r a d i u s  p is  con- 

ta ined i n  C. T h i s  inc lus ion  of convex s e t s  i s  equivalent t o  t h e  fo l lo -  

wing inequa l i ty  between t h e i r  support func t ions  
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(6.23) V W E  H : p I w ]  + (h(t)lw)<y ( w ) .  

The definition (6.22) of @ (t) may be transformed by writing 

(wl y+c+g) = (wl h) + (w+ily+c+g-h) - y+c+g-h) . 

Recall that + > E U , that c - h E V , that g E V , that $ E V , 

that c E U ; then 

y+c+g) = (ilh) - (?ly+g-h) . 
Therefore, in view of (6.231, E @ (t) implies 

1 '  1 M IPI < -(yl~+g-h)<~ 13 ly+g-hl <- 1i1 
P P 

where M denotes a majorant of the continuous functions t~ IY+g-hl 

over the compact interval [o,T]. As a solution of the sweeping process, 

the function tk+ y is absolutely continuous, thus the function t~ $ 

1 belongs to L ( 0 , ~  ; H) ; this completes the proof. 

By the definitions of y and z, it follows : 

COROLLARY. Under Assumptions 1, 2, 3, 4 the evolution problem for the 

considered elastoplastic system possesses at lsast one solution ; this - 
solution is unique in what concerns the function t e  s . 
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