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I INTRODUCTION

1. a ORIENTATION

Three intermingled themes run in all the following : variatiqnal
statements, the duality in paired linear spaces, the convexity of sets or
functions. These are precisely three leading themes of Optimization
Theory, as it has been developed for several decades ; in fact the study
of optimization problems started many progresses of modern convexity
theory, in which duality plays an essential part,

In Mechanics these three themes have been present for more than
two centuries, There is no need to recall the importance of variational
ideas in the development of Analytical Dynamics. Observe, however, that
these ideas often served as a mere scaffolding, to be removed before the
end of the construction, Lagrange equations arose from the variational
properties of a mechanical system subject to frictionless constraints
and conservative forces only ; but actually Analytical Dynamics has a
much wider scope, so that some modern treatises on the subject may deve-
lop it in the framework of Differential Geometry, without reference to
any properly variational fact, Variational calculus acted here in sug-
gesting some mathematical structure which eventually supplanted it. In

another domain a similar evolution took place quite recently when the
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variational approach of partial differential equations gave rise to the
theory of Variational Inequalities which have not much to do with extre-
mum problems,

The classical Calculus of Variations, developed in the context
of differentiability, automaticaliy involves the duality of linear spa-
ces, possibly without formalizing it. In Statics, for instance, it is
usual to characterize the equilibrium configurations of a "frictionless"
system with finite freedom, by equalling to zero the partial derivatives
of the potential energy. This induces to consider these partial deriva-
tives as the "components' of mechanical actions or "forces', in a genral
sense ; in fact this constitutes the correct way to formulate calculation
rules about forces, which are preserved under the change of variables ;
for example if some evolution of the system takes place, one obtains a
simple expression for the work or the power of forces, This benefit in
calculation (and also the possible connection with Thermodynamics) pro-
moted the use of energy methods in many domains ; however these methods
may have been a hindrance when they happened to prevent scientists from
considering phenomena which could not be described by means of potential
functions. Here again one improves by forgetting the variational stimulus
and considering respectively displacements and forces as the elements of

two linear spaces placed in duality by the bilinear form "work''., Such
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was already the underlying idea of the traditional method of virtual

work,

About convexity, on the other hand, it must be noted that
Mechanics was probably the first physical domain to make use of this con-
cept ; this was in formulating the equilibrium condition of a heavy solid
body lying on a horizontal plane : the vertical line drawn from the centre

of mass must meet the convex hull of the points of support. This is ty-

pically aresult concerning unilateral constraints. In fact the study of

dynamical problems for systems of finite or infinite freedom with unila-
teral constraints (e.g. the inception of cavitation in a perfect incom-
pressible fluid ; see MOREAU [7], [&], [9]) initially motivated the
part taken by the author in the development of convexity theory. It must
be stressed that convexity is involved in the theory of unilateral cons-
traints in an essential way ; it is not used as a convenience assumption
made to facilitate mathematical treatment, as it often happens, for ins-
tance, in Optimization,

These lzctures do not deal with dynamics, but only with equi-
librium or quasi-static evolution, i.e, evolution problems where inertia
is negligible, The motion of a system is studied when resistance pheno-
mena, such as friction or the resistance of a plastic system to yielding,

are taken into account. Here again convexity is involved from the stage
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of formulating the resistance law itself, Many mechanists feel that the
occurrence of convexity in this connection is essential, probably with
some thermodynamical significance.

Classical Coulomb's law of friction enters into our general
scheme of resistance laws admitting a (convex) pseudo-potential., It will
be objected that this law gives only a rather rough approximation of the
friction phenomena ; experimentally, when the sliding velocity increases
from zero the friction coefficient begins with decreasing, while the
existence of a superpotential would only allow it to increase. The au-
thor's position in this matter is the following.

Traditional physics almost always starts from linear laws as
first approximations to which improvements have possibly to be added by
taking terms of "higher order"” into account., The common habit of assu-
ming differentiabity in formulations is connected with the same tendency,
as the meaning of differentials is precisely to describe some "tangent"
linear mappings. On the contrary Coulomb's law of friction is radically
nonlinear and nondifferentiable ; nevertheless there is no doubt that
this law agrees with the fundamental features of the friction phenomenon
and as such it is always used in practice as the first approximation,
possibly subject to further improvements. For instance the augmented

friction when the sliding velocity is small or vanishes is frequently



- 180 -

J. J. Moreau

explained as a sort of welding which takes place between the bodies in
contact, and has to be broken when sliding occurs.

Let us suggest that, in plasticity as well as in friction, our
pseudo-potential formalism describes the primary phenomenon exactly as
in other domains of physics the primary phenomena admit linear formula-
tions, This causes no conceptual difficulty ; on the other hand, the
considerable amount of work which has been devoted in recent decades to
optimization techniques makes now available the computational methods
permitting to deal numerically with "subdifferential calculus” and con-

vex analysis.

1, b SUMMARY OF CHAPTER 2

The preparatory Chapter 2 presents the elements of the duality
theory of convex functions and the subdifferentials of such functions.
The articulation of the concepts is sufficiently detailed but the proofs
of the main statements are not given, Except otherwise indicated the
reader may find them in MOREAU [10], a multigraph report. Some are also
given in the recent book of P.J, LAURENT [1], which devotes a chapter
to this subject. Of course, the book of R.T. ROCKAFELLAR [2], yet res-
tricted to finite dimensional spaces, supply much of the fundamental

informations.
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The setting is that of a pair of real linear spaces, say (X,Y),

placed in duality by a.bilinear form denoted as <.,.>. This duality is

spposed seEaratingl i.e, the two linear forms defined on X by
x—><{x,y> and x+w><x,y'> are identical only if the elements y and

y' of Y are equal, and the symmetric assumption is made whith exchan-
ging the roles of the two spaces. Therefore, if one of the two spaces

has a finite dimension, the dimension of the other is the same ; in this
case, every linear form defined on one of the two spaces can be represen-
ted in the preceding way and is continuous with regard to the natural to-
pology of finite dimensional linear spaces, The situation is more compli-
cated for infinite dimensional spaces, Recall in that case that each of
the two spaces, say X for instance, may be endowed with various locally

convex topologies which are compatible with the duality (X,Y) in the

sense that relatively to any of them, the continuous linear forms are
exactly the functions x= <x,y> with arbitrary y in Y. By the sepa-
ration assumption made above, these topologies are Hausdorff ; it is a
classical fact that among them the weak topology o (X,Y) is the coar-
sesf and the Mackey topology T (X,Y) 1is the finest., Observe that, by

usual separation arguments, the closed convex sets are the same relati-

vely to all these topologies,thus in the following we shall sometimes

refer to closed convex sets without specifying the topology. Same remark



- 182 -

J. J. Moreau

for the lower semi-continuous convex functions,

1. ¢ SUMMARY QF CHAPTER 3

Chapter 3 takes up Mechanics by the study of material systems
whose set of possible configurations, denoted by UL, is endowed with a
linear space structure. Such is in particular the case, due to the use
of linear approximation, in many practical situations where it is suppo-
sed that the considered system presents only "infinitely small deviations
from some reference state which constitutes the zero of the linear space
W . By:the bilinear form "work" the linear space U is placed in dua-
lity with another linear space ¥ whose elements represent, in a general
sense, forces applied to the system, An example in § 3. a shows why this
duélity may be supposed separating.

In this framework a statical law is a relation, arising from
the study of some of the physical processes in which the system is in-
volved, formulated between the possible configuration, say u € W, of
the system and some, say f € ¥, among the forces it experiences if it
happens to come through this configuration, Such a relation may depend

on time, The concept of a statical law which admits a potential function

is recalled.

At this stage it is stressed that the word constraint
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possesses in Mechanics a stricter sense than it receives, for instance,
in Optimization (observe that the French mechanical term is "liaison,
while "contrainte"” has other meanings), Describing a mechanical cons-
traint requires fundamentally more information than defining some set
of permitted configurations ; some precisions must be given about the

confining process, in the formulation of which the force of constraint

or reaction is involved, Paragraphs 3, ¢ and 3. d emphasize, in the

linear framework of this Chapter, that frictionless constraints, bila-

teral or unilateral, are statical laws, Precisely they come into the

general class of the statical laws which possess a superpotential, i.e,

the relations between u and f which can be written under the form

- f €3 ¢ (u), where ¢ denotes a convex numerical function,possibly
taking in some part of the space U the value + « . The classical laws
possessing a potential function also belong to this class, as far as the
potential function is convex,

If all the mechanical actions experienced by the system (possi-
bly excepting forces which vanish in any exp=cted equilibrium) are re-
presented by the conjunction of statical laws admitting time-independent
superpotentials, the equilibrium configurations trivially possess some
extremum properties in the space (L . Paragraph 3, f supposes that all

these mechanical actions have been grouped in order to be summarized as
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the conjunction of two statical laws admitting the respective super-
potentials ¢1 and ¢2 3 then u € U is an equilibrium configuration
if and only if there exists fl € F such that - fl €9 ¢1 (u) and

fl €0 ¢2 (u). The determination of f. priortothat of u is classically

1

called a statical approach to the equilibrium problem ; the duality theo-

ry of convex functions immediately yields some extremum formulation for
* *
this problem., This imnvolves the respective dual function ¢1 and ¢2

of and , generalizing the so-called complementary ener of
1 > g y gy

linear elastostatics, Similar correspondances between extremum problems

formulated in two paired linear spaces are a familiar feature in convex

optimization, as well is familiar the connection of such a pair of pro-

blems with a saddle-point property concerning some function called a

Lagrangian, In fact, Paragraph 3. g gives a simultaneous characteriza-
tion of u and fl as a saddle-point in the product space Ux§¥ . As
all the preceding pattern may usually be applied to each definite mecha-
nical system in several different ways, it is éble to generate a great
number of extremal or saddle-point characterization of equilibrium, The
foregoing concepts were first published as a short Note (MOREAU [11])
in which proofs were not given,

/ Paragraph 3, h illustrates the formalism by some examples of

one-dimensional systems, Paragraphs 3, i and 3. j emphasize the
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application to a lattice of bars ; this introduces two pairs of finite
dimensional linear spaces (X,Y) and (E,S), a linear mapping D from
*

X into E and the adjoint mapping D from S into Y : this is a
very common algebraic pattern in elastostatics. Various ways of exploi-
ting it are‘presented s in particular the last one is meant to prepare
for the evolution problem of elastoplastics, to be treated in Chapter 6,
More details about continuous media and the function spaces involved in

their study are given by B. Nayroles in his lectures,

1. d SUMMARY OF CHAPTER 4

This Chapter, devoted to resistance laws does not require a
linear space structure for the set of the possible configurations, In
fact it is a constant feature in Mechanics to associate with each con-
figuration of a system a real linear space Y ;s the elements of Y cons-
titute, in some sense, the values that may take the velocity of the sys-
tem if it comes through the considered configuration. A second linear
space ¥ 1is also associated with each configuration ; the elements of
¥ form, in a generalized sense, the possible values of forces which may
be applied to the system at an instant it happens to have the considered
configuration. The spaces Y and ¢ corresponding to a given configu-

ration are placed in duality by a bilinear form : (v,f> denotes the



- 186 -

J. J. Moreau

power of the force f € F§ 1if the system possesses the velocity v € V.
In the special case of Chapter 3, it turns out that v may be identified
with Ll and the same ¥ is associated with every configuration,

We call in general resistance law a relation formulated between
the possible velocity v € V' and a force say f € § , arising from some
of the physical processes in which the system is involved, This is pro-
perly a resistance phenomenon if the relation is dissipative, i,e. if it
implies <v,f>< 0.

Here again, the case where it exists a function ¢ defined on

V", called the pseudo-potential of the resistance law, such that the

relation takes the form - f € 3 ¢ (v) deserves special attention. If,
in particular O € 3 ¢ (0), the relation is sure to be dissipative ; the

pseudo-potential is called in this special case a resistance function

and one may suppose without loss of generality, that ¢ (0) = O, An ele-
mentary example is that of viscosity laws : then ¢ 1is a quadratic form,
traditionally called the Rayleigh function.

The main application of these ideas concerns dry friction and
plasticity ; this corresponds to a function ¢ which is sublinear, i.e.
convex and positively homogeneous, Equivalently, ¢ is the support func-

tion of a closed convex subset of ¥ |, denoted by -C , containing the

origin, An essential fact in such a case is that the considered



- 187 -

J. J. Moreau

resistance law, namely - f € 3 ¢ (v), neither defines f as a single-
valued function of v nor v as a single-valued function of f ; to

v = 0, in particular, correspond as possible values for f all the points
of C . This is a familiar feature of the Coulomb law for dry

friction or of the Prandtl - Reuss law for perfect plasti-

city. In their conventional formulation the? may, at first sight, look
like a piecing together of heterogeneous empirical data ; the present
formulation on the contraty reveals the strong mathematical consistency
of each of these lawa, The rest of these lectures is meant to display
the efficiency of such an approach. The reader will see, on the other
hand, in P, GERMAIN [1] how our pseudo-potential formalism may take
place in the more familiar setting of a textbook on Continuum Mechanics,

For what concerns Coulomb's law of dry friction it will be
objected that, in most practical problems, the normal component éf the
contact force, which enters here in the expression of ¢ as a constant,
is unknown, Our position is to consider this quantity as one of the sta-
te variables of the system,

Paragraph 4, d comes back to perfect constraints as they were

introduced by Chapter 3., In the present kinematical context, these cons-
traints are manifested as relations between the velocity of the system
and some force acting on it, namely the reaction of the constraint. These

relationstoo can be represented by means of pseudo-potentials and the
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same is true for the nonholonomic perfect constraints of traditional
Mechanics (actually an extreme case of friction) : we propose to refer

to such relations as velocity constraints.

Friction or plasticity. laws, as well as viscosity laws, exhibit
a very usual property : the corresponding dissipated power = (v,f> can
be expressed as a single-valued function of the velocity, classically

called the dissipation function, There is a priori no reason for this

funption to be related to the pseudo-potential if it exists ; paragraph

4, £ characterizes the resistance laws for which such a relation holds.
The chapter ends with remarks about viscoplasticity : adding

some viscosity to a resistance law of the plasticity or friction type

described above, amounts to replace the indicator function ¢C of the
1} 3

set C (the function taking the value O on this set and + o outside)

by a penalty function of the same set,

1, e SUMMARY OF CHRPTER 5

This is a purely mathematical part, The application of the
foregoing mechanical formalism to evolution problems requires, in parti-
cular, some investigations about the motion of a set.

By means of Hausdorff distance, the classical concept of the

variation of a function defined on a real interval is adapted to moving
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sets in a metric space ; the absolute continuity of such sets is similar-
ly introduced.

As convex subsets of a normed space may be described in terms

of their support functions, a special approach of méving sets is develo-

ped for this case, In the same setting of normed spaces and convex mo-

ving sets, Paragraph 5, c¢ establishes an intersection theorem which

formulatessufficient conditions for the intersection of two absolutely
continuous convex moving sets to be itself absolutely continuous.

The rest of the Chapter is restricted to Hilbert spaces.,
Paragraph 5. b considers among other topics the distance from a moving
point tv z(t) to a moving convex set tr> C(t) ; if both are absolu-
tely continuous the distance is an absolutely continuous numerical func-
tion and some inequality involving derivatives is established, as a pre-
paration for the following.

Paragraph 5. ¢ introduces the sweeping process associated
with a moving convex set in the Hilbert space H. This gives a fundamen-
tal example of an evolution problem under unilateral constraint ; from
the mathematical standpoint this process features also as a constituent
of several more complicated situations ; in particular it will be met
again in the treatment of the elastoplastic problem of Chapter 6. The

author has already devoted several studies to this problem, mainly
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published as multigraph seminar reports (cf, MOREAU [17], [18], [20],
[21]). The method used in § 5. g to establish an existence theorem con-
sists in a regularization technique, equivalent in the present context
to representing the given moving convex set by penalty functions.

The Chapter ends with an algorithm of time discretization for

the.solution of the sweeping problem ; the convergence of this algorithm
is proved by using again regularization, but with a time-dependent

"penalty coefficient'.

1. £ SUMMARY OF CHAPTER 6

This final Chapt?r shows how all the foregoing operates when
applied to the quasi-static evolution problem for elastoplastic systems.
This involves a linear space Ul as configuration space and, according
to the conventional conception of elastoplasticity, the system is treated
as formed by two components : the "visible' or "exposed” component, deno-
ted by " x € U , and the "hidden" or "plastic” component denoted by
p € u . The elastic restoring force depends only on the difference x-p.
The component x undergoes perfect constraints and loads, both depen-
ding on time in a given way. The component p undergoes a resistance
related to its "velocity" ﬁ by a law of the type studied in & 4,

This is only perfect plasticity, but a very simple example suggests that
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strain hardening too could be taken into account by a similar pattern,

provided a sufficiently large space would be affected to the "hidden' or

"internal" variable p ; this point of view is adopted by several

’

authors.

Great simplification is brought by a notation trick by which
the configuration space !l and the force space ¥ are identified with
a single Hilbert space H ; the norm in H 1is related to the elastic
energy.

An existence theorem is proved by reduction to the sweeping

process of Chapter 5 ; thereby a time-discretization algorithm is
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2 DUALITY ANC SUBDIFFERENTIALS OF CONVEX FUNCTIONS

2, a POLAR FUNCTIONS

let X , Y be a pair of real linear spaces placed in separating
duality by the bilinear form (.,.>» Let f be a function defined, for
instance, on X, with values in R = [- o, + m]. Consider the affine
function defined on X by
(2.1) x P Lx,y> - p
with y fixed in Y, called the slope of this affine function, and p
fixed in R ; such is the general form of the affine functions which are
continuous for some, then for any, locally convex topology on X compa-
tible with the duality.

An usual guestion is that of determining wether this affine
function is a minorant of f ; a trivial necessary and sufficient con-
dition for that is
(2.2) p;Z sup [¢x,y> - £(x) ] .

x € X
*
Attention is drawn thereby to the function f defined on Y by
*
(2.3) f (y) = sup [(x,y> - £(x)]
x € X
called the polar function of f,

*
In particular the equality f (y) = + », for some y € Y,

means that f possesses no affine minorant having y as slope ; such is
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the case, for instance, whichever is y, if f takes somewhere in X
the value = o .

EXAMPLE, ILet A be a subset of X ; take as f the indicator function

¢A of A, i.e,
[o] if x€ A
¢, (x) =
A + oo if x f A .
Its polar function
. .
Yp )= sup [Kxy> -4, (0)] = sup <x,y>
X €X x € A
is classically known under the (rather improper) name of the support
function of A, Take y different from zero in Y and o € R ; the af=-
fine function (2,1) is a minorant of ¢A iff the closed half space
{x €X : Lx,y>-p s; O} contains A. In view of condition (2.2) this
. .
is possible only if ¢A (y) { + e ; in such a case taking exactly
*
p = ¢A(y) yields a half-space which is minimal, with regard to inclu-
sion, among the half-spaces containing A ; but that does not mean this

half-space is necessary a "supporting half-space"_; its boundary hyper-

plane need not meet A, even when A 1is closed and convex,

2. b PAIRS OF DUAL FUNCTIONS
For the construction of the supremum in (2.3) one may equiva-

lantly consider only the values of x such that £(x) ¢ + » . Therefore,
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*
whichever is f, the function f belongs to the set, denoted by

I' (Y,X), of the functions on Y which are the pointwise suprema of col-

lections of affine functions like y P (x,y> -0, x € X, 0 € R , Using

Hahn-Banach's theorem, one proves that, besides the constant - » (it
is the supremum of an empty collection), the set T (Y,X) consists
exactly of the functions on Y, with values in ]— 0, + m], which are

convex and 1,s.c., for some locally convex topology on Y compatible

with the duality (Y,X), then 1,s,c. for all such topologies.

The spaces X and Y play here symmetric roles ; there is no
inconvenience in denoting in the same way by the star * the function
defined on X as the polar of a given function'on Y, Then the b?polar
of f 1is defired on X by

& (x) = sup [¢x,y> - £ )]

y €Y
The construction of this supremum may be equivalently be restricted to
4
*, *%
the values of y such that f (y) is finite ; that means f is the
supremum of the affine functions like (2,1), with p verifying equality
*%
in (2,2) ; they are the maximal affine minorant of £, so that f may
also be defined as the pointwise supremum of all the affine function of

the form (2,1) which minorize £, This supremum is equivalently charac-

terized as the greatest element of T (X,Y) minorizing f or I~ hull
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For instance, if A 1is a subset of X, the T - hull of the
indicator function wA is the indicator function of the closed convex
hull of A,

The preceding implies that if it is a priori supposed that

f €T (X,Y) and g € T (Y,X) one has the equivalence

Then f and g are said mutually polar or conjugate or dual functions., In

this way the star #* induceg a one-to-one correspondance between I (X,Y)
and T (Y,X) ; as the constant + » correspondes to the constant - e,
the correspondance is also one-to-one between the elements of T (X,Y)
and T (Y,X) other than these singular constants : these elements are

called the proper closed convex functions on X and Y,; the setsof them

will be denoted by Po (X,Y) and Po (Y,X) respectively,
From the definition of polarity it immediately follows
VXEX , VYEY : £(x)+ gly)> Lx,y>

called Fenchel's inequality.

REMARK ON TERMINOLOGY. Most of the words introduced by the preceding
definitions are the English transcriptions of French terms currently used
by French speaking people after the author's multigraph report of 1966

(MOREAU [10]), This involves but slight discrepancies from the book of

R.T. ROCKAFELIAR [2] : following the 1949 initiating paper of
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W. FENCHEL [1], Rockafellar prefers the locutions "conjugate function:'
to "dual functions”, It may be inconvenient to call also conjugate of f,
as he does, the function f* associated by (2,3) with some f which
does not necessarily belong to I (X,Y).As this so called "conjugacy" is
no more a symmetric correspondance, the author chose in the 1966 report,
to use in this connotation the térm polar function., Unfortunately, in the
meantime, Rockafellar applied the word polar to another kind of corres-
pondance (cf. Sec, 15 of his book) concerning nonnegative closed convex
functions vanishing at the origin, which generalizes some classical con-
Jjugacy of gauge functions (see § 2, h below) ; but there does not seem

to be much risk of confusion.

2. ¢ IMAGES OF PROPERTIES OR RELATIONS

Many properties or relations concerning functions defined, for
instance, on X, imply some propertiés or relations concerning the polar
of them., Here we restrict ourselves to a few of these "images by polari-
ty" considering exclusively functions f, fl’ f2, e which bflong to
} (X,Y) and denoting by g, 817 By een their polar (i.e, Aual) func-
tions,

Easy calculation 'yields :

1° Homothety. If o € R is a non zero constant, the identity
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Vx€X fl(x) = fz(c x)
is equivalent to
Vy€ey ) = e, &y
y : gl y = g2 pe- y .

2% Multiplication by a positive constant. If A is a strictly positive

constant, the identity

vV x€X fl(x) A fz(x)
is equivalent to

Vy€ey : gl(y) = )\gz()\iy) ;
the right member is sometimes written as a yright product by A" .
notation g, = & AL

In particular a function g belonging to T (Vv,X) 1is the
support function of a subset of X (or equivalently the support function
of the closed convex hull of this subset) if and only if its dual f is
an indicator, i.e, this dual takes only the values O and + o . That
means f remains unchanged under the multiplication by any A > O ; in
view of the preceding, this is equivalent to g being positively homo-
geneous (i,e., sublinear, due to the assumed convexity of g). A more
special situation is that of a function g belonging to T (Y,X) which
at the same time is an indicator function and is sublinear : this hap-
pens if and only if f possesses the same properties ; in such a case

f and g are respectively the indicator functions of two mutually polar
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(closed, convex) cones, P and Q, i,e,

Il

Q fyey : vxepPrP , «(x,y>< 0}
and symmetrically

P fxex: vyeq , (x,y><0} .

1l

3° Translation, If a € X and a € R, the identity
Vx€X fl(x)=f2(x—a)+a

is equivalent to

Vyey : gl(y) = gly) +{a,y> - «a
4° Product spaces. Let (Xi,Yi), i=1,2, ..., n, be n pairs of real

linear spaces placed in duality by n bilinear forms respectively deno-

ted by (.,.>i. If x = (xl, x2, .y xn) denotes the generic element

of the linear space

X:XIXXZXU‘XXH
and y = (yl’ Yor «ves yn) the generic element of the linear space
Y:lesz...xYn
the bilinear form
6, ¥7> = X,y +£%,,¥,% + oo +4x L,y >

places X and Y in duality. For each i, denote by fi’ g; a pair of
functions defined respectively on Xi and Yi and mutually polar with
regard to the bilinear form (. ">i' It is easy to see that the functions

f and g defined on X and Y respectively by
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!

£(x) = fl(xl) + f2(x2) + oo, + fn(xn)
gly) = g ly)) + g,y + .o+ g (V)
are mutually polar with regard to (.,.>.
The following result is less trivial (see proofs in MOREAU
[3] or [10]) :
59 Continuity. The setting is again that of single pair of linear spaces

finite and

(X,Y), The function f € T (X,Y) igAcontinuous at the origin for some

locally convex topology on X compatible with the duality (then for the
Mackey topology T (X,Y) which is the finest of them) if and only if the
dual function g € T,(Y,X) is inf-compact, i.e. for any k € R the
"level set” or "slice” fy €Y : g(y)< k! is compact for some (local-
ly convex) topology on Y compatible with the duality (then for the
weak topology o (Y,X) which is the coarsest of them), Note that, due to

the convexity of g, a sufficient condition for that is the existence of

some k > inf g such that this compactness holds.

Using translation (cf. 3° above) one concludes that the conti-
nuity of f at some point x0 € X 1is equivalent to the compactness of
the "oblique slices of g with slope xo", i.,e, the sets

Iy €Y & gy ~¢x_, y>< K

2, d INF - CONVOLUTION AND THE IMAGE OF ADDITION

Let us denote by ; the commutative and associative operation
extending classical addition to any pair of els=ments of E = [= o, + o]

by putting (- ) P e) =t (symmetrically the operations + extends
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classical addition by the convention (= &) + (+ @) = = o).

f be functions defined on the linear space X with

Let f,, f,

values in ﬁ ;5 the function f defined on X by
(2.4) £(x) = inf [£ (W) H £,(x - W] = inf [£(x - V) + £, (v)]

u€ X . v EX

is called the infimal convolute, or shortly inf-convolute, of fl and

f, ; it is denoted by fl \% f2 (or also f O f as in ROCKAFELLAR [2],

2 18 £,

when there is no risk of confusion with the supremal convolute fl A fz,

which would be symmetrically defined by using "'sup” and +). This opera-

tion is commutative and associative ; if fl and f2 are convex, so is

fl v fz, etc. ..

Example 1, If fz is the indicator function of a singleton {a?, then
fl v fz is a translate of fl, namely the function

X - flfx - a) .

Example 2, If A is a subset of X and ||.|| a norm on this linear

space, then (4, V |[.l) (x) is the distance from the point x to_the

set A.
Example 3, If A and B are two subsets of X, the inf-convolute
wA v ¢B is the indicator function of the set

A+B = {x€X : 3a€A , 3IbEB , x = a+bl,

Coming back to the setting of the pair of spaces (X,Y) in dua-

lity, the computation of polar functions yields easily
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(£. v £.) e
1V 5 = vty

Suppose now that fl and f2 belong to T (X,Y) and that

g, and g, are their polar (i.e. dual) functions ; taking the polars
of both members of the preceding. equality leads to

** *
(2.5) (f1 v fz) (gl + gz) .

Addition + is a composition law in T (Y,X) ; (2.5) describes the com-
position law in T (X,Y) which is the image of it by the one-to-one

*
mapping ; this composition law is the T - hull of inf-convolution (cf.

8§ 2. b above) ; we denote it by Y ; it may be called T -convolution,

Of practical importance are the cases where fl vV £ happens

2
to belong to T (X,Y) so that the double star may be omitted in (2.5).
Let us just formulate here the two most usual of them,

It is still assumed that fl and f2 belong to T (X,Y).
1° Suppose that the set, denoted by cont f1, of the points where f1

is finite and continuous, for some topology compatible with the duality,

and the set

dom £, = {x € X : £_(X){ + o}
2 2
are such that
cont fl + dom f2 = X .
Then f1 v f2 is either the constant -~ or is finite and continuous

everywhere in X for the considered topology ; therefore
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fl v fz € I (X,Y), hence fl \Y f2 = fl v f2 .
20 Suppose that there exists a point Yo in Y at which both func-
tions gl and gy are finite, one of them continuous at this point (for

some topology compatible with the duality) ; then £, Vi, € T X,Y) ;

2
furthermore this inf-c¢onvolution is exact, i,e,, whichever is x, the
infimum in (2.4) is a minimum, Note that the hypothesis is equivalent to
the following : both functions x b fl(x) -{x, y0> and

x P fz(x) -<x, yo> are bounded from below and one of them is inf-

compact for the weak topology o (X,Y) (cf. § 2 c) .

2. e SUBGRADIENTS AND SUBDIFFERENTIALS

lLet f denote a function defined on X, with values in i 3 an
element y of Y 1is called a subgradient of f at the point x € X if
y is the slope of an affine minorant of f exact at the point x, i,e,
taking at this point the same value as f. This requires that the value
f(x) is finite and that the expected minorant has the form

uek <u-~- x,y> + £(x) .

Using condition (2.2) for an affine function to minorize £, one obtains
the following representation for the set, denoted by 9 f(x), of the sub-
gradients of f at the point x

a f(x)=f{y€evy f*(y) -{x,y»>< - £(x)}
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This set is called the subdifferential of f at the point x., The con-

i *
vexity and the lower semicontinuity of f imply that 9f(x) is a con-
vex, possibly empty, subset of Y, closed for the topologies compatible
with the duality (Y,X). If df(x) is not empty the function f is said

to be subdifferentiable at the point x.

Trivially the function f possesses a finite minimum attained

a\'\d
at the point x if only if df(x) contains the zero of Y.
~

Recall that the function f 1is said weakly differentiable, or

Gateaux-differentiable, at the point x, relatively to the duality (X,Y),
if there exists y € Y (necessarily unique) such that for any u € X,

the function t b f(x + t u) of the real variable t possesses for

t = 0 a derivative equal to {u,y> ; the element y is called the weak
gradient, or Gateaux—gradient, of the function f at the point x, rela-
tively to the duality (X,Y). If in addition the function f is convex,

one easily finds that the subgradient df(x) consists of the single

element y. When X 1is a normed space, Y its topological dual, all this

a fortiori holds if f is Fréchet-differentiable at the pcint x,

Subdifferentiability finds its clearest setting when a pair of
dual, i,e, mutually polar functions f € Ig (X,Y) and g € To (Y,X) is

considered, Then, for x in X and y in Y the three following pro-

perties are equivalent :




- 204 -

J. J. Moreau

(2.6) y € af(x)

2.7) . x € dg(y)

(2.8) £f(x) + g(y) = &x,y> = 0

observe that, by Fenchel's inequality, the = sign gbove may equivalen-

tly be replaced by s; . If these properti;s hold, the points x and y

are daid conjugate relative to the pair of mutually polar functions (f,g).
EXAMPLE., Take as. f the indicator fgnction wc of a nonempty closed convex
subset of X, Then the relation y € 2 wc(x) is trivially equivalent to

the following : the point x belongs to C and the set

fu€ex : ¢u-x, y>< 0} contains C. If y differs from the zero of

Y this set is a closed half-space whose boundary is a supporting hyper-

plane of the set C at the point x ; then one classically says that

Yy € Y is an outward normal vector at the point x of the convex set

C C X. Let us agree to take this locution in a weak sense, by considering

also the zero of Y as a normal vector at the point x if it belongs to

’

2 ¢C(x) ; thus the set 0 ¢c(x) will be called the outward normal cone
at the point x, This cone is empty if x ¢ C ; if x € C it contains at
least the zeio of Y and reduces to this single element, in particular,

when x 1is an internal point of C (i.e, every straight line drawn to

x 1intersects C along a segment to which x is interior). In terms of
O

*
the support function ¢c of C, condition (2,8) yields that if x
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belongs to C one has

agﬁc(x) = fy€y dl;(y) = <x,y> 1

*
fyevr : .0 <exy ]

t

REMARK, For a pair of spaces (X,Y) with finite dimension and convex
functions f, g which are differentiable, relations (2.6), (2.7), (2.8)
show that the correspondance between f and g reduces to the classical

Legendre transform,

Let us come back to the case of an arbitrary f and possibly
infinite dimensional spaces. By associating with every x € X the subset
3f(x) of Y one defines a multimapping (also called a multifunction, or
a multivalued mapping, or a set-valued mapping) from X into Y. Indepen-
dently of the formalization of subgradients and the "subd;fferential cal-
culus" (MOREAU [2] ; similar ideas were also present in Rockafellar's
Thesis, Harvard, 1963) this multimapping was considered in G.J. MINTY
[1] as the leading example of monotone, possibly multivalued, operator.
In fact whichever are x and x' in X, whichever are y in £ (x)
and y' in 9f(x'), if any, one finds easily

¢x-x',y-y> > o0

which is, by definition, the monotony property of the multimapping df.
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2, £ ADDITION RULE

The main calculation rule for subdifferentials concerns addi-
tion, If f1 and f2 are two numerical functions, defined for instance
on X, the inclusion

(2.9) afl(x) + afz(x) C a(f1 + fz)(x)

is trivial, If this inclusion holds as an equality of sets the functions

fl and f2 are said to possess the additivity of the subdifferentials

at the point x .,

Let us indicate two usual sufficient conditions for that :
1° If both functions fl and f2 are convex, one of them weakly diffe~
rentiable at the point x, inclusion (2,9) holds as an equality of sets,
2° If both functions fl and fz are convex and if there exists a
point xo in X at which one of them is continuous, with both values
fl(xo) and fz(xo) finite, inclusion (2.9) holds as an equality of sets
for every x in X, Continuity must be understood here in the sense of
some (locally convex) topology compatible with the duality (X,Y) : thus
the less stringent hypothesis is obtained by taking the finest of them,
i,e, the Mackey topology < (X,Y).
EXAMPLE, Make fl =f, a functiqn defined on X, with values in

]- e, + »] and fz = ¢C’ the indicator function of a non empty subset

C of X. The problem of minimizing the restriction of f 22 C 1is




- 207 -

‘J. J. Moreau.

clearly equivalent to that of minimizing, over the whole of X, the func-

tion f + ¢C s a minimizing point x is characterized by

(2.10) 0€a(f + ¢C) (x)
a condition which is implied by

(2.11) 0 € 3f(x) +2 ¢c(x) .

&
When the additivity of the subdifferentials holds, conditions (2,10) and
(2,11) are equivalent,

Such is the case for instance, by 1° above, if the set C is

convex, and the function f convex, everywhere weakly differentiable :

then (2,11), written as
(2.12) - — grad f(x) € 3 ¢C(x)
is a necessary and sufficient condition for x to be a solution of our
"constrained minimization problem". Make in particular X =Y = H, a
separated pre-Hilbert space with the inner product (.].) playing the
role of the bilinear form ¢(.,.>. Let a be an arbitrary element of H ;
define the function' f by

£(x) = é-(x—a | x=a) =-% IIx-a]|% .
Elementary calculation oroves that this function is convex and weakly
differentiable relatively to the duality (H,H), with

grad f(x) = x-a .

Then (2,12) yields a necegsary and sufficient condition for x to be
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the nearest point to a in C

(2.13) a-x€29 ¢C(x) H

such an x is denoted by projc(a) or proj (a, C), if it exists. Uni-
queness of this points results from f being strictly convex ; recall
on the other hand that if H is comglete; i,e, if it is a Hilbert space,

the existence of projc a 1is secured for any a € H.

2, g IMAGES BY LINEAR MAPPINGS
Let (F;G) be another pair of linear spaces, placed in separa-
ting duality by a bilineat form denoted by ¢.,.>>. Let A be a linear

mapping ¥rém F ijato X, weakly continuous (i.,e. continuous from F

endowed with any topnlogy compatible with the duality (F;G), to X en-
dowed with the weak topology o (X,Y)). Weak continuity implies the exis-

*
tence of the adjoint (or transpose) of A, i.e, the linear mapping A

from Y into G such that
*
Vu€e€F , Yy€Y : <Au,y> = (u, A y>> |,
Let f € T (X,Y) ; clearly the function
foA : uw f(A u)
belongs to T (F,G) ; one proves (see ROCKAFELLAR [3] ) that its dual

*
function (f o A) is the T - hull of the function defined on G Ez_

* *
(2.12) ve inf {f (y) :+ A y = v} .
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If in addition there exists a point in the range of A at

which f is finite and continuous (for some topology compatible with the

*
duality (X,Y)) then (f o A) equals the function (2,14) itself, Under

the same assumption, for every u € F, the subdifferential d(f o A) (u)

*
is the image of 9f(A u) C Y under the mapping A ; this may be expres-

sed by writing

*
(2.15) 3(f oA) = A odf oA .

2., h CONJUGATE GAUGE FUNCTIONS AND QUASI - HOMOGENEOUS CONVEX
FUNCTIONS
The setting is again that of a single pair of spaces (X,Y),.
Let A be a closed convex subset of X containing the origin ; denote
by B the polar set of A, i.e,
B = {yey : vxea , ¢x, o<1} .
Then A is, symmetrically, the polar set of B, It is easily seen that

the gauge function of A, namely the function a defined on X by

a(x) = inf {A € ]O, + ef :II-XEAg,

is the support function of B ; symmetrically the gauge function b of

B 1is the support function of A, We shall refer to this situation by

saying that (a, b) 1is a pair of conjugate gauge functions.

For sake of simplicity bet us restrict ourselves here to the
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case where both functions take only finite values ; this means that A

is absorbent in X (i.e. the origin is an internal pcint) and that it is
bounded relatively to the topologies compatible with the duality ; equi-
valently B possesses the same properties in Y. Such is the case, for
instance if X 1is a given normed space, Y its dual endowed with the
usual norm : the respective norms form a pair of conjugate gauge func-
tions and the corresponding mutually polar sets are the closed unit balls
of the two spaces,

One finds

(x'y>

b(y) = sup =

acX a
and the symmetrical relation (this can be extended to possibly infinite
valued conjugate gauge functions, under some notational precautions),

Consider on the other hand a mapping ¢ from [0, + | into
[0, + .] possessing the following properties : ¢ is convex, non de-
creasing, lower semi continuous and ¢ (0) = O (actually ¢ is conti-
nuous on the interior of dom ¢ = {E € [0, + el : #(E) £ + w}). Clas-
sically, with such a function is associated its Young conjugate 7y defi-
ned on [0, + o[ by

y (n) =sup En~-¢ E)

which possesses the same properties ; ¢ 1is, in turn, the Young conju-

gate of "y .,
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Examples :

1 1
1° $CE) = = &P , y (n) ==t

p q
where p and q denote two constants in ]1, + m[ , such that
l/p + l/q =1,
20 o) it o< <A

P(E) =L E , y(n) =
+ o if A €N ¢ + o

where A € [0, + o[ 1s a constant,
Exclude the singular case where one of the two functions ¢
and 7y is the constant zero. Then one proves that the functions

f=¢goa B g =7y ob respectively defined on X and Y, i,e,

£(x) = ¢ (a(x)) , gly) = vy (b(y))

are a pair of dual functions.in the sense of the preceding paragraphs,

Each of these functions is said quasi-homogeneous (or gauge-

like in ROCKAFELLAR [2]) ; in fact in the special case where

Ep, the function f is positively homogenous with degree bp.

¢ E) =

o~

The functions defined in this way, for instance on X, may be characteri-
zed as follows : they are the elements of PO (X,v) such that the va-
rious sets f{x € X : f(x) < k} (the "slices" of f), for k R
are homothetic to A. (they are empty for k ¢ O),

Concerning the determination of the subdifferentials of these

functions, let us only indicate : Two points x € X and y € Y are
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conjugate relatively to (f,g) if and only if

¢ (a(x)) + y (b(y)) = a(x) bly) = <£x,y> .
The first equality may be interpreted by saying that the real numbers
a (x) and b (y) are conjugate points with regard to the pair of
Young conjugate functions (¢,y) ; if x and y are different from the
respective origins of X and Y, the second one expresses a property
of the "rays" (i,e., one~dimensional cones) they generate in .X and Y ;

such rays may be said conjugate relative to the pair of conjugate gauge

functions a and b,
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3 SUPERPOTENTIALS AND PERFECT CONSTRAINTS

3. a CONFIGURATIONS AND FORCES

In this Chapter is considered a mechanical system of® whose set
of possible configurations, denoted by»li,, is endowed with a linear space
structure, Such is traditionnally the case, due to the use of linear ap-
proximation, if the system presents only "small deviations” from a cer-
tain reference configuration which constitutes the zero of u .

The bdlinear form work places the linear space u in duality
with a linear space ¥ whose elements constitutes, in a general sense,
the possible values of forces experienced by the system, Precisely {u,f>
denotes the work of the force f € ¥ for the displacement u €U of the
system, For sake of clarity, we shall in some cases comply with the habit
of denoting a displacement by such a symbol as & u ; this symbol is
meant to recall that the considered displacement equals the difference
between two elements of L representing some configurations ; actually,
in the present frame work, due to the existence of the privileged confi-
guration "zero", configurations as well as displacements are elements of
U, thus have the same algebraic nature,

After replacing, if necessary, the considered spaces by some

quotients, it may be supposed that this duality is separating.



- 214 -

J. J. Moreau

EXAMPLE, Take as ¢§ a perfectly rigid body performing only 'infinitely
small" motions in the neighborhood of the reference configuration, From
this reference state, each possible configuration of the body may be des-
cribed by the correspording field of displacement vecters, say

u : x> :(x). Due to the rigidity of the body and to the fact that dis-
placements are, by approximation, treated as infinite]y small this field
possesses the property of equiprojectivity ; the totality of equiprojec-—
tive vector fields is well known to form a linear space of dimension 6 :
such is U in the present case., For sake of brevity let us accept only

as acting on o® finite families of forces in the sense of elementary

Mechanics. Such a family may be described as a vector field ¢ : x**'$(X)
taking the value zero everywhere except on a finite set of points and its
work for a displacement field u ceW is classically defined as the fini-
te sum w =32 u(x). z(x). For a fixed ¢ the mapping ur>w is clearly
a linear form on the space & ; on the other hand, the set & of the
possible ¢' s 1is naturally endowed with a linear space structure which
makes that, for a fixed u, the work w is a linear form of ¢, But the
space & clearly has an infinite dimension, so that this bilinear form
cannot place & and & in separating duality. The classical procedure
consists in treating as equivalent two families of forces, say ¢ and
¢', such that

Vuel 3 U x) = T ax). §'(x).
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The corresponding equivalence classes are called torsors, In other words,
if @0 denotes the linear subspace of & formed by the families of for-
ces which yield a zero work for any u € U , torsors are the elements of
the quotient space & / @0, with dimension 6. Such is § in the present
case ; the duality between & and § is then separating,

PRODUCT SPACES. Suppose the mechanical system ¢ consists in the con-
junction of n possibly interacting systems Of;, efz, ey d"n whose res-
pective configuration spaces are the linear spaces ?-ll,uz ey ?.(n B
Then the configuration space of of° is the product space Ul xUZ X ees
c. xun , naturally endowed with a linear space structure, Denote by ?i
the force space corresponding to the system d°i , a linear space placed
in separating duality with Ui by the bilinear form <.,_>i . A force f
exerted on the total system & is a n-tuple (f f , fn)

,

1 To0 e
fi € S‘i ; this is the generic element of the product space
. X an . The work of f for a displacement
, ..., u) of & is by definition the sum
2 n
u,f> = 2,<ui’ fi>i
i

in which we recognize the natural bilinear form placing the product spa-
ces U an ¥ in separating duality (cf. § 2, c¢).

This construction of 2 and § as the products of the respec-

tive spaces corresponding to subsystems of S is a customary procedure

in computation, It prepares alsc for the application of our general
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pattern to continuous media, as developed in B, Nayroles's lectures
then WU and § are some linear spaces of measurable functions, with
regard to a certain non-regative measure. The sum which above defines

the work is replaced by an integral,

3. b STATICAL LAWS

A statical law is a relation, denote it by 2, between the
configuration u € U that the system o may occupy and some, say
f € ¥, among the forces it may experience when it comes through this
configuration, Such a relation arises from the study of some of the phy-
sical processes in which th: system is involved,

Instead of relations as R®, one may equivekntly speak of multi-
mappings from one of the two spaces into the other ; for instance, toevery
u in U corresponds the (possibly empty) set, denote it by R(u), of
the elements f of ¥ wh..n are related to u by &%

In particular it may happen that the set R(u) consists, for
e .h u, of a single element ; then the statical law is described as a
single-valued mapping ur» f from U into ¥, If, in addition, there
exists a numerical function W :W - R such that this mapping is expres-
sed by

f = - grad W(u)

(weak gradient or "Gateaux differential” relative to the duality defined



- 217 -

J. J. Moreau

above) it is classically said that the considered statical law admits W
as potential,

The sir plest statical law imposes the value fo €EF of a cer-
tain force acting on the system, independently of the configuratiou u,
Such & constant mapping from W into ¥ evidently admits the potential
W expressed by

W) = =-<u, £> -

EQUILIBRIUM, Suppose that all the physical processes in which the system
d‘ takes part imply forces, acting on it, which eitber vanish in any ex-
pected equilibrium or are n forces fl, f2’."" fn respectively rela-
ted to the configuration u by n statical lawmsindependent of time,

denoted by fl’ R .y %n . Then the equilibrium problem consists in

o -

determining the values of u in U possessing the following property

there exist fl’ f2, N f4 in ¥ respectively related to u by the

relations %1, ? ﬁn and such that fl + f_ + ...+ f_ = 0.

07t 2 n

According to the "principle of virtual work" and due to the way in which
F§ has been constructed as a quotient space placed in separating dua’ity
with 21, these values of u correspond in fact to the equilibrium con-

figurations of &, i.e, the configurations in ‘hich immobility is a mo-

tion compatible with our physical information about this system,

Equivalently, if Rl’ gy eeos Rn denote the multimappings

corresponding as above to the n statical laws, the equilibriuv.
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configurations are characterized by
0 € Rl(u) + Rz(u) +oiee + Rn(u).
Let us stress at last that the concept of statical law, as we
just defined it, is not restricted to the study of equilibrium problems.
In evolution problems also, statical laws will be considered, possibly

depending on time,

3, ¢ FRICTIONLESS BILATERAL CONSTRAINTS

The description of a constraint in Mechanics requires fonda-
mentally more information than merely defining a set of permitted confi-
gurations.This description always includes some indication concerning

the forces of constraint or reactions experienced by the system and im-

plied by the material process which restricts its freedom. Let us empha-

size that perfect, i.e. frictionless,constraints are a special type of

statical law.

Consider for instance the situation described in the language
of elementary Mechanics as follows : a certain particle s of the system
of is maintained bilaterally, without friction,on a given regular mate-
rial surface S. Let
(3.1) hx) = 0
be the equation of S, where ; denotes the generic element of a three-

dimensional frame of reference Eq, treated as a three-dimensional
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linear space, and h a smooth numerical function defined on E_, with

3
nonzero gradient, Let ;o denote the position of the particle s in
E3 when the system ©f presents the configuration corresponding to the
zero of Ll. For the configuration corresponding to some element u of
WU, this position is B and, due to our framework of small deviations
-> ->
and linearization, the mapping ? : u~»p - po is treated as linear
from U into E3 5 in all the following, this linear mapping is suppo-
sed continuous with regard to some locally convex topology compatible
with the duality (U, §), thus continuous for all such topologies. Simi-
larly, the linearization procedure replaces the function h by its
first order expansion in the neighborhood of ;o so that the condition
>
p € S takes the form
- -> -> —_— -
h(po) + (p - po) . grad h(po) =0
(scalar product and gradient are understood here in the sense of the
three-dimensional Euclidien space E3) i.e.
. —
(3.2) n(p ) +f(uw) . grad h(p) = 0 .
. -

Here arises the need of an additional hypothesis concerning [

for the continuous linear form uw> Z(u), grad h(E;) not to be identi-
—

cally zero ; as the vector grad h(po) has been supposed different from
zero, the sufficient assumption we shall make in all the following is @

the linear mapping f' from U info the three-dimensional space of the

"physical" vectors is sur jective, One may express this by saying that the
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particle s of the system is regular regarding the use of ZL as the
configuration space of the system. Then the values of u satisfying
(3.2) constitute a closed hyperplane
(3.3) g = U+a ,
where a represents some known element of U and U denotes the linear
subspace with codimension 1

U = fuell : €. é;EE h(s;) = o} .

For the particle s to be maintained in S it must experience
in addition to other possible actions, the-force of constraint ﬁ, or
reaction, arising from this material surface. In the language of the pair
of spaces (Zl, ¥ ) the representation of this force consists, by defi-
nition, in the element r € § possessing the following property : for
any § u €U , to which corresponds in the "physical” space E, the

displacement § ; = ZYS u) of the particle s, the work of R equals
¢8 u, >, i,e,
(3.4 lBu, > = £6G w. R .

Let us make use now of the hypothesis that the constraint is
frictionless, By definition this means B is normal to the surface S
at the point p ; equivalently ﬁ yields a zero work for any displace-
meut vector § B which is tangent to S at this point. Due to the 1li-

nearization procedure which replaces the equation of S by (3.2), this

amounts to
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(3.5) VS u€Uu : L8 u, r> = 0 .

In other words r belongs to V, the subspace of ¥ orthogonal to U,

It will be supposed that conversely any value of r, i;e, of

E, satisfying this condition can be produced by the device enforcing the

constraint. Physically, this means first the constraint is bilateral :
the particle s shoul& more exactly be visualized as guided without
friction between two parallel surfaces infinitely close ‘to each other ;
secondly these surfaces are strong enough to exert arbitrarily large
normal reactions, We propose to summarize these facts by saying that the
considered perfect constraint is firm (cf, MOREAU [14], vol. 2, § 9. 2)
Except otherwise stated, firmness will always be implicitely assumed in
the following,

In short,all our information about the constraint is contained
in the two conditions u € £ , r € V ; equivalently it may be said that
the pair (u,r) belongs to the subset £ xV of U xF and this indeed
constitutes a statical law in the sense defined by § 3. b, i.e, a relation
between the possible configuration u of the system and some of the
forces it undergoes.

This relation is subdifferential,

In fact consider the indicator function wg of the affine ma-
nifold described by (3.3) ; the subdifferential of this closed convex

function is easily found to be
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v if uvwe g

g it ufs

Therefore the relation (u,r) € £ x V is equivalent to

a $£(u) =

(3.6) -re€d ¢£ (u) ,
which is another way of con;eying the whole of our information about the
considered constraint, The minus sign in the left member is immaterial
as the right member is a linear space : this is only for sake of consis-
tency with further developments,

More generally, the system cf may be submitted at the same
time to several constraints of the preceding sort, respectively defined
by n closed hyperplanes £i = U.1 +a; i=1,2, ..., n. The set of

the permitted configurations is then O £i ; if this intersection is not
1

empty let us use again the notation &£ = U + a to represent it, where

U is now the intersection of the closed linear subspaces Ui’ each with
codimension 1, As the reaction r, implied by the i-th constraint be-
longs to Vi, the one-dimensional subspace orthogonal to Ui in ¥, the
sum r of the n reactions belongs to V, the subspace orthogonal to U
Conversely, any element of V possesses at least one decompostion into
a sum 3 Tis T, € Vi (this is merely the classical theorem of Lagrange
multipliers : the duality between QL and ¥ being separating, the bi-

orthogonal of a finitely generated subspace equals this subspace itself),

Therefore, each of the n perfect constraints being assumed firm, the
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Joint effect of them is fully represented by the same writing as (3.6)
and this is also trivially true in the case ‘i is empty,

Thereby we are induced to consider, in general, statical laws
expressed under the form (3,6), where § represents a closed affine
manifold whose codimension is not necessarily finite : we shall refer to

such statical laws as (firm) perfect affine constraints,

Note at last that, when studying evolution problems, a perfect
constraint described as above may be mov?ng : i,e, the affine manifold
§ may depend on time in a given way, Just keep in mind at such event
that the so-called displacements, labelled in the preceding by the symbol
8§, merely express the comparison between possible configurations at a
definite instant ; traditionnally they are qualified as virtual in con-
trast with the real displacements which occur as a consequence of the
actual motion, In.most practical cases the subspace U which defines the
dimension and the direction of £ 1is independent of time ; only the

element a of U is moving ; we shall meet such a situation in Chap-

ter 6.

3. d PERFECT UNILATERAL CONSTRAINTS
With the same notations as in the preceding, suppose now that
the particle s of the system ¢f°, instead of being bilaterally main-

tained in the surface S, is only confined by some impenetrable block
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whose S constitutes the boundary. Suppose the function h chosen in
such a way that the region of E3 permitted thereby to the position ;
of s 1is defined by the inequality

h(®) > o .
Then, using the same linearization procedure as before, the set of the
permitted values of u is characterized by the inequality
(3.7) n(p_) + &(u). grad h(p ) > 0
whigh defines in {{ a closed half-space 9 with the affine manifold &
as boundary.

Here again, the description cf the mechanical situation requi-
res some information about the force of constraint i that the block
must exert on s to prevent penetration ; this information will rather
be formulated by means of the element r € § which represents the force
according to (3, 4).

First, this reaction vanishes when s does not touch the block,
i.e. when (3.7) holds as a strict inequality ; in other words one has the
implication
(3,8) u€ int9 = r=0

When, on the contrary, s 1lies in contact with the boundary S,
we still make the no-friction hypothesis, i.e, ﬁ is normal tg S. In
addition the unilaterality of’the contact imposes that the vedtor ﬁ is

directed toward the permitted region i,e, directed in concordance with
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the vector g—1;3 h(;). In terms of work this is expressed as follows :
any § ; such that § _I; . gra-é h(;)} o] y:!elds 8 ; ﬁ) 0. Now,
recalling the regularity assumption made about the mapping é", take as
8 ; the displacement of s in }E:3 associated as before with the ele-
ment 5 u of U by § _]; = Z (5 u). The contact between s and the
block means that (3.7) holds as an equality. Besides, due to the lineagi-
zation procedure, éﬁz h(p) 1is treated as independent of p. Then
§ p. grad h(p) > O holds if and only if £ (5 u)., grad h(S;)}o; by
putting u' = u + § u the latter is equivalent to ‘u' € 9 so that' fi-
nally, in view of (3,4), all our information about R comes to be equivas
lent to the following
(3.9) Vu'€9 : u'-u, r>20

Thi?; actually implies also (3,.8) ; in fact, if u € int 9 the
difference u'~ u , for u' € 9 can be a non zero element of U.A with
arbitrary direction; hence r = O for the duality is separating.

In conclusion the geometric condition u € 9 of the_ constraint
is expressed jointly with (3.9) by writing
(3.10) -re€ad z/:%(u) .

Here as in § 3. ¢ let us make conversely the firmness assump-
tion ¢ the block is suppc;sed strong enough to exert any value of ﬁ
agreeing with the preceding requirements ; in other words any value of r

satisfying (3.9) is possible, Then relation (3,10) conveys all our
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information about the considered constraint.

More generally suppose the system QP subjected to n cons-
traints of the preceding sort, corresponding to half-spaces. %i ,
i=1,2, ..., n, Then the set of the permitted configurations is the
closed convex set C = O %i. As each of the reactions ri satisfies a

i
relation of the form (3,10), their sum r satisfies
-re€ad ¢% (u) + 0 ¢g (w) + ...+ wg (u) .
1 2 n

The right member is trivially contained in @ ¢C(u) ; actually this sum
of sets equals exactly 3 ¢c(u) because of the "unilateral" counterpart
of the multipliers theorem (as the duality (tln F) is separating, a
finitely generated convex cone in F is closed, thus equal to its bi-
polar)., In conclusion the conjunction of our n wunilateral constraints
is equivalent to the following statical law
(3.11) -r€a ¢C(u)

Hence we are induced to consider more generally the statical
laws defined in the same way by taking as C arbitrary closed convex

subsets of U : we call these laws (firm) perfect convex constraints.

Evidently the bilateral comstraimt studied in § 3,-e are'a

‘spe¢ial case of this :. take as C a closed affine manifold,

3. e SUPERPOTENTIALS

We shall say that a statical law admits a function



- 227 -

J. J. Moreau
¢ € TO(QL,? ) as superpotential if this law consists in the following
relation between the configuration u and some force f
-f€a¢ (v

In particular, if a statical law admits some numerical function
W as potential, W ' is also a superpotential if and only if this func-
tion is convex, For instance the constant law f = fo (independent of u)
admits as superpotential the linear form u—> - (u, f0>.

Another fundamental example is that of a perfect convex cons-

traint, as presented in the preceding paragraph : (3,11) means that the
function $C is a superpotential for such a statical law ; by taking as
C a closed affine manifold, this includes, according to § 3. c, the tra-
ditional bilateral contraints,

Suppose the system subjected at the same time to a finite fami-
ly of statical laws admitting the respective superpotentials ¢1, ¢2, .
e ¢n . Then the sumof f =f_ + £_  + ... + fn of the corresponding

1 2

forces is related to u by
- A
f € ¢1 (u) + ¢2 (u) + ... + 2 ¢n (u) .
This relation implies
(3.12) -f €3 (¢1 + ¢2 +oee. + ¢n) (u)
but is equivalent to it only if some conditions ensuring the additivity
of subdifferentials are fulfilled ; according to § 2.f, the usual case

where such additivity holds is described as follows : 1° some of the
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functions ¢i are weakly differentiable everywhere in U, ; 2° there
exists a point u0 € U, at which the others, but possibly one, are finite
and continuous for some topology compatible with the duality (QL,?);

3% the last one is finite at ug .
EQUILIBRIUM, Suppose first that all the mechanical actions to which the
system is subjected (except possibiy those which vanish in any expected
equilibrium) are summarized under the form of a single statical law ad-
mitting a superpotential ¢ independent of time., Then, as explained in
§ 3. b, the equilibrium configurations are characterized by

0€23 ¢ (u) H

this is a necessary and sufficient condition for u to be one of the

points of 9, where the numerical function ¢ attains its infimum

(cf. § 2. e). Such values of u form a closed convex subset of U, pos-
sibly empty.

Suppose more generally that the considered mechanical actions
are described by the conjunction of n statical laws admitting as above
the respective superpotentials ¢1, independent of time, A necessary and
sufficient condition for u to be an equilibrium configuration is now

O€a2 ¢1 (u) + 2 ¢2 (w) + ... +2 ¢n (u) .
This implies O € 2 ¢ (u), with ¢ equal to the sum of the functions
H

¢i ;s therefore this sum attains its infimum at the point u. But the

converse may not be true, unless the additivity of subdifferentials
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holds, Actually such a reserve does not seem to be of great pratical
importance and B, Nayroles suggestsin his lectures a logical attitude
which would overcome the difficulty,

EXAMPLE., Make n = 2 and suppose that ¢1 = ¢, , the superpotential of

C
a perfect convex constraint. Then equilibrium is characterizd by
0€9 wc (u) + 2 ¢2 (w) .

This implies that u is a point in C where the restriction of the
function ¢1 to this set attains its infimum ; in the vocabulary of
mathematical programming, u is one of the solutionsof a "constrained"
minimization problem, But the converse may not be true, unless the addi-
tivity of subdifferentials holds ; particularizing the situation descri-
bed above, one finds that any of the three following conditions ensures
this additivity :
1° The function ¢2 is weakly differentiable everywhere in ?L, i e, it
is a potential in the classical sense,
29 There exists a point in the interior of C where the function ¢2
takes a finite value,
39 There exists a point in ?L at which the function ¢2 is finite and
continuous and which belongs to C.

Recall that "interior" or "continuous" may here be understood

in the sense of any locally convex topology compatible with the duality

W, £) : the weakest assumption is thus obtained by choosing the finest



- 230 -

J.. J. Moreau
of these topologies, i,e, the Mackey topology T(U, §) ; this remark is

of course without object in finite dimensional cases.

3, f DUAL MINIMUM PROPERTIES

This paragraph is devoted to the equilibrium problem, in the
case where all the mechanical actions exerted on the system o (except
possibly those which vanish at any expected equilibrium) are expressed
as the conjunction of two statical laws respectively admitting the super-—
potentials ¢17 and ¢2, independent of time, Of course, each of these
two superpotentials may in its turn describe the conjunction of several
laws ; in practical situations there are usually various possibilities of
classifying the mechanical actions into such two groups, so that the
statements presented below can generate a great number of different va-
riational properties, It may be imagined that ¢1 and ¢2 correspond
to two different sorts of mechanical action : for instance ¢1 is the
superpotential of a perfect constraint, while '¢2 represents "active
forces'.

An element u of U is an equilibrium configuration if and
only if there exist f € - 2 ¢1 (u) and f_ € -2 ¢2 (u) such that

1 2

fl + f2 = O, The determination of such f1 (or equivalently fz) prior

to that of u, is sometimes called a statical approach of the equilibrium

problem (we should prefer to call it sthenic, an adjective meaning
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"relative to forces'). Privileging ¢1, let us agree to call an equili-

brium force any value of f associated in this way with some equili-

1

brium configuration,

PROPOSITION 1, Let yl and y2 be the respective polar (i,e, dual)

functions of ¢1 and ¢2, relative to the duality (2, ) ; denote by

Ql the function £+ yl(- f) (it is the polar function of

Ql s u— ¢l (- u)). Then any equilibrium force minimizes the function

91 + yz over ¥ ; conversely, if fl is a minimizing point of this sum

and if $1 and Y, Ppossess the additivity of subdifferentials at this

point, f is an equilibrium force,

1

In fact if fl € § corresponds to some u € QG such that

-f €2 N (u)  and £, €2 ¢y (u) one has equivalently u € 9 Yy (fl)

and u € A Y1 (- fl) ; the latter is the same as - u € 3 $1 (fi) H

s
therefore
A
0EIN (2D +dy, (2D CA B+ (1)
Conversely, the assumption that fl is a minimiging point. of
A (\ :
Y, + Y, means that the zero of U, belongs to 2@ Yyt yz)(fl) ;5 if this
set equals 9 @ (£.) +3 y, (£.), one has
1 1 2 17’
0€a Yo (fl) -2 yl(-fl)
which precisely expresses the existence of some u associated with f1

in the preceding way.

As far as we can see this Proposition contains as special cases,



-232-

J. J. Moreau

all the extremal properties of "statical" type in elastostatics. Observe
in this connection that if ¢2, for instance, is the superpotential of
the perfect bilateral constraint defined by the affine manifold
£ =U+a (cf. § 3, e), its dual function is defined by

Yo (£) = '/’v (f) + (a,£> .
Thus minimizing Ql +y, over F is the same as minimizing Ql +(a,.>
over V, the linear subspace of ¥ ,orthogonal to U,

On the other hand, in the usual situations of linear elasto-
statics, one may take as ¢1 the potential of elastic forces, which is
a nonnegative quadratic form on . Célculating its dual Y1 (equal to
el’ since quadratic forms are even functions) yields a nonnegative qua-
dratic form defined on some linear subspace of ¥ and + e outside of
this subspace j; a special property of the quadratic case is that, if u
and - f are conjugate points with regard to ¢1, Y,» one has

¢, () =y, (£) = - 1 (u, > .
1 1 2
Thus, yl may be interpreted as "the expression of the elastic energy in
terms of the elastic force' and sometimes called the complementary
energy. This does not hold anymore in non linear elasticity ; however in
the very usual case where the elastic potential ¢1 is a quasi-
homogeneous convex function, there is still a relation between ¢1 (u)

and Ql (f), if f 1is the elastic force corresponding to u.
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3. g SADDLE - POINT PROPERTY
The notations are the same as in the preceding paragraph. De-
termining the equilibrium configurations of ¢/° as minimizing points of

¢1 + ¢2 (cf. § 3. e) and determining the equilibrium forces as minimi-

zing points of @1 + y2 may be considered as dual extremum problems.
This is a familiar feature of convex programming and it is habitual to

relate such a pair of problems to a saddle-point property for a function

called Lagrangian.

PROPOSITION., Define the concave-convex function L on the product spa-

ce U xF by

LCu,£) = ( u,f> +/y\l ) - ¢, (W)

with the convention + e — e = + o (Or equivalently the convention

+o0 —o = - o), A point u, € U, is an equilibrium configuration of o/ ,

with f1 € § as corresponding equilibrium force, if and only if the

element (uo, fl) of UsxF is a saddle point of L with finite va-

-
lue, i,e. L(uo, f.) is finite and for any u € U,and any f € F ,

1

(3.13) L(u, £) < Llu, £,) < Llu, £) .
In fact, suppose first that u0 is an equilibrium configura-

tion with fl as equilibrium force, i,e, - uo €A $1 (fl) and

t, €a ¢2 (uo) ; the former of these conditions means

o _ A A
(3.14) v £ETF Cu, £-£, 7+ (£)) < ¥ (£)

and the latter
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(3.15) VueUWU: (u- u,, £1> ¢2(u0)< d)z(u) .

Adding the finite number - ¢2(uo) to both members of (3,14) yields the
second of inequalities (3,13) ; adding the finite number sl(fl) to both
members of (3,15) yields the first one. The value L(uo, fl) is clearly
finite,

Conversely, supposing L(uo, f ) finite implies that Ql(fl)

1
and ¢2(uo) are finite ; then the preceding calculation may be effected
backward to deduce (3,14) and (3.15) from (3,13),

REMARK, Exchanging the roles of ¢1 and ¢2 would yield a quite dif-
ferent function L. Since, in practical situations, there are usually se-
veral ways of classifying mechanical action into two groups corresponding
to ¢1 and ¢2, since, on the other hand the (2, f) pattern may usual
ly be applied in several ways (see § 3. j below), the preceding Proposi-

tion generates a pretty great number of saddle point characterisations

of the equilibrium in elastostatics,
-

3. h ONE - DIMENSIONAL EXAMPLES

We consider in this paragraph a system @ whose configuration
can be specified by a single numerical variable : it is for instance a
rectilinear bar or a string, as far as we are only interested in the

distance between its extremities, Denote by i% + e this distance ; in
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other words, e denotes the elongation of the bar by comparison with some
reference state in which the length was éf As we are only concerned
with static or quasi-static situations, the state of stress of the bar is
sufficiently described by the tension s. Classically, for the applica-
tion of the principle of virtual workto systems comprising the considered
bar, the expression of the work of the internal actions must be =~ s 3§ e,
Thus the pattern of the preceding paragraph appliesby taking for the li-
near space U a copy of the real line R, with e as generic element,
and for the linear space ¥ another copy of R, with s as generic
element ; these two one~dimensional linear spaces are placed in separa-
ting duality by the bilinear form <.,.>
(3,16) {e,sd = - e s .
This unpleasant minus sign merely comes from our complying with the com-
mon habit in solid mechanics of measuring the state of stress by a posi-
tive number when it is properly a tension, by a negative number when it
is a proper pressure., It has nothing to do with the fact that the consi-
dered "actions' are internal : in our formalism,stress is a 'force' like
any other mechanical action.

This framework permits the formulation of usual behavioral laws
of the rectilinear system,

10 Regular elasticity. Suppose that the behavioral law of the bar
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defines tﬁe tension s as a continuous strictly increasing function of
the elongation e, namely s = j(e) or equivalently s = #'(e), where
6 denotes a primitive of j ; observe that 6 1is then a convex function
Let e, be some definite value of e and s, = 6'(e0). The affine func-
tion
er (e - eo) st e(eo)
is tangent to 0 at the point eo ; now, with regard to the duality de-
fined by (3,16), the slope of this affine function is - So' In other
words the relation s = 6 '(e) may be written as
-~ s = grad 6(e) .,
This means that @ 1is a potential for the considered statical law (and
also, as usual, the expression of the potential energy) ; due to the con-
vexity of 6 it is also a superpotential, As we havé supposed the func-
tion 6' = j continuous and strictly increasing, it possesses an inverse
function j_l, defined on the range of j ; this range is en interval I,
possibly unbounded or not closed. The characterization 6f e and - s
as conjugate points
9e) +0° (- s) = (s, >
*
permits the calculation of @ by the formula
6*(— s) = s j_l(s) -6 [j_l(s)]

valid for any s in 1I. The function 6 takes the value + e outside
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of the closure of -I.

20 Elastic string, We agreed that 1% + e represented the distance bet-
ween the extremities of the considered one-dimensional system, If lb
denotes exactly the length at rest of an elastic string, the correspon-
ding staticallaw has the form s = j(e) where the function j takes now
the value zero for e < O . A primitive of j 1is a superpotential ; its
dual function 9* with regard to the bilinear form (3,16) takes the va-
lue + o on 10,+ e[ ; the values of 9*(- s) for s belonging to the
range of j are constructed as above if j is continuous and strictly

increasing on [0, + m[.

3% Inelastic string, This may be considered as a boundary case of the

preceding, Supposing that 1% is the proper length of the string and
that the breaking load is infinite, one finds the following superpoten-
tial for the relation between e and s
+ oo if e >0
6(e) = {
0 it e< o0 .
This is the indicator function of the closed convex subset C = |- ), O]

of 1&, so that the present law comes to be a perfect convex constraint.

As C 1is actually a convex cone (see § 2, c) the dual function BT is
the indicator function of the polar cone, i.e. the subset |- oo, O] of

¥ (it is the set of the possible values of - s).
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The reader will study other examples such as a cylindrical he-
1lix spring, enclosed in a guide tube to prevent buckling ; the length of
this spring cannot be less than the length it has when all the spires
come into contact. The corresponding behavioral law is equivalent to the
conjunction of a law of elasticity and of a perfect convex constraint.

This gives a very elementary model of an elastic solid with limited com-

pressibility, a type of material which was studied in generality by
W. PRAGER [1] ; the behavior of such a material can be formulated as a

’

statical law admitting a superpotential,

3. i AN EXAMPLE OF COMPOUND SYSTEM

Take as @f a lattice of bars (a truss) whose extremities are
articulated with one another through spherical joints, The joints are
represented by n points Al’ A, ..., An the nodes of the lattice, To
make the description simpler suppose that between each pair of nodes,
say Ai and Aj with i ( j to avoid repetition, there exists one of
the bars denoted by Bij’ thus % n (n~1) bars in all, The behavior of

each bar is treated as one-dimensional ; denote by Sij the tension of

the bar BiJ and by eij its elongation with respect to the "zero"

state.

Any configuration of the system ef is fully determined by the
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corresponding positions of the n nodes Ai relative to some three-
dimensional Cartesian frame ; these respective positions may be descri-
bed by the n three-dimensional displacement vectors ;i by which they
differ from the positions corresponding to the "zero' configuration of
the system. Thereby we are induced to consider as the configuration spa-
ce of ¢/ the 3 n-dimensional linear space X whose generic element x

. . -> ->
consists in the n-tuple (x e Xn).

>
1’ X2
Here again we restrict ourselves to linearized geometry, by
treating the displacements as infinitely small with regard to the
lengths of all the bars, Denote by ;ij (with i { j) the unit vector

of the oriented line AiA (taken, to fix the ideas, in the zero confi-

J

guration ; but this precision is immaterial since the bars present only

infinitesimal rotations). The elongation of the bar Bij is related to
u by
-> -> >
(3.17) eij = @y (xj— xi)
(three-dimensional scalar product).
> -> >

An external action is a n-tuple of forces (yl, Yor wees yn)
respectively exerted on the n nodes ; this n-tuple of three-
dimensional vectors, denoted by y, constitutes the generic element of

a 3 n-dimensional linear space Y., The bilinear form "work", placing the

spaces X and Y 1in separated duality will be noted ((.,.>> to
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prevent confusion in the following, and has the familiar expression

n -> ->
(3,18) Kx,y> = T x. .7y, .

joq 1§ i

In order to formulate the equilibrium problem for the consi-
dered system one has to specify the statical laws to which it is subjec-
ted. These statical laws are of two sorts:

Some of them concern external actions ; for instance given
loads may be applied to some nodes ; or some nodes may be submitted to
bilateral or unilateral constraints ; or also some nodes may be subjec-
ted to statical laws relating to their positions some of the forces they
experience, All this has to be described in the framework of the pair of
linear spaces (X,Y).

The other laws, said internal, concern the behavior of the bars
and are’formulated in terms of the elongations eij and the tensions
Sij : this induces to consider the % n(n-1)-dimensional linear space E
whose generic element, denoted by e, is the % n(n-1)-tuple of real
numbers eij’ i ¢ j, and the similar space S whose generic element is
s, consist;ng of the Sij’ i ( j. As explained in § 3. . h, the exp?ession
of the internal work in the bar Bij’ corresponding to avtension measured
by the real number S5 5 and an (increase of) elongation measured by the
real number eij is - eij Sij' Therefore the total internal work in the

bars corresponding to given e = (eij) and s = (Sii) is
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(3.19) (e,s> =- I

eij Sij
143

a bilinear form which places the two linear spaces E and S in sepa-
rating duality : keep in mind that it differs by the oresence of the
minus sign from the natural "scalar product between two spaces whose
elements are such % n(n-1)-tuples of real numbers,

At the present stage, where plasticity is not taken into
account, the behavioral laws of the bars are relations between eij and
s. . formulated in the same ways as in § 3. h .This introduces, for each
(i,j), i ¢ j, a superpotential 9ij which is a closed convex functions
on R and the corresponding statical laws takes the form
(3,20) -85 €3 eij (eij) .

By the remarks made in § 2, ¢ about the product of linear spaces, the

function @ defined on E by

6(e) = z Bij (eij)
i<
permits to summarize the %‘n(n—l) relations (3,20) by writing
(3.21) -S€20 (&) .

3. j VARIOUS TREAMENTS OF THE EQUILIBRIUM PROBLEM
Let us pursue the study of the system described above. Conti-
nuously distributed external actions, such as gravity, are not taken into

account, so that the equilibrium condition of the system consists in the
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vanishing of the total force experienced by each of the n nodes, i.e,
for each value of i =1, 2, ..., n the following three-dimensional

vector equation

(3.22) y. o+ o .

) x ) %
s, .« - s, o =

17 (g B,y

On the other hand, equalities (3.17) define a linear mapping
from X into E which will be denoted by D. By definition the ad-

3
joint D of D is the linear mapping from S into Y defined by
*
Vx€eEX , Vs€ES (D %x,8> = («x, D s> .

Referring to the definitions of (.,.> and (.,.>, then identifying

*
the terms of each member yields that the element D s of Y consists

—
*
of the n-tuple of three-dimensional vectors (D s)i
—
* -> ->
(D" s), = % s..a,.~ % .s..e@. .
i §>1 ij "iJ jCi Ji T gi

Therefore the equilibrium condition (3,22) takes the form
*
(3.23) y+D s = O

which of course is equivalent to the principle of virtual work, namely

(3.24) VXEX + Kx,0+(Dx,8> = 0 .

1° The method of big spaces.,

We give this name to the method which consists in using the
pair (x,e), denoted by u as the element which specifies the configu-
ration of our system, Then, with the notations of § 3, a the configu-

ration space is U = X x E ; the corresponding ¥ is the space Y x S,
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whose generic element is the pair (y,s) denoted by f, These spaces are
placed in separating duality by the expre;sion of the total work
& x,y>> + {e,s>, to be denoted by <u,f>,
Clearly the whole of the space Ul is not permitted to u, sincé
the pair (x,e) must belong to the following linear subspace of W
U = {(x,e) € XxE : e = Dx}

i,e., the graph of D, Let us show that this restriction of freedom may be

treated as.a perfect constraint.

In fact the equilibrium condition of the system is not the

vanishing of the element f = (y,s) but merely equality (3,23). Putting
v = {(y,s) YxsS : y+ D* s = 0}

we observe that V 1is precisely the subspace of ¥ orthogonal to U
this is the same as the equivalence between (3,23) and (3.24). Condition
(3.23) is equivalent to asserting the existence of some r in V such
that f + r vanishes, Interpreting r as the reaction associated with
the considered constraint agrees with our general definition of a per-
fect affine constraint,

Actually this conception may be related to a physical realiza-
tion of the constraint : considering X x E as the configuration space
amounts to regarding our system as the conjunction of the following sub-

systems : the nodes Ai’ whose respective configurations are described



- 244 -

J. J. Moreau

by the three-dimensional vectors ;i and the bars Bij’ whose respective
states are described by the elongations eij' The constraint whose geome-
tric effect is expressed by (3,17) merely consists in connecting the bars
with the nodes, However, our main motivation in developing the present
example is to prepare for the case of continuous media, (cf. B. Nayro-
les's lectures) ; in this case x is replaced by a field of displace-
ment vectors defined on a region of R3 and e 1is replaced by a field
of strain tensors ; then e = D x is the condition of geometric compa-
tibility between displacements and strains ; this restriction of freedom
may be formally considered as a perfect constraint in the same way as
above but it does not seem wise to try and visualize a mechanical reali-
zation for it,

Suppose that the statical laws concerning the external actions
experienced by the system (possibly including constraints acting on the
nodes) can be globally described in the framework of the spaces (X,Y)
by a superpotential Z € Po (X,Y) ; in other words the external force
y € Y is related to the "external' configuration x € X by
(3.25) -y€az (=) ,
where the subdifferential is understood in the sense of the duality

(X,Y). Suppose on the other hand that the internal statical laws are ex-

pressed by (3,21), By the rules formulated in § 2, ¢ about product
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spaces, (3.21) and (3.25) are equivalently summarized as
-f€0 ¢ (W
in the sense of the duality between the big spaces with u = (x,e),
f = (y,s), and the superpotential ¢ defined by
* ¢ (u) = Z (x)+6 (e) .
The equilibrium of the system may then be studied by the me-

thods of &§ 3, e, f, g.

2° The elimination of (E,S)

As the configuration of the system is fully specified when
x € X is given, one may prefer to consider only X as the configuration
space, and Y as the force space, Then every mechanical action experien-
ced by the system must be described in terms of elements of Y : precisely
it is represented by the element y of Y such that for every displa-
cement § x of the system, the work of the considered action is
8§ x, y>>. In this way an internal stress s € S is represented by the
element ys of Y sgch that

VEé x€EX :{<8x,ys>>=<D8x,s> ,

i.e,
(3.26) y = D s .
Thus the statical law (3,21) is transcribed in terms of the pair of spa-

ces (X,Y) as follows
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(3.27) -y €D @6 ®x) .

If, in particular, there exists a point in the range of D at which ¢
is finite and continuous (for some topology compatible with the duality
(E,S)), the calculation rule (2,15) holds,so that (3.27) amounts to
(3.28) - Yg € D (0 o D) (x)

in the sense of the duality (X,Y) : this constitutes a statical law ad-
mitting the function f#o D as superpotential, In this way the techniques
of the foregoing paragraphs may be applied with regard to the pair of
spaces (X,Y).

3% The elimination of (X,Y)

The mapping D : X » E is not injective ; this means that the
element e = D x does not convey enough information to specify complete-
ly the configuration of the system, However one may wish to determine the
equilibrium values of e or s prior to that of x or y and in some
instances one may be interested in these elements only (in order to dis-
cuss strength, for example),

In the principle, the elimination is similar to that of the
preceding case. Suppose that all the external laws to which the system
is jointly submitted are summarized under the form
(3.29) x € P(y)

where P denotes a given multimapping from Y into X. Similarly suppose
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that all the internal laws are summarized as
(3.30) s = R (e)
where R denotes a given multimapping from E into S. A system of va-
lues of x, y, e, s defines an equilibrium state if and only if it sa-
tisfies e = D x and (3,23), (3.29), (3.30). Thus, as far as e and
s only are concerned, the equilibrium condition (i,e, a necessary and
sufficient condition for the existence of at lzast one pair (x,y) as-
sociated with (e, s) in_such a way that the preceding equilibrium condi-
tions hold) consists in the conjunction of (3.30) with
(3.31) e€D® (-D ) .
In the principle, (3,31) may as well be written under the form
(3.32) - s € Qe) ,
Now as far as the interesting unknown is e, the conjupction of (3.30)
with (3.32) is equivalently formulated as follows : there exist s, and
S, in S such that

s; €R (e)

s, €Q (e)

Formally we are reduced to the usual pattern of the equilibrium of a
system submitted to two statical laws, From this standpoint the relation

s € Q(e) should be considered as the "internal image" of the external




- 248 -

J. J. Moreau

statical law (3.29),

The reader is invited to apply this procedure to an external
law of the form-y € 3 Z (x), equivalently written as x € 3 é* (~y).
Here again the calculation rule (2,15), under some continuity assumption,
will yield an image in (E,S) which admits a superpotential,; As a first
example, take as external statical law a given load Yo €Y applied to
the system ; this may be written under the form (3,29) with

X ity =y,

P (y) =
g ity £y, .

Another primary example is that of a perfect affine constraint formulated

relatively to the pair (X,Y),

But it will be more in the spirit of this Chapter to operate

with the pair (E,S) in the following way :

Since we choose to deal only with informations formulated in
the framework of the paired spaces (E,S), we accept only to speak of
the state of the system in terms of e ; on the other hand, a mechanical
action experienced by the system will be taken into account only if it
can be represented by an element ¢ € S , in such a way that the work of
this action for every displacement of the system has the expression
{8 e, o>, Therefore, if in particular the considered action i$ an exter-

nal force y € Y treated as given, the corresponding o must be such
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that

(3.33) VE§XEX K8 x, y = (D8 x, o>

Such a ¢ does not necessarily exist ; an evident condition forits
existence is that y belongs to, D* S, the image of S wunder the linear
mapping D* . The iinear subspace D* S of Y is the orthogonal, in the
sense of the duality (X,Y), of the subspace Ker D of X. Actually the
impossibility of representing in the (E,S) framework a load y which
would not belong to [f S does not make any hindrance, In fact suppose,
for sake of simplicity, that this load is the only external action exer-
ted on the system ; clearly by (3.23) or by (3.24), y € Dr S 1is a ne-

cessary condition for the existence of an equilibrium ; this is a fami-

liar fact ; only a family of external forces with zero resultant and zero
moment is compatible with equilibrium,

Another fundamental remark about the use of the (E,S) pattern

is that all the values of e are not permitted, since necessarily e

belongs to the subspace D X (the subspace of E consisting of the
"states of strain"which are "geometrically compatible"). On the other
hand, if s € S denotes the sum of all the elements of S representing

the mechanical actionsexerted on the system, the equilibrium condition is

not s = O, but the principle of virtual work, namely

V8 xXx€EX : {(D§ x, s = O
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which means that s belongs to the subspace of S orthogonal to D X

*
(actually the kernel of D ),

In conclusion the equilibrium problem in (E,S) must be trea-

ted by considering the condition e € DX as a perfect constraint.

The reader will check that given external loads and external
perfect affine constraints are transcribed in the (E,S) language by
given forces and perfect affine constraints,

It is from this standpoint that the elastoplastic evolution

problem will be studied in Chapter 6,
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4 LAWS OF RESISTANCE

4, a VELOCITIES AND FORCES

A habitual procedure, when studying a mechanical system, is to
associate with each possible configuration of this system a linear space
-let us denote it by V- whose elements constitute, in a general sense,
the possible values of the velocity of the system if it happens to pass
through the considered configuration. Roughly speaking, Y may be inter-
preted as the tangent space at the corresponding point of the configura-
tion manifold byt this need not be made more precise here, This space is
of infinite dimension if the system has an iﬂfinite degree of freedom,

In the special framework of Chapter 3, where the configuration
manifold is treated as a linear space 1L, a motion of the system is des-
cribed by a mapping t+ u(t) from some interval of time into U.. The

velocity is naturally defined in this case as the derivative u(t) (ta-

ken in the sense of some topology on W) if it exists ; then ¥° = U, the
same for all the configurationms,

Let us come back to the general setting. With each configura-
tion is also associated a linear space -denote it by ¥ - whose elements
represent in a more or less abstract way, the mechanical actions which

may be exerted on the system when it happens to come through the consi-
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dered configuration : see the construction of the space of torsors in

8 3. a. By extension, the elements of ¥ are called forces. An essential
feature in the practice of Mechanics is that several forces are usually
applied to the system at the same time, This produces a fondamental dis-
symmetry between the roles played by ’U, and § .,

To any pair v € V), f € § corresponds the power of the force

f if the system possesses the velocity v, a real number denoted by

{v,f> ; this defines a bilinear form ‘which places V" and ¥ in duality.
In the linear framework of Chapter 3 where 2/" = u, there is
no inconsistency in considering the single space ¥ as the force space
associated with any configuration and in using the same bracket as above
to denote by ¢& u,f> the work of f € § corresponding to the displace-
ment § u € u, In fact, suppose this displacement results from a motion
t » u(t) with velocity U (derivative understood in the sense of some
topology compatible with the duality (u,, ¥ ) taking place during a time
interval [tl, tz], while f 1is constant in &, The general definition

of work as the integral of power yields

ty ta

I ¢a(t), £> dt = [ g; cu(t), £> dt =
t

1 tl

= <u(t,), £ = <u(t), £ =48 u, .
4. b PSEUDO - POTENTIALS

Let us agree to call a resistance law a relation) -denote it by
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R, formulated between the possible velocity v € 70 of the considered
system in the considered configuration and one, say f € ¥, of the for-
ces it experiences at the same instant, Such a law arises from the study
of some of the physical processes in which the system takes part,

It will be said that the law ® is dissipative if the follo-
wing implication holds
(4.1) vR £ = ¢v,i><0 ,
which makes it a resistance law in the usual sense,

It will be said that ® admits a function ¢ € I‘o()’-’, F) as

pseudo-potential if the relation ® is equivalent to

(4,2) -f€3 ¢ (v) .

Recall that any subdifferential relation is monotone ; then a
law ® of the form (4.2) ensures the implication :
(4.3) vRE, vIRE' =D<v-v', £-£><0

Make in addition the frequently verified hypothesis that zero
is among the valyes that the relation ® permits to f when v is
zero, i,e.
14,4 0€3 ¢ (0) .

hen (4,1) ensues from (4.3) : the corresponding resistance law is dissi-

pative. Observe that (4.4) implies that ¢ (0) is finite and constitutes

e minimal value of ¢ ; since adding a finite constant to ¢ does not
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affect the subdifferential, there is no loss of generality in supposing

here

(4.5) ¢ (0) = 0

then the function ¢ takes only nonnegative values.

In the following, we shall refer to the situation characterized

by (4.2), (4.4), (4.5) by saying that the pseudo-potential ¢ is the

resistance function of the considered law.

Recall that, a priori, the pair of linear spaces Vo,?' is
relative to a definite configuration of the system, so that the foregoing
concerns only this configuration., However in the usual linear case of
Chapter 3, by making vo = LL and considering the single force space ¢,
it will be possible to formulate resistance laws independently of confi-
gurations,

REMARK, The example developed in § 3, i, 3, j makes understand also
that the pattern of the present Chapter may usually be applied to a de-
finite mechanical situation in several different .ways.

A similar example is t! of a continuous medium, occupying in
the considered configuration a region () of the physical space., A first
possibility is to interpret as v the vector field defined on () by
the velocities of the various particles forming the medium : then the

linear space ¥? will consist of vector fields satisfying some assumptions
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of integrability, derivability, etc... But in some theories it will be
more convenient to consider v as the strain rate tensor field of the
medium, Or else, as in § 3, j, one may take for )ﬂ a "big space" whose
generic element is the couple of a velocity vector field and of a tensor
field presumeﬁ to be the strain rate field ; then the geometric compati-
bility between velocity field and strain rate field will be seen as a
constraint. To these various standpoints correspond natural choices for
the elements f forming the space ¥ : rates of distributed forces,
stress tensor fields, etc...

The same pattern will also be applied to formulate local laws
a point of the continuous medium being specified, one considers as v
tye linear space of dimension 6 whose elements are the possible values
of the local strain rate tensor é of the medium ; the associated ¥ is
the linear space formed by the possible values of the local stress ten-~
sor o ; the bilinear form which places these two spaces in duality is
the classical expression of the density of internal power., A local law,
i,e. a relation between the strain rate tensor and the stress tensor at
the considered point of the medium, will be formulated by means of a
local pseudo-potential, whicﬁ is a numerical function defined on 1”, This
being done for each point of the medium, it generates a behavioral law

of the medium as a whole, i.e, a relation between elements of two
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function spaces whose generic elements are the strain rate tensor field
and the stress tensor field, Under suitable integrability assumptions,
these two function spaces are placed in separating duality by the bili-
near form defined as the integral of the density of internal power, This
permits the descfiption of the considered behavioral law by means of a
superpotential which is an integral convex functional, The reader will
refer to B, Nayroles's lecture for more details about this mechanical
situation and to C. Castaing's lecture for more details about the func-
tional analytic aspect. The basic mathematical material may be found in

R.T. ROCKAFELLAR [1], [3], [4].

4, ¢ VISCOUS RESISTANCE
As a first example consider a relation ® of the form
(4.6) -f = Lv
where L denotes a linear mapping from V? into F . In all the phenomena

classified as viscosity effects it is always admitted that L is self-

adjoint (or "symmetric") with regard to the duality «.,.>, i.e., for any
v and v' in W
v, Lv'™> = Kv', Lv>
From this, one easily deduces that L v 1is the weak gradient

at the point v of the quadratic form ¢ defined on v by
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¢>(v):%(v,Lv>

This quadratic form is usually called the Rayleigh function of the consi-

dered viscosity law,
Making the additional assumption that the viscosity law is

dissipative yields that this quadratic form is nonnegative, thus convex,

And at any point v the weak gradient L v constitutes the whole of the
subdifferential & ¢ (v). This means that in the present case, the rela-
tion (4.6) méy equivalently be written as

- fE€EAG (V) o

Thus ¢ is pseudo-potential and, more precisely, resistance function of

the considered law,
The power of the force f associated with v in this way is
LV, > = =¢v, Lvw = =~2¢ (v) ;
the negative of it is frequently called the dissipated power correspon-~

ding to v ; hence the name of dissipation function which is given in

the present case to the quadratic form vk 2 ¢ (v),

REMARK. Gyroscopic forces give an example of a law of the form (4.6)

with a linear mapping L which is not self-adjoint ; on the contrary
v, Lv> = =<v', L v .
Such a law admits no pseudo-potential unless L is the zero mapping ;

the dissipated power is essentially zero, so that (4,1) is satisfied :
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this law may be said dissipative,

4, d VELOCITY CONSTRAINT
Take back the framework of § 3, e, i.e. the example of the

firm perfect constraint whose geometric condition is wu € &, with

£ = U + a, a.possibly moving affine manifold., The linear subspace U is
supposed independent of time thus also V which is the subspace of ¥
orthogonal to U, This geometric condition may equivalently by written,
for every t,

VYV wWEV : Lu-a, w = 0

Supposing that the known function t+ a possesses a weak derivative é,

Co

this yields, by choosing w independent of t, that the velocity v =

satisfies

YVWEV : Cu=-a,w = O
i,e.
(4.7) VEU + a

Recall on thé other hand that, by the definition of a firm perfect cons-
traint, the reaction r € § exerted on the system by the enforcing de-
vice may be an arbitrary element of V. Exactly like in § 3. b, this
fact may be expressed jointly with (4.7) by writing

(4.8) -r€ay, (v
<
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. .
where & denotes the affine manifold U + a

This constitutes a resistance law admitting the function ¢
g

as pseudo-potential., Let us call it a velocity comnstraint.

It is no place to explain how, in the general setting of a
configuration—depehding pair of spaces( ) %) g - the usual differen-
tiability assumptions let any firm perfect bilateral smooth constraint
be expressed under the form (4,8). This form includes more generally the
relations between reaction and velocity classically known as non-

holonomic: perfect constraints ; the standard example of it consists in

the perfect rolling without sliding of solid bodies, actually an extreme

case of friction,

4, e FRICTION AND PLASTICITY
Suppose given a weakly closed non empty convex subset C of
¥ . Let us formulate a relation ® between v and f by the principle

of maximal dissipation namely : the values of f € # which this relation

associates with a given v € ?° are the elements of C which minimize
the power, i,e, minimize the function <{v,.>. In other words v ® f
means

fec

VErEC : Lv, £'> 2 v, £
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which is immediately found equivalent to
v £'EF: v, fi-f> 4 Yo (f)<¢:c £
i.e.
(4.9) -vEDD wc (£)
which in turn is equivalent to
*
(4,10). fEadrc (- v)
(cf. § 2, e ) and also to
*
(4.11) ¥ (- v) + ¥ (£) + {v, > = O
*
Denote by ¢ the function v+ wc (-v), i.e.
¢(v) = sup (-v, £> = sup (v, g> ;

fec g € -C
it is the support function of the get. -C.

Then (4,10) is transcribed as

-f€d ¢ (v) 3

this means that the considered resistance law admits ¢ as pseudo-

potential (or resistance function in the usual case where C contains

the origin of ¥ ; such is the condition for the present law to be dis-
sipative).
Relation (4,11) may equivalently be written as

fec

(4,12)
-&v, > = ¢ (v) s

in other words the values of f that the considered relation associates
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with a given v are those elements of C for which the dissipated
power =-{v, £> equals exactly ¢ (v).

The reader will check that all the preceding pattern applies
to Coulomb's law of friction between two solid bodies eq. and eg ,
when the pressure N, i.,e, the normal component of the reaction, is trea-
ted as known., Take as v the sliding velocity of Qf; with respect to:
QI& ; then lﬂ is the linear space of dimension 2 consisting of the vec-
tors whose direction is contained in the common tangent plane to the two
bodies at the point of contact (this space is not exactly the velocity
space for the considered system as a whole, but it is visibly isomorphic
to a subspace of_it). Take as f the tangential component of the reac-
tion that G/; undergoes from efl .so that § may be considered as the
same spacé as y% the bilinear form (.,.> reducing then to the conven-
tional Euclidian scalar product. The customary Coulomb law of isotro-

pic friction consists in taking as C the closed disk centered at the

origin, with radius equal to the product of N by the friction coeffi-

cient. But anisotropic friction may be described as well, by using convex

sets of different shape. See MOREAU [12] about the application of this
to discuss the sliding of a vehicle wheel when brake is applied : if the
inertia of the wheel is neglected, the resulting effect comes to be equi-

valent to some anisotropic fiiction which would take place directly
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between the vehicle and the ground,

However, the main domain of application of the preceding is
plasticitx. In its local form the classical law of perfect plasticity
(i,e, without strain hardening) is formulated as a relation between the

local valuesof the stress tensor o and of the plastic strain rate ép

Giving the yield locus defines a closed convex set C in the six-
dimensional space of the variable o ; among various equivalent formu-

lations, the considered law may be stated as a principle of maximal dis-

sipation which was precisely the starting point of this paragraph. From
the local law one obtains the global one by the functional analytic pro-
cedure described at the end of § 4, b,
In the study of plasticity as well as in that of friction,

an: essential feature is the occurence of a relation between the veloci-~
ty v and the force f which cannot be "solved" to define one of these
two elements as a function of the other : to the value zero of v cor-
respond. for f all the points of C and to a value of f corresponds
as values of v all the elements of the cone - 9 ¢C (f£). This causes
much trouble in traditional treatments ; our purpose in Chapter 6, will
be to show that such formulations as (4.9), (4,10) or (4,11) permit a

very efficient handling in this situation,
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4, £ DISSIPATION FUNCTION

The relation ® between v and f may equivalently be written
under the form

f€R (v)

where R denotes a multimapping from )ﬂ into ¥ ., Given v in ¥ ,
there is a priori no reason for all the values of f in the set R (v)
to yield the same value for the dissipated power - <v, f>, However this
precisely happens in many practical instances : in such cases,vthe dissi-
pated power appears as a single-valued numerical function of the variable

v, defined on dom R = {v € ¥ : R (v) # #}. Let us denote by D this

?

function, usually called the dissipation function of the considered law.

In the case of viscous resistance preseunted in § 4, c, the set
R (v) reduces to a single element for each v in ]ﬁ ;s hence the exis-
tence of a dissipation function is trivial., In fact we found
D(v) = 2¢ (v) .
In the case of friction or plasticity presented in § 4, e,
(4,12) proves the existence of a dissipation function expressed now, for
every v in dom @ ¢ , as
D(v) = ¢ (v) .,
Both preceding examples exhibit a close connection between the

superpotential, or resistance function, ¢ and the dissipation
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function D. Actually in both cases, the resistance function ¢ happens

to be positively homogeneous, with degree m ; this implies

-&v, > = m¢ (v), which may be considered as a generalization of
Euler's identity to "subdifferential calculus', Many practical resistance
functions possess such a homogeneity (e,g. usual iaws of M). More
generally :

PROPOSITION, Let ¢ be a resistance function (i.e. ¢ 1is the.‘m' udo-

potential of a resistance law, with 0 € 3 ¢ (0) and ¢ (0) = 0) ;

suppose 9 ¢ (v) # § whichever is v in V. For the existence of a

function h : R » R ensuring the implication

~f €3¢ (v) = -<Lv, £> = h(p (v))

(in other words, for the function h o ¢ to be dissipation function) it

is necessary and sufficient that ¢ has the quasi-homogeneous form

¢ =a o Jj, where j 1is an everywhere subdifferentiable gauge function

on w and a a convex differentiable mapping from [o, + o[ into

itself, with a (0) = O.

A sketched proof is given in MOREAU [ 13] , and for more de-
tails [16]. It may be remarked that the function h is then strictly
increasing, The dissipation function D = h o ¢ is not convex in gene-
ral, but only quasi-convex i,e, its "slices" {v € ‘V": D (v) < p} for

p € R , are (closed) convex sets ; all these sets are homothetic of
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J=1{ve) . jiv)< 1}, the set whose j is the gauge,
By the facts indicated in § 2, nh , the dual function of

*
@ o j 1is also a quasi-homogeneous function, namely ¢ =8 ok ,

¢

n

where pB is the Young conjugate of a and k the gauge function of
the polar set K of J.

In the case of plasticity or friction the function a is
identity , so that f is the indicator function of the subset [0,1]

of [0, +w[ and K=-C,

4, g SUPERPOSITION OF RESISTANCE LAWS

It is usual to take into account at the same time several
resistance laws in the same pair (¥?, §) of linear spaces, Let ¢1 and
¢2 the respective pseudo-potentiak of two such resistance laws,For every
v in yg, the set of the possible values of the sum of the two for-
ces is 23 ¢1 (v) + 2 ¢2 (v). This is contained in 4 (¢l + ¢2) (v). and,
in particular, if the functions ¢1 and ¢2 possess the additivity of
the subdifferentials, the conjunction of the two resistance laws amounts
exactly to the single following one
(4,13) - f€2 (¢1 + ¢2) (v) .

*
Suppose for instance ¢1(v) = wc(— v), i.e. the resistance
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denote the resistance function of some viscosity law (cf, § 4, ¢ ¢ it

V ——
ié a nonnegative 1l.s.c. quadratic form on the space V' ) ; choose a strict-
ly positive constant A and take more generally

1
¢2(v) = A q(v) = X>q(A v)

so that A may be interpreted as a viscosity coefficient. As a dondition

ensuring the additivity of subdifferentials make, for instance, the fol-

lowing assumption (cf., § 2. £) : the function ¢1 is continuous at the
origin, at least for the Mackey topology = (V, P by &2, c, 5°, this
means the convex set C is compact for the weak topology o (F,Y). Then
the resulting viscoplastic law may be expressed under the form (4.13).

Now the assumptions made imply, by § 2, d, that the polar

* *
function of ¢1 + ¢2 is the infimal convolute ¢1 v ¢2. As already
*
mentioned in Chapter 3, the dual q of the quadratic form q consists
in a positive definite quadratic form, defined on some subspace of ¥ |
and extended with the value + » outside of this subspace. By § 2.Cc ,
o . 1 * *
29, the dual of ¢2 is 5-a. On the other hand, the dual ¢1 of ¢1
is the indicator function of the set - C. Thus using the equivalence
between (2.6) and (2.7) (§ 2. e) the viscoplastic resistance law (4.13)
amounts to
€0 G Teq) (-1
v b oV a >

while the corresponding purely plastic resistance law would be written as
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VEDY o (-8 .

By definition, for every y €%

1 * . 1 *
Yo 7xa)) = int (4 _o(2) + 5 a (y-2) ]
1 *
= inf — q (y-2)
z €-C

and, due to the assumed ':compactness of C, the infimum is a minimum,

Clearly this expression takes the value O for y € -C and it takes

. 1 %
strictly positive values otherwise ; it may be said that dr_c \% -X- q

is a penalty function for the set - C and the penalty coefficient 7\1—

is the reciprocal o:}’ the viscosity coefficient (other remarks about pe-
nalty functions will be given, for the special case of Hilbert space,
in §°5. d).

Due to quadratic forms being even functions, one may equiva-
lently speak of the set C instead of - C ; in short adding some vis-

cosity effects to a plasticity law is equivalent to replacing the indi-

cator function of the "rigidity set" cC, by a penalty function of this

set ; the smaller is the giscosity coefficient, the larger is the penalty

coefficient,
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5. ™MOVING SETS

5. a HAUSDORFF DISTANCE AND VARIATION

Let te> A(t) denote a multimapping or multifunction (i.e., a

set-valued mapping) from the compact interval [O,T] into a metric space
(E,d). As in the following the real variable t will be interpreted as
the time, we may refer to A as a moving set in E.

A natural way of formulating regularity assumptions about such

a multimapping consists in using the Hausdorff distance between subsets

of the metric space E,

If A and B are two subsets of E, we call the excess of A
over B the expression
(5.1) e(A,B) = sup d(a,B) = sup inf d(a,b)

a€A a€A bEB

The considered sets may be emp?y ; let us agree that "sup" and "inf" abo-
ve are understood in the sense of the ordered set ﬁ+ = [0, + a] : the
supremum of an empty qollection of elements of this ordered set is Q
and the infimum is + s . Expression (5.1) defines a non symmetric §£g££ H
it. satisfies the triangle inequality. Clearly e(A,B) = O if and only
if A is contained in the closure B of B.

The Hausdorff (improper) distance of A and B is then defi-
ned as the symmetric expression

h(A,B) = max {e(a,B), e(B,A)}



- 269 -

J. J. Moreau
with value in ﬁ+ . This is zero if and only if A and B have the sa-
me closure.

By means of Hausdorff distance, the classical concept of !2512:
tion may be applied to moving sets. Let [s,t] be a compact subinterval
of [O,T] ; for any finite subdivision of this interval, namely

S : s= To <7

1<...<Tn:t

put
n

V(8) = ) halr, D), Alt)))  €R,
i=1

The supremum of V(S) for S ranging over all the finite subdivisions
of [s,t] is called the variation of A on this interval ; notation
var (A ; s,t). From h satisfying the triangle inequality one easily
deduces that
(5.2) s< t< u=>var(A ; s,u) = var(A ; s,t) + var(a ; t,u) .
In particular if var(A ; O,T) { + e , the variation is also finite on
any subinterval of [O,T] ; in this case, introducing the non decreasing

’

function v from [0,T] into R,

(5.3) v(t) = var(A ; O,t)
yields
(5.4) s< t=> var(A ; s,t) = v(t) - v(s) .

The numerical function v is Lipschitz with ratié A if and
only if the multimapping A satisfies itself the Lipschitz condition,
with ratio A, i,e., for any s and t in [O,T],

h(A(s), A(t)) <A |t-§
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The numerical function v 1is absolutely continuous on [O,T]
if and only if the multimapping A possesses itself the absolute conti-
nuity, as formulated by means of Hausdorff distance, i,e, : for any
€ > 0, there exists 7 > O such that the implication

z IT

Yy o,l ¢ nz,i h(A@,), At ) <e

holds for any finite family ]0&,11[ of non overlapping subintervals of
[0,T]. In this case the numerical function v is almost everywhere dif-

ferentiable ; the derivative, denoted by v , is a nonnegative element

1
of L (0,T ; R) which may be called the speed function of the moving

set A. Clearly

t

(5.5) s< t = h(a(s), At < { v(t) dt

s

Let us restrict ourselves now to the case where, for any t,
the set A(t) is closed ; then the non decreasing function v is cons-
tant over some subinterval of [O,T] if and only if the multimapping A
is also constant over this subinterval. This implies the existence of a
multimapping A from [0,v(T)] into E yielding the factorization

ACt) = 3 (v(t))
Evidently, for dﬁg Tt in [0,v(T)], one has
var(Jh 5 S, T) =T - O

so that & is Lipschitz with ratio 1.

5. b THE CASE OF CONVEX SETS IN A NORMED SPACE

Let E denote a real normed linear space and F its
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topological dual endowed with the usual norm. This constitutes a dual
pair as considered in Chapter 2 (keep in mind that the norm topology on
E 1is cgmpatible with the duality, but not the norm topology on F un-
less E is a reflexive Banach space).

Let _g and C' be’two non empty convex subsets of E ; as we
»
are to deal with distances, it is immaterial to suppose these sets clo-
sed or not. Let y and 7' be the respective support functions Qf C
and C' which are positively homogeneous elements of I‘O(F,E), vanishing

at the origin of F,

Denoting by B the closed unit ball of F , one finds

(5.6) ~e(c,c') = sup (y(y) - y'(y))
’ y€B
(with the convention o — e = = ).

This is easily proved by observing that, for p € R, the ine-
quality p > e(c,C') means that, if B(p) denotes the closed ball cen-
tered at the origin with radius p , the set C-' + ﬁ(p) contains C ;
express then this inclusion in terms of support functions. Another way
of proof-would start from the following formula giving the distance of
a point a of E to the set C'

(5.7) d(a,C') = sup [{a,y> - y'(y)]
y€B
In fact (cf. § 2.)

d(a,c') = @, V [ 1) a)

Since the function [ is everywhere finite and continuous, since there



- 272 -

J. J. Moreau

exists at least one point where wc, takes a finite value (namely the
value zero), and since both functions are convex, the inf-convolute
¢C' v '1' is convex, everywhere finite and continuous (cf. § 2)
thus it equals its bipolar, i,e,
.(¢C, v I.l)(a) = sup [/a,y> -~ y'(y) - ¢B(y)]

yEF
= sup [Ca,y> ~ y'(y)]

y€B

which is equality (5.,7).

Equality (5.6) implies that the Hausdorff distance between the
non empty convex sets C and C' is finite only if dom y and dom y'
(i.e. the sets of the points of F where y and 7y' take finite va-
lues) consist in the same set denoted by D and then
(5.8) n(c,c') = sup |y(y) - y'(y)| .

yEBN:D

Note that D 1is a conic convex subset of F ; its polar cone in E is
the recession cone of C and C'. Recall that D equals the whole of
F if andonly if C and C' are bounded.

The expression (5,8) of the Hausdorff distance yields the
following :

Let t#~ C(t) be a multimapping from [0,T] into the normed
space E, with non empty convex values ; denote by y & y(t,y) the sup-
port function of C(t). This multimapping is absolutely continuous (resp.

Lipschitz with ratio A) if and only if the set D = dom y(t,.) is in-

dependant of t, with the existence of a finite non decreasing numerical
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function p [OJTI > R , absolutely continuous (resp, Lipschitz with
ratio A), such that for any y € D and any subinterval [s,t] of
[O,T] one has
[v(t,3) = v, < |y| () - p(s)
(].] denotes here the norm in F),
Equivalently there exists é , a nonnegative element of
Ll(O,T ; R) such that for any y in D, the numerical function
t +» y(t,y) 1is absolutely continuous and its derivative & satisfies for
almost every t
(5.9) [vet,y] <yl pt)
(resp, the same inequality with é = A), If such is the case one may
take as ﬁ the speed function of the moving set C.
Characterizing the regularity of the motion of a (closed) con-
vex set t ¥ C(t) by means of its support function y(t,.) is quite a
natural procedure, In fact an essential feature in locally convex topolo-
gical linear spaces is that a closed convex set equals the intersection
of all the closed half-spaces containing it, or equivalently the inter-
section of the minimal ones among these half-spaces, i,e, the half-spaces
which have in the present case the form f§x € E : {(x,y>< y(t,y) , with

|yl =1. Fixing here y yields a moving half space whose boundary hyper-
plane keeps a constant direction ; the derivative i (t, y) may be

interpreted as the speed of this moving hyperplane , or as

the speed of the moving half-space itself, Then (5,9) expresses a uniform
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ma joration of the speeds for the minimal half-spaces of all directions,
Example, Take as C(t) a convex set moving by trgnslation, i.e,
c(t) = Cy + w(t)

where Co denotes a fixed convex set and w a fonction defined on
[O,T] with values in E. Then, if Yo is the support function of C0

y(t,y) = yo(y) +(w(t),y> .
One concludes that the multimapping is absolutely continuous if (and
only if, in the case where C0 is boundéd) the function t e w(t) is
absolutely continuous. When E is a reflexive Banach space, the absolute
continuity of w 1is known to imply for almost every t the existence of
the strong derivative w (cf. KOMURA [1]) and this yields for the speed
v of C the ma joration

(5.10) v |w

(equality when c, is bounded),

5. ¢ INTERSECTION OF TWO MOVING CONVEX SETS

The practical use of the preceding concepts requires some cri-
teria of absolute continuity for multimappings. The object of this para-
graph is to establish the following one (already published in MOREAU
[22]7 or, for more details, [19]) :

PROPOSTITION, IlLet t & At and t P Bt denote two multimappings from the

compact interval [O,T] into the normed space E, with convex values,
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Suppose that for any t € [O,T] the set At has a nonempty intersection

with the interior of Bt and that the diameter of At N Bt is finite,

Then if the two multimappings are absolutely continuous (resp. Lipschitz)

such is also the multimapping t & At N Bt'

We shall decompose the proof into several lemmas which may be
of use by themselves,

ILEMMA 1, Let B B2 denote two convex subsets of the normed space E

1?

and A

1’ A2 two arbitrary subsets of E ; EBEE (e denoting the "excess'
as in § 5, a)
(5.11) e(A,, E\Bl)< e(a,, E’\BZ) + e(A, A)) + e(By, By) .

Let us prove first that for any a € E
(5.12) d(a,E\B,) < d(a,E\B,) + e(B,B,) .
(ne makes calculation easier by performing a translation reducing to the
case where a is the origin of E. Let g1 8, be the support functions
of B1 and 82 , defined on the dual F of E. Let p be an arbitrary
positive number satisfying the inequality P <§d(O,E\‘Bl), which means
that the open ball with center O and radius p 1is contained in B1 H
in terms of support functions this inclusion is equivalent to pfg gl(y)
for any y belonging to £ , the unit sphere of F, Now (5.,6) implies
Vyer : g < g,(y) + e(B,B,)

therefore p - e(Bl,Bz)fg gz(y) ; inequality (5.12) (trivial if

e(Bl,Bz) = + ) follows, From it one obtains (5,11) by taking suprema
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for a ranging over A then using the fact that the écart e satisfies

1)
the triangle inequality.

LEMMA 2, LEE A and B denote two convex subsets of the normed space

E ; suppose that B contains an open ball with radius p >0, with cen-

ter a belonging to A. Then

(5,13) V x€E : dx, anB < G +J—x;il)(d(x,A) + d(x,B)).

Proof : Denote indifferently by .] the norm in E or the dual norm
in F ; let £ and g be the support func?ions of A and B, Similar-
ly to (5.7) we have

d(x,A) = sup {Kx,u> - f(u) :u€F , |u <1}
and the corresponding expression for d(x,B). Define a positively homo-
geneous function ¢ on F x F by

¢Cu,v) =¢<¢x, usr v> = £f(u) - glv) .
For an arbitrarily chosen constant k > O this yields
(5.14) k(d(x,A) + d(x,B)) = sup {¢(u,v) : |u] <k , |v] <kl .

The hypotheses in the Lemma to be proved imply, by elementary
arguments, that the closure ;7§—§ of AN B equals the intersection
of the closures X and B of A and B. Then, the support function of
AN B is the dual function of ¢_ + ¢_, i,e, the TI-hull of £V g ;
. A B

by the facts summarized in § 2, d, this I'-hull is the function fV g

itself, i.e,

(£ 7V g) (w) = inf {£(u) + g(v) : u+ v
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Using again the expression (5.7) for the distance from a point to a con-
vex set, this yields

(5.15) d(x, AN B) = sup {¢x,w> - (£ 7V g)(w) : |w] <1}

= sup {¢(u,v) ‘u + vlfg 1.

Let us make calculation easier by supposing that a translation
has been performed in E such that a = O ; then the hypotheses made
about A and B are expressed by ij O and g?} p l,] , hence

[u+vl] <1 2 ¢,v< % -p |v] .
As ¢(0,0) = O and in view of (5,15) this implies

d(x,A N B) < sup {¢Cu,v) : |v] g-%l- , v €1 +%} .
After putting k =1 +~l§l in (5.14), the comparison of the sets over
which the suprema are taken yields (5,13),

REMARK, 1In the case where E is a Hilbert space one may use trigonome-

try to establish a slightly better inequality ; see MOREAU [19] .

LEMMA 3., Let A and B denote two convex subsets of E ; take «

and p in ]O, + e[ such that « { p { e(A, E B). Then, for any x

in E such that d(x,A) + d(x,B) < @ , one has

+ diam (A N B)

o - % (d(x,A) + d(x,B)) .

d(x,an B) <L

This results from (5,13) and from the inequality
[x - a] < diam (AN B) + d(x,AN B) .
Bringing together these lemmas one obtains easily

IEMMA 4, Let T denote a topological space ; let t v At and t » Bt
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be two multimappings from T into the normed space E, with convex va-

les, Let s € T such that
diam (A_ N B_ ) { + e ,
s s

AN intBS;!;zS ,

lim e(At, As) =0 (resp, 1lim e(AS, At) = 0) ,
t->s t->s
lim e(Bt, Bs) =0 (resp. lim e(BS, Bt) = 0) .

t—>s t-~>s

Then

lim e(Aéﬂ Bt’ Aéﬁ BS) 0 (resp. 1lim e(Agﬂ BS, Ag\ Bt) = 0)
t>s t>s

and the two numerical functions t > diam (At N Bt) and t P e(At,E\\Bt)

are upper semicontinuous (resp. lower semicontinuous) at the point s,

Let us now complete the proof of the Proposition :
The hypotheses imply that the two multimappings t+» At

and t & Bt are continuous in the sense of Hausdorff distance. The fi-
nite numerical function t + diam (At 8 Bt) is continuous by Lemma 4

on the compact interval [O,TW , thus majorized by some constant R {( + w.
By the same lemma the numerical function tw— e(At, E'\Bt) is continuous
on [0,T], with strictly positive values since A, N int B, £ @ , thus
minorized by some constant p > O. Choose a € lo,p[ ; the functions

t+ var (A ; O,t) and t & var (B ; O,t) being finite and continuous,
there exists & > O such that for ¢ and < in [0,T], the condition

o -1l ¢ & ensures that h(A_, A ) and h(B_, B ) are less than 2.
(o2 T (o2 T 2

Then Lemma 3 implies
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.L__ + ’

which yields the expected majorations,

5. d DISTANCE AND PENALTY FUNCTION 1IN A HILBERT SPACE

Let H be a real Hilbert space ; denote by (‘I.) the scalar
product in i® and by |.| the norm. By means of this scalar product, H
may be identified by its dual ; in other words (,!,) is a bilinear form
on H x H which places H ‘in duality with itself and the norm-topology
is compatible with this duality.

Easy computation yields that the function

@+ xedix?

which clearly belongs to PO(H,H) equals its own dual (actually it can
\be Pproved that Q 1is the only fonction equal to its dual),

Let C be a non empty closed convex subset of H ; denote by
q the numerical function defined on H by

a0 = 5 [4x,01% = G 7 Q) (o

Elementarily this function is convex, everywhere finite, continuous,
Fréchet-differentiable with gradient
(5.16) grad q(x) = x - proj, x ,
where projC x denotes the nearest point to x in C. (All this is a
spe¢tal case of a theory in which the indicator function wc is repla-

ced by an arbitrary-element of T (H,H) ; see MOREAU [61.)
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Choose a strictly positive constant A ; then x b %-q(x) de-
fines whaf is commonly called a penalty function of the set C, i,e. a
finite function which takes the value O when x € C and rapidly
growing positive values when the distance from x to C increases. So
to speak, the smaller is the constant A , the greater is the penalty for
x of lying at a distance from C. The penalty function may be considered
as an approximation of wc in a sense which concerns also the subdiffe-

rentials as follows : Denote by A the multimapping x # 3 wc(x) from

H into itself, which constitutes a special case of maximal monotone

operator, In general, for a chosen A > O, the single valued, everywhere

defined mapping

-1
(5.17) AA = I - (IA+ A_A) ,

where I denotes identity, is classically called & Yosida approximation,

or Yosida regularization, of A ; it is Lipschitz with ratio 7% . Here
AA m;y easily be explicited ; by definition the equality

y=(0+A A)_l(x) means x € (I + A A)(y) or equivalently x-y € 3 ¥ (y)
for 3 y(y) 1is a cone so that the factor A may be omitted. This is
well known to characterize y as equal to proJc x ; hence (5,17) be-

comes

(5.18) Ay (x) :Tl (x - prOjC x) =>+grad q(x) .
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5, e MOVING CONVEX SET IN A HILBERT SPACE

With the same notations as in the preceding paragraph, suppose
t b C(t) is an absolutely continuous multimapping from [O,T] into H,
with non empty closed convex values ; put

att,x) = 2 [dex, cen]? .

Let t # z(t) be an absolutely continuous mapping from [O,T]
into H.

Classically the continuity of t b C(t) in the sénse of
Hausdorff distance and the continuity of t#+ z(t) imply the continuity
of the mapping

t & proj (z(t), C(t)) .

The proof of it is based on some ma joration of the square of the displa-
cement of the projection which implies nothing about the absolute conti-
nuity of this mapvoing ; however :

LEMMA 1. If t» C(t) and t#+ z(t) are absolutely continuous, on

[0,T] so is the numerical function k : t+ d(z(t), C(t)).

In fact, with the notation e of § 5, a, one has
d(z,c) = e(fzl, C)
so that, using the triangle inequality concerning the écart e , one ob-
tains finally, for arbitrary o and T 1in (O,T] ,
(5.19) ld(z(), c@)) - d(z(t), c(t))]

< d(z@), z(t)) + h(c@), Clt))
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It just remains to apply the definition of absolute continuity,

This lemma implies that the function k possesses for almost
every t a derivative denoted by ﬁ(t) ; thus the function

1 2
tw» 5-(k(t)) = q(t, z(t))

possesses, for the same values of t, a derivative equal to k(t) k(t).

The absolute continuity of the multimapping C means that its

variation function v : t+& var (C ; O,t) is absolutely continuous,

thus possesses a derivative v(t) for almost every t. Similarly the
absolute continuity of the vector function ¢t z(t) implies the exis-
tence of its strong derivative =z(t) for almost every t (by virtue of
H being a reflexive Banach space ; see KOMURA [1]).

Let us prove now the following, which will be of use in next
paragraph

LEMMA 2. For any t in [0,T] such that the derivatives z(t), v(t),

ﬁ(t) exist, one has
(5.20)  |k(t) k(t) - (2(t)] grad q(t, z(t))] < k(t) v(t) .

In fact for such a value of t the hypotheses imply the exis-

tence of
1im q(s, z(s)) - q(t, z(t)) = k(1) é(t) .
s > t s - t
Now
(5.21) a(s,z(s)) - q(t,z(t)) _ q(s,z(s)) - q(s,z(t)) +

s - t s - t
q(s,z(t)) - q(t,z(t))
+
s - t




- 283 -

J. J. Moreau
As the numerical function x# q(s,x) 1is convex on H, its
gradient at some point is also a subgradient ; this yields
(z(s) - z(t)|grad q(s,z(t)) < a(s,z(s)) - a(s,z(t))
< (2(s) - z(t)|grad q(s,z(s)) .
The mapping s » proj (x,"C(s)) is continuous, the mapping
.
x v proj (x, C(s)) is nonexpanding, thus the mapping
(s,x) » grad q(s,x) = x - proj (x, C(s))

from [0,T] x H into H is continuous ; hence one obtains the existence

of

q(s,z(s)) - q(s,z(t)) :

% (z(t) | grad q(t, z(t)) .

1lim

s>t
Therefore the last term in (5.21) possesses also a limit which may be
interpreted as the derivative at the point t for the function

1 2

(5.22) s+ q(s, z(t)) = 5 [a(z(t), c(s)] .
Writing the same inequality as in (5.19), but with constart =z , yields

|d(z(t), c(s)) = d(z(t), c(t)] < n(c(s), c(t))

< Jvis) - v(v)]

so that the derivative of the function (5.22) has its absolute value ma-

jorized by k(t) v(t) s this completes the proof of (5,20),

5, f THE SWEEPING PROCESS
Suppose given an absolutely continuous multimapping t v C(t)

from [0,T] into the real Hilbert space H, with nonempty closed convex
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values ; denote by x & ¢(t,x) the indicator function of C(t).

We put the problem of finding an absolutely continuous (single

valued) mappin u [O,T] > H agreeing with some initial condition

(5.23) u(0) = a , given in C(0)

and whose derivative u satisfies for almost every t in [O,T]

(5.24) —u(t) € 3 ¢(t, ult)) .
Interpreting u as a moving point in H , we call it a solu-

tion of the sweeping process by the moving convex set C. The reason of

this naﬁe lies in the following mechanical image of condition (5.24) :
As 9 ¢(t,x) is empty when x ¢ C , this condition implies
u(t) € c(t) for almost every t, thus for every t, by virtue of our
continuity assumptions. Suppose, to make things clearer, that the moving
convex set C possesses a nonempty interior., As long as the point u(t)
lies in this interior, the subdifferential 9 ¢ (t,u(t)), i.e, the cone

of normal outward vectors at the point u(t) of the convex set (cf,

§ 2. e) reduces to the single element O ; then (5.24) implies that the
moving point u remains at rest, It is only when u is caught up with
by the boundary of C that it may take a nonzero velocity, so as to go
on belonging to C, and by (5.24) this velocity possesses an inward nor-
mal direction with regard to C. In other words, condition (5,24) governs
the quasistatic evolution of a material point u subject to the follo-

wing mechanical actions :
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1° some resistance acting along the line of its velocity and

opposite in direction ;

29 the moving perfect constraint whose geometric condition is

u € c(t) (cf. § 3, d).

Elementarily the initial value problem formulated above pos-
sesses at most one solution. Such uniqueness property holds more generally
with "evolution equations" of the form
(5.25) -u(t) € ACt, u(t))

where A(t,.) denotes, for each t € [0,T], a monotone multimapping (or

multivalued operator) from H into itself. In fact, monotonicity imme-

1’ u, absolutely continuous, are solution of

diately implies that if u
(5.25), the function
- -

te fu (t) = u, (1)

is non increasing ; therefore these two solutions are equal if they agree

with the same initial value.
Equations such as (5.25) have already been studied, but mainly
under hypotheses involving that the set
dom A(t,.) = {x € H : A(t,x) £ @}
is independant of t ; see réferences in BREZIS [1], Here, on the con-
trary, the problem becomes trivial if dom A ¢(t,.), namely C(t), is
constant :; thus the simple equation (5,24) furnishes the occasion of

focusing upon the difficulties which arise from the variation of the
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domain, In the same line must be'quoted H
1° H. BREZIS [2] who studied by a "double regularization" technique
the case

ACt,.) =3 ¢(.) + 3 ¢(t,.)
with ¢ € PO(H,H) independent of t and under some hypotheses invol-
»

ving the projection mapping x + proj (x, C(t)) ; they do no seem direct-
ly comparable with our absolute continuity assumption,
2° c. PERAIBA [1], [2] who succeeded in generalizing to the case
A=93 ¢ , with ¢ € TO(H,H) depending on time in a suitable way, the
author's regularization method (see MOREAU [17]).

Because of its insertion in this context we also choose a re-
gularization technique, i.e, the use of penalty functions, to prove, in
‘next paragraph, an existence theorem, Another advantage of doing so re-
fers to the application of equation (5.24) to elastoplastic mechanical
s&stens., developed in Chapter 6 below : as explained in § 4, g; when
the conside;ed convex is the rigidity set defining a law of plasticity,
the replacement of its indicator function by some penalty function comes
to take into account some additional viscosity. The reasoning used below
could then pe adapted to prove that the solution of an elasto-~visco~
plastic problem tends to the solution of the elastoplastic problem when
viscosity tends to zero, From the physical standpoint this may be as

important as the existence question itself,
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The existence theorem obtained will supply the‘needs of Chap-
ter 6. Actually a deeper insight into the sweeping process can be gained

from a discretization method (published as multigraph in MOREAU [18])

which consists in proving first the convergence of the "catching up
algorithm” (cf, § 5. h below) ; this method permits weaker hypotheses, by
replacing the concept of the variation of a multimapping by that of
retraétion : use inste;d of Hausdorff distance the "unilateral" écart e,
On the other hand, a generalization of the process can be defined in this
line for the case of a possibly discontinuous moving convex set C, pro-
vided its variation (resp, retraction) is finite,
On the application of the discretization method to equations

of the form (5.25), with A(t,.) = A ) - f£(t) see J. NECAS [1] .

5, g EXISTENCE THEOREM

The study of equation (5.24) is made greatly easier by the
following remark : the sweeping process associates the chain of the po-
sitions of the moving point u to the chain of the positions of the
moving set C in a way which does not depend on the timing. More preci-
sely, the change of variable in Lebesgue integral, along with the fact
that the set 9 ¢ 1is a cone, i.,e, the multiplication by a nonnegative

scalar sends it into itself, implies : Let 7 denote a non decreasing

absolutely continuous mapping from [O,T] onto an interval [O,T'];
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suppose C = C'ow , i. e,
(5.26) v te[o,T] : Cc(t) = c'(w(t))

where C' is an absolutely continuous multimapping from [o,T'] into

H , with nonempty closed convex values ;let u' : [0,T'] » H be a solu-

tion of the sweeping process for C' ; then the mapping u = u' ow is

a solution of the sweeping process for é.

As explained in § 5, a, taking for 7 the variation fonction
v of the given multimapping C yields a factorization of the form
(5.26), with C' Lipschitz with ratio i. This reduces the existential
study of the sweeping problem fo the Lipschitz case, i.e, the case where
the speed function of the moving convex set belong to L (O,T s R), or
even is merely a constant.

Iet us now proceed to establisﬁ H
PROPOSITION, For any a in C(0) the sweeping problem, as formulated

in the preceding paragraph, possesses a (unique) solution.

let n be positive integer. Denote by u e [0,T] » H the
solution of the differential equation
(5.27) -u = n grad q(t, un(t))
for the initial condition
(5.2¢) u (0) = a .
n

In fact the expression (5.16) of grad q implies, under the hypotheses

made concerning t v C(t), that the mapping (t,x) v n grad q(t,x) is
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continuous .relatively to t and is Lipschitz with ratio n relatively
to x ; hence classically the existence and the uniqueness of u which
is a continuously differentiable function from [O,T] into H,

Observe that the construction of the ordinary differential i
equation (5.27) consists in replacing the right member A = 9 ¢ of
(5,24) by its Yosida regularization (5.18), with A =-£§ ; equivalently,
the indicator function of C 1is replaced by the penalty function n q :
thus the moving point un(t) is allowed to not belong to C(t) but then,
in view of the expression (5.,14) of grad q , it must have a velocity
directed toward its projection on C(t) ; the magnifude of this velocity
is proportional to the distance from un(t) to C(t) and proportional
to the penalgy coefficient n .

LEMMA 1. . If the speed function v of the moving set C belongs to

L2 (0,T ; R), the sequence of the derivatives ﬁn is bounded in

2 (o,1 ; W,
Denote by hn(t) the common value of
1,
5 lun(t), = |grad q(t, un(t)), = d(un(t), c(t)) .
Inequality (5,20) (§ 5, e, Lemma 2) yields, for almost every t ,
[hn(t) h (t) - (u (t) | grad a(t, un(t)))l < h (t) v(t)
hence, due to (5.27),
(5.29) h () B () + n (b (t)Z < h_(£) v(t)
n n n n

As a € c(0), one has h (0) = 0, thus, by integration over [o,T] ,
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1 2 T .9 T .
= (h_(T))" + nf (h_(£)) dtg[ h (t) v(t) dt
2 n n n
(8] (0]
Denoting by ||.|| the norm in 2 (0,T ; R) as well as the norm in

L2 (0,T ; H), this yields

(5.30) gl < I
which proves the lemma,
]

REMARK, More may be obtained from inequality (5,29). Suppose only the
absolute continuity of ¢~ C(t) so that the derivatives v(t) and
ﬂn(F) exist for almost every +t. For the values of t such that
hé(t) ¥ 0 , inequality (5.29) implies

h (£) + n b (£) < V()
and this is al;o true when hn(t) = 0 (then ﬁn(t) = O since zero is
the minimal value of hn). The elementary treatment of this differential
‘inequality, with the initial condition hn(o) = 0 , yields :
(5.31) la (&) < vt
for almost every t.

In particular, if v € P ©,T ;R) , with 1< p< +o , the
same inequality as (5,30) holds for t’ norms.

From such majorations, there are many ways of establishing the
convergence of the sequence u to a function which is a solution of the
sweeping process, In view of our L2 framework, the most efficient
seems to make use of the following elementary property of Hilbert spaces,

due to M. CRANDALL and A. Ppazy - [1] .
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Consider a real Hilbert space with scalar product noted (.|.>

and norm noted ”.” . let (rn) be a sequence of positive real numbers ;

let (zn) be a sequence of elements bf this Hilbert space such that

: - - <
Vn , Vmn: (zn z |l rpz -rz>S (o]
Then :
If rL is strictly increasing in n , Han is decreasing and

1lim zn exists.
n -

-

r. is strictly decreasing, Hzn” is increasing ; if in

addition I]z H is bounded, 1lim z exists,
_— n — L5 —_—

From this we are to prove

. 2 B
LEMMA 2, If v ¢ L (O,T ;R) the sequence un is strongly convergent

in 12 (0,1 3 H),

In fact, let m and n be two positive integers ; for any t

in [O,T] , the values of the functions um, ﬁm’ un, Gn satisfy

d 2 . .
(5.32) ot lum - unl = 2(um u u un) .

Denote by P, P the respective projections of um(t) and un(t) on

n
c(t) ; by (5.16) and (5.27) one has

- = m(um - pm) €9 ¢(t, pm)
and the same for n ; due to the monotonicity of 9 ¢ , this yields by
easy calculation

. 1 . .
u - =u | u -1)
m n m n

=R

(u = u | u - un?fg -( n

Recall that um(O) = un(O) = a , integrate (5.32) over [0,T] , denote
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by {.|.> the scalar product of the Hilbert space 12 (0,T ; H) and
by ||.|| its norm ; this inequality implies
1 2 1 1
nglum(T)-un(T)l <-(;u -su ]um—un> .

m n

The sequence rn = %- is strictly decreasing ; the sequence
”un” is bounded according to Lemma 1 ; apply CRANDALL and PAZY's
R 2
result in L (O,T ; H).

Next :

LEMMA 3, f vE L2-(0,T s R) the sequence of functions u converges

uniformly on [0,T] to an absolutely continuous function u whose deri-

vative is the L? - limit of the sequence ﬁn ; this function is solution

of the sweeping process for the initial condition u(0) = a .

Furthermore, for almost every ¢,

(5.33) Jace)] < vee) .
In fact, denote by u the limit of ﬁn in L2 (0,T ; H) and

define u : [O,T] - H by

t
u(t) = a + J u(s) ds ,
o

so that u is absolutely continuous with a ;trong derivative equal to a
-

almost everywhere, Still denoting by ||.| the norm in 12 (0,T ; H), the

()

ineqhality

t
[ut) - u (0] = | [

(u(s) = u (s)) ds| </t |Ja - o
) . n n

shows that u is the uniform 1limit of un.

It remains to prove that u and a verify (5,24) almost
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everywhere, Put
pn(t) = proj (un(t), c(t)) .
Then, in view of (5.,16) and (5.27)
1
un(t) - pn(t) = grad q(t, un(t)) =-—u (t)

(5.34) -u (£) €3 4 (t, p_(t)
and, in view.of (5.30), the functions p, converge to u in L?(O,T ; H).

The convergences in L2 (O,T ; H) imply the existence of N',
an infinite subset of N, such that for any t which do%not: belong to
a certain subset w of [0,T] with zero measure, the 1limit of P, (t)
in H, for v tending to infinity in N', is u(t) and the limit of
1.10 (t) in H is u(t). Asthe graph of the multimapping x®© 3 ¢ (t,x)
is closed in H x H , (5,.,34) implies that (5,16) holds for any. t ¢ w .
On the other hand (5.,33) follows from (5,31),

From this lemma, the proof of the formulated Proposition is
completed, by performing an absolutely continuous change a variable redu-
cing to the case v € I (0,T ; R), which a fortiori implies
ve1? 0,1 ; R).

REMARK. Inequality (5,33) is clearly preserved by such a change of va-
riable, so that in general for any solution u of the sweeping process
lace)| < vee)

By integration, this yields that the length of the path traveled by the

moving point u during an interval of time [tl,tz] is ma jorized by
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var (C ; t t2). This property becomes specially suggestive in the spe-

1’

cial case where C moves by translation i.e,

c(t) = ¢+ w(t) ,
o

with w absolutely continuous, Then, in view of § 5, b, example,
t2 . t2 .

(5.35) [ Jut)| dtg[ [w(t)| at .

t

1 t1

The association of the function u , a solution of the sweeping process,
with the given function w defining the translation imposed to C , may

be visualized as a driving affected with play ; (5.35) expresses that

such a play makes the driven point travel a path which cannot be longer

than the path traveled by the driving device,

5. h DISCRETIZATION ALGORITHM
A method of "time discretization” for the approximate solution

of the preceding problem consists in choosing a subdivision of [O,T],

namely O = to < tl ST § tn = T and constructing a sequence
X xl, vy X of points of H such that xi constitutes an approxi-
n .
1
mation of wu(t,). Adopting ———— (x.- x, _.) as an approximation of
i ti— ti_1 i i-1

&(ti) induces to replace (5.24) by
(5.36) X7 % € (ti— ti-l) a ¢(ti,xi)
which is a recurrence condition of "implicit" type concerning the desired

sequence (an "explicit" method would consist in interpreting the same

quotient as an approximation of ﬁ(ti_l) ; but this yields an unworkable
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recurrence condition), As @ ¢(ti,xi) is a cone, the strictly positive
factor ti— ti—l in the right member of (5.36) may be omitted and this

condition equivalently amounts to

(5.37) x; = proj (xi C(ti)) .

-1’

Thus, starting with xo = a , the point sequence (xi) is cons-
tructed by successive projections on the sequence of closed convex sets
C(ti), It is as if the moving point u, instead of being swept along with
the moving set C was left behind except that, from time to time, it

catches up with this set intantaneously, by the shortest way. We propose

to call this the catching up algorithm,

The question is wether the step function x : [0,T] » H defi-

ned from this sequence by

t.]

(5.38) x(t) = x, for t€ Jt, .,
i-1 i

i
converges to the solution u of the sweeping process, for the same ini-
tial value a, when finer and finer subdivisions of [O,T] are consi-
dered.

A direct proof éf the convergence of this family of step func-
tions may be given, yielding another way to establish the existence of
the solution u  itself (cf, MOREAU [17], [18]). As this existence has
been bbtained above by a regularization, or penalty, technique we think

it interesting and unusual to study also the discretization algorithm by

some extension of the penalty method : the trick consists in making the
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penalty coefficient vary with t (cf, MOREAU [17]).

PROPOSITION, For any € > O there exists 7 > O such that the ma jo—-

ration

sup (ti— t, )<

1

1

(resp. there exists 7' > 0 such that the majoration

5 . ' [
sup var (c ; ti—l’ ti) (")
i .
ensures

v te[oT] : Jut) -x(4) (e .

Let p.: [O,T] *~R+ a nonnegative ruled function (actually it
will sufficein the following to take as p a step function). The classi-
cal theory of differential equations ensures the existence of
up : [o,T] - H, solution of

-u (t) = p(t) grad a(t, u_ (t))
p p

agreeing with the initial condition up(o) = a, Denote by hb the abso-
lutely continuous numerical function

h (t) = d(u_(t), C(t)) = |grad a(t, u (t))] .

3 P P
The same calculation as in § 5, g, proof of Lemma 1, yields the differen-
tial inequality
(5.39) hp +p hpgv ,

from which elementary techniques leads to :

LEMMA 1, 1If the speed function v of C 1is majorized by some constant

Mj} O , the function hp is majorized by the constant M J(p) , Where
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J(p) denotes the supremum over [O,T] of the numerical function k

defined on this interval by the differential equation ﬁ +p k=1 with

the initial condition k(0) = O.

o
Consider now another functiOQ/gimilar to P and the corres-
ponding %y and %y . The same inequality as in § 5. b, proof of Lemma
2, yields, for any t in [O,T],
1 2 t
= Ju () - u_(t)]° < ~(grad q(s,u (s)) - grad q(s,u_(s))|
2 'p (<2 0 P (o2
p(s) grad q(s,up(s)) - o(s) grad q(s,uo_(s))) ds .
The integrand is a scalar product in H, majorized by
(h +h)ph +o'h)=ph2+o‘h2+ (p‘+o')h h_.
p o p o p o p o
Now from Lemma 1 and inequality (5.39) one obtains
h h +p hzgm J(p)
p P p
‘h hh <M
hc'hp +p b o S J(0)

and two symmetrical inequalities. Adding them together and integrating

gives the proof of the following :

LEMMA 2. If the function ; is majorized by some constant M;Z O one

has, for every t in [O,T] ,

2 2
(5. 40) |up(t) - uo_(t)] L4t M J) + I@)) .

If, in particular, ¢ is a constant m

1 =mT 1
Je)==1~-e )< .

By § 5. g, the solution u of the sweeping process is the limit of the

corresponding 25 when m (for instance an integer) tends to infinity ;
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thus (5.40) implies
(5. 41) Iup(t) - u(t)|2 < 4t w2 J@p) .
For the continuation take as p the step fuﬁction associated
with the subdivision
0=t ¢ty (... {t =T

as follows : denoting by mi the middle point of the interval

[t;s t5,,] » put
5 A if t.1< t « m,
(5.2) p(t) =
10 if om et
where A js a constant independent of i,
Denote by p the supremum of the ti+1 - 1:i s studying the

function k associated with p as in Lemma 1 yields :
LEMMA 3. If p is defined by (5.42) and A} 4 one has

1

Je) < — + g .
VA

Hint : the function K : t » max EL, k(t)! possesses for almost every

VA
t a derivative K(t), When t € ]ti’ mi[ one has

k() < -1 if K(t) >

K(t) = 0 if K(t) =

A=l

When t € [mi, ti+1] one has

K(t) = 1 it K(t) >——
JA

K(t) = O it K(t) = —=—
/A

From these lemmas we can proceed to the proof of the Proposition,
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Observe first that the two alternative statements of this Proposition are
equivalent since the variation function v of C is continuous on [O,T]*
thus uniformly continuous,

The statement concerning variations is visibly indifferent to
any (absolutely continuous) non decreasing change of variable ; we take
profit of this fact in supposing that a change of variable has been per-
formed reducing to the case where the speed function 6 of C is the
constant 1 (see § 5. a),

First step. Denote by w the following absolutely continuous non de-
creasing mapping from the interval [O0,T] onto itself (mi denotes as

1B

before the middle point of [ti, t

i+1
t. it ¢, <t m,
W(t) - 1 1 1
2t -t if m <t< L
and put
Cr(t)) = cC'(t) .

In other words, on each interval of the form [ti, mi] the convex set

C! remains fixed, equal to C(ti) ; on the next interval [mi, ti+1] ,

1,

it runs through the same chain of configurations as C on [ti, ti+1

with a timing adjusted in such a way that C' catches up with C at the

instant ti+l' Call u' the solution of the sweeping process for the

moving convex set C' and the same initial value a as u ; in view of

the change of variable one has
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u'(t) = ulr(t)) .
By virtue of (5,31), the function u is Lipschitz with ratio 1 ; thus,
for any t € [0,T],
(5. 43) J[ut) = u'(p)] < -22 .

Second step, Put

a'(t,x) =+ dx,cen? .

ST

Defining p by (5.42), denote by up' the solution of
(5. 49) -Gp-(t) = p() grad q'(t, ui(t))
agreeing with the initial condition uf; (0) = a, The integration of this
differential equation may be explicited : On each interval of the form
[m,, t, 1] the function p vanishes, so that
(5. 45) te[m, ti+1] = uP'(t) = up'(mi) .
For t ranging over an interval of the form ]ti, mi[ , p takes the cons+
tant value A and the function x+ q'(t,x) is independent of t, with
grad q'(t,x) = x - proj (x, C(ti))
so that, on this interval
(5, 46) up'(t) = uP'(ti) + [yi- up;(ti)] [1 - exp A(ti- t)]
where
v, = proj (up'(ti), C(ti)) .
Supposing A 4, it results from (5,41) and from Lemma 3

that, for any t € [o,T]

(5.47) larce) - w)®<. t (= + B

JK

.



- 301 -

J. J. Moreau

Note that (5.45) and (5,46) yield

, , Alt- ty, )
1] — 1 p— - - ——
(5. 48) u (ti+1) = up(mi) = up(ti) + [yi up(ti)][l exp 5 ]

Third step. Let A tend to + e ; as all the ti- ti+1 are {0,
(5.48) shows that, for each i ( n , the difference W;(ti+1) - y; tends
to zero in H. As the mapping proj (., C(ti)) used in the definition

of ¥ is continuous, this proves by iteration that, for each i ¢ n,

) as defined by (5.38). Then (5.46)

the value u'(t, .) tends to x(t,
i+ i+

1 1

shows that uﬁ(t) tends to x(t) for any t in ]ti’ mi] and finally
also for any t in [mi, ti+1] by virtue of (5.46),

In view of (5,47) this pointwise convergence yields, for any
t € [o,T] ,

[x(t) - u(t)| </”Tp

which proves the Proposition, by comparing with (5, 43),
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6 QUASI-STATIC EVOLUTION OF AN ELASTOPLASTIC SYSTEM

6. a FORMULATION OF THE PROBLEM

The framework in all this Chapter is that of a éonfiguration
space W endowed with a linear space structure ; thus the practical gp—
plications of the following mainly concern systems whose displacements
are treated as "infinitely small",

According to the usual conception of elastoplasticity,every
state of the system is represented by two components which both are ele-
ments of U

The visible (or "exposed") component, denoted by x ; it is
the part of the system which undergoes external forces, called loads,
and may also be submitted to constraints.

The hidden (or "plastic') component denoted by 'p.

Strictly speaking, the configuration space of. the system is
then the product space WxU .

The difference x - p= e € U will be called the elastic
deviation,

Let us denote as before by § the linear space of forces,
placed in separating duality with Ul ; the forces experienced by the

component p are :
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1° The force s € F of "elastic restoring toward x' related to e by
(6.1) s = A (e) ,
where A denotes a given selfadjoint nonnegative linear mapping from
W into § .
2° The force of "plastic resistance” f € F related to the velocity ﬁ
(at any instant where this velocity exists) by the resistance law studied
in § 4. e.
(6.2) PEDY, (-8,
where C denotes a fixed nonempty closed convex subset of F

The forces experienced by the component x are

1° The reaction r € § of a perfect affine constraint (cf, § 3. ¢) ;

this const{gints maintains x at every instant in an affine manifold
which moves in a given way, say

(6.3) £ = U+ gt)

where U denotes a fixed closed linear subspace of !l and t*> g(t) is
a given function of time, with values in ll,, which may be called the
guiding (or "driving"), Such a constraint constitutes the statical law
(6.4) -r€a ¢£ (x) .

2° The load c(t), a given time-dependent element of ¥ .

3° The force - s of "elastic restoring toward p"s Supposing in this

way that the elastic force acting on x is the negative of the elastic
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force acting on p merely means that the total power of the elastic
forces vanishes in any evolution which preserves the elastic deviation
X - p ; in other words the elastic energy depends on this deviation only.

The prollem is that of determining the evolution of x and p

in Ul , under the hypothesis that the motion is sufficiently slow for

inertia to be negligible,

Therefore, the dynamical equations amount to express the quasi-
equilibrium of x, namely
(6.5) r+c-s = O
and the quasi-equiliprium of p, namely
(6.6) s+f = 0 .

To illustrate the preceding formulation by a practical example,
the reader may take back the situation of a lattice of bars, presented in
§ 3. i, j . If the behavior of each bar is elastoplastic, the % n(n-1) -
uple of their respective elongations, nemely the element e € E , has to
be written as a sum, say e' + p ; here e' denotes the "elastic part”
of e, related to the tension s € S by a linear elasticity law such as
(6.1) ;'p denotes the 'plastic part” of e : its "velocity" p is rela~
ted to s by relations of the form (6.2), (6.6). At this stage one may
avoid ‘the explicit consideration of the linear mappings D and Df by

using the third procedure of § 3. j , namely the elimination of (X,Y) :
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then the sum e' + p is interpreted as the "visible" configuration, to
be denoted here by x ; finally write simply e instead of e',

’

The same pattern applies to an elastoplastic continuous medium,

occwying a domain () of the physical space. Then elements e, e', p, s
are some tensor fields defined on () ; the spaces E and S are some
function spaces., The corresponding quasistatic evolution problem may be
treated in the line of the following paragraphs, but with some compli-
cations which will not be investigated in this lectures { the difficulty
arises from the fact that, with regard to the Hilbert norm defined by
means of the elastic energy (see § 6, b) the convex C possesses an
empty interior, Then the theorem on the absolute continuity of intersec-
tions (§ 5. c) will be applied relatively to some I°-norm ; thé absolute
continuity of the considered intersection will finally hold with regard
to the Hilbert norm too, as this latter is majorized by the I?-norm(mul-
tiplied by a constant).

Observe that the continuous medium problem is studied by
G. DUVAUT and J.L. LIONS, [1], Chap, 5 . Their method is that of va-
nishing viscosity, basically similar to the regularization technique we
used in § 5, g ; but they must restrict themselves to the special case
where the "load", denoted here by c, is identically zero ; thus the mo-

tion is only caused by the "guiding" g. Paragraph 6, ¢ below explains

why this special case is more tractable : it corresponds to a set
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(C-c-g) N V which moves by translation, so that the intersection theo-
rem is not required for proving its absolute continuity (cf. § 5. b).

We shall not deal in the present lectures with systems governed
by behavioral laws of Henﬂ@’s type ; the reader will refer to H. Lanchonk
lectures on this subject. Hencky's law is also studied in the book of
DUVAUT and LIONS, by methods involving the du#lity of convex func-
tionals.

In order to help the reader to visualize the formulated problem
let us finally present a very simple model in which the dimension of u
equals 2, The considered system consists of two particles x and p
moving in the plane W . The particle x is guided without friction on
the material straight line U + g(t), a line which remains parallel to

the fixed line U and moves in

p
e a given way. The particle p will
be visualized as a plot, whose
® U+g
g(t) contact with the plane U is
affected by a given friction., The
U

two particles are connected by a

O 4

spring whose length in the state
of zero tension is zero. In addition, a given force c(t) is applied to

X. One studies motions during which the various forces equilibrate each
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other at any instant ; in particular the friction resistance undergone

by p must exactly counterbalance the spring tension.

Investigating this elementary model raises an important obser-

vation : though the friction between p and the underlying plane has the

characteristics of perfect plasticity, the behavior of the component x

exhibits strain hardening. In fact suppose the line U + g is fixed, for

instance with g identically zero ; suppose the friction of p is iso-
tropic, i.e. it obeys elementary Coulomb's law, Clearly any motion during
which the spring is strained enough for the point p to yield (this im-
poses a definite value for the distance between x and p) necessarily
brings this point closer to the line. Therefore this evolution léaves

the system in a state for which the elastic domain, i.e. the set of the
values of the load ¢ ‘which may be applied without causing yield, is

larger than before.

Such an example suggests that strain hardening can be described,

in practical situations, by including in the definition of the hidden

component p a sufficient number of internal state variables and postu-

lating that the behavior of such a p is governed by a law similar to
that of perfect plasticity. This has been developed, in our framework of
convex pseudo-potentials, by Q.S. NGUYEN [1] (see also, for the use of

internal state variableswithout convexity, J. KRATOCHVIL and J. NECAS [lb.
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6. b THE HILBERT SPACE NOTATION
Let us restrict ourselves for sake of simplicity to the usual

case wﬁere the self-adjoint linear mapping A : UL - % introduced by the
elasticity law (6.%? is one-to-one. Then one makes the treatment of the
problem much easier by the notation trick which consists in interpreting
the one-to-one mapping A as an identification of the spaces W and ¥F.
Denote by H this single space ; the symmetric bilinear form defined on
UxW by

(u, u")>Lu, A u> = Lu', A >
becomes an inner product in H, which will be denoted as (u'| u). As the
quadratic form

u\-—>21‘<u, Auw> = El- (u| w

represents the elastic energy, it is nonnegative, thus positive definite

due to A being one-to-one. This means that a pre-Hilbert norm |,| is

defined on H by
Ju] = /@] w .

Let us make the assumppion that H is complete relatively to

this norm, i,e. it is a Hilbert space.
This of course is automatically satisfied in finite dimensional
jcases, In the case of continuous media also, one is accustomed to formu-

late the problems in suitable function spaces for this assumption to hold,
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Observe that the inner product (.I_) in H and the identi-
fication map A : {{ »F are connected in such a way that subdifferential
relations of the form - f € 3 ¢(u) may equivalently be understood in the
sense of the duality (U, ¥ ; <.,.>), with u €l and £ € F, or in the
sense of the duality (H,H ; (.I.)) with u and f elements of H,

Let us write the formulation of the problem in these notations.
Denote by V the subspace of H orthogonal to U ; observe that (6.1)
becomes s = e ; eliminate r by (6.,5) and f by (6.6) ; fhe preceding

conditions take the equivalent form

(6.7) XxXEU+g
(6.8) SEV+ecC
(6.9) X=p+ s
(6.10) PED Yo () .

Given the compact time interval [O,T], the problem is that of

determining the three functions t+> x , t~—»> p , t+— s , with values in

H, absolutely continuous on this interval (this makes the derivative ﬁ

exist for almost every t) satisfying conditions (6.7) to (6,10) for al-

most every t, and some initial conditions
(6.11) x (0) = xo , s (0) = CI

Let us make now some assumptions about the data.

ASSUMPTION 1, The given functions tr—> g and tv> ¢ are absolutely
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continuous on [0,T] . In addition, we visibly lose no generality in sup-

posing that c takes its values in U and that g takes its values

in V.

ASSUMPTION 2 . The initial data x, and 'so satisfy the conditions
X € U + g(0) , sO €V + c(0)

evidently required by (6.7) and (6.8), and the condition

(6.12) s, €C

required by (6.10). In fact (6;10) makes  that for almost evefy t, the
set 3 ¢c(t) is non empty, thus s(t) € ¢, and the latter must also be
true for every t in [O,T], by continuity,

Observe also that (6.8) with (6,10) requires the moving affine
manifold V + ¢ to meet the convex set C for almost every t, thus for
every t by the continuity of c. This may equivalently be written as
(6.13) c € projU c .

The mechanical meaning of this netessary condition is clear : a load c¢
(recall that we supposed . ¢ € U) which does not satisfy it cannot be
counterbalanced by the forces r € V (the reaction of the affine perfect
constraint) and s € C, As the law of plastic resistance (6,10) only per-
mits s € C, this means that if, starting from a configuration defined by

some values of x and p, the system experiences a load c¢ which does

not verify (6.13), its evolution cannot be quasi-static, Of course, there
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are in this situation other necessary conditions, namely x-p € V + ¢,

a consequence of (6.8) and (6,9).

For mathematical convenience, we shall suppose that the set C

possesses a nonempty interior ; then let us agree to replace (6.13) by

the stronger following condition.

ASSUMPTION 3, For any t in [0,T] the affine manifold V + c(t)

intersects the interior of C,

Without discussing here the physical meaning of this assumption,
let us call it the "safe load hypothesis'',

In addition, we shall avoid some technical job of covering the
interval [O,T] and piecing together local solutions, by making also a
last inessential hypothes;s H

ASSUMPTION 4, The set C 1is bounded,

Then :

LEMMA, Assumptions 3 ggg 4 and the absolute continuity of the function

t— ¢ imply the following : there exists a strictly positive real cons=-

tant p and an absolutely continuous mapping h : [O,T] - H such that,

for every t € [0,T], one has h(t) € CN (V + c(t)) and the closed ball

with center h(t) and radius p is contained in C,

Qutlined proof : Using the notation e of § 5, a, arguments similar to

that of § 5. ¢ prove that the numerical function
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t—> e (V + c(t) , H\C)
is continuous on [O,T], with strictly positive values, thus strictly mi-

norized by some constant p > O. The set

. N Cp ={x € H : dlx, H\C) 2 p}

is closed and convex, with nonempty interior. For every t in [O,T],

ghe affine manifold V + c(t) intersects the interior of CP. The multi-

mapping t+—> V + c(t) is absolutely continuous, implying by § 5. ¢ the

absolute continuity of the moving comnvex set tv> CP N (v + c(t)). Take

as h a solution of the sweeping process by this moving non empty closed

convex set (cf. § 5. f),
/"

6, ¢ NEW UNKNOWN FUNCTIONS

Conditions (6.,7), (6.8), (6.9) may be written as

x-g€U
c-8€C
(x-g)+(c=-8) = p+c~-g ;

this may equivalently be expressed bf means of the orthogonal projectors
relative to the complementary orthogonal subspaces U and V

X~-g = projU (p+c-g)

c-s = projy (Pp+c-¢g)

or, as we have supposed ¢ € U and g€V ,



- 313 -

J. J. Moreau

x-c-g

PrOJU p
projv P = Cc+g-=-38 .
Let us define two new unknowns y and 2z by
(6.14) y = s-¢c-g = - prko P
(6.15) zZ = X~-c-¢g = projU p
which implies
(6.16) P = 2-Y% .
Due to Assumption 1, the functions t+r—>y and ¢tr> 2z are absolutély
continuous if only if such are th*As and tv+— p,
Under this‘change of unknowns, conditions (6,7) to (6,10) equi-
valently amount to
z - y€a ¢c (y+c+g)
(6.17)
z €U R y€eEv
to be satisfied for almost every t in [O,T].

Let us first draw a consequence of (6,17).

PROPOSITION, If conditions (6,17) are verified for almost every t, the

function tw> y satisfies for these values of t

€6,18) -yea 4’(c-c—g)n v (y)

in other words this function is a solution of the sweeping process by the

non empty closed convex moving set tv> (C-c(t) - g(t)) NV .,

In fact the second line of (6.17) implies - z € U , thus
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- 2z2€9 ¢V (y). Elementary calculation concerning translation in the

space H yields

9 §o (y+c+g) = 2 "’c-c—g y) .
On the other hand

Ycocmg) NV = ¥ccgt ¥y
thus

2 2

(‘{’C-c-g )+ ?’V(y) ce d’(c—c-g) N V('Y? :

Therefore (6,18) follows from the first line of (6,17),
REMARK, As ¥y and § essentially belong to V, it is indifferent to
understand the subdifferential in (6.18) in the sense of the duality bet-

ween H and itself or in the sense of the duality between the Hilbert

subspaces V and itself,

COROLLARY 1, If two solutions of (6,17) agree with the same initial

condition y(0) = Yo they coincide in what concerns the function t— y,

As explained in § 5. £, this uniquenes$ property follows from

the multimapping @ $(C—c—g) AV being monotone.

In view of the definition (6.14) of y this Corollary is equi-

valent to

COROLLARY 2, If two solutions of the system of conditions (6,7) to

(6.10) agree with the same initial condition s(0) = So’ these two solu-

tions coincide in what concerns the function ¢t s,
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By the way, (6.12) implies under Assumption 1 that the func-
tion tv> s related to y by (6,14) verifies, for almost every t,
(6.19) -s€-g+23 wc AW+ e) (s) R
an evolution "equation" analogous te that of the sweeping process, An

algorithm of time discretization would also be available for the numeri-

cal solution of it.

6, d EXISTENCE THEOREM

Let us proceed to the proof of :

PROPOSITION, Under Assumptions 1, 3, 4, whichever is Yo in

‘v (c - c(0) - g(0)), whichever is z, in U, there exists at least onme

pair of functions t+~> y and t+ 2z, absolutely continuous from [O,T]

into H, satisfying (6.17) for almost every t and the initial conditions

y(0) = Yo z(0) = z .

First step. Under the hypotheses made there exists an absolutely conti-
nuous function, let us already denote it by t~> y , satisfying (6, 18)
for almost every t and the initial condition y(0) = Yqe In fact this
function is the solution of the sweeping process, for this initial condi-
tion ., by the moving convex set tw> (C - c(t) - g(t)) N V. The existence
theorem of § 5, g apply because tr> C - c(t) - g(t) is absolutely con-

¢

tinuous (see § 5, b about a translating convex set), thus the considered
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intersection is also absolutely continuous, by virtue of Assumptions 3
and 4 and the intersection theorem of § 5. ¢, Defining y in this way,
one has y(t) € V for every t, thus 9 ¥y (y) = U. The additivity of

the subdifferentials holds for the functions ¢C—c— and wv since, by

g
Assumption 3, V + ¢ + g intersects the interior of C (recall that

g € V) so that there exists a point at which both functions are finite
and the function wc-c—g is continuous ; then (6.18) implies for almost
every t he existence of at 1east one element of U, which will be al-
ready denoted as z(t), such that

(6.20) z(t) - y(t) € 2 Uooeg¥(E)) = 2 4 (y(E) + e() + g(£)).
This is the first of conditions (6,17).

Second step. For a value of t such that (6.20) holds the point z -y
is a conjugate of the point y + c + g relatively to the pair of dual
functions v, namely the support function of C, and wc (see § 2, e,
Example), This may be written as

(6.21) y(z-y)-(z-3]|y+c+g) =0

which implies that for almost every t, the closed convex set

(6.22) B (t) = {w€H : p(w) - (wy+rcsg) = 0}

fwe H : pw) - (wy+crg) <0}

i

possesses a nonempty intersection with the affine manifold U - &(t). As

vy 1s a numerical function independent of t and as tr> y+c+g 1is a
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continuous mapping from [0,T] into H one observes that t— & (t) is

a measurable multimapping from [0,T] into H (the measurability theory

of multimappings is due for a part to C. CASTAIﬁG ; see his lectures ;
see also, for an exposition of some basic facts in the case of a separa-
ble space, R,T. ROCKAFELLAR [4]). Such is also the multimapping

t> U-y(t), as the function t— y belongs to Ll(O,T ;s H) ; thus the
intersection of the two multimappings is measurable too, Since for al-
most every t this intersection is nonempty, it possesses a dense col-
lection of measurable selectors, Denote by t+—> p(t) one of these se-
lectors ; as p(t) € U - y(t), by putting 2z(t) = p(t) + y(t) one has
z(t) € U and (6.20) holdsfor almost every t. If we succeed in proving
that 5, thus 2, belong to Ll(O,T s H), the primitive z of z ad-
Jjusted to the initial value z(0) = z,, will constitute with the function
y determined above one of the desired solutions of (6.17).

Third step. As tw—> p(t) is mgasurable it just remains to prove that the
numerical function te-> lﬁ(t)l is majorized by an element of Ll(O,T;R).
By the lemma of § 6, b there exists a strictly positive constant P and
a continuous function h : [O,T] - H such that for every t one has
h(t) € V + ¢(t) and the ball with center h(t) and radius p 1is com-
tained in C. This inclusion of convex sets is equivalent to the follo-

wing inequality between their support functions
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(6.23) VweHR : plw + G)w<y (w .
The definition (6.22) of & (t) may be transformed by writing
(w] y+e+g) = (w|h) + (wiy|y+c+g-h) - (¥|y+cig~h)
Recall that p + y € U, that ¢ - h€ V , that g€ V , that y € V ,
that ¢ € U ; then
(§]y+c+g) = (5!h) - (§|y+g—h) .
Therefore, in view of (6,23), p € 3 (t) implies
1ol < 2 Glyren) <5 151 [yse-n] <215
p p p
where M denotes a majorant of the continuous functions tw> ]y+g—h|
over the compact interval [O,T]. As a solution of the sweeping process,
the function tw> y is absolutely continuous, thus the function t+ &
belongs to L1 (0,T ; H) ; this completes the proof,
By the definitions of y and 2z, it follows

COROLLARY. Under Assumptions 1, 2, 3, 4 the evolution problem for the

considered elastoplastic system possesses at lzast one solution ; this

solution is unique in what concerns the function t+~ g ,
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