Bertrand Gaiffe

A Tool for Mixing XML Annotations

Keywords: CCS CONCEPTS, Software and its engineering → Extensible Markup Language (XML), • Information systems → Data XML, multiple hierarchies, parsing

XML documents, in particular critical editions are usually very heavily annotated. They usually represent abbreviations, variant readings, edition operations etc. Among such documents, only a part of the character contents of the file is the actual edition of the text. Very often, one wants to run automatic tools on this "simple" text and thereafter re-embed the result into the original file. The tool we present here is dedicated to this embedding of annotations. In order to achieve this, the tool sets the problem as an ambiguous input and parses that ambiguous input by the grammar of the XML language. It then proposes those solutions that are syntactically correct. In case there are none, the input is modified and reparsed until at least one solution is found.

The tool is available at https://github.com/bgaiffe/XMLMixer.

INTRODUCTION

When working on XML documents, in particular when using XML to produce complex editions, one faces very heavily encoded documents. For instance, we may have: <app> <lem>n'enp<ex>re</ex>sist</lem> <rdg wit="#P">n'e<ex>m</ex>preist</rdg> <rdg wit="#J">n'emprenist</rdg> <rdg wit="#H">n'emp<ex>re</ex>sist</rdg> </app> meaning that the form n'enp<ex>re</ex>sist (in the edition) appears as n'e<ex>m</ex>preist in manuscript P, as n'emprenist in manuscript J and as n'emp<ex>re</ex>sist in manuscript H. Moreover, in n'enp<ex>re</ex>sist, the 're' part of the word is abbreviated (this is what <ex> means).

Suppose now that you have a list of terms that should appear in a glossary ; among the forms is "enpresist", then, doing it by hand, you would produce (tagging <w> the words in the glossary): <app> <lem>n'<w corresp="EMPRENDRE1">enp<ex>re</ex>sist</w> </lem> <rdg wit="#P">n'e<ex>m</ex>preist</rdg> <rdg wit="#J">n'emprenist</rdg> <rdg wit="#H">n'emp<ex>re</ex>sist</rdg> </app> (the <w> has to be entierely into the <lem> because it is shorter).

What we want to do, however, is doing that automatically; it should be as simple as running a script that from a document in which you have "n'enpresist" would produce "n'<w corresp="EMPRENDRE1">enpresist</w> and then re-embed this annotation into the original document.

In order to do that, the steps are:

(1) extract the text of the edition and the extra ornaments (notes), so that you can re-embed the notes latter. In our case, your document becomes:

<app xml:id="someId"><lem>n'enp<ex>re</ex>sist </lem></app>

(2) extract the text of the document and produce an auxiliary file that will enable you to re-embed the tagging. The auxilliary file will look like1 : 0 11 <app xml:id=''someId''><lem> 5 7 <ex> which means "app and lem", in this order, enclose the characters from 0 to 11, "ex" encloses the characters from 5 to 7. (3) produce your new tagging ; to keep the explanation short it will be:

2 11 <w corresp="EMPRENDRE1"> (4) re-embed all but the notes:

<app xml:id="someId"><lem>n'<w corresp="EMPRENDRE1">enp<ex>re</ex>sist</w> </lem></app> [START_REF] Lang | The Structure of Shared Forests in Ambiguous Parsing[END_REF] and finally, put the extra readings (the ornaments) back in order to get the complete result.

Steps 1, 2 and 5 are easily produced by XSL stylesheets.

Step 3 is what the user produces, be it automatic or not. The mixing tool we describe in the remaining of the paper takes care of step 4. The tool takes two arguments: a XML file and a companion file and embeds the annotations from the companion file into the XML file.

In the remaining of the paper, we describe the problem (section 2) and we propose a two steps approach: first produce a Direct Acyclic Graph (DAG) that enumerates possible documents and a second parse that DAG in order to keep well formed XML documents only. Section 3 describe the production of the DAG and section 4 is dedicated to parsing. In section 5, we propose a solution when no well formed document is found in the DAG. The last sections give some details about the implementation and conclude.

FORMULATION OF THE PROBLEM

In our example, the constraints are summarized in table 1. In table 1, text positions are related to the text ("n'enpresist") as follows:

0 n 1 ' 2 e 3 n 4 p 5 r 6 e 7 s 8 i 9 s 10 t 11 . Therefore, the 5 th character (p) is betweens text positions 4 and 5. Table 1 1 The constraints of table 1 may as well be represented by a direct acyclic graph (DAG) that enumerates all possible documents that verify the constraints. The DAG, between state 9 and state 14 represents all total orders compatible with the contraint that </lem> is before </app> (this is the three last lines of table 1).

The DAG is a compact representation of documents. On this particular example, three documents are represented, that correspond to possible paths trough the DAG. The three documents are: <app><lem>n'<w>enp<ex>re</ex>sist</lem></app></w> <app><lem>n'<w>enp<ex>re</ex>sist</lem></w></app> <app><lem>n'<w>enp<ex>re</ex>sist</w></lem></app> However, only the third of these documents is a well-formed XML document. If we parse the DAG with the grammar of the XML language, only one of the three documents it represents remains, that is: <app><lem>n'<w>enp<ex>re</ex>sist</w></lem></app>

In order to build the tool proposed in the introduction, we thus need to be able to produce such DAGs as the one of figure 1. We also to need a parser that parses such DAGs by the grammar of the XML language. This will be described in sections 3 an 4. It may happen however that no document from the DAG is a well formed XML document. This happens when the constraints lead to such situations as <a>... We then have a parsing failure and we have to repair the DAG. We then get something like: <a>... next="#next"> ...<b xml:id="next">... This is the subject of section 5.

PRODUCING THE DAG

Producing the DAG boils down to get all total orderings from a partial order. As the worst case complexity of the parsing is a function of the number of nodes of the graph, we have to minimize the number of states.

The algorithm proceeds by levels2 . For each node already produced it is associated the set of elements that remain to be sorted. If such a subset is already associated to a node, we reuse it. From a node, we build outgoing edges labeled by all minimal elements. In our previous example, this cooresponds to the graph of figure 2 Two remarks here:

• we simplify the order constraints so that relations that may be deduced by transitivity are removed (this simplifies the computation of the smallest elements at each node); • the general shape of the DAG representing the whole file is a string (around the text nodes) with lattices at some points. Somehow, the DAG looks like the diagram in Figure 3. The linear sections are made of text nodes (no textNode may appear in a non linear section) and non ambiguous tags. The parser will run left to right and step in parsing will be on textnodes.

PARSING

The parser implemented is an unoptimised Earley parser [START_REF] Earley | An efficient context-free parsing algorithm[END_REF]. The only requirement is that we need a parser that admits ambiguity in parsing (typically a chart parser). We parse the input by the following grammar of the XML language (see Figure 4) 4 .

Document -> Prolog Element LMisc Document -> Prolog Element Document -> Element LMisc Document -> Element LMisc -> Misc LMisc -> Misc LMisc Misc -> Comment Misc -> PI Misc -> S Element -> "Stag" Content "Etag" Element -> "Stag" "Etag" Content -> SContent Content -> Content SContent SContent -> "TxtNode" SContent -> Element SContent -> "Comment" SContent -> "PI" Prolog -> LMisc Element -> Stag(autoclose)

Figure 4: XML Grammar

Our terminals have parameters: tag names and attributes for "Stag", textual contents for "TxtNode", etc. They ressemble SAX events (and actually the serialization of the results is done through 'Streaming Api for XML' (StAX). However, we presuppose that our documents are well-formed except for tag crossings. We therefore do not care about characters authorized or not in XML, about attributes not being repeated etc. Our grammar is thus a real simplification of the grammar for the XML language.

The result of the parsing is a grammar (the grammar of the intersection language between the XML grammar and our DAG input [START_REF] Bar-Hillel | On formal properties of simple phrase structure grammars[END_REF]). This grammar's non terminals are non terminals from the original grammar together with indexes (states of the DAG) correponding to the part of the DAG covered by the analysis.

In practice, each use of the reduction rule in the earley parser produces a rule in the grammar that expresses the results [4, 5] 5 On our example, the result (part of the result because we only have an XML fragment) would be (indexes are these of figure 1):

From this result grammar, we extract a result (there may be more than one) when the parsing is successfull. It may happen

ERROR CORRECTION

The only kind of syntactic error we want to correct are these that correspond to elements that cross. Namely, this corresponds to such situations as: <a>...... In such a case, we want to produce a correction like: <a>...<b next=#repair>...<bxml:id="repair">... That is, we close the tag that needs to be closed and we reopen it later. In order to do so, when the parser fails we need to choose what error to correct (even when the parsing is succesfull, there are a lot of parsing paths that fail). The next step, once the error to correct is choosen is of course to actually correct it.

Choosing the error to corect

When the parsing fails, this means that no parsing item is produced that scans the text. Errors are failed scans, that is items of the form [i,j, α → β • Etaд("a")γ] with Etag("a") a closing node whereas we find at state j another closing node Etag("b"). This is illustrated by the following situation: The analysis fails with two items that fail scanning into the sub-DAG after state 3. Namely:

[2, 3, Element ::= Stag("c") Content • Etag("c")] fails in state 3 because it scans Etag("a") and [1, 4, Element :: Stag("b") Content • Etag("b")] fails in state 4 because it scans Etag("a").

The correction chosen is the second one because it happens in state 4 which is at level 1 in the sub-DAG whereas the first happens at level 0 in the sub-DAG.

Doing the correction

At states such as 3 in the previous example (see Figure 5), we keep the ordering chains, that is the ordering constraints, that were used to compute the sub-DAG (in this particular case, we have only </c> and which means, these two elements and no order constraint). We must add [,], [,] and [,]: we close b before we reopen it, and we have to close b before we close a and we reopen b after we close a. The sub-DAG computed with these new elements and constraints replaces the sub-DAG between state 3 and state 6 in Figure 5. With this new sub-DAG, the parsing succeeds on the path /c, /b, /a, b. In the general case, a sole correction may not suffice ; we thus perform corection until a parse is found.

SOME DETAILS ABOUT THE IMPLEMENTATION

Classes that represent the OpenElementNodes and CloseElementNodes contains non only a QName, a Namespace and attributes, but they also contain an ID in case the openElement and the closeElement come from the companion file 6 . The idea is that a closeElement node that comes from the companion file cannot close an openElement node coming from the XML file, and, more generally that in a companion file such as:

CONCLUSION AND PERSPECTIVES

We described a tool for inserting annotations into an XML file. This tool is developped in Java and takes as arguments: an XML file and a companion file that specifies the points in the PCDATA at which XML elements have to be inserted. The tool aims at avoiding unnessessary opening and closing of tags. This gives more readable files that are also much easier to process with such tools as XSLT.

In order to insert these annotations in the most readable manner, the tool parses a DAG describing all the XML documents that respect the contraints and a parser selects those that are compatible with the grammar of the XML language [START_REF] Dymetman | Chart-parsing techniques and the prediction of valid editing moves in structured document authoring[END_REF]; at the end of the process, one of the possible solutions is given. Eventually, some XML elements are split in order to get a weel formed solution.. Three important improvements are possible:

• the result of the program is one among some possible solutions; a context free grammar enumerates the results, but we could take a schema as a parameter and filter the possible solutions through this schema.

• the program may be used to combine annotations from two versions of an XML file, or to state it another way, two XML files on the same textual contents. A probably usefull tool would align textual contents so that the two XML files may differ sligthly (for instance on whitespaces). • the memory footprint of the program is quite hight (on big XML files, it is necessary to increase the Java machine's memory). As we have ambiguous parsing, the worst case in terms of memory used is in the square of the number of states of the DAG ; however, a huge lot could be spared by optimizing the parser.

 Figure 1

 Figure 2

Figure 3

 3 Figure 3

 Figure 5

Figure 6

 6 Figure 6

 then specifies that <app> has to appear at position 0 as well as <lem>. The constraint at the second line of the table specifies that <app> has to be before <lem>.

	texte pos. symbols constraints
	0	<app>	
	0	<lem>	app < lem
	2	<w>	
	5	<ex>	
	7	</ex>	
	11	</app>	
	11	</lem>	</lem> < </app>
	11	</w>	
		Table	

This auxiliary file is inspired by the companion files Eric de la Clergerie designed for is project "Passage'[START_REF] Villemonte De La Clergerie | Large scale production of syntactic annotations for French[END_REF], the numbers are index of characters in the text.

Levels are the cardinality of the subset yet to be totally ordered.

(l, w, a) are abbreviations for </lem>, </app> and </w>

Among the differences with a full grammar of the XML languages, we do not consider CDATA.

The grammar is cleaned at the end of the parsing: all un-reachable rules are removed.

The parameters of the program are a XML file and a companion file with the intent that the annotations from the companion file are integrated into the XML file.